cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

parport_ip32.c (67764B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* Low-level parallel port routines for built-in port on SGI IP32
      3 *
      4 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
      5 *
      6 * Based on parport_pc.c by
      7 *	Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
      8 *	Andrea Arcangeli, et al.
      9 *
     10 * Thanks to Ilya A. Volynets-Evenbakh for his help.
     11 *
     12 * Copyright (C) 2005, 2006 Arnaud Giersch.
     13 */
     14
     15/* Current status:
     16 *
     17 *	Basic SPP and PS2 modes are supported.
     18 *	Support for parallel port IRQ is present.
     19 *	Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
     20 *	supported.
     21 *	SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
     22 *	or without interrupt support.
     23 *
     24 *	Hardware ECP mode is not fully implemented (ecp_read_data and
     25 *	ecp_write_addr are actually missing).
     26 *
     27 * To do:
     28 *
     29 *	Fully implement ECP mode.
     30 *	EPP and ECP mode need to be tested.  I currently do not own any
     31 *	peripheral supporting these extended mode, and cannot test them.
     32 *	If DMA mode works well, decide if support for PIO FIFO modes should be
     33 *	dropped.
     34 *	Use the io{read,write} family functions when they become available in
     35 *	the linux-mips.org tree.  Note: the MIPS specific functions readsb()
     36 *	and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
     37 *	respectively.
     38 */
     39
     40/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
     41 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
     42 * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
     43 * FIFO buffer and supports DMA transfers.
     44 *
     45 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
     46 *
     47 * Theoretically, we could simply use the parport_pc module.  It is however
     48 * not so simple.  The parport_pc code assumes that the parallel port
     49 * registers are port-mapped.  On the O2, they are memory-mapped.
     50 * Furthermore, each register is replicated on 256 consecutive addresses (as
     51 * it is for the built-in serial ports on the same chip).
     52 */
     53
     54/*--- Some configuration defines ---------------------------------------*/
     55
     56/* DEBUG_PARPORT_IP32
     57 *	0	disable debug
     58 *	1	standard level: pr_debug1 is enabled
     59 *	2	parport_ip32_dump_state is enabled
     60 *	>=3	verbose level: pr_debug is enabled
     61 */
     62#if !defined(DEBUG_PARPORT_IP32)
     63#	define DEBUG_PARPORT_IP32  0	/* 0 (disabled) for production */
     64#endif
     65
     66/*----------------------------------------------------------------------*/
     67
     68/* Setup DEBUG macros.  This is done before any includes, just in case we
     69 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
     70 */
     71#if DEBUG_PARPORT_IP32 == 1
     72#	warning DEBUG_PARPORT_IP32 == 1
     73#elif DEBUG_PARPORT_IP32 == 2
     74#	warning DEBUG_PARPORT_IP32 == 2
     75#elif DEBUG_PARPORT_IP32 >= 3
     76#	warning DEBUG_PARPORT_IP32 >= 3
     77#	if !defined(DEBUG)
     78#		define DEBUG /* enable pr_debug() in kernel.h */
     79#	endif
     80#endif
     81
     82#include <linux/completion.h>
     83#include <linux/delay.h>
     84#include <linux/dma-mapping.h>
     85#include <linux/err.h>
     86#include <linux/init.h>
     87#include <linux/interrupt.h>
     88#include <linux/jiffies.h>
     89#include <linux/kernel.h>
     90#include <linux/module.h>
     91#include <linux/parport.h>
     92#include <linux/sched/signal.h>
     93#include <linux/slab.h>
     94#include <linux/spinlock.h>
     95#include <linux/stddef.h>
     96#include <linux/types.h>
     97#include <asm/io.h>
     98#include <asm/ip32/ip32_ints.h>
     99#include <asm/ip32/mace.h>
    100
    101/*--- Global variables -------------------------------------------------*/
    102
    103/* Verbose probing on by default for debugging. */
    104#if DEBUG_PARPORT_IP32 >= 1
    105#	define DEFAULT_VERBOSE_PROBING	1
    106#else
    107#	define DEFAULT_VERBOSE_PROBING	0
    108#endif
    109
    110/* Default prefix for printk */
    111#define PPIP32 "parport_ip32: "
    112
    113/*
    114 * These are the module parameters:
    115 * @features:		bit mask of features to enable/disable
    116 *			(all enabled by default)
    117 * @verbose_probing:	log chit-chat during initialization
    118 */
    119#define PARPORT_IP32_ENABLE_IRQ	(1U << 0)
    120#define PARPORT_IP32_ENABLE_DMA	(1U << 1)
    121#define PARPORT_IP32_ENABLE_SPP	(1U << 2)
    122#define PARPORT_IP32_ENABLE_EPP	(1U << 3)
    123#define PARPORT_IP32_ENABLE_ECP	(1U << 4)
    124static unsigned int features =	~0U;
    125static bool verbose_probing =	DEFAULT_VERBOSE_PROBING;
    126
    127/* We do not support more than one port. */
    128static struct parport *this_port;
    129
    130/* Timing constants for FIFO modes.  */
    131#define FIFO_NFAULT_TIMEOUT	100	/* milliseconds */
    132#define FIFO_POLLING_INTERVAL	50	/* microseconds */
    133
    134/*--- I/O register definitions -----------------------------------------*/
    135
    136/**
    137 * struct parport_ip32_regs - virtual addresses of parallel port registers
    138 * @data:	Data Register
    139 * @dsr:	Device Status Register
    140 * @dcr:	Device Control Register
    141 * @eppAddr:	EPP Address Register
    142 * @eppData0:	EPP Data Register 0
    143 * @eppData1:	EPP Data Register 1
    144 * @eppData2:	EPP Data Register 2
    145 * @eppData3:	EPP Data Register 3
    146 * @ecpAFifo:	ECP Address FIFO
    147 * @fifo:	General FIFO register.  The same address is used for:
    148 *		- cFifo, the Parallel Port DATA FIFO
    149 *		- ecpDFifo, the ECP Data FIFO
    150 *		- tFifo, the ECP Test FIFO
    151 * @cnfgA:	Configuration Register A
    152 * @cnfgB:	Configuration Register B
    153 * @ecr:	Extended Control Register
    154 */
    155struct parport_ip32_regs {
    156	void __iomem *data;
    157	void __iomem *dsr;
    158	void __iomem *dcr;
    159	void __iomem *eppAddr;
    160	void __iomem *eppData0;
    161	void __iomem *eppData1;
    162	void __iomem *eppData2;
    163	void __iomem *eppData3;
    164	void __iomem *ecpAFifo;
    165	void __iomem *fifo;
    166	void __iomem *cnfgA;
    167	void __iomem *cnfgB;
    168	void __iomem *ecr;
    169};
    170
    171/* Device Status Register */
    172#define DSR_nBUSY		(1U << 7)	/* PARPORT_STATUS_BUSY */
    173#define DSR_nACK		(1U << 6)	/* PARPORT_STATUS_ACK */
    174#define DSR_PERROR		(1U << 5)	/* PARPORT_STATUS_PAPEROUT */
    175#define DSR_SELECT		(1U << 4)	/* PARPORT_STATUS_SELECT */
    176#define DSR_nFAULT		(1U << 3)	/* PARPORT_STATUS_ERROR */
    177#define DSR_nPRINT		(1U << 2)	/* specific to TL16PIR552 */
    178/* #define DSR_reserved		(1U << 1) */
    179#define DSR_TIMEOUT		(1U << 0)	/* EPP timeout */
    180
    181/* Device Control Register */
    182/* #define DCR_reserved		(1U << 7) | (1U <<  6) */
    183#define DCR_DIR			(1U << 5)	/* direction */
    184#define DCR_IRQ			(1U << 4)	/* interrupt on nAck */
    185#define DCR_SELECT		(1U << 3)	/* PARPORT_CONTROL_SELECT */
    186#define DCR_nINIT		(1U << 2)	/* PARPORT_CONTROL_INIT */
    187#define DCR_AUTOFD		(1U << 1)	/* PARPORT_CONTROL_AUTOFD */
    188#define DCR_STROBE		(1U << 0)	/* PARPORT_CONTROL_STROBE */
    189
    190/* ECP Configuration Register A */
    191#define CNFGA_IRQ		(1U << 7)
    192#define CNFGA_ID_MASK		((1U << 6) | (1U << 5) | (1U << 4))
    193#define CNFGA_ID_SHIFT		4
    194#define CNFGA_ID_16		(00U << CNFGA_ID_SHIFT)
    195#define CNFGA_ID_8		(01U << CNFGA_ID_SHIFT)
    196#define CNFGA_ID_32		(02U << CNFGA_ID_SHIFT)
    197/* #define CNFGA_reserved	(1U << 3) */
    198#define CNFGA_nBYTEINTRANS	(1U << 2)
    199#define CNFGA_PWORDLEFT		((1U << 1) | (1U << 0))
    200
    201/* ECP Configuration Register B */
    202#define CNFGB_COMPRESS		(1U << 7)
    203#define CNFGB_INTRVAL		(1U << 6)
    204#define CNFGB_IRQ_MASK		((1U << 5) | (1U << 4) | (1U << 3))
    205#define CNFGB_IRQ_SHIFT		3
    206#define CNFGB_DMA_MASK		((1U << 2) | (1U << 1) | (1U << 0))
    207#define CNFGB_DMA_SHIFT		0
    208
    209/* Extended Control Register */
    210#define ECR_MODE_MASK		((1U << 7) | (1U << 6) | (1U << 5))
    211#define ECR_MODE_SHIFT		5
    212#define ECR_MODE_SPP		(00U << ECR_MODE_SHIFT)
    213#define ECR_MODE_PS2		(01U << ECR_MODE_SHIFT)
    214#define ECR_MODE_PPF		(02U << ECR_MODE_SHIFT)
    215#define ECR_MODE_ECP		(03U << ECR_MODE_SHIFT)
    216#define ECR_MODE_EPP		(04U << ECR_MODE_SHIFT)
    217/* #define ECR_MODE_reserved	(05U << ECR_MODE_SHIFT) */
    218#define ECR_MODE_TST		(06U << ECR_MODE_SHIFT)
    219#define ECR_MODE_CFG		(07U << ECR_MODE_SHIFT)
    220#define ECR_nERRINTR		(1U << 4)
    221#define ECR_DMAEN		(1U << 3)
    222#define ECR_SERVINTR		(1U << 2)
    223#define ECR_F_FULL		(1U << 1)
    224#define ECR_F_EMPTY		(1U << 0)
    225
    226/*--- Private data -----------------------------------------------------*/
    227
    228/**
    229 * enum parport_ip32_irq_mode - operation mode of interrupt handler
    230 * @PARPORT_IP32_IRQ_FWD:	forward interrupt to the upper parport layer
    231 * @PARPORT_IP32_IRQ_HERE:	interrupt is handled locally
    232 */
    233enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
    234
    235/**
    236 * struct parport_ip32_private - private stuff for &struct parport
    237 * @regs:		register addresses
    238 * @dcr_cache:		cached contents of DCR
    239 * @dcr_writable:	bit mask of writable DCR bits
    240 * @pword:		number of bytes per PWord
    241 * @fifo_depth:		number of PWords that FIFO will hold
    242 * @readIntrThreshold:	minimum number of PWords we can read
    243 *			if we get an interrupt
    244 * @writeIntrThreshold:	minimum number of PWords we can write
    245 *			if we get an interrupt
    246 * @irq_mode:		operation mode of interrupt handler for this port
    247 * @irq_complete:	mutex used to wait for an interrupt to occur
    248 */
    249struct parport_ip32_private {
    250	struct parport_ip32_regs	regs;
    251	unsigned int			dcr_cache;
    252	unsigned int			dcr_writable;
    253	unsigned int			pword;
    254	unsigned int			fifo_depth;
    255	unsigned int			readIntrThreshold;
    256	unsigned int			writeIntrThreshold;
    257	enum parport_ip32_irq_mode	irq_mode;
    258	struct completion		irq_complete;
    259};
    260
    261/*--- Debug code -------------------------------------------------------*/
    262
    263/*
    264 * pr_debug1 - print debug messages
    265 *
    266 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
    267 */
    268#if DEBUG_PARPORT_IP32 >= 1
    269#	define pr_debug1(...)	printk(KERN_DEBUG __VA_ARGS__)
    270#else /* DEBUG_PARPORT_IP32 < 1 */
    271#	define pr_debug1(...)	do { } while (0)
    272#endif
    273
    274/*
    275 * pr_trace, pr_trace1 - trace function calls
    276 * @p:		pointer to &struct parport
    277 * @fmt:	printk format string
    278 * @...:	parameters for format string
    279 *
    280 * Macros used to trace function calls.  The given string is formatted after
    281 * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
    282 * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
    283 * directly.
    284 */
    285#define __pr_trace(pr, p, fmt, ...)					\
    286	pr("%s: %s" fmt "\n",						\
    287	   ({ const struct parport *__p = (p);				\
    288		   __p ? __p->name : "parport_ip32"; }),		\
    289	   __func__ , ##__VA_ARGS__)
    290#define pr_trace(p, fmt, ...)	__pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
    291#define pr_trace1(p, fmt, ...)	__pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
    292
    293/*
    294 * __pr_probe, pr_probe - print message if @verbose_probing is true
    295 * @p:		pointer to &struct parport
    296 * @fmt:	printk format string
    297 * @...:	parameters for format string
    298 *
    299 * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
    300 */
    301#define __pr_probe(...)							\
    302	do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
    303#define pr_probe(p, fmt, ...)						\
    304	__pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
    305
    306/*
    307 * parport_ip32_dump_state - print register status of parport
    308 * @p:		pointer to &struct parport
    309 * @str:	string to add in message
    310 * @show_ecp_config:	shall we dump ECP configuration registers too?
    311 *
    312 * This function is only here for debugging purpose, and should be used with
    313 * care.  Reading the parallel port registers may have undesired side effects.
    314 * Especially if @show_ecp_config is true, the parallel port is resetted.
    315 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
    316 */
    317#if DEBUG_PARPORT_IP32 >= 2
    318static void parport_ip32_dump_state(struct parport *p, char *str,
    319				    unsigned int show_ecp_config)
    320{
    321	struct parport_ip32_private * const priv = p->physport->private_data;
    322	unsigned int i;
    323
    324	printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
    325	{
    326		static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
    327						     "ECP", "EPP", "???",
    328						     "TST", "CFG"};
    329		unsigned int ecr = readb(priv->regs.ecr);
    330		printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
    331		pr_cont(" %s",
    332			ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
    333		if (ecr & ECR_nERRINTR)
    334			pr_cont(",nErrIntrEn");
    335		if (ecr & ECR_DMAEN)
    336			pr_cont(",dmaEn");
    337		if (ecr & ECR_SERVINTR)
    338			pr_cont(",serviceIntr");
    339		if (ecr & ECR_F_FULL)
    340			pr_cont(",f_full");
    341		if (ecr & ECR_F_EMPTY)
    342			pr_cont(",f_empty");
    343		pr_cont("\n");
    344	}
    345	if (show_ecp_config) {
    346		unsigned int oecr, cnfgA, cnfgB;
    347		oecr = readb(priv->regs.ecr);
    348		writeb(ECR_MODE_PS2, priv->regs.ecr);
    349		writeb(ECR_MODE_CFG, priv->regs.ecr);
    350		cnfgA = readb(priv->regs.cnfgA);
    351		cnfgB = readb(priv->regs.cnfgB);
    352		writeb(ECR_MODE_PS2, priv->regs.ecr);
    353		writeb(oecr, priv->regs.ecr);
    354		printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
    355		pr_cont(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
    356		switch (cnfgA & CNFGA_ID_MASK) {
    357		case CNFGA_ID_8:
    358			pr_cont(",8 bits");
    359			break;
    360		case CNFGA_ID_16:
    361			pr_cont(",16 bits");
    362			break;
    363		case CNFGA_ID_32:
    364			pr_cont(",32 bits");
    365			break;
    366		default:
    367			pr_cont(",unknown ID");
    368			break;
    369		}
    370		if (!(cnfgA & CNFGA_nBYTEINTRANS))
    371			pr_cont(",ByteInTrans");
    372		if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
    373			pr_cont(",%d byte%s left",
    374				cnfgA & CNFGA_PWORDLEFT,
    375				((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
    376		pr_cont("\n");
    377		printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
    378		pr_cont(" irq=%u,dma=%u",
    379			(cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
    380			(cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
    381		pr_cont(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
    382		if (cnfgB & CNFGB_COMPRESS)
    383			pr_cont(",compress");
    384		pr_cont("\n");
    385	}
    386	for (i = 0; i < 2; i++) {
    387		unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
    388		printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
    389		       i ? "soft" : "hard", dcr);
    390		pr_cont(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
    391		if (dcr & DCR_IRQ)
    392			pr_cont(",ackIntEn");
    393		if (!(dcr & DCR_SELECT))
    394			pr_cont(",nSelectIn");
    395		if (dcr & DCR_nINIT)
    396			pr_cont(",nInit");
    397		if (!(dcr & DCR_AUTOFD))
    398			pr_cont(",nAutoFD");
    399		if (!(dcr & DCR_STROBE))
    400			pr_cont(",nStrobe");
    401		pr_cont("\n");
    402	}
    403#define sep (f++ ? ',' : ' ')
    404	{
    405		unsigned int f = 0;
    406		unsigned int dsr = readb(priv->regs.dsr);
    407		printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
    408		if (!(dsr & DSR_nBUSY))
    409			pr_cont("%cBusy", sep);
    410		if (dsr & DSR_nACK)
    411			pr_cont("%cnAck", sep);
    412		if (dsr & DSR_PERROR)
    413			pr_cont("%cPError", sep);
    414		if (dsr & DSR_SELECT)
    415			pr_cont("%cSelect", sep);
    416		if (dsr & DSR_nFAULT)
    417			pr_cont("%cnFault", sep);
    418		if (!(dsr & DSR_nPRINT))
    419			pr_cont("%c(Print)", sep);
    420		if (dsr & DSR_TIMEOUT)
    421			pr_cont("%cTimeout", sep);
    422		pr_cont("\n");
    423	}
    424#undef sep
    425}
    426#else /* DEBUG_PARPORT_IP32 < 2 */
    427#define parport_ip32_dump_state(...)	do { } while (0)
    428#endif
    429
    430/*
    431 * CHECK_EXTRA_BITS - track and log extra bits
    432 * @p:		pointer to &struct parport
    433 * @b:		byte to inspect
    434 * @m:		bit mask of authorized bits
    435 *
    436 * This is used to track and log extra bits that should not be there in
    437 * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
    438 * defined if %DEBUG_PARPORT_IP32 >= 1.
    439 */
    440#if DEBUG_PARPORT_IP32 >= 1
    441#define CHECK_EXTRA_BITS(p, b, m)					\
    442	do {								\
    443		unsigned int __b = (b), __m = (m);			\
    444		if (__b & ~__m)						\
    445			pr_debug1(PPIP32 "%s: extra bits in %s(%s): "	\
    446				  "0x%02x/0x%02x\n",			\
    447				  (p)->name, __func__, #b, __b, __m);	\
    448	} while (0)
    449#else /* DEBUG_PARPORT_IP32 < 1 */
    450#define CHECK_EXTRA_BITS(...)	do { } while (0)
    451#endif
    452
    453/*--- IP32 parallel port DMA operations --------------------------------*/
    454
    455/**
    456 * struct parport_ip32_dma_data - private data needed for DMA operation
    457 * @dir:	DMA direction (from or to device)
    458 * @buf:	buffer physical address
    459 * @len:	buffer length
    460 * @next:	address of next bytes to DMA transfer
    461 * @left:	number of bytes remaining
    462 * @ctx:	next context to write (0: context_a; 1: context_b)
    463 * @irq_on:	are the DMA IRQs currently enabled?
    464 * @lock:	spinlock to protect access to the structure
    465 */
    466struct parport_ip32_dma_data {
    467	enum dma_data_direction		dir;
    468	dma_addr_t			buf;
    469	dma_addr_t			next;
    470	size_t				len;
    471	size_t				left;
    472	unsigned int			ctx;
    473	unsigned int			irq_on;
    474	spinlock_t			lock;
    475};
    476static struct parport_ip32_dma_data parport_ip32_dma;
    477
    478/**
    479 * parport_ip32_dma_setup_context - setup next DMA context
    480 * @limit:	maximum data size for the context
    481 *
    482 * The alignment constraints must be verified in caller function, and the
    483 * parameter @limit must be set accordingly.
    484 */
    485static void parport_ip32_dma_setup_context(unsigned int limit)
    486{
    487	unsigned long flags;
    488
    489	spin_lock_irqsave(&parport_ip32_dma.lock, flags);
    490	if (parport_ip32_dma.left > 0) {
    491		/* Note: ctxreg is "volatile" here only because
    492		 * mace->perif.ctrl.parport.context_a and context_b are
    493		 * "volatile".  */
    494		volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
    495			&mace->perif.ctrl.parport.context_a :
    496			&mace->perif.ctrl.parport.context_b;
    497		u64 count;
    498		u64 ctxval;
    499		if (parport_ip32_dma.left <= limit) {
    500			count = parport_ip32_dma.left;
    501			ctxval = MACEPAR_CONTEXT_LASTFLAG;
    502		} else {
    503			count = limit;
    504			ctxval = 0;
    505		}
    506
    507		pr_trace(NULL,
    508			 "(%u): 0x%04x:0x%04x, %u -> %u%s",
    509			 limit,
    510			 (unsigned int)parport_ip32_dma.buf,
    511			 (unsigned int)parport_ip32_dma.next,
    512			 (unsigned int)count,
    513			 parport_ip32_dma.ctx, ctxval ? "*" : "");
    514
    515		ctxval |= parport_ip32_dma.next &
    516			MACEPAR_CONTEXT_BASEADDR_MASK;
    517		ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
    518			MACEPAR_CONTEXT_DATALEN_MASK;
    519		writeq(ctxval, ctxreg);
    520		parport_ip32_dma.next += count;
    521		parport_ip32_dma.left -= count;
    522		parport_ip32_dma.ctx ^= 1U;
    523	}
    524	/* If there is nothing more to send, disable IRQs to avoid to
    525	 * face an IRQ storm which can lock the machine.  Disable them
    526	 * only once. */
    527	if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
    528		pr_debug(PPIP32 "IRQ off (ctx)\n");
    529		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
    530		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
    531		parport_ip32_dma.irq_on = 0;
    532	}
    533	spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
    534}
    535
    536/**
    537 * parport_ip32_dma_interrupt - DMA interrupt handler
    538 * @irq:	interrupt number
    539 * @dev_id:	unused
    540 */
    541static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
    542{
    543	if (parport_ip32_dma.left)
    544		pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
    545	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
    546	return IRQ_HANDLED;
    547}
    548
    549#if DEBUG_PARPORT_IP32
    550static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
    551{
    552	pr_trace1(NULL, "(%d)", irq);
    553	return IRQ_HANDLED;
    554}
    555#endif
    556
    557/**
    558 * parport_ip32_dma_start - begins a DMA transfer
    559 * @p:		partport to work on
    560 * @dir:	DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
    561 * @addr:	pointer to data buffer
    562 * @count:	buffer size
    563 *
    564 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
    565 * correctly balanced.
    566 */
    567static int parport_ip32_dma_start(struct parport *p,
    568		enum dma_data_direction dir, void *addr, size_t count)
    569{
    570	unsigned int limit;
    571	u64 ctrl;
    572
    573	pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
    574
    575	/* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
    576	 * be 64 bytes aligned. */
    577	BUG_ON(dir != DMA_TO_DEVICE);
    578
    579	/* Reset DMA controller */
    580	ctrl = MACEPAR_CTLSTAT_RESET;
    581	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
    582
    583	/* DMA IRQs should normally be enabled */
    584	if (!parport_ip32_dma.irq_on) {
    585		WARN_ON(1);
    586		enable_irq(MACEISA_PAR_CTXA_IRQ);
    587		enable_irq(MACEISA_PAR_CTXB_IRQ);
    588		parport_ip32_dma.irq_on = 1;
    589	}
    590
    591	/* Prepare DMA pointers */
    592	parport_ip32_dma.dir = dir;
    593	parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
    594	parport_ip32_dma.len = count;
    595	parport_ip32_dma.next = parport_ip32_dma.buf;
    596	parport_ip32_dma.left = parport_ip32_dma.len;
    597	parport_ip32_dma.ctx = 0;
    598
    599	/* Setup DMA direction and first two contexts */
    600	ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
    601	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
    602	/* Single transfer should not cross a 4K page boundary */
    603	limit = MACEPAR_CONTEXT_DATA_BOUND -
    604		(parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
    605	parport_ip32_dma_setup_context(limit);
    606	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
    607
    608	/* Real start of DMA transfer */
    609	ctrl |= MACEPAR_CTLSTAT_ENABLE;
    610	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
    611
    612	return 0;
    613}
    614
    615/**
    616 * parport_ip32_dma_stop - ends a running DMA transfer
    617 * @p:		partport to work on
    618 *
    619 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
    620 * correctly balanced.
    621 */
    622static void parport_ip32_dma_stop(struct parport *p)
    623{
    624	u64 ctx_a;
    625	u64 ctx_b;
    626	u64 ctrl;
    627	u64 diag;
    628	size_t res[2];	/* {[0] = res_a, [1] = res_b} */
    629
    630	pr_trace(NULL, "()");
    631
    632	/* Disable IRQs */
    633	spin_lock_irq(&parport_ip32_dma.lock);
    634	if (parport_ip32_dma.irq_on) {
    635		pr_debug(PPIP32 "IRQ off (stop)\n");
    636		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
    637		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
    638		parport_ip32_dma.irq_on = 0;
    639	}
    640	spin_unlock_irq(&parport_ip32_dma.lock);
    641	/* Force IRQ synchronization, even if the IRQs were disabled
    642	 * elsewhere. */
    643	synchronize_irq(MACEISA_PAR_CTXA_IRQ);
    644	synchronize_irq(MACEISA_PAR_CTXB_IRQ);
    645
    646	/* Stop DMA transfer */
    647	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
    648	ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
    649	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
    650
    651	/* Adjust residue (parport_ip32_dma.left) */
    652	ctx_a = readq(&mace->perif.ctrl.parport.context_a);
    653	ctx_b = readq(&mace->perif.ctrl.parport.context_b);
    654	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
    655	diag = readq(&mace->perif.ctrl.parport.diagnostic);
    656	res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
    657		1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
    658		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
    659		0;
    660	res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
    661		1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
    662		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
    663		0;
    664	if (diag & MACEPAR_DIAG_DMACTIVE)
    665		res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
    666			1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
    667			     MACEPAR_DIAG_CTRSHIFT);
    668	parport_ip32_dma.left += res[0] + res[1];
    669
    670	/* Reset DMA controller, and re-enable IRQs */
    671	ctrl = MACEPAR_CTLSTAT_RESET;
    672	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
    673	pr_debug(PPIP32 "IRQ on (stop)\n");
    674	enable_irq(MACEISA_PAR_CTXA_IRQ);
    675	enable_irq(MACEISA_PAR_CTXB_IRQ);
    676	parport_ip32_dma.irq_on = 1;
    677
    678	dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
    679			 parport_ip32_dma.len, parport_ip32_dma.dir);
    680}
    681
    682/**
    683 * parport_ip32_dma_get_residue - get residue from last DMA transfer
    684 *
    685 * Returns the number of bytes remaining from last DMA transfer.
    686 */
    687static inline size_t parport_ip32_dma_get_residue(void)
    688{
    689	return parport_ip32_dma.left;
    690}
    691
    692/**
    693 * parport_ip32_dma_register - initialize DMA engine
    694 *
    695 * Returns zero for success.
    696 */
    697static int parport_ip32_dma_register(void)
    698{
    699	int err;
    700
    701	spin_lock_init(&parport_ip32_dma.lock);
    702	parport_ip32_dma.irq_on = 1;
    703
    704	/* Reset DMA controller */
    705	writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
    706
    707	/* Request IRQs */
    708	err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
    709			  0, "parport_ip32", NULL);
    710	if (err)
    711		goto fail_a;
    712	err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
    713			  0, "parport_ip32", NULL);
    714	if (err)
    715		goto fail_b;
    716#if DEBUG_PARPORT_IP32
    717	/* FIXME - what is this IRQ for? */
    718	err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
    719			  0, "parport_ip32", NULL);
    720	if (err)
    721		goto fail_merr;
    722#endif
    723	return 0;
    724
    725#if DEBUG_PARPORT_IP32
    726fail_merr:
    727	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
    728#endif
    729fail_b:
    730	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
    731fail_a:
    732	return err;
    733}
    734
    735/**
    736 * parport_ip32_dma_unregister - release and free resources for DMA engine
    737 */
    738static void parport_ip32_dma_unregister(void)
    739{
    740#if DEBUG_PARPORT_IP32
    741	free_irq(MACEISA_PAR_MERR_IRQ, NULL);
    742#endif
    743	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
    744	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
    745}
    746
    747/*--- Interrupt handlers and associates --------------------------------*/
    748
    749/**
    750 * parport_ip32_wakeup - wakes up code waiting for an interrupt
    751 * @p:		pointer to &struct parport
    752 */
    753static inline void parport_ip32_wakeup(struct parport *p)
    754{
    755	struct parport_ip32_private * const priv = p->physport->private_data;
    756	complete(&priv->irq_complete);
    757}
    758
    759/**
    760 * parport_ip32_interrupt - interrupt handler
    761 * @irq:	interrupt number
    762 * @dev_id:	pointer to &struct parport
    763 *
    764 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
    765 * %PARPORT_IP32_IRQ_FWD.
    766 */
    767static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
    768{
    769	struct parport * const p = dev_id;
    770	struct parport_ip32_private * const priv = p->physport->private_data;
    771	enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
    772
    773	switch (irq_mode) {
    774	case PARPORT_IP32_IRQ_FWD:
    775		return parport_irq_handler(irq, dev_id);
    776
    777	case PARPORT_IP32_IRQ_HERE:
    778		parport_ip32_wakeup(p);
    779		break;
    780	}
    781
    782	return IRQ_HANDLED;
    783}
    784
    785/*--- Some utility function to manipulate ECR register -----------------*/
    786
    787/**
    788 * parport_ip32_read_econtrol - read contents of the ECR register
    789 * @p:		pointer to &struct parport
    790 */
    791static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
    792{
    793	struct parport_ip32_private * const priv = p->physport->private_data;
    794	return readb(priv->regs.ecr);
    795}
    796
    797/**
    798 * parport_ip32_write_econtrol - write new contents to the ECR register
    799 * @p:		pointer to &struct parport
    800 * @c:		new value to write
    801 */
    802static inline void parport_ip32_write_econtrol(struct parport *p,
    803					       unsigned int c)
    804{
    805	struct parport_ip32_private * const priv = p->physport->private_data;
    806	writeb(c, priv->regs.ecr);
    807}
    808
    809/**
    810 * parport_ip32_frob_econtrol - change bits from the ECR register
    811 * @p:		pointer to &struct parport
    812 * @mask:	bit mask of bits to change
    813 * @val:	new value for changed bits
    814 *
    815 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
    816 * in @val, and write the result to the ECR.
    817 */
    818static inline void parport_ip32_frob_econtrol(struct parport *p,
    819					      unsigned int mask,
    820					      unsigned int val)
    821{
    822	unsigned int c;
    823	c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
    824	parport_ip32_write_econtrol(p, c);
    825}
    826
    827/**
    828 * parport_ip32_set_mode - change mode of ECP port
    829 * @p:		pointer to &struct parport
    830 * @mode:	new mode to write in ECR
    831 *
    832 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
    833 * mode @mode.  Go through PS2 mode if needed.
    834 */
    835static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
    836{
    837	unsigned int omode;
    838
    839	mode &= ECR_MODE_MASK;
    840	omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
    841
    842	if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
    843	      || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
    844		/* We have to go through PS2 mode */
    845		unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
    846		parport_ip32_write_econtrol(p, ecr);
    847	}
    848	parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
    849}
    850
    851/*--- Basic functions needed for parport -------------------------------*/
    852
    853/**
    854 * parport_ip32_read_data - return current contents of the DATA register
    855 * @p:		pointer to &struct parport
    856 */
    857static inline unsigned char parport_ip32_read_data(struct parport *p)
    858{
    859	struct parport_ip32_private * const priv = p->physport->private_data;
    860	return readb(priv->regs.data);
    861}
    862
    863/**
    864 * parport_ip32_write_data - set new contents for the DATA register
    865 * @p:		pointer to &struct parport
    866 * @d:		new value to write
    867 */
    868static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
    869{
    870	struct parport_ip32_private * const priv = p->physport->private_data;
    871	writeb(d, priv->regs.data);
    872}
    873
    874/**
    875 * parport_ip32_read_status - return current contents of the DSR register
    876 * @p:		pointer to &struct parport
    877 */
    878static inline unsigned char parport_ip32_read_status(struct parport *p)
    879{
    880	struct parport_ip32_private * const priv = p->physport->private_data;
    881	return readb(priv->regs.dsr);
    882}
    883
    884/**
    885 * __parport_ip32_read_control - return cached contents of the DCR register
    886 * @p:		pointer to &struct parport
    887 */
    888static inline unsigned int __parport_ip32_read_control(struct parport *p)
    889{
    890	struct parport_ip32_private * const priv = p->physport->private_data;
    891	return priv->dcr_cache; /* use soft copy */
    892}
    893
    894/**
    895 * __parport_ip32_write_control - set new contents for the DCR register
    896 * @p:		pointer to &struct parport
    897 * @c:		new value to write
    898 */
    899static inline void __parport_ip32_write_control(struct parport *p,
    900						unsigned int c)
    901{
    902	struct parport_ip32_private * const priv = p->physport->private_data;
    903	CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
    904	c &= priv->dcr_writable; /* only writable bits */
    905	writeb(c, priv->regs.dcr);
    906	priv->dcr_cache = c;		/* update soft copy */
    907}
    908
    909/**
    910 * __parport_ip32_frob_control - change bits from the DCR register
    911 * @p:		pointer to &struct parport
    912 * @mask:	bit mask of bits to change
    913 * @val:	new value for changed bits
    914 *
    915 * This is equivalent to read from the DCR, mask out the bits in @mask,
    916 * exclusive-or with the bits in @val, and write the result to the DCR.
    917 * Actually, the cached contents of the DCR is used.
    918 */
    919static inline void __parport_ip32_frob_control(struct parport *p,
    920					       unsigned int mask,
    921					       unsigned int val)
    922{
    923	unsigned int c;
    924	c = (__parport_ip32_read_control(p) & ~mask) ^ val;
    925	__parport_ip32_write_control(p, c);
    926}
    927
    928/**
    929 * parport_ip32_read_control - return cached contents of the DCR register
    930 * @p:		pointer to &struct parport
    931 *
    932 * The return value is masked so as to only return the value of %DCR_STROBE,
    933 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
    934 */
    935static inline unsigned char parport_ip32_read_control(struct parport *p)
    936{
    937	const unsigned int rm =
    938		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
    939	return __parport_ip32_read_control(p) & rm;
    940}
    941
    942/**
    943 * parport_ip32_write_control - set new contents for the DCR register
    944 * @p:		pointer to &struct parport
    945 * @c:		new value to write
    946 *
    947 * The value is masked so as to only change the value of %DCR_STROBE,
    948 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
    949 */
    950static inline void parport_ip32_write_control(struct parport *p,
    951					      unsigned char c)
    952{
    953	const unsigned int wm =
    954		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
    955	CHECK_EXTRA_BITS(p, c, wm);
    956	__parport_ip32_frob_control(p, wm, c & wm);
    957}
    958
    959/**
    960 * parport_ip32_frob_control - change bits from the DCR register
    961 * @p:		pointer to &struct parport
    962 * @mask:	bit mask of bits to change
    963 * @val:	new value for changed bits
    964 *
    965 * This differs from __parport_ip32_frob_control() in that it only allows to
    966 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
    967 */
    968static inline unsigned char parport_ip32_frob_control(struct parport *p,
    969						      unsigned char mask,
    970						      unsigned char val)
    971{
    972	const unsigned int wm =
    973		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
    974	CHECK_EXTRA_BITS(p, mask, wm);
    975	CHECK_EXTRA_BITS(p, val, wm);
    976	__parport_ip32_frob_control(p, mask & wm, val & wm);
    977	return parport_ip32_read_control(p);
    978}
    979
    980/**
    981 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
    982 * @p:		pointer to &struct parport
    983 */
    984static inline void parport_ip32_disable_irq(struct parport *p)
    985{
    986	__parport_ip32_frob_control(p, DCR_IRQ, 0);
    987}
    988
    989/**
    990 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
    991 * @p:		pointer to &struct parport
    992 */
    993static inline void parport_ip32_enable_irq(struct parport *p)
    994{
    995	__parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
    996}
    997
    998/**
    999 * parport_ip32_data_forward - enable host-to-peripheral communications
   1000 * @p:		pointer to &struct parport
   1001 *
   1002 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
   1003 */
   1004static inline void parport_ip32_data_forward(struct parport *p)
   1005{
   1006	__parport_ip32_frob_control(p, DCR_DIR, 0);
   1007}
   1008
   1009/**
   1010 * parport_ip32_data_reverse - enable peripheral-to-host communications
   1011 * @p:		pointer to &struct parport
   1012 *
   1013 * Place the data bus in a high impedance state, if @p->modes has the
   1014 * PARPORT_MODE_TRISTATE bit set.
   1015 */
   1016static inline void parport_ip32_data_reverse(struct parport *p)
   1017{
   1018	__parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
   1019}
   1020
   1021/**
   1022 * parport_ip32_init_state - for core parport code
   1023 * @dev:	pointer to &struct pardevice
   1024 * @s:		pointer to &struct parport_state to initialize
   1025 */
   1026static void parport_ip32_init_state(struct pardevice *dev,
   1027				    struct parport_state *s)
   1028{
   1029	s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
   1030	s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
   1031}
   1032
   1033/**
   1034 * parport_ip32_save_state - for core parport code
   1035 * @p:		pointer to &struct parport
   1036 * @s:		pointer to &struct parport_state to save state to
   1037 */
   1038static void parport_ip32_save_state(struct parport *p,
   1039				    struct parport_state *s)
   1040{
   1041	s->u.ip32.dcr = __parport_ip32_read_control(p);
   1042	s->u.ip32.ecr = parport_ip32_read_econtrol(p);
   1043}
   1044
   1045/**
   1046 * parport_ip32_restore_state - for core parport code
   1047 * @p:		pointer to &struct parport
   1048 * @s:		pointer to &struct parport_state to restore state from
   1049 */
   1050static void parport_ip32_restore_state(struct parport *p,
   1051				       struct parport_state *s)
   1052{
   1053	parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
   1054	parport_ip32_write_econtrol(p, s->u.ip32.ecr);
   1055	__parport_ip32_write_control(p, s->u.ip32.dcr);
   1056}
   1057
   1058/*--- EPP mode functions -----------------------------------------------*/
   1059
   1060/**
   1061 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
   1062 * @p:		pointer to &struct parport
   1063 *
   1064 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
   1065 */
   1066static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
   1067{
   1068	struct parport_ip32_private * const priv = p->physport->private_data;
   1069	unsigned int cleared;
   1070
   1071	if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
   1072		cleared = 1;
   1073	else {
   1074		unsigned int r;
   1075		/* To clear timeout some chips require double read */
   1076		parport_ip32_read_status(p);
   1077		r = parport_ip32_read_status(p);
   1078		/* Some reset by writing 1 */
   1079		writeb(r | DSR_TIMEOUT, priv->regs.dsr);
   1080		/* Others by writing 0 */
   1081		writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
   1082
   1083		r = parport_ip32_read_status(p);
   1084		cleared = !(r & DSR_TIMEOUT);
   1085	}
   1086
   1087	pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
   1088	return cleared;
   1089}
   1090
   1091/**
   1092 * parport_ip32_epp_read - generic EPP read function
   1093 * @eppreg:	I/O register to read from
   1094 * @p:		pointer to &struct parport
   1095 * @buf:	buffer to store read data
   1096 * @len:	length of buffer @buf
   1097 * @flags:	may be PARPORT_EPP_FAST
   1098 */
   1099static size_t parport_ip32_epp_read(void __iomem *eppreg,
   1100				    struct parport *p, void *buf,
   1101				    size_t len, int flags)
   1102{
   1103	struct parport_ip32_private * const priv = p->physport->private_data;
   1104	size_t got;
   1105	parport_ip32_set_mode(p, ECR_MODE_EPP);
   1106	parport_ip32_data_reverse(p);
   1107	parport_ip32_write_control(p, DCR_nINIT);
   1108	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
   1109		readsb(eppreg, buf, len);
   1110		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
   1111			parport_ip32_clear_epp_timeout(p);
   1112			return -EIO;
   1113		}
   1114		got = len;
   1115	} else {
   1116		u8 *bufp = buf;
   1117		for (got = 0; got < len; got++) {
   1118			*bufp++ = readb(eppreg);
   1119			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
   1120				parport_ip32_clear_epp_timeout(p);
   1121				break;
   1122			}
   1123		}
   1124	}
   1125	parport_ip32_data_forward(p);
   1126	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1127	return got;
   1128}
   1129
   1130/**
   1131 * parport_ip32_epp_write - generic EPP write function
   1132 * @eppreg:	I/O register to write to
   1133 * @p:		pointer to &struct parport
   1134 * @buf:	buffer of data to write
   1135 * @len:	length of buffer @buf
   1136 * @flags:	may be PARPORT_EPP_FAST
   1137 */
   1138static size_t parport_ip32_epp_write(void __iomem *eppreg,
   1139				     struct parport *p, const void *buf,
   1140				     size_t len, int flags)
   1141{
   1142	struct parport_ip32_private * const priv = p->physport->private_data;
   1143	size_t written;
   1144	parport_ip32_set_mode(p, ECR_MODE_EPP);
   1145	parport_ip32_data_forward(p);
   1146	parport_ip32_write_control(p, DCR_nINIT);
   1147	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
   1148		writesb(eppreg, buf, len);
   1149		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
   1150			parport_ip32_clear_epp_timeout(p);
   1151			return -EIO;
   1152		}
   1153		written = len;
   1154	} else {
   1155		const u8 *bufp = buf;
   1156		for (written = 0; written < len; written++) {
   1157			writeb(*bufp++, eppreg);
   1158			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
   1159				parport_ip32_clear_epp_timeout(p);
   1160				break;
   1161			}
   1162		}
   1163	}
   1164	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1165	return written;
   1166}
   1167
   1168/**
   1169 * parport_ip32_epp_read_data - read a block of data in EPP mode
   1170 * @p:		pointer to &struct parport
   1171 * @buf:	buffer to store read data
   1172 * @len:	length of buffer @buf
   1173 * @flags:	may be PARPORT_EPP_FAST
   1174 */
   1175static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
   1176					 size_t len, int flags)
   1177{
   1178	struct parport_ip32_private * const priv = p->physport->private_data;
   1179	return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
   1180}
   1181
   1182/**
   1183 * parport_ip32_epp_write_data - write a block of data in EPP mode
   1184 * @p:		pointer to &struct parport
   1185 * @buf:	buffer of data to write
   1186 * @len:	length of buffer @buf
   1187 * @flags:	may be PARPORT_EPP_FAST
   1188 */
   1189static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
   1190					  size_t len, int flags)
   1191{
   1192	struct parport_ip32_private * const priv = p->physport->private_data;
   1193	return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
   1194}
   1195
   1196/**
   1197 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
   1198 * @p:		pointer to &struct parport
   1199 * @buf:	buffer to store read data
   1200 * @len:	length of buffer @buf
   1201 * @flags:	may be PARPORT_EPP_FAST
   1202 */
   1203static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
   1204					 size_t len, int flags)
   1205{
   1206	struct parport_ip32_private * const priv = p->physport->private_data;
   1207	return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
   1208}
   1209
   1210/**
   1211 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
   1212 * @p:		pointer to &struct parport
   1213 * @buf:	buffer of data to write
   1214 * @len:	length of buffer @buf
   1215 * @flags:	may be PARPORT_EPP_FAST
   1216 */
   1217static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
   1218					  size_t len, int flags)
   1219{
   1220	struct parport_ip32_private * const priv = p->physport->private_data;
   1221	return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
   1222}
   1223
   1224/*--- ECP mode functions (FIFO) ----------------------------------------*/
   1225
   1226/**
   1227 * parport_ip32_fifo_wait_break - check if the waiting function should return
   1228 * @p:		pointer to &struct parport
   1229 * @expire:	timeout expiring date, in jiffies
   1230 *
   1231 * parport_ip32_fifo_wait_break() checks if the waiting function should return
   1232 * immediately or not.  The break conditions are:
   1233 *	- expired timeout;
   1234 *	- a pending signal;
   1235 *	- nFault asserted low.
   1236 * This function also calls cond_resched().
   1237 */
   1238static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
   1239						 unsigned long expire)
   1240{
   1241	cond_resched();
   1242	if (time_after(jiffies, expire)) {
   1243		pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
   1244		return 1;
   1245	}
   1246	if (signal_pending(current)) {
   1247		pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
   1248		return 1;
   1249	}
   1250	if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
   1251		pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
   1252		return 1;
   1253	}
   1254	return 0;
   1255}
   1256
   1257/**
   1258 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
   1259 * @p:		pointer to &struct parport
   1260 *
   1261 * Returns the number of bytes that can safely be written in the FIFO.  A
   1262 * return value of zero means that the calling function should terminate as
   1263 * fast as possible.
   1264 */
   1265static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
   1266{
   1267	struct parport_ip32_private * const priv = p->physport->private_data;
   1268	struct parport * const physport = p->physport;
   1269	unsigned long expire;
   1270	unsigned int count;
   1271	unsigned int ecr;
   1272
   1273	expire = jiffies + physport->cad->timeout;
   1274	count = 0;
   1275	while (1) {
   1276		if (parport_ip32_fifo_wait_break(p, expire))
   1277			break;
   1278
   1279		/* Check FIFO state.  We do nothing when the FIFO is nor full,
   1280		 * nor empty.  It appears that the FIFO full bit is not always
   1281		 * reliable, the FIFO state is sometimes wrongly reported, and
   1282		 * the chip gets confused if we give it another byte. */
   1283		ecr = parport_ip32_read_econtrol(p);
   1284		if (ecr & ECR_F_EMPTY) {
   1285			/* FIFO is empty, fill it up */
   1286			count = priv->fifo_depth;
   1287			break;
   1288		}
   1289
   1290		/* Wait a moment... */
   1291		udelay(FIFO_POLLING_INTERVAL);
   1292	} /* while (1) */
   1293
   1294	return count;
   1295}
   1296
   1297/**
   1298 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
   1299 * @p:		pointer to &struct parport
   1300 *
   1301 * Returns the number of bytes that can safely be written in the FIFO.  A
   1302 * return value of zero means that the calling function should terminate as
   1303 * fast as possible.
   1304 */
   1305static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
   1306{
   1307	static unsigned int lost_interrupt = 0;
   1308	struct parport_ip32_private * const priv = p->physport->private_data;
   1309	struct parport * const physport = p->physport;
   1310	unsigned long nfault_timeout;
   1311	unsigned long expire;
   1312	unsigned int count;
   1313	unsigned int ecr;
   1314
   1315	nfault_timeout = min((unsigned long)physport->cad->timeout,
   1316			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
   1317	expire = jiffies + physport->cad->timeout;
   1318	count = 0;
   1319	while (1) {
   1320		if (parport_ip32_fifo_wait_break(p, expire))
   1321			break;
   1322
   1323		/* Initialize mutex used to take interrupts into account */
   1324		reinit_completion(&priv->irq_complete);
   1325
   1326		/* Enable serviceIntr */
   1327		parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
   1328
   1329		/* Enabling serviceIntr while the FIFO is empty does not
   1330		 * always generate an interrupt, so check for emptiness
   1331		 * now. */
   1332		ecr = parport_ip32_read_econtrol(p);
   1333		if (!(ecr & ECR_F_EMPTY)) {
   1334			/* FIFO is not empty: wait for an interrupt or a
   1335			 * timeout to occur */
   1336			wait_for_completion_interruptible_timeout(
   1337				&priv->irq_complete, nfault_timeout);
   1338			ecr = parport_ip32_read_econtrol(p);
   1339			if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
   1340			    && !lost_interrupt) {
   1341				pr_warn(PPIP32 "%s: lost interrupt in %s\n",
   1342					p->name, __func__);
   1343				lost_interrupt = 1;
   1344			}
   1345		}
   1346
   1347		/* Disable serviceIntr */
   1348		parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
   1349
   1350		/* Check FIFO state */
   1351		if (ecr & ECR_F_EMPTY) {
   1352			/* FIFO is empty, fill it up */
   1353			count = priv->fifo_depth;
   1354			break;
   1355		} else if (ecr & ECR_SERVINTR) {
   1356			/* FIFO is not empty, but we know that can safely push
   1357			 * writeIntrThreshold bytes into it */
   1358			count = priv->writeIntrThreshold;
   1359			break;
   1360		}
   1361		/* FIFO is not empty, and we did not get any interrupt.
   1362		 * Either it's time to check for nFault, or a signal is
   1363		 * pending.  This is verified in
   1364		 * parport_ip32_fifo_wait_break(), so we continue the loop. */
   1365	} /* while (1) */
   1366
   1367	return count;
   1368}
   1369
   1370/**
   1371 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
   1372 * @p:		pointer to &struct parport
   1373 * @buf:	buffer of data to write
   1374 * @len:	length of buffer @buf
   1375 *
   1376 * Uses PIO to write the contents of the buffer @buf into the parallel port
   1377 * FIFO.  Returns the number of bytes that were actually written.  It can work
   1378 * with or without the help of interrupts.  The parallel port must be
   1379 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
   1380 */
   1381static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
   1382						const void *buf, size_t len)
   1383{
   1384	struct parport_ip32_private * const priv = p->physport->private_data;
   1385	const u8 *bufp = buf;
   1386	size_t left = len;
   1387
   1388	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
   1389
   1390	while (left > 0) {
   1391		unsigned int count;
   1392
   1393		count = (p->irq == PARPORT_IRQ_NONE) ?
   1394			parport_ip32_fwp_wait_polling(p) :
   1395			parport_ip32_fwp_wait_interrupt(p);
   1396		if (count == 0)
   1397			break;	/* Transmission should be stopped */
   1398		if (count > left)
   1399			count = left;
   1400		if (count == 1) {
   1401			writeb(*bufp, priv->regs.fifo);
   1402			bufp++, left--;
   1403		} else {
   1404			writesb(priv->regs.fifo, bufp, count);
   1405			bufp += count, left -= count;
   1406		}
   1407	}
   1408
   1409	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
   1410
   1411	return len - left;
   1412}
   1413
   1414/**
   1415 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
   1416 * @p:		pointer to &struct parport
   1417 * @buf:	buffer of data to write
   1418 * @len:	length of buffer @buf
   1419 *
   1420 * Uses DMA to write the contents of the buffer @buf into the parallel port
   1421 * FIFO.  Returns the number of bytes that were actually written.  The
   1422 * parallel port must be correctly initialized before calling
   1423 * parport_ip32_fifo_write_block_dma().
   1424 */
   1425static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
   1426						const void *buf, size_t len)
   1427{
   1428	struct parport_ip32_private * const priv = p->physport->private_data;
   1429	struct parport * const physport = p->physport;
   1430	unsigned long nfault_timeout;
   1431	unsigned long expire;
   1432	size_t written;
   1433	unsigned int ecr;
   1434
   1435	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
   1436
   1437	parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
   1438	reinit_completion(&priv->irq_complete);
   1439	parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
   1440
   1441	nfault_timeout = min((unsigned long)physport->cad->timeout,
   1442			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
   1443	expire = jiffies + physport->cad->timeout;
   1444	while (1) {
   1445		if (parport_ip32_fifo_wait_break(p, expire))
   1446			break;
   1447		wait_for_completion_interruptible_timeout(&priv->irq_complete,
   1448							  nfault_timeout);
   1449		ecr = parport_ip32_read_econtrol(p);
   1450		if (ecr & ECR_SERVINTR)
   1451			break;	/* DMA transfer just finished */
   1452	}
   1453	parport_ip32_dma_stop(p);
   1454	written = len - parport_ip32_dma_get_residue();
   1455
   1456	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
   1457
   1458	return written;
   1459}
   1460
   1461/**
   1462 * parport_ip32_fifo_write_block - write a block of data
   1463 * @p:		pointer to &struct parport
   1464 * @buf:	buffer of data to write
   1465 * @len:	length of buffer @buf
   1466 *
   1467 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
   1468 * p FIFO.  Returns the number of bytes that were actually written.
   1469 */
   1470static size_t parport_ip32_fifo_write_block(struct parport *p,
   1471					    const void *buf, size_t len)
   1472{
   1473	size_t written = 0;
   1474	if (len)
   1475		/* FIXME - Maybe some threshold value should be set for @len
   1476		 * under which we revert to PIO mode? */
   1477		written = (p->modes & PARPORT_MODE_DMA) ?
   1478			parport_ip32_fifo_write_block_dma(p, buf, len) :
   1479			parport_ip32_fifo_write_block_pio(p, buf, len);
   1480	return written;
   1481}
   1482
   1483/**
   1484 * parport_ip32_drain_fifo - wait for FIFO to empty
   1485 * @p:		pointer to &struct parport
   1486 * @timeout:	timeout, in jiffies
   1487 *
   1488 * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
   1489 * 0 if the timeout @timeout is reached before, or if a signal is pending.
   1490 */
   1491static unsigned int parport_ip32_drain_fifo(struct parport *p,
   1492					    unsigned long timeout)
   1493{
   1494	unsigned long expire = jiffies + timeout;
   1495	unsigned int polling_interval;
   1496	unsigned int counter;
   1497
   1498	/* Busy wait for approx. 200us */
   1499	for (counter = 0; counter < 40; counter++) {
   1500		if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
   1501			break;
   1502		if (time_after(jiffies, expire))
   1503			break;
   1504		if (signal_pending(current))
   1505			break;
   1506		udelay(5);
   1507	}
   1508	/* Poll slowly.  Polling interval starts with 1 millisecond, and is
   1509	 * increased exponentially until 128.  */
   1510	polling_interval = 1; /* msecs */
   1511	while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
   1512		if (time_after_eq(jiffies, expire))
   1513			break;
   1514		msleep_interruptible(polling_interval);
   1515		if (signal_pending(current))
   1516			break;
   1517		if (polling_interval < 128)
   1518			polling_interval *= 2;
   1519	}
   1520
   1521	return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
   1522}
   1523
   1524/**
   1525 * parport_ip32_get_fifo_residue - reset FIFO
   1526 * @p:		pointer to &struct parport
   1527 * @mode:	current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
   1528 *
   1529 * This function resets FIFO, and returns the number of bytes remaining in it.
   1530 */
   1531static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
   1532						  unsigned int mode)
   1533{
   1534	struct parport_ip32_private * const priv = p->physport->private_data;
   1535	unsigned int residue;
   1536	unsigned int cnfga;
   1537
   1538	/* FIXME - We are missing one byte if the printer is off-line.  I
   1539	 * don't know how to detect this.  It looks that the full bit is not
   1540	 * always reliable.  For the moment, the problem is avoided in most
   1541	 * cases by testing for BUSY in parport_ip32_compat_write_data().
   1542	 */
   1543	if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
   1544		residue = 0;
   1545	else {
   1546		pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
   1547
   1548		/* Stop all transfers.
   1549		 *
   1550		 * Microsoft's document instructs to drive DCR_STROBE to 0,
   1551		 * but it doesn't work (at least in Compatibility mode, not
   1552		 * tested in ECP mode).  Switching directly to Test mode (as
   1553		 * in parport_pc) is not an option: it does confuse the port,
   1554		 * ECP service interrupts are no more working after that.  A
   1555		 * hard reset is then needed to revert to a sane state.
   1556		 *
   1557		 * Let's hope that the FIFO is really stuck and that the
   1558		 * peripheral doesn't wake up now.
   1559		 */
   1560		parport_ip32_frob_control(p, DCR_STROBE, 0);
   1561
   1562		/* Fill up FIFO */
   1563		for (residue = priv->fifo_depth; residue > 0; residue--) {
   1564			if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
   1565				break;
   1566			writeb(0x00, priv->regs.fifo);
   1567		}
   1568	}
   1569	if (residue)
   1570		pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
   1571			  p->name, residue,
   1572			  (residue == 1) ? " was" : "s were");
   1573
   1574	/* Now reset the FIFO */
   1575	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1576
   1577	/* Host recovery for ECP mode */
   1578	if (mode == ECR_MODE_ECP) {
   1579		parport_ip32_data_reverse(p);
   1580		parport_ip32_frob_control(p, DCR_nINIT, 0);
   1581		if (parport_wait_peripheral(p, DSR_PERROR, 0))
   1582			pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
   1583				  p->name, __func__);
   1584		parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
   1585		parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
   1586		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
   1587			pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
   1588				  p->name, __func__);
   1589	}
   1590
   1591	/* Adjust residue if needed */
   1592	parport_ip32_set_mode(p, ECR_MODE_CFG);
   1593	cnfga = readb(priv->regs.cnfgA);
   1594	if (!(cnfga & CNFGA_nBYTEINTRANS)) {
   1595		pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
   1596			  p->name, cnfga);
   1597		pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
   1598			  p->name);
   1599		residue++;
   1600	}
   1601
   1602	/* Don't care about partial PWords since we do not support
   1603	 * PWord != 1 byte. */
   1604
   1605	/* Back to forward PS2 mode. */
   1606	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1607	parport_ip32_data_forward(p);
   1608
   1609	return residue;
   1610}
   1611
   1612/**
   1613 * parport_ip32_compat_write_data - write a block of data in SPP mode
   1614 * @p:		pointer to &struct parport
   1615 * @buf:	buffer of data to write
   1616 * @len:	length of buffer @buf
   1617 * @flags:	ignored
   1618 */
   1619static size_t parport_ip32_compat_write_data(struct parport *p,
   1620					     const void *buf, size_t len,
   1621					     int flags)
   1622{
   1623	static unsigned int ready_before = 1;
   1624	struct parport_ip32_private * const priv = p->physport->private_data;
   1625	struct parport * const physport = p->physport;
   1626	size_t written = 0;
   1627
   1628	/* Special case: a timeout of zero means we cannot call schedule().
   1629	 * Also if O_NONBLOCK is set then use the default implementation. */
   1630	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
   1631		return parport_ieee1284_write_compat(p, buf, len, flags);
   1632
   1633	/* Reset FIFO, go in forward mode, and disable ackIntEn */
   1634	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1635	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
   1636	parport_ip32_data_forward(p);
   1637	parport_ip32_disable_irq(p);
   1638	parport_ip32_set_mode(p, ECR_MODE_PPF);
   1639	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
   1640
   1641	/* Wait for peripheral to become ready */
   1642	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
   1643				       DSR_nBUSY | DSR_nFAULT)) {
   1644		/* Avoid to flood the logs */
   1645		if (ready_before)
   1646			pr_info(PPIP32 "%s: not ready in %s\n",
   1647				p->name, __func__);
   1648		ready_before = 0;
   1649		goto stop;
   1650	}
   1651	ready_before = 1;
   1652
   1653	written = parport_ip32_fifo_write_block(p, buf, len);
   1654
   1655	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
   1656	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
   1657
   1658	/* Check for a potential residue */
   1659	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
   1660
   1661	/* Then, wait for BUSY to get low. */
   1662	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
   1663		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
   1664		       p->name, __func__);
   1665
   1666stop:
   1667	/* Reset FIFO */
   1668	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1669	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
   1670
   1671	return written;
   1672}
   1673
   1674/*
   1675 * FIXME - Insert here parport_ip32_ecp_read_data().
   1676 */
   1677
   1678/**
   1679 * parport_ip32_ecp_write_data - write a block of data in ECP mode
   1680 * @p:		pointer to &struct parport
   1681 * @buf:	buffer of data to write
   1682 * @len:	length of buffer @buf
   1683 * @flags:	ignored
   1684 */
   1685static size_t parport_ip32_ecp_write_data(struct parport *p,
   1686					  const void *buf, size_t len,
   1687					  int flags)
   1688{
   1689	static unsigned int ready_before = 1;
   1690	struct parport_ip32_private * const priv = p->physport->private_data;
   1691	struct parport * const physport = p->physport;
   1692	size_t written = 0;
   1693
   1694	/* Special case: a timeout of zero means we cannot call schedule().
   1695	 * Also if O_NONBLOCK is set then use the default implementation. */
   1696	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
   1697		return parport_ieee1284_ecp_write_data(p, buf, len, flags);
   1698
   1699	/* Negotiate to forward mode if necessary. */
   1700	if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
   1701		/* Event 47: Set nInit high. */
   1702		parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
   1703					     DCR_nINIT | DCR_AUTOFD);
   1704
   1705		/* Event 49: PError goes high. */
   1706		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
   1707			printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s\n",
   1708			       p->name, __func__);
   1709			physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
   1710			return 0;
   1711		}
   1712	}
   1713
   1714	/* Reset FIFO, go in forward mode, and disable ackIntEn */
   1715	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1716	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
   1717	parport_ip32_data_forward(p);
   1718	parport_ip32_disable_irq(p);
   1719	parport_ip32_set_mode(p, ECR_MODE_ECP);
   1720	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
   1721
   1722	/* Wait for peripheral to become ready */
   1723	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
   1724				       DSR_nBUSY | DSR_nFAULT)) {
   1725		/* Avoid to flood the logs */
   1726		if (ready_before)
   1727			pr_info(PPIP32 "%s: not ready in %s\n",
   1728				p->name, __func__);
   1729		ready_before = 0;
   1730		goto stop;
   1731	}
   1732	ready_before = 1;
   1733
   1734	written = parport_ip32_fifo_write_block(p, buf, len);
   1735
   1736	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
   1737	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
   1738
   1739	/* Check for a potential residue */
   1740	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
   1741
   1742	/* Then, wait for BUSY to get low. */
   1743	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
   1744		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
   1745		       p->name, __func__);
   1746
   1747stop:
   1748	/* Reset FIFO */
   1749	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1750	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
   1751
   1752	return written;
   1753}
   1754
   1755/*
   1756 * FIXME - Insert here parport_ip32_ecp_write_addr().
   1757 */
   1758
   1759/*--- Default parport operations ---------------------------------------*/
   1760
   1761static const struct parport_operations parport_ip32_ops __initconst = {
   1762	.write_data		= parport_ip32_write_data,
   1763	.read_data		= parport_ip32_read_data,
   1764
   1765	.write_control		= parport_ip32_write_control,
   1766	.read_control		= parport_ip32_read_control,
   1767	.frob_control		= parport_ip32_frob_control,
   1768
   1769	.read_status		= parport_ip32_read_status,
   1770
   1771	.enable_irq		= parport_ip32_enable_irq,
   1772	.disable_irq		= parport_ip32_disable_irq,
   1773
   1774	.data_forward		= parport_ip32_data_forward,
   1775	.data_reverse		= parport_ip32_data_reverse,
   1776
   1777	.init_state		= parport_ip32_init_state,
   1778	.save_state		= parport_ip32_save_state,
   1779	.restore_state		= parport_ip32_restore_state,
   1780
   1781	.epp_write_data		= parport_ieee1284_epp_write_data,
   1782	.epp_read_data		= parport_ieee1284_epp_read_data,
   1783	.epp_write_addr		= parport_ieee1284_epp_write_addr,
   1784	.epp_read_addr		= parport_ieee1284_epp_read_addr,
   1785
   1786	.ecp_write_data		= parport_ieee1284_ecp_write_data,
   1787	.ecp_read_data		= parport_ieee1284_ecp_read_data,
   1788	.ecp_write_addr		= parport_ieee1284_ecp_write_addr,
   1789
   1790	.compat_write_data	= parport_ieee1284_write_compat,
   1791	.nibble_read_data	= parport_ieee1284_read_nibble,
   1792	.byte_read_data		= parport_ieee1284_read_byte,
   1793
   1794	.owner			= THIS_MODULE,
   1795};
   1796
   1797/*--- Device detection -------------------------------------------------*/
   1798
   1799/**
   1800 * parport_ip32_ecp_supported - check for an ECP port
   1801 * @p:		pointer to the &parport structure
   1802 *
   1803 * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
   1804 * checks if an Extended Control Register seems to be present.  On successful
   1805 * return, the port is placed in SPP mode.
   1806 */
   1807static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
   1808{
   1809	struct parport_ip32_private * const priv = p->physport->private_data;
   1810	unsigned int ecr;
   1811
   1812	ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
   1813	writeb(ecr, priv->regs.ecr);
   1814	if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
   1815		goto fail;
   1816
   1817	pr_probe(p, "Found working ECR register\n");
   1818	parport_ip32_set_mode(p, ECR_MODE_SPP);
   1819	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
   1820	return 1;
   1821
   1822fail:
   1823	pr_probe(p, "ECR register not found\n");
   1824	return 0;
   1825}
   1826
   1827/**
   1828 * parport_ip32_fifo_supported - check for FIFO parameters
   1829 * @p:		pointer to the &parport structure
   1830 *
   1831 * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
   1832 * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
   1833 * On return, the port is placed in SPP mode.
   1834 */
   1835static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
   1836{
   1837	struct parport_ip32_private * const priv = p->physport->private_data;
   1838	unsigned int configa, configb;
   1839	unsigned int pword;
   1840	unsigned int i;
   1841
   1842	/* Configuration mode */
   1843	parport_ip32_set_mode(p, ECR_MODE_CFG);
   1844	configa = readb(priv->regs.cnfgA);
   1845	configb = readb(priv->regs.cnfgB);
   1846
   1847	/* Find out PWord size */
   1848	switch (configa & CNFGA_ID_MASK) {
   1849	case CNFGA_ID_8:
   1850		pword = 1;
   1851		break;
   1852	case CNFGA_ID_16:
   1853		pword = 2;
   1854		break;
   1855	case CNFGA_ID_32:
   1856		pword = 4;
   1857		break;
   1858	default:
   1859		pr_probe(p, "Unknown implementation ID: 0x%0x\n",
   1860			 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
   1861		goto fail;
   1862		break;
   1863	}
   1864	if (pword != 1) {
   1865		pr_probe(p, "Unsupported PWord size: %u\n", pword);
   1866		goto fail;
   1867	}
   1868	priv->pword = pword;
   1869	pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
   1870
   1871	/* Check for compression support */
   1872	writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
   1873	if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
   1874		pr_probe(p, "Hardware compression detected (unsupported)\n");
   1875	writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
   1876
   1877	/* Reset FIFO and go in test mode (no interrupt, no DMA) */
   1878	parport_ip32_set_mode(p, ECR_MODE_TST);
   1879
   1880	/* FIFO must be empty now */
   1881	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
   1882		pr_probe(p, "FIFO not reset\n");
   1883		goto fail;
   1884	}
   1885
   1886	/* Find out FIFO depth. */
   1887	priv->fifo_depth = 0;
   1888	for (i = 0; i < 1024; i++) {
   1889		if (readb(priv->regs.ecr) & ECR_F_FULL) {
   1890			/* FIFO full */
   1891			priv->fifo_depth = i;
   1892			break;
   1893		}
   1894		writeb((u8)i, priv->regs.fifo);
   1895	}
   1896	if (i >= 1024) {
   1897		pr_probe(p, "Can't fill FIFO\n");
   1898		goto fail;
   1899	}
   1900	if (!priv->fifo_depth) {
   1901		pr_probe(p, "Can't get FIFO depth\n");
   1902		goto fail;
   1903	}
   1904	pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
   1905
   1906	/* Enable interrupts */
   1907	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
   1908
   1909	/* Find out writeIntrThreshold: number of PWords we know we can write
   1910	 * if we get an interrupt. */
   1911	priv->writeIntrThreshold = 0;
   1912	for (i = 0; i < priv->fifo_depth; i++) {
   1913		if (readb(priv->regs.fifo) != (u8)i) {
   1914			pr_probe(p, "Invalid data in FIFO\n");
   1915			goto fail;
   1916		}
   1917		if (!priv->writeIntrThreshold
   1918		    && readb(priv->regs.ecr) & ECR_SERVINTR)
   1919			/* writeIntrThreshold reached */
   1920			priv->writeIntrThreshold = i + 1;
   1921		if (i + 1 < priv->fifo_depth
   1922		    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
   1923			/* FIFO empty before the last byte? */
   1924			pr_probe(p, "Data lost in FIFO\n");
   1925			goto fail;
   1926		}
   1927	}
   1928	if (!priv->writeIntrThreshold) {
   1929		pr_probe(p, "Can't get writeIntrThreshold\n");
   1930		goto fail;
   1931	}
   1932	pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
   1933
   1934	/* FIFO must be empty now */
   1935	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
   1936		pr_probe(p, "Can't empty FIFO\n");
   1937		goto fail;
   1938	}
   1939
   1940	/* Reset FIFO */
   1941	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1942	/* Set reverse direction (must be in PS2 mode) */
   1943	parport_ip32_data_reverse(p);
   1944	/* Test FIFO, no interrupt, no DMA */
   1945	parport_ip32_set_mode(p, ECR_MODE_TST);
   1946	/* Enable interrupts */
   1947	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
   1948
   1949	/* Find out readIntrThreshold: number of PWords we can read if we get
   1950	 * an interrupt. */
   1951	priv->readIntrThreshold = 0;
   1952	for (i = 0; i < priv->fifo_depth; i++) {
   1953		writeb(0xaa, priv->regs.fifo);
   1954		if (readb(priv->regs.ecr) & ECR_SERVINTR) {
   1955			/* readIntrThreshold reached */
   1956			priv->readIntrThreshold = i + 1;
   1957			break;
   1958		}
   1959	}
   1960	if (!priv->readIntrThreshold) {
   1961		pr_probe(p, "Can't get readIntrThreshold\n");
   1962		goto fail;
   1963	}
   1964	pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
   1965
   1966	/* Reset ECR */
   1967	parport_ip32_set_mode(p, ECR_MODE_PS2);
   1968	parport_ip32_data_forward(p);
   1969	parport_ip32_set_mode(p, ECR_MODE_SPP);
   1970	return 1;
   1971
   1972fail:
   1973	priv->fifo_depth = 0;
   1974	parport_ip32_set_mode(p, ECR_MODE_SPP);
   1975	return 0;
   1976}
   1977
   1978/*--- Initialization code ----------------------------------------------*/
   1979
   1980/**
   1981 * parport_ip32_make_isa_registers - compute (ISA) register addresses
   1982 * @regs:	pointer to &struct parport_ip32_regs to fill
   1983 * @base:	base address of standard and EPP registers
   1984 * @base_hi:	base address of ECP registers
   1985 * @regshift:	how much to shift register offset by
   1986 *
   1987 * Compute register addresses, according to the ISA standard.  The addresses
   1988 * of the standard and EPP registers are computed from address @base.  The
   1989 * addresses of the ECP registers are computed from address @base_hi.
   1990 */
   1991static void __init
   1992parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
   1993				void __iomem *base, void __iomem *base_hi,
   1994				unsigned int regshift)
   1995{
   1996#define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
   1997#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
   1998	*regs = (struct parport_ip32_regs){
   1999		.data		= r_base(0),
   2000		.dsr		= r_base(1),
   2001		.dcr		= r_base(2),
   2002		.eppAddr	= r_base(3),
   2003		.eppData0	= r_base(4),
   2004		.eppData1	= r_base(5),
   2005		.eppData2	= r_base(6),
   2006		.eppData3	= r_base(7),
   2007		.ecpAFifo	= r_base(0),
   2008		.fifo		= r_base_hi(0),
   2009		.cnfgA		= r_base_hi(0),
   2010		.cnfgB		= r_base_hi(1),
   2011		.ecr		= r_base_hi(2)
   2012	};
   2013#undef r_base_hi
   2014#undef r_base
   2015}
   2016
   2017/**
   2018 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
   2019 *
   2020 * Returns the new allocated &parport structure.  On error, an error code is
   2021 * encoded in return value with the ERR_PTR function.
   2022 */
   2023static __init struct parport *parport_ip32_probe_port(void)
   2024{
   2025	struct parport_ip32_regs regs;
   2026	struct parport_ip32_private *priv = NULL;
   2027	struct parport_operations *ops = NULL;
   2028	struct parport *p = NULL;
   2029	int err;
   2030
   2031	parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
   2032					&mace->isa.ecp1284, 8 /* regshift */);
   2033
   2034	ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
   2035	priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
   2036	p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
   2037	if (ops == NULL || priv == NULL || p == NULL) {
   2038		err = -ENOMEM;
   2039		goto fail;
   2040	}
   2041	p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
   2042	p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
   2043	p->private_data = priv;
   2044
   2045	*ops = parport_ip32_ops;
   2046	*priv = (struct parport_ip32_private){
   2047		.regs			= regs,
   2048		.dcr_writable		= DCR_DIR | DCR_SELECT | DCR_nINIT |
   2049					  DCR_AUTOFD | DCR_STROBE,
   2050		.irq_mode		= PARPORT_IP32_IRQ_FWD,
   2051	};
   2052	init_completion(&priv->irq_complete);
   2053
   2054	/* Probe port. */
   2055	if (!parport_ip32_ecp_supported(p)) {
   2056		err = -ENODEV;
   2057		goto fail;
   2058	}
   2059	parport_ip32_dump_state(p, "begin init", 0);
   2060
   2061	/* We found what looks like a working ECR register.  Simply assume
   2062	 * that all modes are correctly supported.  Enable basic modes. */
   2063	p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
   2064	p->modes |= PARPORT_MODE_TRISTATE;
   2065
   2066	if (!parport_ip32_fifo_supported(p)) {
   2067		pr_warn(PPIP32 "%s: error: FIFO disabled\n", p->name);
   2068		/* Disable hardware modes depending on a working FIFO. */
   2069		features &= ~PARPORT_IP32_ENABLE_SPP;
   2070		features &= ~PARPORT_IP32_ENABLE_ECP;
   2071		/* DMA is not needed if FIFO is not supported.  */
   2072		features &= ~PARPORT_IP32_ENABLE_DMA;
   2073	}
   2074
   2075	/* Request IRQ */
   2076	if (features & PARPORT_IP32_ENABLE_IRQ) {
   2077		int irq = MACEISA_PARALLEL_IRQ;
   2078		if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
   2079			pr_warn(PPIP32 "%s: error: IRQ disabled\n", p->name);
   2080			/* DMA cannot work without interrupts. */
   2081			features &= ~PARPORT_IP32_ENABLE_DMA;
   2082		} else {
   2083			pr_probe(p, "Interrupt support enabled\n");
   2084			p->irq = irq;
   2085			priv->dcr_writable |= DCR_IRQ;
   2086		}
   2087	}
   2088
   2089	/* Allocate DMA resources */
   2090	if (features & PARPORT_IP32_ENABLE_DMA) {
   2091		if (parport_ip32_dma_register())
   2092			pr_warn(PPIP32 "%s: error: DMA disabled\n", p->name);
   2093		else {
   2094			pr_probe(p, "DMA support enabled\n");
   2095			p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
   2096			p->modes |= PARPORT_MODE_DMA;
   2097		}
   2098	}
   2099
   2100	if (features & PARPORT_IP32_ENABLE_SPP) {
   2101		/* Enable compatibility FIFO mode */
   2102		p->ops->compat_write_data = parport_ip32_compat_write_data;
   2103		p->modes |= PARPORT_MODE_COMPAT;
   2104		pr_probe(p, "Hardware support for SPP mode enabled\n");
   2105	}
   2106	if (features & PARPORT_IP32_ENABLE_EPP) {
   2107		/* Set up access functions to use EPP hardware. */
   2108		p->ops->epp_read_data = parport_ip32_epp_read_data;
   2109		p->ops->epp_write_data = parport_ip32_epp_write_data;
   2110		p->ops->epp_read_addr = parport_ip32_epp_read_addr;
   2111		p->ops->epp_write_addr = parport_ip32_epp_write_addr;
   2112		p->modes |= PARPORT_MODE_EPP;
   2113		pr_probe(p, "Hardware support for EPP mode enabled\n");
   2114	}
   2115	if (features & PARPORT_IP32_ENABLE_ECP) {
   2116		/* Enable ECP FIFO mode */
   2117		p->ops->ecp_write_data = parport_ip32_ecp_write_data;
   2118		/* FIXME - not implemented */
   2119/*		p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
   2120/*		p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
   2121		p->modes |= PARPORT_MODE_ECP;
   2122		pr_probe(p, "Hardware support for ECP mode enabled\n");
   2123	}
   2124
   2125	/* Initialize the port with sensible values */
   2126	parport_ip32_set_mode(p, ECR_MODE_PS2);
   2127	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
   2128	parport_ip32_data_forward(p);
   2129	parport_ip32_disable_irq(p);
   2130	parport_ip32_write_data(p, 0x00);
   2131	parport_ip32_dump_state(p, "end init", 0);
   2132
   2133	/* Print out what we found */
   2134	pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi);
   2135	if (p->irq != PARPORT_IRQ_NONE)
   2136		pr_cont(", irq %d", p->irq);
   2137	pr_cont(" [");
   2138#define printmode(x)							\
   2139do {									\
   2140	if (p->modes & PARPORT_MODE_##x)				\
   2141		pr_cont("%s%s", f++ ? "," : "", #x);			\
   2142} while (0)
   2143	{
   2144		unsigned int f = 0;
   2145		printmode(PCSPP);
   2146		printmode(TRISTATE);
   2147		printmode(COMPAT);
   2148		printmode(EPP);
   2149		printmode(ECP);
   2150		printmode(DMA);
   2151	}
   2152#undef printmode
   2153	pr_cont("]\n");
   2154
   2155	parport_announce_port(p);
   2156	return p;
   2157
   2158fail:
   2159	if (p)
   2160		parport_put_port(p);
   2161	kfree(priv);
   2162	kfree(ops);
   2163	return ERR_PTR(err);
   2164}
   2165
   2166/**
   2167 * parport_ip32_unregister_port - unregister a parallel port
   2168 * @p:		pointer to the &struct parport
   2169 *
   2170 * Unregisters a parallel port and free previously allocated resources
   2171 * (memory, IRQ, ...).
   2172 */
   2173static __exit void parport_ip32_unregister_port(struct parport *p)
   2174{
   2175	struct parport_ip32_private * const priv = p->physport->private_data;
   2176	struct parport_operations *ops = p->ops;
   2177
   2178	parport_remove_port(p);
   2179	if (p->modes & PARPORT_MODE_DMA)
   2180		parport_ip32_dma_unregister();
   2181	if (p->irq != PARPORT_IRQ_NONE)
   2182		free_irq(p->irq, p);
   2183	parport_put_port(p);
   2184	kfree(priv);
   2185	kfree(ops);
   2186}
   2187
   2188/**
   2189 * parport_ip32_init - module initialization function
   2190 */
   2191static int __init parport_ip32_init(void)
   2192{
   2193	pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
   2194	this_port = parport_ip32_probe_port();
   2195	return PTR_ERR_OR_ZERO(this_port);
   2196}
   2197
   2198/**
   2199 * parport_ip32_exit - module termination function
   2200 */
   2201static void __exit parport_ip32_exit(void)
   2202{
   2203	parport_ip32_unregister_port(this_port);
   2204}
   2205
   2206/*--- Module stuff -----------------------------------------------------*/
   2207
   2208MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
   2209MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
   2210MODULE_LICENSE("GPL");
   2211MODULE_VERSION("0.6");		/* update in parport_ip32_init() too */
   2212
   2213module_init(parport_ip32_init);
   2214module_exit(parport_ip32_exit);
   2215
   2216module_param(verbose_probing, bool, S_IRUGO);
   2217MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
   2218
   2219module_param(features, uint, S_IRUGO);
   2220MODULE_PARM_DESC(features,
   2221		 "Bit mask of features to enable"
   2222		 ", bit 0: IRQ support"
   2223		 ", bit 1: DMA support"
   2224		 ", bit 2: hardware SPP mode"
   2225		 ", bit 3: hardware EPP mode"
   2226		 ", bit 4: hardware ECP mode");