cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci-xgene-msi.c (13950B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * APM X-Gene MSI Driver
      4 *
      5 * Copyright (c) 2014, Applied Micro Circuits Corporation
      6 * Author: Tanmay Inamdar <tinamdar@apm.com>
      7 *	   Duc Dang <dhdang@apm.com>
      8 */
      9#include <linux/cpu.h>
     10#include <linux/interrupt.h>
     11#include <linux/module.h>
     12#include <linux/msi.h>
     13#include <linux/of_irq.h>
     14#include <linux/irqchip/chained_irq.h>
     15#include <linux/pci.h>
     16#include <linux/platform_device.h>
     17#include <linux/of_pci.h>
     18
     19#define MSI_IR0			0x000000
     20#define MSI_INT0		0x800000
     21#define IDX_PER_GROUP		8
     22#define IRQS_PER_IDX		16
     23#define NR_HW_IRQS		16
     24#define NR_MSI_VEC		(IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
     25
     26struct xgene_msi_group {
     27	struct xgene_msi	*msi;
     28	int			gic_irq;
     29	u32			msi_grp;
     30};
     31
     32struct xgene_msi {
     33	struct device_node	*node;
     34	struct irq_domain	*inner_domain;
     35	struct irq_domain	*msi_domain;
     36	u64			msi_addr;
     37	void __iomem		*msi_regs;
     38	unsigned long		*bitmap;
     39	struct mutex		bitmap_lock;
     40	struct xgene_msi_group	*msi_groups;
     41	int			num_cpus;
     42};
     43
     44/* Global data */
     45static struct xgene_msi xgene_msi_ctrl;
     46
     47static struct irq_chip xgene_msi_top_irq_chip = {
     48	.name		= "X-Gene1 MSI",
     49	.irq_enable	= pci_msi_unmask_irq,
     50	.irq_disable	= pci_msi_mask_irq,
     51	.irq_mask	= pci_msi_mask_irq,
     52	.irq_unmask	= pci_msi_unmask_irq,
     53};
     54
     55static struct  msi_domain_info xgene_msi_domain_info = {
     56	.flags	= (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
     57		  MSI_FLAG_PCI_MSIX),
     58	.chip	= &xgene_msi_top_irq_chip,
     59};
     60
     61/*
     62 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
     63 * n is group number (0..F), x is index of registers in each group (0..7)
     64 * The register layout is as follows:
     65 * MSI0IR0			base_addr
     66 * MSI0IR1			base_addr +  0x10000
     67 * ...				...
     68 * MSI0IR6			base_addr +  0x60000
     69 * MSI0IR7			base_addr +  0x70000
     70 * MSI1IR0			base_addr +  0x80000
     71 * MSI1IR1			base_addr +  0x90000
     72 * ...				...
     73 * MSI1IR7			base_addr +  0xF0000
     74 * MSI2IR0			base_addr + 0x100000
     75 * ...				...
     76 * MSIFIR0			base_addr + 0x780000
     77 * MSIFIR1			base_addr + 0x790000
     78 * ...				...
     79 * MSIFIR7			base_addr + 0x7F0000
     80 * MSIINT0			base_addr + 0x800000
     81 * MSIINT1			base_addr + 0x810000
     82 * ...				...
     83 * MSIINTF			base_addr + 0x8F0000
     84 *
     85 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
     86 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
     87 * registers.
     88 *
     89 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
     90 * the MSI pending status caused by 1 of its 8 index registers.
     91 */
     92
     93/* MSInIRx read helper */
     94static u32 xgene_msi_ir_read(struct xgene_msi *msi,
     95				    u32 msi_grp, u32 msir_idx)
     96{
     97	return readl_relaxed(msi->msi_regs + MSI_IR0 +
     98			      (msi_grp << 19) + (msir_idx << 16));
     99}
    100
    101/* MSIINTn read helper */
    102static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
    103{
    104	return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
    105}
    106
    107/*
    108 * With 2048 MSI vectors supported, the MSI message can be constructed using
    109 * following scheme:
    110 * - Divide into 8 256-vector groups
    111 *		Group 0: 0-255
    112 *		Group 1: 256-511
    113 *		Group 2: 512-767
    114 *		...
    115 *		Group 7: 1792-2047
    116 * - Each 256-vector group is divided into 16 16-vector groups
    117 *	As an example: 16 16-vector groups for 256-vector group 0-255 is
    118 *		Group 0: 0-15
    119 *		Group 1: 16-32
    120 *		...
    121 *		Group 15: 240-255
    122 * - The termination address of MSI vector in 256-vector group n and 16-vector
    123 *   group x is the address of MSIxIRn
    124 * - The data for MSI vector in 16-vector group x is x
    125 */
    126static u32 hwirq_to_reg_set(unsigned long hwirq)
    127{
    128	return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
    129}
    130
    131static u32 hwirq_to_group(unsigned long hwirq)
    132{
    133	return (hwirq % NR_HW_IRQS);
    134}
    135
    136static u32 hwirq_to_msi_data(unsigned long hwirq)
    137{
    138	return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
    139}
    140
    141static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
    142{
    143	struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
    144	u32 reg_set = hwirq_to_reg_set(data->hwirq);
    145	u32 group = hwirq_to_group(data->hwirq);
    146	u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
    147
    148	msg->address_hi = upper_32_bits(target_addr);
    149	msg->address_lo = lower_32_bits(target_addr);
    150	msg->data = hwirq_to_msi_data(data->hwirq);
    151}
    152
    153/*
    154 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors.  To maintain
    155 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
    156 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
    157 * for each core).  The MSI vector is moved fom 1 MSI GIC IRQ to another
    158 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core.  As a
    159 * consequence, the total MSI vectors that X-Gene v1 supports will be
    160 * reduced to 256 (2048/8) vectors.
    161 */
    162static int hwirq_to_cpu(unsigned long hwirq)
    163{
    164	return (hwirq % xgene_msi_ctrl.num_cpus);
    165}
    166
    167static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
    168{
    169	return (hwirq - hwirq_to_cpu(hwirq));
    170}
    171
    172static int xgene_msi_set_affinity(struct irq_data *irqdata,
    173				  const struct cpumask *mask, bool force)
    174{
    175	int target_cpu = cpumask_first(mask);
    176	int curr_cpu;
    177
    178	curr_cpu = hwirq_to_cpu(irqdata->hwirq);
    179	if (curr_cpu == target_cpu)
    180		return IRQ_SET_MASK_OK_DONE;
    181
    182	/* Update MSI number to target the new CPU */
    183	irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
    184
    185	return IRQ_SET_MASK_OK;
    186}
    187
    188static struct irq_chip xgene_msi_bottom_irq_chip = {
    189	.name			= "MSI",
    190	.irq_set_affinity       = xgene_msi_set_affinity,
    191	.irq_compose_msi_msg	= xgene_compose_msi_msg,
    192};
    193
    194static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
    195				  unsigned int nr_irqs, void *args)
    196{
    197	struct xgene_msi *msi = domain->host_data;
    198	int msi_irq;
    199
    200	mutex_lock(&msi->bitmap_lock);
    201
    202	msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
    203					     msi->num_cpus, 0);
    204	if (msi_irq < NR_MSI_VEC)
    205		bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
    206	else
    207		msi_irq = -ENOSPC;
    208
    209	mutex_unlock(&msi->bitmap_lock);
    210
    211	if (msi_irq < 0)
    212		return msi_irq;
    213
    214	irq_domain_set_info(domain, virq, msi_irq,
    215			    &xgene_msi_bottom_irq_chip, domain->host_data,
    216			    handle_simple_irq, NULL, NULL);
    217
    218	return 0;
    219}
    220
    221static void xgene_irq_domain_free(struct irq_domain *domain,
    222				  unsigned int virq, unsigned int nr_irqs)
    223{
    224	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
    225	struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
    226	u32 hwirq;
    227
    228	mutex_lock(&msi->bitmap_lock);
    229
    230	hwirq = hwirq_to_canonical_hwirq(d->hwirq);
    231	bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
    232
    233	mutex_unlock(&msi->bitmap_lock);
    234
    235	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
    236}
    237
    238static const struct irq_domain_ops msi_domain_ops = {
    239	.alloc  = xgene_irq_domain_alloc,
    240	.free   = xgene_irq_domain_free,
    241};
    242
    243static int xgene_allocate_domains(struct xgene_msi *msi)
    244{
    245	msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
    246						  &msi_domain_ops, msi);
    247	if (!msi->inner_domain)
    248		return -ENOMEM;
    249
    250	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
    251						    &xgene_msi_domain_info,
    252						    msi->inner_domain);
    253
    254	if (!msi->msi_domain) {
    255		irq_domain_remove(msi->inner_domain);
    256		return -ENOMEM;
    257	}
    258
    259	return 0;
    260}
    261
    262static void xgene_free_domains(struct xgene_msi *msi)
    263{
    264	if (msi->msi_domain)
    265		irq_domain_remove(msi->msi_domain);
    266	if (msi->inner_domain)
    267		irq_domain_remove(msi->inner_domain);
    268}
    269
    270static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
    271{
    272	xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
    273	if (!xgene_msi->bitmap)
    274		return -ENOMEM;
    275
    276	mutex_init(&xgene_msi->bitmap_lock);
    277
    278	xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
    279					sizeof(struct xgene_msi_group),
    280					GFP_KERNEL);
    281	if (!xgene_msi->msi_groups)
    282		return -ENOMEM;
    283
    284	return 0;
    285}
    286
    287static void xgene_msi_isr(struct irq_desc *desc)
    288{
    289	struct irq_chip *chip = irq_desc_get_chip(desc);
    290	struct xgene_msi_group *msi_groups;
    291	struct xgene_msi *xgene_msi;
    292	int msir_index, msir_val, hw_irq, ret;
    293	u32 intr_index, grp_select, msi_grp;
    294
    295	chained_irq_enter(chip, desc);
    296
    297	msi_groups = irq_desc_get_handler_data(desc);
    298	xgene_msi = msi_groups->msi;
    299	msi_grp = msi_groups->msi_grp;
    300
    301	/*
    302	 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
    303	 * If bit x of this register is set (x is 0..7), one or more interrupts
    304	 * corresponding to MSInIRx is set.
    305	 */
    306	grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
    307	while (grp_select) {
    308		msir_index = ffs(grp_select) - 1;
    309		/*
    310		 * Calculate MSInIRx address to read to check for interrupts
    311		 * (refer to termination address and data assignment
    312		 * described in xgene_compose_msi_msg() )
    313		 */
    314		msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
    315		while (msir_val) {
    316			intr_index = ffs(msir_val) - 1;
    317			/*
    318			 * Calculate MSI vector number (refer to the termination
    319			 * address and data assignment described in
    320			 * xgene_compose_msi_msg function)
    321			 */
    322			hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
    323				 NR_HW_IRQS) + msi_grp;
    324			/*
    325			 * As we have multiple hw_irq that maps to single MSI,
    326			 * always look up the virq using the hw_irq as seen from
    327			 * CPU0
    328			 */
    329			hw_irq = hwirq_to_canonical_hwirq(hw_irq);
    330			ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
    331			WARN_ON_ONCE(ret);
    332			msir_val &= ~(1 << intr_index);
    333		}
    334		grp_select &= ~(1 << msir_index);
    335
    336		if (!grp_select) {
    337			/*
    338			 * We handled all interrupts happened in this group,
    339			 * resample this group MSI_INTx register in case
    340			 * something else has been made pending in the meantime
    341			 */
    342			grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
    343		}
    344	}
    345
    346	chained_irq_exit(chip, desc);
    347}
    348
    349static enum cpuhp_state pci_xgene_online;
    350
    351static int xgene_msi_remove(struct platform_device *pdev)
    352{
    353	struct xgene_msi *msi = platform_get_drvdata(pdev);
    354
    355	if (pci_xgene_online)
    356		cpuhp_remove_state(pci_xgene_online);
    357	cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
    358
    359	kfree(msi->msi_groups);
    360
    361	bitmap_free(msi->bitmap);
    362	msi->bitmap = NULL;
    363
    364	xgene_free_domains(msi);
    365
    366	return 0;
    367}
    368
    369static int xgene_msi_hwirq_alloc(unsigned int cpu)
    370{
    371	struct xgene_msi *msi = &xgene_msi_ctrl;
    372	struct xgene_msi_group *msi_group;
    373	cpumask_var_t mask;
    374	int i;
    375	int err;
    376
    377	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
    378		msi_group = &msi->msi_groups[i];
    379		if (!msi_group->gic_irq)
    380			continue;
    381
    382		irq_set_chained_handler_and_data(msi_group->gic_irq,
    383			xgene_msi_isr, msi_group);
    384
    385		/*
    386		 * Statically allocate MSI GIC IRQs to each CPU core.
    387		 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
    388		 * to each core.
    389		 */
    390		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
    391			cpumask_clear(mask);
    392			cpumask_set_cpu(cpu, mask);
    393			err = irq_set_affinity(msi_group->gic_irq, mask);
    394			if (err)
    395				pr_err("failed to set affinity for GIC IRQ");
    396			free_cpumask_var(mask);
    397		} else {
    398			pr_err("failed to alloc CPU mask for affinity\n");
    399			err = -EINVAL;
    400		}
    401
    402		if (err) {
    403			irq_set_chained_handler_and_data(msi_group->gic_irq,
    404							 NULL, NULL);
    405			return err;
    406		}
    407	}
    408
    409	return 0;
    410}
    411
    412static int xgene_msi_hwirq_free(unsigned int cpu)
    413{
    414	struct xgene_msi *msi = &xgene_msi_ctrl;
    415	struct xgene_msi_group *msi_group;
    416	int i;
    417
    418	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
    419		msi_group = &msi->msi_groups[i];
    420		if (!msi_group->gic_irq)
    421			continue;
    422
    423		irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
    424						 NULL);
    425	}
    426	return 0;
    427}
    428
    429static const struct of_device_id xgene_msi_match_table[] = {
    430	{.compatible = "apm,xgene1-msi"},
    431	{},
    432};
    433
    434static int xgene_msi_probe(struct platform_device *pdev)
    435{
    436	struct resource *res;
    437	int rc, irq_index;
    438	struct xgene_msi *xgene_msi;
    439	int virt_msir;
    440	u32 msi_val, msi_idx;
    441
    442	xgene_msi = &xgene_msi_ctrl;
    443
    444	platform_set_drvdata(pdev, xgene_msi);
    445
    446	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    447	xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res);
    448	if (IS_ERR(xgene_msi->msi_regs)) {
    449		rc = PTR_ERR(xgene_msi->msi_regs);
    450		goto error;
    451	}
    452	xgene_msi->msi_addr = res->start;
    453	xgene_msi->node = pdev->dev.of_node;
    454	xgene_msi->num_cpus = num_possible_cpus();
    455
    456	rc = xgene_msi_init_allocator(xgene_msi);
    457	if (rc) {
    458		dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
    459		goto error;
    460	}
    461
    462	rc = xgene_allocate_domains(xgene_msi);
    463	if (rc) {
    464		dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
    465		goto error;
    466	}
    467
    468	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
    469		virt_msir = platform_get_irq(pdev, irq_index);
    470		if (virt_msir < 0) {
    471			rc = virt_msir;
    472			goto error;
    473		}
    474		xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
    475		xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
    476		xgene_msi->msi_groups[irq_index].msi = xgene_msi;
    477	}
    478
    479	/*
    480	 * MSInIRx registers are read-to-clear; before registering
    481	 * interrupt handlers, read all of them to clear spurious
    482	 * interrupts that may occur before the driver is probed.
    483	 */
    484	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
    485		for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
    486			xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
    487
    488		/* Read MSIINTn to confirm */
    489		msi_val = xgene_msi_int_read(xgene_msi, irq_index);
    490		if (msi_val) {
    491			dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
    492			rc = -EINVAL;
    493			goto error;
    494		}
    495	}
    496
    497	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
    498			       xgene_msi_hwirq_alloc, NULL);
    499	if (rc < 0)
    500		goto err_cpuhp;
    501	pci_xgene_online = rc;
    502	rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
    503			       xgene_msi_hwirq_free);
    504	if (rc)
    505		goto err_cpuhp;
    506
    507	dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
    508
    509	return 0;
    510
    511err_cpuhp:
    512	dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
    513error:
    514	xgene_msi_remove(pdev);
    515	return rc;
    516}
    517
    518static struct platform_driver xgene_msi_driver = {
    519	.driver = {
    520		.name = "xgene-msi",
    521		.of_match_table = xgene_msi_match_table,
    522	},
    523	.probe = xgene_msi_probe,
    524	.remove = xgene_msi_remove,
    525};
    526
    527static int __init xgene_pcie_msi_init(void)
    528{
    529	return platform_driver_register(&xgene_msi_driver);
    530}
    531subsys_initcall(xgene_pcie_msi_init);