cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci-thunder-pem.c (12499B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2015 - 2016 Cavium, Inc.
      4 */
      5
      6#include <linux/bitfield.h>
      7#include <linux/kernel.h>
      8#include <linux/init.h>
      9#include <linux/pci.h>
     10#include <linux/of_address.h>
     11#include <linux/of_pci.h>
     12#include <linux/pci-acpi.h>
     13#include <linux/pci-ecam.h>
     14#include <linux/platform_device.h>
     15#include <linux/io-64-nonatomic-lo-hi.h>
     16#include "../pci.h"
     17
     18#if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
     19
     20#define PEM_CFG_WR 0x28
     21#define PEM_CFG_RD 0x30
     22
     23/*
     24 * Enhanced Configuration Access Mechanism (ECAM)
     25 *
     26 * N.B. This is a non-standard platform-specific ECAM bus shift value.  For
     27 * standard values defined in the PCI Express Base Specification see
     28 * include/linux/pci-ecam.h.
     29 */
     30#define THUNDER_PCIE_ECAM_BUS_SHIFT	24
     31
     32struct thunder_pem_pci {
     33	u32		ea_entry[3];
     34	void __iomem	*pem_reg_base;
     35};
     36
     37static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn,
     38				   int where, int size, u32 *val)
     39{
     40	u64 read_val, tmp_val;
     41	struct pci_config_window *cfg = bus->sysdata;
     42	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
     43
     44	if (devfn != 0 || where >= 2048)
     45		return PCIBIOS_DEVICE_NOT_FOUND;
     46
     47	/*
     48	 * 32-bit accesses only.  Write the address to the low order
     49	 * bits of PEM_CFG_RD, then trigger the read by reading back.
     50	 * The config data lands in the upper 32-bits of PEM_CFG_RD.
     51	 */
     52	read_val = where & ~3ull;
     53	writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD);
     54	read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
     55	read_val >>= 32;
     56
     57	/*
     58	 * The config space contains some garbage, fix it up.  Also
     59	 * synthesize an EA capability for the BAR used by MSI-X.
     60	 */
     61	switch (where & ~3) {
     62	case 0x40:
     63		read_val &= 0xffff00ff;
     64		read_val |= 0x00007000; /* Skip MSI CAP */
     65		break;
     66	case 0x70: /* Express Cap */
     67		/*
     68		 * Change PME interrupt to vector 2 on T88 where it
     69		 * reads as 0, else leave it alone.
     70		 */
     71		if (!(read_val & (0x1f << 25)))
     72			read_val |= (2u << 25);
     73		break;
     74	case 0xb0: /* MSI-X Cap */
     75		/* TableSize=2 or 4, Next Cap is EA */
     76		read_val &= 0xc00000ff;
     77		/*
     78		 * If Express Cap(0x70) raw PME vector reads as 0 we are on
     79		 * T88 and TableSize is reported as 4, else TableSize
     80		 * is 2.
     81		 */
     82		writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD);
     83		tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
     84		tmp_val >>= 32;
     85		if (!(tmp_val & (0x1f << 25)))
     86			read_val |= 0x0003bc00;
     87		else
     88			read_val |= 0x0001bc00;
     89		break;
     90	case 0xb4:
     91		/* Table offset=0, BIR=0 */
     92		read_val = 0x00000000;
     93		break;
     94	case 0xb8:
     95		/* BPA offset=0xf0000, BIR=0 */
     96		read_val = 0x000f0000;
     97		break;
     98	case 0xbc:
     99		/* EA, 1 entry, no next Cap */
    100		read_val = 0x00010014;
    101		break;
    102	case 0xc0:
    103		/* DW2 for type-1 */
    104		read_val = 0x00000000;
    105		break;
    106	case 0xc4:
    107		/* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
    108		read_val = 0x80ff0003;
    109		break;
    110	case 0xc8:
    111		read_val = pem_pci->ea_entry[0];
    112		break;
    113	case 0xcc:
    114		read_val = pem_pci->ea_entry[1];
    115		break;
    116	case 0xd0:
    117		read_val = pem_pci->ea_entry[2];
    118		break;
    119	default:
    120		break;
    121	}
    122	read_val >>= (8 * (where & 3));
    123	switch (size) {
    124	case 1:
    125		read_val &= 0xff;
    126		break;
    127	case 2:
    128		read_val &= 0xffff;
    129		break;
    130	default:
    131		break;
    132	}
    133	*val = read_val;
    134	return PCIBIOS_SUCCESSFUL;
    135}
    136
    137static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn,
    138				   int where, int size, u32 *val)
    139{
    140	struct pci_config_window *cfg = bus->sysdata;
    141
    142	if (bus->number < cfg->busr.start ||
    143	    bus->number > cfg->busr.end)
    144		return PCIBIOS_DEVICE_NOT_FOUND;
    145
    146	/*
    147	 * The first device on the bus is the PEM PCIe bridge.
    148	 * Special case its config access.
    149	 */
    150	if (bus->number == cfg->busr.start)
    151		return thunder_pem_bridge_read(bus, devfn, where, size, val);
    152
    153	return pci_generic_config_read(bus, devfn, where, size, val);
    154}
    155
    156/*
    157 * Some of the w1c_bits below also include read-only or non-writable
    158 * reserved bits, this makes the code simpler and is OK as the bits
    159 * are not affected by writing zeros to them.
    160 */
    161static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned)
    162{
    163	u32 w1c_bits = 0;
    164
    165	switch (where_aligned) {
    166	case 0x04: /* Command/Status */
    167	case 0x1c: /* Base and I/O Limit/Secondary Status */
    168		w1c_bits = 0xff000000;
    169		break;
    170	case 0x44: /* Power Management Control and Status */
    171		w1c_bits = 0xfffffe00;
    172		break;
    173	case 0x78: /* Device Control/Device Status */
    174	case 0x80: /* Link Control/Link Status */
    175	case 0x88: /* Slot Control/Slot Status */
    176	case 0x90: /* Root Status */
    177	case 0xa0: /* Link Control 2 Registers/Link Status 2 */
    178		w1c_bits = 0xffff0000;
    179		break;
    180	case 0x104: /* Uncorrectable Error Status */
    181	case 0x110: /* Correctable Error Status */
    182	case 0x130: /* Error Status */
    183	case 0x160: /* Link Control 4 */
    184		w1c_bits = 0xffffffff;
    185		break;
    186	default:
    187		break;
    188	}
    189	return w1c_bits;
    190}
    191
    192/* Some bits must be written to one so they appear to be read-only. */
    193static u32 thunder_pem_bridge_w1_bits(u64 where_aligned)
    194{
    195	u32 w1_bits;
    196
    197	switch (where_aligned) {
    198	case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
    199		/* Force 32-bit I/O addressing. */
    200		w1_bits = 0x0101;
    201		break;
    202	case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
    203		/* Force 64-bit addressing */
    204		w1_bits = 0x00010001;
    205		break;
    206	default:
    207		w1_bits = 0;
    208		break;
    209	}
    210	return w1_bits;
    211}
    212
    213static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn,
    214				    int where, int size, u32 val)
    215{
    216	struct pci_config_window *cfg = bus->sysdata;
    217	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
    218	u64 write_val, read_val;
    219	u64 where_aligned = where & ~3ull;
    220	u32 mask = 0;
    221
    222
    223	if (devfn != 0 || where >= 2048)
    224		return PCIBIOS_DEVICE_NOT_FOUND;
    225
    226	/*
    227	 * 32-bit accesses only.  If the write is for a size smaller
    228	 * than 32-bits, we must first read the 32-bit value and merge
    229	 * in the desired bits and then write the whole 32-bits back
    230	 * out.
    231	 */
    232	switch (size) {
    233	case 1:
    234		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
    235		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
    236		read_val >>= 32;
    237		mask = ~(0xff << (8 * (where & 3)));
    238		read_val &= mask;
    239		val = (val & 0xff) << (8 * (where & 3));
    240		val |= (u32)read_val;
    241		break;
    242	case 2:
    243		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
    244		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
    245		read_val >>= 32;
    246		mask = ~(0xffff << (8 * (where & 3)));
    247		read_val &= mask;
    248		val = (val & 0xffff) << (8 * (where & 3));
    249		val |= (u32)read_val;
    250		break;
    251	default:
    252		break;
    253	}
    254
    255	/*
    256	 * By expanding the write width to 32 bits, we may
    257	 * inadvertently hit some W1C bits that were not intended to
    258	 * be written.  Calculate the mask that must be applied to the
    259	 * data to be written to avoid these cases.
    260	 */
    261	if (mask) {
    262		u32 w1c_bits = thunder_pem_bridge_w1c_bits(where);
    263
    264		if (w1c_bits) {
    265			mask &= w1c_bits;
    266			val &= ~mask;
    267		}
    268	}
    269
    270	/*
    271	 * Some bits must be read-only with value of one.  Since the
    272	 * access method allows these to be cleared if a zero is
    273	 * written, force them to one before writing.
    274	 */
    275	val |= thunder_pem_bridge_w1_bits(where_aligned);
    276
    277	/*
    278	 * Low order bits are the config address, the high order 32
    279	 * bits are the data to be written.
    280	 */
    281	write_val = (((u64)val) << 32) | where_aligned;
    282	writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR);
    283	return PCIBIOS_SUCCESSFUL;
    284}
    285
    286static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn,
    287				    int where, int size, u32 val)
    288{
    289	struct pci_config_window *cfg = bus->sysdata;
    290
    291	if (bus->number < cfg->busr.start ||
    292	    bus->number > cfg->busr.end)
    293		return PCIBIOS_DEVICE_NOT_FOUND;
    294	/*
    295	 * The first device on the bus is the PEM PCIe bridge.
    296	 * Special case its config access.
    297	 */
    298	if (bus->number == cfg->busr.start)
    299		return thunder_pem_bridge_write(bus, devfn, where, size, val);
    300
    301
    302	return pci_generic_config_write(bus, devfn, where, size, val);
    303}
    304
    305static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg,
    306			    struct resource *res_pem)
    307{
    308	struct thunder_pem_pci *pem_pci;
    309	resource_size_t bar4_start;
    310
    311	pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL);
    312	if (!pem_pci)
    313		return -ENOMEM;
    314
    315	pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000);
    316	if (!pem_pci->pem_reg_base)
    317		return -ENOMEM;
    318
    319	/*
    320	 * The MSI-X BAR for the PEM and AER interrupts is located at
    321	 * a fixed offset from the PEM register base.  Generate a
    322	 * fragment of the synthesized Enhanced Allocation capability
    323	 * structure here for the BAR.
    324	 */
    325	bar4_start = res_pem->start + 0xf00000;
    326	pem_pci->ea_entry[0] = lower_32_bits(bar4_start) | 2;
    327	pem_pci->ea_entry[1] = lower_32_bits(res_pem->end - bar4_start) & ~3u;
    328	pem_pci->ea_entry[2] = upper_32_bits(bar4_start);
    329
    330	cfg->priv = pem_pci;
    331	return 0;
    332}
    333
    334#if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
    335
    336#define PEM_RES_BASE		0x87e0c0000000ULL
    337#define PEM_NODE_MASK		GENMASK_ULL(45, 44)
    338#define PEM_INDX_MASK		GENMASK_ULL(26, 24)
    339#define PEM_MIN_DOM_IN_NODE	4
    340#define PEM_MAX_DOM_IN_NODE	10
    341
    342static void thunder_pem_reserve_range(struct device *dev, int seg,
    343				      struct resource *r)
    344{
    345	resource_size_t start = r->start, end = r->end;
    346	struct resource *res;
    347	const char *regionid;
    348
    349	regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg);
    350	if (!regionid)
    351		return;
    352
    353	res = request_mem_region(start, end - start + 1, regionid);
    354	if (res)
    355		res->flags &= ~IORESOURCE_BUSY;
    356	else
    357		kfree(regionid);
    358
    359	dev_info(dev, "%pR %s reserved\n", r,
    360		 res ? "has been" : "could not be");
    361}
    362
    363static void thunder_pem_legacy_fw(struct acpi_pci_root *root,
    364				 struct resource *res_pem)
    365{
    366	int node = acpi_get_node(root->device->handle);
    367	int index;
    368
    369	if (node == NUMA_NO_NODE)
    370		node = 0;
    371
    372	index = root->segment - PEM_MIN_DOM_IN_NODE;
    373	index -= node * PEM_MAX_DOM_IN_NODE;
    374	res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) |
    375					FIELD_PREP(PEM_INDX_MASK, index);
    376	res_pem->flags = IORESOURCE_MEM;
    377}
    378
    379static int thunder_pem_acpi_init(struct pci_config_window *cfg)
    380{
    381	struct device *dev = cfg->parent;
    382	struct acpi_device *adev = to_acpi_device(dev);
    383	struct acpi_pci_root *root = acpi_driver_data(adev);
    384	struct resource *res_pem;
    385	int ret;
    386
    387	res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL);
    388	if (!res_pem)
    389		return -ENOMEM;
    390
    391	ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem);
    392
    393	/*
    394	 * If we fail to gather resources it means that we run with old
    395	 * FW where we need to calculate PEM-specific resources manually.
    396	 */
    397	if (ret) {
    398		thunder_pem_legacy_fw(root, res_pem);
    399		/*
    400		 * Reserve 64K size PEM specific resources. The full 16M range
    401		 * size is required for thunder_pem_init() call.
    402		 */
    403		res_pem->end = res_pem->start + SZ_64K - 1;
    404		thunder_pem_reserve_range(dev, root->segment, res_pem);
    405		res_pem->end = res_pem->start + SZ_16M - 1;
    406
    407		/* Reserve PCI configuration space as well. */
    408		thunder_pem_reserve_range(dev, root->segment, &cfg->res);
    409	}
    410
    411	return thunder_pem_init(dev, cfg, res_pem);
    412}
    413
    414const struct pci_ecam_ops thunder_pem_ecam_ops = {
    415	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
    416	.init		= thunder_pem_acpi_init,
    417	.pci_ops	= {
    418		.map_bus	= pci_ecam_map_bus,
    419		.read		= thunder_pem_config_read,
    420		.write		= thunder_pem_config_write,
    421	}
    422};
    423
    424#endif
    425
    426#ifdef CONFIG_PCI_HOST_THUNDER_PEM
    427
    428static int thunder_pem_platform_init(struct pci_config_window *cfg)
    429{
    430	struct device *dev = cfg->parent;
    431	struct platform_device *pdev = to_platform_device(dev);
    432	struct resource *res_pem;
    433
    434	if (!dev->of_node)
    435		return -EINVAL;
    436
    437	/*
    438	 * The second register range is the PEM bridge to the PCIe
    439	 * bus.  It has a different config access method than those
    440	 * devices behind the bridge.
    441	 */
    442	res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
    443	if (!res_pem) {
    444		dev_err(dev, "missing \"reg[1]\"property\n");
    445		return -EINVAL;
    446	}
    447
    448	return thunder_pem_init(dev, cfg, res_pem);
    449}
    450
    451static const struct pci_ecam_ops pci_thunder_pem_ops = {
    452	.bus_shift	= THUNDER_PCIE_ECAM_BUS_SHIFT,
    453	.init		= thunder_pem_platform_init,
    454	.pci_ops	= {
    455		.map_bus	= pci_ecam_map_bus,
    456		.read		= thunder_pem_config_read,
    457		.write		= thunder_pem_config_write,
    458	}
    459};
    460
    461static const struct of_device_id thunder_pem_of_match[] = {
    462	{
    463		.compatible = "cavium,pci-host-thunder-pem",
    464		.data = &pci_thunder_pem_ops,
    465	},
    466	{ },
    467};
    468
    469static struct platform_driver thunder_pem_driver = {
    470	.driver = {
    471		.name = KBUILD_MODNAME,
    472		.of_match_table = thunder_pem_of_match,
    473		.suppress_bind_attrs = true,
    474	},
    475	.probe = pci_host_common_probe,
    476};
    477builtin_platform_driver(thunder_pem_driver);
    478
    479#endif
    480#endif