cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci-epc-core.c (23745B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * PCI Endpoint *Controller* (EPC) library
      4 *
      5 * Copyright (C) 2017 Texas Instruments
      6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
      7 */
      8
      9#include <linux/device.h>
     10#include <linux/slab.h>
     11#include <linux/module.h>
     12#include <linux/of_device.h>
     13
     14#include <linux/pci-epc.h>
     15#include <linux/pci-epf.h>
     16#include <linux/pci-ep-cfs.h>
     17
     18static struct class *pci_epc_class;
     19
     20static void devm_pci_epc_release(struct device *dev, void *res)
     21{
     22	struct pci_epc *epc = *(struct pci_epc **)res;
     23
     24	pci_epc_destroy(epc);
     25}
     26
     27static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
     28{
     29	struct pci_epc **epc = res;
     30
     31	return *epc == match_data;
     32}
     33
     34/**
     35 * pci_epc_put() - release the PCI endpoint controller
     36 * @epc: epc returned by pci_epc_get()
     37 *
     38 * release the refcount the caller obtained by invoking pci_epc_get()
     39 */
     40void pci_epc_put(struct pci_epc *epc)
     41{
     42	if (!epc || IS_ERR(epc))
     43		return;
     44
     45	module_put(epc->ops->owner);
     46	put_device(&epc->dev);
     47}
     48EXPORT_SYMBOL_GPL(pci_epc_put);
     49
     50/**
     51 * pci_epc_get() - get the PCI endpoint controller
     52 * @epc_name: device name of the endpoint controller
     53 *
     54 * Invoke to get struct pci_epc * corresponding to the device name of the
     55 * endpoint controller
     56 */
     57struct pci_epc *pci_epc_get(const char *epc_name)
     58{
     59	int ret = -EINVAL;
     60	struct pci_epc *epc;
     61	struct device *dev;
     62	struct class_dev_iter iter;
     63
     64	class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
     65	while ((dev = class_dev_iter_next(&iter))) {
     66		if (strcmp(epc_name, dev_name(dev)))
     67			continue;
     68
     69		epc = to_pci_epc(dev);
     70		if (!try_module_get(epc->ops->owner)) {
     71			ret = -EINVAL;
     72			goto err;
     73		}
     74
     75		class_dev_iter_exit(&iter);
     76		get_device(&epc->dev);
     77		return epc;
     78	}
     79
     80err:
     81	class_dev_iter_exit(&iter);
     82	return ERR_PTR(ret);
     83}
     84EXPORT_SYMBOL_GPL(pci_epc_get);
     85
     86/**
     87 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
     88 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
     89 *
     90 * Invoke to get the first unreserved BAR that can be used by the endpoint
     91 * function. For any incorrect value in reserved_bar return '0'.
     92 */
     93enum pci_barno
     94pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
     95{
     96	return pci_epc_get_next_free_bar(epc_features, BAR_0);
     97}
     98EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
     99
    100/**
    101 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
    102 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
    103 * @bar: the starting BAR number from where unreserved BAR should be searched
    104 *
    105 * Invoke to get the next unreserved BAR starting from @bar that can be used
    106 * for endpoint function. For any incorrect value in reserved_bar return '0'.
    107 */
    108enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
    109					 *epc_features, enum pci_barno bar)
    110{
    111	unsigned long free_bar;
    112
    113	if (!epc_features)
    114		return BAR_0;
    115
    116	/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
    117	if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
    118		bar++;
    119
    120	/* Find if the reserved BAR is also a 64-bit BAR */
    121	free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
    122
    123	/* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
    124	free_bar <<= 1;
    125	free_bar |= epc_features->reserved_bar;
    126
    127	free_bar = find_next_zero_bit(&free_bar, 6, bar);
    128	if (free_bar > 5)
    129		return NO_BAR;
    130
    131	return free_bar;
    132}
    133EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
    134
    135/**
    136 * pci_epc_get_features() - get the features supported by EPC
    137 * @epc: the features supported by *this* EPC device will be returned
    138 * @func_no: the features supported by the EPC device specific to the
    139 *	     endpoint function with func_no will be returned
    140 * @vfunc_no: the features supported by the EPC device specific to the
    141 *	     virtual endpoint function with vfunc_no will be returned
    142 *
    143 * Invoke to get the features provided by the EPC which may be
    144 * specific to an endpoint function. Returns pci_epc_features on success
    145 * and NULL for any failures.
    146 */
    147const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
    148						    u8 func_no, u8 vfunc_no)
    149{
    150	const struct pci_epc_features *epc_features;
    151
    152	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    153		return NULL;
    154
    155	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    156		return NULL;
    157
    158	if (!epc->ops->get_features)
    159		return NULL;
    160
    161	mutex_lock(&epc->lock);
    162	epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
    163	mutex_unlock(&epc->lock);
    164
    165	return epc_features;
    166}
    167EXPORT_SYMBOL_GPL(pci_epc_get_features);
    168
    169/**
    170 * pci_epc_stop() - stop the PCI link
    171 * @epc: the link of the EPC device that has to be stopped
    172 *
    173 * Invoke to stop the PCI link
    174 */
    175void pci_epc_stop(struct pci_epc *epc)
    176{
    177	if (IS_ERR(epc) || !epc->ops->stop)
    178		return;
    179
    180	mutex_lock(&epc->lock);
    181	epc->ops->stop(epc);
    182	mutex_unlock(&epc->lock);
    183}
    184EXPORT_SYMBOL_GPL(pci_epc_stop);
    185
    186/**
    187 * pci_epc_start() - start the PCI link
    188 * @epc: the link of *this* EPC device has to be started
    189 *
    190 * Invoke to start the PCI link
    191 */
    192int pci_epc_start(struct pci_epc *epc)
    193{
    194	int ret;
    195
    196	if (IS_ERR(epc))
    197		return -EINVAL;
    198
    199	if (!epc->ops->start)
    200		return 0;
    201
    202	mutex_lock(&epc->lock);
    203	ret = epc->ops->start(epc);
    204	mutex_unlock(&epc->lock);
    205
    206	return ret;
    207}
    208EXPORT_SYMBOL_GPL(pci_epc_start);
    209
    210/**
    211 * pci_epc_raise_irq() - interrupt the host system
    212 * @epc: the EPC device which has to interrupt the host
    213 * @func_no: the physical endpoint function number in the EPC device
    214 * @vfunc_no: the virtual endpoint function number in the physical function
    215 * @type: specify the type of interrupt; legacy, MSI or MSI-X
    216 * @interrupt_num: the MSI or MSI-X interrupt number
    217 *
    218 * Invoke to raise an legacy, MSI or MSI-X interrupt
    219 */
    220int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    221		      enum pci_epc_irq_type type, u16 interrupt_num)
    222{
    223	int ret;
    224
    225	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    226		return -EINVAL;
    227
    228	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    229		return -EINVAL;
    230
    231	if (!epc->ops->raise_irq)
    232		return 0;
    233
    234	mutex_lock(&epc->lock);
    235	ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
    236	mutex_unlock(&epc->lock);
    237
    238	return ret;
    239}
    240EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
    241
    242/**
    243 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
    244 *                         MSI data
    245 * @epc: the EPC device which has the MSI capability
    246 * @func_no: the physical endpoint function number in the EPC device
    247 * @vfunc_no: the virtual endpoint function number in the physical function
    248 * @phys_addr: the physical address of the outbound region
    249 * @interrupt_num: the MSI interrupt number
    250 * @entry_size: Size of Outbound address region for each interrupt
    251 * @msi_data: the data that should be written in order to raise MSI interrupt
    252 *            with interrupt number as 'interrupt num'
    253 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
    254 *                   to which the MSI address is mapped
    255 *
    256 * Invoke to map physical address to MSI address and return MSI data. The
    257 * physical address should be an address in the outbound region. This is
    258 * required to implement doorbell functionality of NTB wherein EPC on either
    259 * side of the interface (primary and secondary) can directly write to the
    260 * physical address (in outbound region) of the other interface to ring
    261 * doorbell.
    262 */
    263int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    264			phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
    265			u32 *msi_data, u32 *msi_addr_offset)
    266{
    267	int ret;
    268
    269	if (IS_ERR_OR_NULL(epc))
    270		return -EINVAL;
    271
    272	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    273		return -EINVAL;
    274
    275	if (!epc->ops->map_msi_irq)
    276		return -EINVAL;
    277
    278	mutex_lock(&epc->lock);
    279	ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
    280				    interrupt_num, entry_size, msi_data,
    281				    msi_addr_offset);
    282	mutex_unlock(&epc->lock);
    283
    284	return ret;
    285}
    286EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
    287
    288/**
    289 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
    290 * @epc: the EPC device to which MSI interrupts was requested
    291 * @func_no: the physical endpoint function number in the EPC device
    292 * @vfunc_no: the virtual endpoint function number in the physical function
    293 *
    294 * Invoke to get the number of MSI interrupts allocated by the RC
    295 */
    296int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
    297{
    298	int interrupt;
    299
    300	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    301		return 0;
    302
    303	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    304		return 0;
    305
    306	if (!epc->ops->get_msi)
    307		return 0;
    308
    309	mutex_lock(&epc->lock);
    310	interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
    311	mutex_unlock(&epc->lock);
    312
    313	if (interrupt < 0)
    314		return 0;
    315
    316	interrupt = 1 << interrupt;
    317
    318	return interrupt;
    319}
    320EXPORT_SYMBOL_GPL(pci_epc_get_msi);
    321
    322/**
    323 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
    324 * @epc: the EPC device on which MSI has to be configured
    325 * @func_no: the physical endpoint function number in the EPC device
    326 * @vfunc_no: the virtual endpoint function number in the physical function
    327 * @interrupts: number of MSI interrupts required by the EPF
    328 *
    329 * Invoke to set the required number of MSI interrupts.
    330 */
    331int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
    332{
    333	int ret;
    334	u8 encode_int;
    335
    336	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
    337	    interrupts < 1 || interrupts > 32)
    338		return -EINVAL;
    339
    340	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    341		return -EINVAL;
    342
    343	if (!epc->ops->set_msi)
    344		return 0;
    345
    346	encode_int = order_base_2(interrupts);
    347
    348	mutex_lock(&epc->lock);
    349	ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
    350	mutex_unlock(&epc->lock);
    351
    352	return ret;
    353}
    354EXPORT_SYMBOL_GPL(pci_epc_set_msi);
    355
    356/**
    357 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
    358 * @epc: the EPC device to which MSI-X interrupts was requested
    359 * @func_no: the physical endpoint function number in the EPC device
    360 * @vfunc_no: the virtual endpoint function number in the physical function
    361 *
    362 * Invoke to get the number of MSI-X interrupts allocated by the RC
    363 */
    364int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
    365{
    366	int interrupt;
    367
    368	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    369		return 0;
    370
    371	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    372		return 0;
    373
    374	if (!epc->ops->get_msix)
    375		return 0;
    376
    377	mutex_lock(&epc->lock);
    378	interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
    379	mutex_unlock(&epc->lock);
    380
    381	if (interrupt < 0)
    382		return 0;
    383
    384	return interrupt + 1;
    385}
    386EXPORT_SYMBOL_GPL(pci_epc_get_msix);
    387
    388/**
    389 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
    390 * @epc: the EPC device on which MSI-X has to be configured
    391 * @func_no: the physical endpoint function number in the EPC device
    392 * @vfunc_no: the virtual endpoint function number in the physical function
    393 * @interrupts: number of MSI-X interrupts required by the EPF
    394 * @bir: BAR where the MSI-X table resides
    395 * @offset: Offset pointing to the start of MSI-X table
    396 *
    397 * Invoke to set the required number of MSI-X interrupts.
    398 */
    399int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    400		     u16 interrupts, enum pci_barno bir, u32 offset)
    401{
    402	int ret;
    403
    404	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
    405	    interrupts < 1 || interrupts > 2048)
    406		return -EINVAL;
    407
    408	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    409		return -EINVAL;
    410
    411	if (!epc->ops->set_msix)
    412		return 0;
    413
    414	mutex_lock(&epc->lock);
    415	ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
    416				 offset);
    417	mutex_unlock(&epc->lock);
    418
    419	return ret;
    420}
    421EXPORT_SYMBOL_GPL(pci_epc_set_msix);
    422
    423/**
    424 * pci_epc_unmap_addr() - unmap CPU address from PCI address
    425 * @epc: the EPC device on which address is allocated
    426 * @func_no: the physical endpoint function number in the EPC device
    427 * @vfunc_no: the virtual endpoint function number in the physical function
    428 * @phys_addr: physical address of the local system
    429 *
    430 * Invoke to unmap the CPU address from PCI address.
    431 */
    432void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    433			phys_addr_t phys_addr)
    434{
    435	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    436		return;
    437
    438	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    439		return;
    440
    441	if (!epc->ops->unmap_addr)
    442		return;
    443
    444	mutex_lock(&epc->lock);
    445	epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
    446	mutex_unlock(&epc->lock);
    447}
    448EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
    449
    450/**
    451 * pci_epc_map_addr() - map CPU address to PCI address
    452 * @epc: the EPC device on which address is allocated
    453 * @func_no: the physical endpoint function number in the EPC device
    454 * @vfunc_no: the virtual endpoint function number in the physical function
    455 * @phys_addr: physical address of the local system
    456 * @pci_addr: PCI address to which the physical address should be mapped
    457 * @size: the size of the allocation
    458 *
    459 * Invoke to map CPU address with PCI address.
    460 */
    461int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    462		     phys_addr_t phys_addr, u64 pci_addr, size_t size)
    463{
    464	int ret;
    465
    466	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    467		return -EINVAL;
    468
    469	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    470		return -EINVAL;
    471
    472	if (!epc->ops->map_addr)
    473		return 0;
    474
    475	mutex_lock(&epc->lock);
    476	ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
    477				 size);
    478	mutex_unlock(&epc->lock);
    479
    480	return ret;
    481}
    482EXPORT_SYMBOL_GPL(pci_epc_map_addr);
    483
    484/**
    485 * pci_epc_clear_bar() - reset the BAR
    486 * @epc: the EPC device for which the BAR has to be cleared
    487 * @func_no: the physical endpoint function number in the EPC device
    488 * @vfunc_no: the virtual endpoint function number in the physical function
    489 * @epf_bar: the struct epf_bar that contains the BAR information
    490 *
    491 * Invoke to reset the BAR of the endpoint device.
    492 */
    493void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    494		       struct pci_epf_bar *epf_bar)
    495{
    496	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
    497	    (epf_bar->barno == BAR_5 &&
    498	     epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
    499		return;
    500
    501	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    502		return;
    503
    504	if (!epc->ops->clear_bar)
    505		return;
    506
    507	mutex_lock(&epc->lock);
    508	epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
    509	mutex_unlock(&epc->lock);
    510}
    511EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
    512
    513/**
    514 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
    515 * @epc: the EPC device on which BAR has to be configured
    516 * @func_no: the physical endpoint function number in the EPC device
    517 * @vfunc_no: the virtual endpoint function number in the physical function
    518 * @epf_bar: the struct epf_bar that contains the BAR information
    519 *
    520 * Invoke to configure the BAR of the endpoint device.
    521 */
    522int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    523		    struct pci_epf_bar *epf_bar)
    524{
    525	int ret;
    526	int flags = epf_bar->flags;
    527
    528	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
    529	    (epf_bar->barno == BAR_5 &&
    530	     flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
    531	    (flags & PCI_BASE_ADDRESS_SPACE_IO &&
    532	     flags & PCI_BASE_ADDRESS_IO_MASK) ||
    533	    (upper_32_bits(epf_bar->size) &&
    534	     !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
    535		return -EINVAL;
    536
    537	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    538		return -EINVAL;
    539
    540	if (!epc->ops->set_bar)
    541		return 0;
    542
    543	mutex_lock(&epc->lock);
    544	ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
    545	mutex_unlock(&epc->lock);
    546
    547	return ret;
    548}
    549EXPORT_SYMBOL_GPL(pci_epc_set_bar);
    550
    551/**
    552 * pci_epc_write_header() - write standard configuration header
    553 * @epc: the EPC device to which the configuration header should be written
    554 * @func_no: the physical endpoint function number in the EPC device
    555 * @vfunc_no: the virtual endpoint function number in the physical function
    556 * @header: standard configuration header fields
    557 *
    558 * Invoke to write the configuration header to the endpoint controller. Every
    559 * endpoint controller will have a dedicated location to which the standard
    560 * configuration header would be written. The callback function should write
    561 * the header fields to this dedicated location.
    562 */
    563int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
    564			 struct pci_epf_header *header)
    565{
    566	int ret;
    567
    568	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
    569		return -EINVAL;
    570
    571	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
    572		return -EINVAL;
    573
    574	/* Only Virtual Function #1 has deviceID */
    575	if (vfunc_no > 1)
    576		return -EINVAL;
    577
    578	if (!epc->ops->write_header)
    579		return 0;
    580
    581	mutex_lock(&epc->lock);
    582	ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
    583	mutex_unlock(&epc->lock);
    584
    585	return ret;
    586}
    587EXPORT_SYMBOL_GPL(pci_epc_write_header);
    588
    589/**
    590 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
    591 * @epc: the EPC device to which the endpoint function should be added
    592 * @epf: the endpoint function to be added
    593 * @type: Identifies if the EPC is connected to the primary or secondary
    594 *        interface of EPF
    595 *
    596 * A PCI endpoint device can have one or more functions. In the case of PCIe,
    597 * the specification allows up to 8 PCIe endpoint functions. Invoke
    598 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
    599 */
    600int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
    601		    enum pci_epc_interface_type type)
    602{
    603	struct list_head *list;
    604	u32 func_no;
    605	int ret = 0;
    606
    607	if (IS_ERR_OR_NULL(epc) || epf->is_vf)
    608		return -EINVAL;
    609
    610	if (type == PRIMARY_INTERFACE && epf->epc)
    611		return -EBUSY;
    612
    613	if (type == SECONDARY_INTERFACE && epf->sec_epc)
    614		return -EBUSY;
    615
    616	mutex_lock(&epc->lock);
    617	func_no = find_first_zero_bit(&epc->function_num_map,
    618				      BITS_PER_LONG);
    619	if (func_no >= BITS_PER_LONG) {
    620		ret = -EINVAL;
    621		goto ret;
    622	}
    623
    624	if (func_no > epc->max_functions - 1) {
    625		dev_err(&epc->dev, "Exceeding max supported Function Number\n");
    626		ret = -EINVAL;
    627		goto ret;
    628	}
    629
    630	set_bit(func_no, &epc->function_num_map);
    631	if (type == PRIMARY_INTERFACE) {
    632		epf->func_no = func_no;
    633		epf->epc = epc;
    634		list = &epf->list;
    635	} else {
    636		epf->sec_epc_func_no = func_no;
    637		epf->sec_epc = epc;
    638		list = &epf->sec_epc_list;
    639	}
    640
    641	list_add_tail(list, &epc->pci_epf);
    642ret:
    643	mutex_unlock(&epc->lock);
    644
    645	return ret;
    646}
    647EXPORT_SYMBOL_GPL(pci_epc_add_epf);
    648
    649/**
    650 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
    651 * @epc: the EPC device from which the endpoint function should be removed
    652 * @epf: the endpoint function to be removed
    653 * @type: identifies if the EPC is connected to the primary or secondary
    654 *        interface of EPF
    655 *
    656 * Invoke to remove PCI endpoint function from the endpoint controller.
    657 */
    658void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
    659			enum pci_epc_interface_type type)
    660{
    661	struct list_head *list;
    662	u32 func_no = 0;
    663
    664	if (!epc || IS_ERR(epc) || !epf)
    665		return;
    666
    667	if (type == PRIMARY_INTERFACE) {
    668		func_no = epf->func_no;
    669		list = &epf->list;
    670	} else {
    671		func_no = epf->sec_epc_func_no;
    672		list = &epf->sec_epc_list;
    673	}
    674
    675	mutex_lock(&epc->lock);
    676	clear_bit(func_no, &epc->function_num_map);
    677	list_del(list);
    678	epf->epc = NULL;
    679	mutex_unlock(&epc->lock);
    680}
    681EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
    682
    683/**
    684 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
    685 *		      connection with the Root Complex.
    686 * @epc: the EPC device which has established link with the host
    687 *
    688 * Invoke to Notify the EPF device that the EPC device has established a
    689 * connection with the Root Complex.
    690 */
    691void pci_epc_linkup(struct pci_epc *epc)
    692{
    693	if (!epc || IS_ERR(epc))
    694		return;
    695
    696	atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL);
    697}
    698EXPORT_SYMBOL_GPL(pci_epc_linkup);
    699
    700/**
    701 * pci_epc_init_notify() - Notify the EPF device that EPC device's core
    702 *			   initialization is completed.
    703 * @epc: the EPC device whose core initialization is completed
    704 *
    705 * Invoke to Notify the EPF device that the EPC device's initialization
    706 * is completed.
    707 */
    708void pci_epc_init_notify(struct pci_epc *epc)
    709{
    710	if (!epc || IS_ERR(epc))
    711		return;
    712
    713	atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL);
    714}
    715EXPORT_SYMBOL_GPL(pci_epc_init_notify);
    716
    717/**
    718 * pci_epc_destroy() - destroy the EPC device
    719 * @epc: the EPC device that has to be destroyed
    720 *
    721 * Invoke to destroy the PCI EPC device
    722 */
    723void pci_epc_destroy(struct pci_epc *epc)
    724{
    725	pci_ep_cfs_remove_epc_group(epc->group);
    726	device_unregister(&epc->dev);
    727	kfree(epc);
    728}
    729EXPORT_SYMBOL_GPL(pci_epc_destroy);
    730
    731/**
    732 * devm_pci_epc_destroy() - destroy the EPC device
    733 * @dev: device that wants to destroy the EPC
    734 * @epc: the EPC device that has to be destroyed
    735 *
    736 * Invoke to destroy the devres associated with this
    737 * pci_epc and destroy the EPC device.
    738 */
    739void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
    740{
    741	int r;
    742
    743	r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
    744			   epc);
    745	dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
    746}
    747EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
    748
    749/**
    750 * __pci_epc_create() - create a new endpoint controller (EPC) device
    751 * @dev: device that is creating the new EPC
    752 * @ops: function pointers for performing EPC operations
    753 * @owner: the owner of the module that creates the EPC device
    754 *
    755 * Invoke to create a new EPC device and add it to pci_epc class.
    756 */
    757struct pci_epc *
    758__pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
    759		 struct module *owner)
    760{
    761	int ret;
    762	struct pci_epc *epc;
    763
    764	if (WARN_ON(!dev)) {
    765		ret = -EINVAL;
    766		goto err_ret;
    767	}
    768
    769	epc = kzalloc(sizeof(*epc), GFP_KERNEL);
    770	if (!epc) {
    771		ret = -ENOMEM;
    772		goto err_ret;
    773	}
    774
    775	mutex_init(&epc->lock);
    776	INIT_LIST_HEAD(&epc->pci_epf);
    777	ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier);
    778
    779	device_initialize(&epc->dev);
    780	epc->dev.class = pci_epc_class;
    781	epc->dev.parent = dev;
    782	epc->ops = ops;
    783
    784	ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
    785	if (ret)
    786		goto put_dev;
    787
    788	ret = device_add(&epc->dev);
    789	if (ret)
    790		goto put_dev;
    791
    792	epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
    793
    794	return epc;
    795
    796put_dev:
    797	put_device(&epc->dev);
    798	kfree(epc);
    799
    800err_ret:
    801	return ERR_PTR(ret);
    802}
    803EXPORT_SYMBOL_GPL(__pci_epc_create);
    804
    805/**
    806 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
    807 * @dev: device that is creating the new EPC
    808 * @ops: function pointers for performing EPC operations
    809 * @owner: the owner of the module that creates the EPC device
    810 *
    811 * Invoke to create a new EPC device and add it to pci_epc class.
    812 * While at that, it also associates the device with the pci_epc using devres.
    813 * On driver detach, release function is invoked on the devres data,
    814 * then, devres data is freed.
    815 */
    816struct pci_epc *
    817__devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
    818		      struct module *owner)
    819{
    820	struct pci_epc **ptr, *epc;
    821
    822	ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
    823	if (!ptr)
    824		return ERR_PTR(-ENOMEM);
    825
    826	epc = __pci_epc_create(dev, ops, owner);
    827	if (!IS_ERR(epc)) {
    828		*ptr = epc;
    829		devres_add(dev, ptr);
    830	} else {
    831		devres_free(ptr);
    832	}
    833
    834	return epc;
    835}
    836EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
    837
    838static int __init pci_epc_init(void)
    839{
    840	pci_epc_class = class_create(THIS_MODULE, "pci_epc");
    841	if (IS_ERR(pci_epc_class)) {
    842		pr_err("failed to create pci epc class --> %ld\n",
    843		       PTR_ERR(pci_epc_class));
    844		return PTR_ERR(pci_epc_class);
    845	}
    846
    847	return 0;
    848}
    849module_init(pci_epc_init);
    850
    851static void __exit pci_epc_exit(void)
    852{
    853	class_destroy(pci_epc_class);
    854}
    855module_exit(pci_epc_exit);
    856
    857MODULE_DESCRIPTION("PCI EPC Library");
    858MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
    859MODULE_LICENSE("GPL v2");