cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci.c (185767B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * PCI Bus Services, see include/linux/pci.h for further explanation.
      4 *
      5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
      6 * David Mosberger-Tang
      7 *
      8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
      9 */
     10
     11#include <linux/acpi.h>
     12#include <linux/kernel.h>
     13#include <linux/delay.h>
     14#include <linux/dmi.h>
     15#include <linux/init.h>
     16#include <linux/msi.h>
     17#include <linux/of.h>
     18#include <linux/pci.h>
     19#include <linux/pm.h>
     20#include <linux/slab.h>
     21#include <linux/module.h>
     22#include <linux/spinlock.h>
     23#include <linux/string.h>
     24#include <linux/log2.h>
     25#include <linux/logic_pio.h>
     26#include <linux/pm_wakeup.h>
     27#include <linux/interrupt.h>
     28#include <linux/device.h>
     29#include <linux/pm_runtime.h>
     30#include <linux/pci_hotplug.h>
     31#include <linux/vmalloc.h>
     32#include <asm/dma.h>
     33#include <linux/aer.h>
     34#include <linux/bitfield.h>
     35#include "pci.h"
     36
     37DEFINE_MUTEX(pci_slot_mutex);
     38
     39const char *pci_power_names[] = {
     40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
     41};
     42EXPORT_SYMBOL_GPL(pci_power_names);
     43
     44int isa_dma_bridge_buggy;
     45EXPORT_SYMBOL(isa_dma_bridge_buggy);
     46
     47int pci_pci_problems;
     48EXPORT_SYMBOL(pci_pci_problems);
     49
     50unsigned int pci_pm_d3hot_delay;
     51
     52static void pci_pme_list_scan(struct work_struct *work);
     53
     54static LIST_HEAD(pci_pme_list);
     55static DEFINE_MUTEX(pci_pme_list_mutex);
     56static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
     57
     58struct pci_pme_device {
     59	struct list_head list;
     60	struct pci_dev *dev;
     61};
     62
     63#define PME_TIMEOUT 1000 /* How long between PME checks */
     64
     65static void pci_dev_d3_sleep(struct pci_dev *dev)
     66{
     67	unsigned int delay = dev->d3hot_delay;
     68
     69	if (delay < pci_pm_d3hot_delay)
     70		delay = pci_pm_d3hot_delay;
     71
     72	if (delay)
     73		msleep(delay);
     74}
     75
     76bool pci_reset_supported(struct pci_dev *dev)
     77{
     78	return dev->reset_methods[0] != 0;
     79}
     80
     81#ifdef CONFIG_PCI_DOMAINS
     82int pci_domains_supported = 1;
     83#endif
     84
     85#define DEFAULT_CARDBUS_IO_SIZE		(256)
     86#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
     87/* pci=cbmemsize=nnM,cbiosize=nn can override this */
     88unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
     89unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
     90
     91#define DEFAULT_HOTPLUG_IO_SIZE		(256)
     92#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
     93#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
     94/* hpiosize=nn can override this */
     95unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
     96/*
     97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
     98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
     99 * pci=hpmemsize=nnM overrides both
    100 */
    101unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
    102unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
    103
    104#define DEFAULT_HOTPLUG_BUS_SIZE	1
    105unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
    106
    107
    108/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
    109#ifdef CONFIG_PCIE_BUS_TUNE_OFF
    110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
    111#elif defined CONFIG_PCIE_BUS_SAFE
    112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
    113#elif defined CONFIG_PCIE_BUS_PERFORMANCE
    114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
    115#elif defined CONFIG_PCIE_BUS_PEER2PEER
    116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
    117#else
    118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
    119#endif
    120
    121/*
    122 * The default CLS is used if arch didn't set CLS explicitly and not
    123 * all pci devices agree on the same value.  Arch can override either
    124 * the dfl or actual value as it sees fit.  Don't forget this is
    125 * measured in 32-bit words, not bytes.
    126 */
    127u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
    128u8 pci_cache_line_size;
    129
    130/*
    131 * If we set up a device for bus mastering, we need to check the latency
    132 * timer as certain BIOSes forget to set it properly.
    133 */
    134unsigned int pcibios_max_latency = 255;
    135
    136/* If set, the PCIe ARI capability will not be used. */
    137static bool pcie_ari_disabled;
    138
    139/* If set, the PCIe ATS capability will not be used. */
    140static bool pcie_ats_disabled;
    141
    142/* If set, the PCI config space of each device is printed during boot. */
    143bool pci_early_dump;
    144
    145bool pci_ats_disabled(void)
    146{
    147	return pcie_ats_disabled;
    148}
    149EXPORT_SYMBOL_GPL(pci_ats_disabled);
    150
    151/* Disable bridge_d3 for all PCIe ports */
    152static bool pci_bridge_d3_disable;
    153/* Force bridge_d3 for all PCIe ports */
    154static bool pci_bridge_d3_force;
    155
    156static int __init pcie_port_pm_setup(char *str)
    157{
    158	if (!strcmp(str, "off"))
    159		pci_bridge_d3_disable = true;
    160	else if (!strcmp(str, "force"))
    161		pci_bridge_d3_force = true;
    162	return 1;
    163}
    164__setup("pcie_port_pm=", pcie_port_pm_setup);
    165
    166/* Time to wait after a reset for device to become responsive */
    167#define PCIE_RESET_READY_POLL_MS 60000
    168
    169/**
    170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
    171 * @bus: pointer to PCI bus structure to search
    172 *
    173 * Given a PCI bus, returns the highest PCI bus number present in the set
    174 * including the given PCI bus and its list of child PCI buses.
    175 */
    176unsigned char pci_bus_max_busnr(struct pci_bus *bus)
    177{
    178	struct pci_bus *tmp;
    179	unsigned char max, n;
    180
    181	max = bus->busn_res.end;
    182	list_for_each_entry(tmp, &bus->children, node) {
    183		n = pci_bus_max_busnr(tmp);
    184		if (n > max)
    185			max = n;
    186	}
    187	return max;
    188}
    189EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
    190
    191/**
    192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
    193 * @pdev: the PCI device
    194 *
    195 * Returns error bits set in PCI_STATUS and clears them.
    196 */
    197int pci_status_get_and_clear_errors(struct pci_dev *pdev)
    198{
    199	u16 status;
    200	int ret;
    201
    202	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
    203	if (ret != PCIBIOS_SUCCESSFUL)
    204		return -EIO;
    205
    206	status &= PCI_STATUS_ERROR_BITS;
    207	if (status)
    208		pci_write_config_word(pdev, PCI_STATUS, status);
    209
    210	return status;
    211}
    212EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
    213
    214#ifdef CONFIG_HAS_IOMEM
    215static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
    216					    bool write_combine)
    217{
    218	struct resource *res = &pdev->resource[bar];
    219	resource_size_t start = res->start;
    220	resource_size_t size = resource_size(res);
    221
    222	/*
    223	 * Make sure the BAR is actually a memory resource, not an IO resource
    224	 */
    225	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
    226		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
    227		return NULL;
    228	}
    229
    230	if (write_combine)
    231		return ioremap_wc(start, size);
    232
    233	return ioremap(start, size);
    234}
    235
    236void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
    237{
    238	return __pci_ioremap_resource(pdev, bar, false);
    239}
    240EXPORT_SYMBOL_GPL(pci_ioremap_bar);
    241
    242void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
    243{
    244	return __pci_ioremap_resource(pdev, bar, true);
    245}
    246EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
    247#endif
    248
    249/**
    250 * pci_dev_str_match_path - test if a path string matches a device
    251 * @dev: the PCI device to test
    252 * @path: string to match the device against
    253 * @endptr: pointer to the string after the match
    254 *
    255 * Test if a string (typically from a kernel parameter) formatted as a
    256 * path of device/function addresses matches a PCI device. The string must
    257 * be of the form:
    258 *
    259 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
    260 *
    261 * A path for a device can be obtained using 'lspci -t'.  Using a path
    262 * is more robust against bus renumbering than using only a single bus,
    263 * device and function address.
    264 *
    265 * Returns 1 if the string matches the device, 0 if it does not and
    266 * a negative error code if it fails to parse the string.
    267 */
    268static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
    269				  const char **endptr)
    270{
    271	int ret;
    272	unsigned int seg, bus, slot, func;
    273	char *wpath, *p;
    274	char end;
    275
    276	*endptr = strchrnul(path, ';');
    277
    278	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
    279	if (!wpath)
    280		return -ENOMEM;
    281
    282	while (1) {
    283		p = strrchr(wpath, '/');
    284		if (!p)
    285			break;
    286		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
    287		if (ret != 2) {
    288			ret = -EINVAL;
    289			goto free_and_exit;
    290		}
    291
    292		if (dev->devfn != PCI_DEVFN(slot, func)) {
    293			ret = 0;
    294			goto free_and_exit;
    295		}
    296
    297		/*
    298		 * Note: we don't need to get a reference to the upstream
    299		 * bridge because we hold a reference to the top level
    300		 * device which should hold a reference to the bridge,
    301		 * and so on.
    302		 */
    303		dev = pci_upstream_bridge(dev);
    304		if (!dev) {
    305			ret = 0;
    306			goto free_and_exit;
    307		}
    308
    309		*p = 0;
    310	}
    311
    312	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
    313		     &func, &end);
    314	if (ret != 4) {
    315		seg = 0;
    316		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
    317		if (ret != 3) {
    318			ret = -EINVAL;
    319			goto free_and_exit;
    320		}
    321	}
    322
    323	ret = (seg == pci_domain_nr(dev->bus) &&
    324	       bus == dev->bus->number &&
    325	       dev->devfn == PCI_DEVFN(slot, func));
    326
    327free_and_exit:
    328	kfree(wpath);
    329	return ret;
    330}
    331
    332/**
    333 * pci_dev_str_match - test if a string matches a device
    334 * @dev: the PCI device to test
    335 * @p: string to match the device against
    336 * @endptr: pointer to the string after the match
    337 *
    338 * Test if a string (typically from a kernel parameter) matches a specified
    339 * PCI device. The string may be of one of the following formats:
    340 *
    341 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
    342 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
    343 *
    344 * The first format specifies a PCI bus/device/function address which
    345 * may change if new hardware is inserted, if motherboard firmware changes,
    346 * or due to changes caused in kernel parameters. If the domain is
    347 * left unspecified, it is taken to be 0.  In order to be robust against
    348 * bus renumbering issues, a path of PCI device/function numbers may be used
    349 * to address the specific device.  The path for a device can be determined
    350 * through the use of 'lspci -t'.
    351 *
    352 * The second format matches devices using IDs in the configuration
    353 * space which may match multiple devices in the system. A value of 0
    354 * for any field will match all devices. (Note: this differs from
    355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
    356 * legacy reasons and convenience so users don't have to specify
    357 * FFFFFFFFs on the command line.)
    358 *
    359 * Returns 1 if the string matches the device, 0 if it does not and
    360 * a negative error code if the string cannot be parsed.
    361 */
    362static int pci_dev_str_match(struct pci_dev *dev, const char *p,
    363			     const char **endptr)
    364{
    365	int ret;
    366	int count;
    367	unsigned short vendor, device, subsystem_vendor, subsystem_device;
    368
    369	if (strncmp(p, "pci:", 4) == 0) {
    370		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
    371		p += 4;
    372		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
    373			     &subsystem_vendor, &subsystem_device, &count);
    374		if (ret != 4) {
    375			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
    376			if (ret != 2)
    377				return -EINVAL;
    378
    379			subsystem_vendor = 0;
    380			subsystem_device = 0;
    381		}
    382
    383		p += count;
    384
    385		if ((!vendor || vendor == dev->vendor) &&
    386		    (!device || device == dev->device) &&
    387		    (!subsystem_vendor ||
    388			    subsystem_vendor == dev->subsystem_vendor) &&
    389		    (!subsystem_device ||
    390			    subsystem_device == dev->subsystem_device))
    391			goto found;
    392	} else {
    393		/*
    394		 * PCI Bus, Device, Function IDs are specified
    395		 * (optionally, may include a path of devfns following it)
    396		 */
    397		ret = pci_dev_str_match_path(dev, p, &p);
    398		if (ret < 0)
    399			return ret;
    400		else if (ret)
    401			goto found;
    402	}
    403
    404	*endptr = p;
    405	return 0;
    406
    407found:
    408	*endptr = p;
    409	return 1;
    410}
    411
    412static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
    413				  u8 pos, int cap, int *ttl)
    414{
    415	u8 id;
    416	u16 ent;
    417
    418	pci_bus_read_config_byte(bus, devfn, pos, &pos);
    419
    420	while ((*ttl)--) {
    421		if (pos < 0x40)
    422			break;
    423		pos &= ~3;
    424		pci_bus_read_config_word(bus, devfn, pos, &ent);
    425
    426		id = ent & 0xff;
    427		if (id == 0xff)
    428			break;
    429		if (id == cap)
    430			return pos;
    431		pos = (ent >> 8);
    432	}
    433	return 0;
    434}
    435
    436static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
    437			      u8 pos, int cap)
    438{
    439	int ttl = PCI_FIND_CAP_TTL;
    440
    441	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
    442}
    443
    444u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
    445{
    446	return __pci_find_next_cap(dev->bus, dev->devfn,
    447				   pos + PCI_CAP_LIST_NEXT, cap);
    448}
    449EXPORT_SYMBOL_GPL(pci_find_next_capability);
    450
    451static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
    452				    unsigned int devfn, u8 hdr_type)
    453{
    454	u16 status;
    455
    456	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
    457	if (!(status & PCI_STATUS_CAP_LIST))
    458		return 0;
    459
    460	switch (hdr_type) {
    461	case PCI_HEADER_TYPE_NORMAL:
    462	case PCI_HEADER_TYPE_BRIDGE:
    463		return PCI_CAPABILITY_LIST;
    464	case PCI_HEADER_TYPE_CARDBUS:
    465		return PCI_CB_CAPABILITY_LIST;
    466	}
    467
    468	return 0;
    469}
    470
    471/**
    472 * pci_find_capability - query for devices' capabilities
    473 * @dev: PCI device to query
    474 * @cap: capability code
    475 *
    476 * Tell if a device supports a given PCI capability.
    477 * Returns the address of the requested capability structure within the
    478 * device's PCI configuration space or 0 in case the device does not
    479 * support it.  Possible values for @cap include:
    480 *
    481 *  %PCI_CAP_ID_PM           Power Management
    482 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
    483 *  %PCI_CAP_ID_VPD          Vital Product Data
    484 *  %PCI_CAP_ID_SLOTID       Slot Identification
    485 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
    486 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
    487 *  %PCI_CAP_ID_PCIX         PCI-X
    488 *  %PCI_CAP_ID_EXP          PCI Express
    489 */
    490u8 pci_find_capability(struct pci_dev *dev, int cap)
    491{
    492	u8 pos;
    493
    494	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
    495	if (pos)
    496		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
    497
    498	return pos;
    499}
    500EXPORT_SYMBOL(pci_find_capability);
    501
    502/**
    503 * pci_bus_find_capability - query for devices' capabilities
    504 * @bus: the PCI bus to query
    505 * @devfn: PCI device to query
    506 * @cap: capability code
    507 *
    508 * Like pci_find_capability() but works for PCI devices that do not have a
    509 * pci_dev structure set up yet.
    510 *
    511 * Returns the address of the requested capability structure within the
    512 * device's PCI configuration space or 0 in case the device does not
    513 * support it.
    514 */
    515u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
    516{
    517	u8 hdr_type, pos;
    518
    519	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
    520
    521	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
    522	if (pos)
    523		pos = __pci_find_next_cap(bus, devfn, pos, cap);
    524
    525	return pos;
    526}
    527EXPORT_SYMBOL(pci_bus_find_capability);
    528
    529/**
    530 * pci_find_next_ext_capability - Find an extended capability
    531 * @dev: PCI device to query
    532 * @start: address at which to start looking (0 to start at beginning of list)
    533 * @cap: capability code
    534 *
    535 * Returns the address of the next matching extended capability structure
    536 * within the device's PCI configuration space or 0 if the device does
    537 * not support it.  Some capabilities can occur several times, e.g., the
    538 * vendor-specific capability, and this provides a way to find them all.
    539 */
    540u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
    541{
    542	u32 header;
    543	int ttl;
    544	u16 pos = PCI_CFG_SPACE_SIZE;
    545
    546	/* minimum 8 bytes per capability */
    547	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
    548
    549	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
    550		return 0;
    551
    552	if (start)
    553		pos = start;
    554
    555	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
    556		return 0;
    557
    558	/*
    559	 * If we have no capabilities, this is indicated by cap ID,
    560	 * cap version and next pointer all being 0.
    561	 */
    562	if (header == 0)
    563		return 0;
    564
    565	while (ttl-- > 0) {
    566		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
    567			return pos;
    568
    569		pos = PCI_EXT_CAP_NEXT(header);
    570		if (pos < PCI_CFG_SPACE_SIZE)
    571			break;
    572
    573		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
    574			break;
    575	}
    576
    577	return 0;
    578}
    579EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
    580
    581/**
    582 * pci_find_ext_capability - Find an extended capability
    583 * @dev: PCI device to query
    584 * @cap: capability code
    585 *
    586 * Returns the address of the requested extended capability structure
    587 * within the device's PCI configuration space or 0 if the device does
    588 * not support it.  Possible values for @cap include:
    589 *
    590 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
    591 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
    592 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
    593 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
    594 */
    595u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
    596{
    597	return pci_find_next_ext_capability(dev, 0, cap);
    598}
    599EXPORT_SYMBOL_GPL(pci_find_ext_capability);
    600
    601/**
    602 * pci_get_dsn - Read and return the 8-byte Device Serial Number
    603 * @dev: PCI device to query
    604 *
    605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
    606 * Number.
    607 *
    608 * Returns the DSN, or zero if the capability does not exist.
    609 */
    610u64 pci_get_dsn(struct pci_dev *dev)
    611{
    612	u32 dword;
    613	u64 dsn;
    614	int pos;
    615
    616	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
    617	if (!pos)
    618		return 0;
    619
    620	/*
    621	 * The Device Serial Number is two dwords offset 4 bytes from the
    622	 * capability position. The specification says that the first dword is
    623	 * the lower half, and the second dword is the upper half.
    624	 */
    625	pos += 4;
    626	pci_read_config_dword(dev, pos, &dword);
    627	dsn = (u64)dword;
    628	pci_read_config_dword(dev, pos + 4, &dword);
    629	dsn |= ((u64)dword) << 32;
    630
    631	return dsn;
    632}
    633EXPORT_SYMBOL_GPL(pci_get_dsn);
    634
    635static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
    636{
    637	int rc, ttl = PCI_FIND_CAP_TTL;
    638	u8 cap, mask;
    639
    640	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
    641		mask = HT_3BIT_CAP_MASK;
    642	else
    643		mask = HT_5BIT_CAP_MASK;
    644
    645	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
    646				      PCI_CAP_ID_HT, &ttl);
    647	while (pos) {
    648		rc = pci_read_config_byte(dev, pos + 3, &cap);
    649		if (rc != PCIBIOS_SUCCESSFUL)
    650			return 0;
    651
    652		if ((cap & mask) == ht_cap)
    653			return pos;
    654
    655		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
    656					      pos + PCI_CAP_LIST_NEXT,
    657					      PCI_CAP_ID_HT, &ttl);
    658	}
    659
    660	return 0;
    661}
    662
    663/**
    664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
    665 * @dev: PCI device to query
    666 * @pos: Position from which to continue searching
    667 * @ht_cap: HyperTransport capability code
    668 *
    669 * To be used in conjunction with pci_find_ht_capability() to search for
    670 * all capabilities matching @ht_cap. @pos should always be a value returned
    671 * from pci_find_ht_capability().
    672 *
    673 * NB. To be 100% safe against broken PCI devices, the caller should take
    674 * steps to avoid an infinite loop.
    675 */
    676u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
    677{
    678	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
    679}
    680EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
    681
    682/**
    683 * pci_find_ht_capability - query a device's HyperTransport capabilities
    684 * @dev: PCI device to query
    685 * @ht_cap: HyperTransport capability code
    686 *
    687 * Tell if a device supports a given HyperTransport capability.
    688 * Returns an address within the device's PCI configuration space
    689 * or 0 in case the device does not support the request capability.
    690 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
    691 * which has a HyperTransport capability matching @ht_cap.
    692 */
    693u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
    694{
    695	u8 pos;
    696
    697	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
    698	if (pos)
    699		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
    700
    701	return pos;
    702}
    703EXPORT_SYMBOL_GPL(pci_find_ht_capability);
    704
    705/**
    706 * pci_find_vsec_capability - Find a vendor-specific extended capability
    707 * @dev: PCI device to query
    708 * @vendor: Vendor ID for which capability is defined
    709 * @cap: Vendor-specific capability ID
    710 *
    711 * If @dev has Vendor ID @vendor, search for a VSEC capability with
    712 * VSEC ID @cap. If found, return the capability offset in
    713 * config space; otherwise return 0.
    714 */
    715u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
    716{
    717	u16 vsec = 0;
    718	u32 header;
    719
    720	if (vendor != dev->vendor)
    721		return 0;
    722
    723	while ((vsec = pci_find_next_ext_capability(dev, vsec,
    724						     PCI_EXT_CAP_ID_VNDR))) {
    725		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
    726					  &header) == PCIBIOS_SUCCESSFUL &&
    727		    PCI_VNDR_HEADER_ID(header) == cap)
    728			return vsec;
    729	}
    730
    731	return 0;
    732}
    733EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
    734
    735/**
    736 * pci_find_dvsec_capability - Find DVSEC for vendor
    737 * @dev: PCI device to query
    738 * @vendor: Vendor ID to match for the DVSEC
    739 * @dvsec: Designated Vendor-specific capability ID
    740 *
    741 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
    742 * offset in config space; otherwise return 0.
    743 */
    744u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
    745{
    746	int pos;
    747
    748	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
    749	if (!pos)
    750		return 0;
    751
    752	while (pos) {
    753		u16 v, id;
    754
    755		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
    756		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
    757		if (vendor == v && dvsec == id)
    758			return pos;
    759
    760		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
    761	}
    762
    763	return 0;
    764}
    765EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
    766
    767/**
    768 * pci_find_parent_resource - return resource region of parent bus of given
    769 *			      region
    770 * @dev: PCI device structure contains resources to be searched
    771 * @res: child resource record for which parent is sought
    772 *
    773 * For given resource region of given device, return the resource region of
    774 * parent bus the given region is contained in.
    775 */
    776struct resource *pci_find_parent_resource(const struct pci_dev *dev,
    777					  struct resource *res)
    778{
    779	const struct pci_bus *bus = dev->bus;
    780	struct resource *r;
    781	int i;
    782
    783	pci_bus_for_each_resource(bus, r, i) {
    784		if (!r)
    785			continue;
    786		if (resource_contains(r, res)) {
    787
    788			/*
    789			 * If the window is prefetchable but the BAR is
    790			 * not, the allocator made a mistake.
    791			 */
    792			if (r->flags & IORESOURCE_PREFETCH &&
    793			    !(res->flags & IORESOURCE_PREFETCH))
    794				return NULL;
    795
    796			/*
    797			 * If we're below a transparent bridge, there may
    798			 * be both a positively-decoded aperture and a
    799			 * subtractively-decoded region that contain the BAR.
    800			 * We want the positively-decoded one, so this depends
    801			 * on pci_bus_for_each_resource() giving us those
    802			 * first.
    803			 */
    804			return r;
    805		}
    806	}
    807	return NULL;
    808}
    809EXPORT_SYMBOL(pci_find_parent_resource);
    810
    811/**
    812 * pci_find_resource - Return matching PCI device resource
    813 * @dev: PCI device to query
    814 * @res: Resource to look for
    815 *
    816 * Goes over standard PCI resources (BARs) and checks if the given resource
    817 * is partially or fully contained in any of them. In that case the
    818 * matching resource is returned, %NULL otherwise.
    819 */
    820struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
    821{
    822	int i;
    823
    824	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
    825		struct resource *r = &dev->resource[i];
    826
    827		if (r->start && resource_contains(r, res))
    828			return r;
    829	}
    830
    831	return NULL;
    832}
    833EXPORT_SYMBOL(pci_find_resource);
    834
    835/**
    836 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
    837 * @dev: the PCI device to operate on
    838 * @pos: config space offset of status word
    839 * @mask: mask of bit(s) to care about in status word
    840 *
    841 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
    842 */
    843int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
    844{
    845	int i;
    846
    847	/* Wait for Transaction Pending bit clean */
    848	for (i = 0; i < 4; i++) {
    849		u16 status;
    850		if (i)
    851			msleep((1 << (i - 1)) * 100);
    852
    853		pci_read_config_word(dev, pos, &status);
    854		if (!(status & mask))
    855			return 1;
    856	}
    857
    858	return 0;
    859}
    860
    861static int pci_acs_enable;
    862
    863/**
    864 * pci_request_acs - ask for ACS to be enabled if supported
    865 */
    866void pci_request_acs(void)
    867{
    868	pci_acs_enable = 1;
    869}
    870
    871static const char *disable_acs_redir_param;
    872
    873/**
    874 * pci_disable_acs_redir - disable ACS redirect capabilities
    875 * @dev: the PCI device
    876 *
    877 * For only devices specified in the disable_acs_redir parameter.
    878 */
    879static void pci_disable_acs_redir(struct pci_dev *dev)
    880{
    881	int ret = 0;
    882	const char *p;
    883	int pos;
    884	u16 ctrl;
    885
    886	if (!disable_acs_redir_param)
    887		return;
    888
    889	p = disable_acs_redir_param;
    890	while (*p) {
    891		ret = pci_dev_str_match(dev, p, &p);
    892		if (ret < 0) {
    893			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
    894				     disable_acs_redir_param);
    895
    896			break;
    897		} else if (ret == 1) {
    898			/* Found a match */
    899			break;
    900		}
    901
    902		if (*p != ';' && *p != ',') {
    903			/* End of param or invalid format */
    904			break;
    905		}
    906		p++;
    907	}
    908
    909	if (ret != 1)
    910		return;
    911
    912	if (!pci_dev_specific_disable_acs_redir(dev))
    913		return;
    914
    915	pos = dev->acs_cap;
    916	if (!pos) {
    917		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
    918		return;
    919	}
    920
    921	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
    922
    923	/* P2P Request & Completion Redirect */
    924	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
    925
    926	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
    927
    928	pci_info(dev, "disabled ACS redirect\n");
    929}
    930
    931/**
    932 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
    933 * @dev: the PCI device
    934 */
    935static void pci_std_enable_acs(struct pci_dev *dev)
    936{
    937	int pos;
    938	u16 cap;
    939	u16 ctrl;
    940
    941	pos = dev->acs_cap;
    942	if (!pos)
    943		return;
    944
    945	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
    946	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
    947
    948	/* Source Validation */
    949	ctrl |= (cap & PCI_ACS_SV);
    950
    951	/* P2P Request Redirect */
    952	ctrl |= (cap & PCI_ACS_RR);
    953
    954	/* P2P Completion Redirect */
    955	ctrl |= (cap & PCI_ACS_CR);
    956
    957	/* Upstream Forwarding */
    958	ctrl |= (cap & PCI_ACS_UF);
    959
    960	/* Enable Translation Blocking for external devices and noats */
    961	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
    962		ctrl |= (cap & PCI_ACS_TB);
    963
    964	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
    965}
    966
    967/**
    968 * pci_enable_acs - enable ACS if hardware support it
    969 * @dev: the PCI device
    970 */
    971static void pci_enable_acs(struct pci_dev *dev)
    972{
    973	if (!pci_acs_enable)
    974		goto disable_acs_redir;
    975
    976	if (!pci_dev_specific_enable_acs(dev))
    977		goto disable_acs_redir;
    978
    979	pci_std_enable_acs(dev);
    980
    981disable_acs_redir:
    982	/*
    983	 * Note: pci_disable_acs_redir() must be called even if ACS was not
    984	 * enabled by the kernel because it may have been enabled by
    985	 * platform firmware.  So if we are told to disable it, we should
    986	 * always disable it after setting the kernel's default
    987	 * preferences.
    988	 */
    989	pci_disable_acs_redir(dev);
    990}
    991
    992/**
    993 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
    994 * @dev: PCI device to have its BARs restored
    995 *
    996 * Restore the BAR values for a given device, so as to make it
    997 * accessible by its driver.
    998 */
    999static void pci_restore_bars(struct pci_dev *dev)
   1000{
   1001	int i;
   1002
   1003	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
   1004		pci_update_resource(dev, i);
   1005}
   1006
   1007static inline bool platform_pci_power_manageable(struct pci_dev *dev)
   1008{
   1009	if (pci_use_mid_pm())
   1010		return true;
   1011
   1012	return acpi_pci_power_manageable(dev);
   1013}
   1014
   1015static inline int platform_pci_set_power_state(struct pci_dev *dev,
   1016					       pci_power_t t)
   1017{
   1018	if (pci_use_mid_pm())
   1019		return mid_pci_set_power_state(dev, t);
   1020
   1021	return acpi_pci_set_power_state(dev, t);
   1022}
   1023
   1024static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
   1025{
   1026	if (pci_use_mid_pm())
   1027		return mid_pci_get_power_state(dev);
   1028
   1029	return acpi_pci_get_power_state(dev);
   1030}
   1031
   1032static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
   1033{
   1034	if (!pci_use_mid_pm())
   1035		acpi_pci_refresh_power_state(dev);
   1036}
   1037
   1038static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
   1039{
   1040	if (pci_use_mid_pm())
   1041		return PCI_POWER_ERROR;
   1042
   1043	return acpi_pci_choose_state(dev);
   1044}
   1045
   1046static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
   1047{
   1048	if (pci_use_mid_pm())
   1049		return PCI_POWER_ERROR;
   1050
   1051	return acpi_pci_wakeup(dev, enable);
   1052}
   1053
   1054static inline bool platform_pci_need_resume(struct pci_dev *dev)
   1055{
   1056	if (pci_use_mid_pm())
   1057		return false;
   1058
   1059	return acpi_pci_need_resume(dev);
   1060}
   1061
   1062static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
   1063{
   1064	if (pci_use_mid_pm())
   1065		return false;
   1066
   1067	return acpi_pci_bridge_d3(dev);
   1068}
   1069
   1070/**
   1071 * pci_update_current_state - Read power state of given device and cache it
   1072 * @dev: PCI device to handle.
   1073 * @state: State to cache in case the device doesn't have the PM capability
   1074 *
   1075 * The power state is read from the PMCSR register, which however is
   1076 * inaccessible in D3cold.  The platform firmware is therefore queried first
   1077 * to detect accessibility of the register.  In case the platform firmware
   1078 * reports an incorrect state or the device isn't power manageable by the
   1079 * platform at all, we try to detect D3cold by testing accessibility of the
   1080 * vendor ID in config space.
   1081 */
   1082void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
   1083{
   1084	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
   1085		dev->current_state = PCI_D3cold;
   1086	} else if (dev->pm_cap) {
   1087		u16 pmcsr;
   1088
   1089		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   1090		if (PCI_POSSIBLE_ERROR(pmcsr)) {
   1091			dev->current_state = PCI_D3cold;
   1092			return;
   1093		}
   1094		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
   1095	} else {
   1096		dev->current_state = state;
   1097	}
   1098}
   1099
   1100/**
   1101 * pci_refresh_power_state - Refresh the given device's power state data
   1102 * @dev: Target PCI device.
   1103 *
   1104 * Ask the platform to refresh the devices power state information and invoke
   1105 * pci_update_current_state() to update its current PCI power state.
   1106 */
   1107void pci_refresh_power_state(struct pci_dev *dev)
   1108{
   1109	platform_pci_refresh_power_state(dev);
   1110	pci_update_current_state(dev, dev->current_state);
   1111}
   1112
   1113/**
   1114 * pci_platform_power_transition - Use platform to change device power state
   1115 * @dev: PCI device to handle.
   1116 * @state: State to put the device into.
   1117 */
   1118int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
   1119{
   1120	int error;
   1121
   1122	error = platform_pci_set_power_state(dev, state);
   1123	if (!error)
   1124		pci_update_current_state(dev, state);
   1125	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
   1126		dev->current_state = PCI_D0;
   1127
   1128	return error;
   1129}
   1130EXPORT_SYMBOL_GPL(pci_platform_power_transition);
   1131
   1132static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
   1133{
   1134	pm_request_resume(&pci_dev->dev);
   1135	return 0;
   1136}
   1137
   1138/**
   1139 * pci_resume_bus - Walk given bus and runtime resume devices on it
   1140 * @bus: Top bus of the subtree to walk.
   1141 */
   1142void pci_resume_bus(struct pci_bus *bus)
   1143{
   1144	if (bus)
   1145		pci_walk_bus(bus, pci_resume_one, NULL);
   1146}
   1147
   1148static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
   1149{
   1150	int delay = 1;
   1151	u32 id;
   1152
   1153	/*
   1154	 * After reset, the device should not silently discard config
   1155	 * requests, but it may still indicate that it needs more time by
   1156	 * responding to them with CRS completions.  The Root Port will
   1157	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
   1158	 * the read (except when CRS SV is enabled and the read was for the
   1159	 * Vendor ID; in that case it synthesizes 0x0001 data).
   1160	 *
   1161	 * Wait for the device to return a non-CRS completion.  Read the
   1162	 * Command register instead of Vendor ID so we don't have to
   1163	 * contend with the CRS SV value.
   1164	 */
   1165	pci_read_config_dword(dev, PCI_COMMAND, &id);
   1166	while (PCI_POSSIBLE_ERROR(id)) {
   1167		if (delay > timeout) {
   1168			pci_warn(dev, "not ready %dms after %s; giving up\n",
   1169				 delay - 1, reset_type);
   1170			return -ENOTTY;
   1171		}
   1172
   1173		if (delay > 1000)
   1174			pci_info(dev, "not ready %dms after %s; waiting\n",
   1175				 delay - 1, reset_type);
   1176
   1177		msleep(delay);
   1178		delay *= 2;
   1179		pci_read_config_dword(dev, PCI_COMMAND, &id);
   1180	}
   1181
   1182	if (delay > 1000)
   1183		pci_info(dev, "ready %dms after %s\n", delay - 1,
   1184			 reset_type);
   1185
   1186	return 0;
   1187}
   1188
   1189/**
   1190 * pci_power_up - Put the given device into D0
   1191 * @dev: PCI device to power up
   1192 *
   1193 * On success, return 0 or 1, depending on whether or not it is necessary to
   1194 * restore the device's BARs subsequently (1 is returned in that case).
   1195 */
   1196int pci_power_up(struct pci_dev *dev)
   1197{
   1198	bool need_restore;
   1199	pci_power_t state;
   1200	u16 pmcsr;
   1201
   1202	platform_pci_set_power_state(dev, PCI_D0);
   1203
   1204	if (!dev->pm_cap) {
   1205		state = platform_pci_get_power_state(dev);
   1206		if (state == PCI_UNKNOWN)
   1207			dev->current_state = PCI_D0;
   1208		else
   1209			dev->current_state = state;
   1210
   1211		if (state == PCI_D0)
   1212			return 0;
   1213
   1214		return -EIO;
   1215	}
   1216
   1217	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   1218	if (PCI_POSSIBLE_ERROR(pmcsr)) {
   1219		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
   1220			pci_power_name(dev->current_state));
   1221		dev->current_state = PCI_D3cold;
   1222		return -EIO;
   1223	}
   1224
   1225	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
   1226
   1227	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
   1228			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
   1229
   1230	if (state == PCI_D0)
   1231		goto end;
   1232
   1233	/*
   1234	 * Force the entire word to 0. This doesn't affect PME_Status, disables
   1235	 * PME_En, and sets PowerState to 0.
   1236	 */
   1237	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
   1238
   1239	/* Mandatory transition delays; see PCI PM 1.2. */
   1240	if (state == PCI_D3hot)
   1241		pci_dev_d3_sleep(dev);
   1242	else if (state == PCI_D2)
   1243		udelay(PCI_PM_D2_DELAY);
   1244
   1245end:
   1246	dev->current_state = PCI_D0;
   1247	if (need_restore)
   1248		return 1;
   1249
   1250	return 0;
   1251}
   1252
   1253/**
   1254 * pci_set_full_power_state - Put a PCI device into D0 and update its state
   1255 * @dev: PCI device to power up
   1256 *
   1257 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
   1258 * to confirm the state change, restore its BARs if they might be lost and
   1259 * reconfigure ASPM in acordance with the new power state.
   1260 *
   1261 * If pci_restore_state() is going to be called right after a power state change
   1262 * to D0, it is more efficient to use pci_power_up() directly instead of this
   1263 * function.
   1264 */
   1265static int pci_set_full_power_state(struct pci_dev *dev)
   1266{
   1267	u16 pmcsr;
   1268	int ret;
   1269
   1270	ret = pci_power_up(dev);
   1271	if (ret < 0)
   1272		return ret;
   1273
   1274	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   1275	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
   1276	if (dev->current_state != PCI_D0) {
   1277		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
   1278				     pci_power_name(dev->current_state));
   1279	} else if (ret > 0) {
   1280		/*
   1281		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
   1282		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
   1283		 * from D3hot to D0 _may_ perform an internal reset, thereby
   1284		 * going to "D0 Uninitialized" rather than "D0 Initialized".
   1285		 * For example, at least some versions of the 3c905B and the
   1286		 * 3c556B exhibit this behaviour.
   1287		 *
   1288		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
   1289		 * devices in a D3hot state at boot.  Consequently, we need to
   1290		 * restore at least the BARs so that the device will be
   1291		 * accessible to its driver.
   1292		 */
   1293		pci_restore_bars(dev);
   1294	}
   1295
   1296	if (dev->bus->self)
   1297		pcie_aspm_pm_state_change(dev->bus->self);
   1298
   1299	return 0;
   1300}
   1301
   1302/**
   1303 * __pci_dev_set_current_state - Set current state of a PCI device
   1304 * @dev: Device to handle
   1305 * @data: pointer to state to be set
   1306 */
   1307static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
   1308{
   1309	pci_power_t state = *(pci_power_t *)data;
   1310
   1311	dev->current_state = state;
   1312	return 0;
   1313}
   1314
   1315/**
   1316 * pci_bus_set_current_state - Walk given bus and set current state of devices
   1317 * @bus: Top bus of the subtree to walk.
   1318 * @state: state to be set
   1319 */
   1320void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
   1321{
   1322	if (bus)
   1323		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
   1324}
   1325
   1326/**
   1327 * pci_set_low_power_state - Put a PCI device into a low-power state.
   1328 * @dev: PCI device to handle.
   1329 * @state: PCI power state (D1, D2, D3hot) to put the device into.
   1330 *
   1331 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
   1332 *
   1333 * RETURN VALUE:
   1334 * -EINVAL if the requested state is invalid.
   1335 * -EIO if device does not support PCI PM or its PM capabilities register has a
   1336 * wrong version, or device doesn't support the requested state.
   1337 * 0 if device already is in the requested state.
   1338 * 0 if device's power state has been successfully changed.
   1339 */
   1340static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
   1341{
   1342	u16 pmcsr;
   1343
   1344	if (!dev->pm_cap)
   1345		return -EIO;
   1346
   1347	/*
   1348	 * Validate transition: We can enter D0 from any state, but if
   1349	 * we're already in a low-power state, we can only go deeper.  E.g.,
   1350	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
   1351	 * we'd have to go from D3 to D0, then to D1.
   1352	 */
   1353	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
   1354		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
   1355			pci_power_name(dev->current_state),
   1356			pci_power_name(state));
   1357		return -EINVAL;
   1358	}
   1359
   1360	/* Check if this device supports the desired state */
   1361	if ((state == PCI_D1 && !dev->d1_support)
   1362	   || (state == PCI_D2 && !dev->d2_support))
   1363		return -EIO;
   1364
   1365	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   1366	if (PCI_POSSIBLE_ERROR(pmcsr)) {
   1367		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
   1368			pci_power_name(dev->current_state),
   1369			pci_power_name(state));
   1370		dev->current_state = PCI_D3cold;
   1371		return -EIO;
   1372	}
   1373
   1374	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
   1375	pmcsr |= state;
   1376
   1377	/* Enter specified state */
   1378	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
   1379
   1380	/* Mandatory power management transition delays; see PCI PM 1.2. */
   1381	if (state == PCI_D3hot)
   1382		pci_dev_d3_sleep(dev);
   1383	else if (state == PCI_D2)
   1384		udelay(PCI_PM_D2_DELAY);
   1385
   1386	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   1387	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
   1388	if (dev->current_state != state)
   1389		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
   1390				     pci_power_name(dev->current_state),
   1391				     pci_power_name(state));
   1392
   1393	if (dev->bus->self)
   1394		pcie_aspm_pm_state_change(dev->bus->self);
   1395
   1396	return 0;
   1397}
   1398
   1399/**
   1400 * pci_set_power_state - Set the power state of a PCI device
   1401 * @dev: PCI device to handle.
   1402 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
   1403 *
   1404 * Transition a device to a new power state, using the platform firmware and/or
   1405 * the device's PCI PM registers.
   1406 *
   1407 * RETURN VALUE:
   1408 * -EINVAL if the requested state is invalid.
   1409 * -EIO if device does not support PCI PM or its PM capabilities register has a
   1410 * wrong version, or device doesn't support the requested state.
   1411 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
   1412 * 0 if device already is in the requested state.
   1413 * 0 if the transition is to D3 but D3 is not supported.
   1414 * 0 if device's power state has been successfully changed.
   1415 */
   1416int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
   1417{
   1418	int error;
   1419
   1420	/* Bound the state we're entering */
   1421	if (state > PCI_D3cold)
   1422		state = PCI_D3cold;
   1423	else if (state < PCI_D0)
   1424		state = PCI_D0;
   1425	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
   1426
   1427		/*
   1428		 * If the device or the parent bridge do not support PCI
   1429		 * PM, ignore the request if we're doing anything other
   1430		 * than putting it into D0 (which would only happen on
   1431		 * boot).
   1432		 */
   1433		return 0;
   1434
   1435	/* Check if we're already there */
   1436	if (dev->current_state == state)
   1437		return 0;
   1438
   1439	if (state == PCI_D0)
   1440		return pci_set_full_power_state(dev);
   1441
   1442	/*
   1443	 * This device is quirked not to be put into D3, so don't put it in
   1444	 * D3
   1445	 */
   1446	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
   1447		return 0;
   1448
   1449	if (state == PCI_D3cold) {
   1450		/*
   1451		 * To put the device in D3cold, put it into D3hot in the native
   1452		 * way, then put it into D3cold using platform ops.
   1453		 */
   1454		error = pci_set_low_power_state(dev, PCI_D3hot);
   1455
   1456		if (pci_platform_power_transition(dev, PCI_D3cold))
   1457			return error;
   1458
   1459		/* Powering off a bridge may power off the whole hierarchy */
   1460		if (dev->current_state == PCI_D3cold)
   1461			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
   1462	} else {
   1463		error = pci_set_low_power_state(dev, state);
   1464
   1465		if (pci_platform_power_transition(dev, state))
   1466			return error;
   1467	}
   1468
   1469	return 0;
   1470}
   1471EXPORT_SYMBOL(pci_set_power_state);
   1472
   1473#define PCI_EXP_SAVE_REGS	7
   1474
   1475static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
   1476						       u16 cap, bool extended)
   1477{
   1478	struct pci_cap_saved_state *tmp;
   1479
   1480	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
   1481		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
   1482			return tmp;
   1483	}
   1484	return NULL;
   1485}
   1486
   1487struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
   1488{
   1489	return _pci_find_saved_cap(dev, cap, false);
   1490}
   1491
   1492struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
   1493{
   1494	return _pci_find_saved_cap(dev, cap, true);
   1495}
   1496
   1497static int pci_save_pcie_state(struct pci_dev *dev)
   1498{
   1499	int i = 0;
   1500	struct pci_cap_saved_state *save_state;
   1501	u16 *cap;
   1502
   1503	if (!pci_is_pcie(dev))
   1504		return 0;
   1505
   1506	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
   1507	if (!save_state) {
   1508		pci_err(dev, "buffer not found in %s\n", __func__);
   1509		return -ENOMEM;
   1510	}
   1511
   1512	cap = (u16 *)&save_state->cap.data[0];
   1513	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
   1514	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
   1515	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
   1516	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
   1517	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
   1518	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
   1519	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
   1520
   1521	return 0;
   1522}
   1523
   1524void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
   1525{
   1526#ifdef CONFIG_PCIEASPM
   1527	struct pci_dev *bridge;
   1528	u32 ctl;
   1529
   1530	bridge = pci_upstream_bridge(dev);
   1531	if (bridge && bridge->ltr_path) {
   1532		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
   1533		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
   1534			pci_dbg(bridge, "re-enabling LTR\n");
   1535			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
   1536						 PCI_EXP_DEVCTL2_LTR_EN);
   1537		}
   1538	}
   1539#endif
   1540}
   1541
   1542static void pci_restore_pcie_state(struct pci_dev *dev)
   1543{
   1544	int i = 0;
   1545	struct pci_cap_saved_state *save_state;
   1546	u16 *cap;
   1547
   1548	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
   1549	if (!save_state)
   1550		return;
   1551
   1552	/*
   1553	 * Downstream ports reset the LTR enable bit when link goes down.
   1554	 * Check and re-configure the bit here before restoring device.
   1555	 * PCIe r5.0, sec 7.5.3.16.
   1556	 */
   1557	pci_bridge_reconfigure_ltr(dev);
   1558
   1559	cap = (u16 *)&save_state->cap.data[0];
   1560	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
   1561	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
   1562	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
   1563	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
   1564	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
   1565	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
   1566	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
   1567}
   1568
   1569static int pci_save_pcix_state(struct pci_dev *dev)
   1570{
   1571	int pos;
   1572	struct pci_cap_saved_state *save_state;
   1573
   1574	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
   1575	if (!pos)
   1576		return 0;
   1577
   1578	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
   1579	if (!save_state) {
   1580		pci_err(dev, "buffer not found in %s\n", __func__);
   1581		return -ENOMEM;
   1582	}
   1583
   1584	pci_read_config_word(dev, pos + PCI_X_CMD,
   1585			     (u16 *)save_state->cap.data);
   1586
   1587	return 0;
   1588}
   1589
   1590static void pci_restore_pcix_state(struct pci_dev *dev)
   1591{
   1592	int i = 0, pos;
   1593	struct pci_cap_saved_state *save_state;
   1594	u16 *cap;
   1595
   1596	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
   1597	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
   1598	if (!save_state || !pos)
   1599		return;
   1600	cap = (u16 *)&save_state->cap.data[0];
   1601
   1602	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
   1603}
   1604
   1605static void pci_save_ltr_state(struct pci_dev *dev)
   1606{
   1607	int ltr;
   1608	struct pci_cap_saved_state *save_state;
   1609	u32 *cap;
   1610
   1611	if (!pci_is_pcie(dev))
   1612		return;
   1613
   1614	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
   1615	if (!ltr)
   1616		return;
   1617
   1618	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
   1619	if (!save_state) {
   1620		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
   1621		return;
   1622	}
   1623
   1624	/* Some broken devices only support dword access to LTR */
   1625	cap = &save_state->cap.data[0];
   1626	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
   1627}
   1628
   1629static void pci_restore_ltr_state(struct pci_dev *dev)
   1630{
   1631	struct pci_cap_saved_state *save_state;
   1632	int ltr;
   1633	u32 *cap;
   1634
   1635	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
   1636	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
   1637	if (!save_state || !ltr)
   1638		return;
   1639
   1640	/* Some broken devices only support dword access to LTR */
   1641	cap = &save_state->cap.data[0];
   1642	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
   1643}
   1644
   1645/**
   1646 * pci_save_state - save the PCI configuration space of a device before
   1647 *		    suspending
   1648 * @dev: PCI device that we're dealing with
   1649 */
   1650int pci_save_state(struct pci_dev *dev)
   1651{
   1652	int i;
   1653	/* XXX: 100% dword access ok here? */
   1654	for (i = 0; i < 16; i++) {
   1655		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
   1656		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
   1657			i * 4, dev->saved_config_space[i]);
   1658	}
   1659	dev->state_saved = true;
   1660
   1661	i = pci_save_pcie_state(dev);
   1662	if (i != 0)
   1663		return i;
   1664
   1665	i = pci_save_pcix_state(dev);
   1666	if (i != 0)
   1667		return i;
   1668
   1669	pci_save_ltr_state(dev);
   1670	pci_save_dpc_state(dev);
   1671	pci_save_aer_state(dev);
   1672	pci_save_ptm_state(dev);
   1673	return pci_save_vc_state(dev);
   1674}
   1675EXPORT_SYMBOL(pci_save_state);
   1676
   1677static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
   1678				     u32 saved_val, int retry, bool force)
   1679{
   1680	u32 val;
   1681
   1682	pci_read_config_dword(pdev, offset, &val);
   1683	if (!force && val == saved_val)
   1684		return;
   1685
   1686	for (;;) {
   1687		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
   1688			offset, val, saved_val);
   1689		pci_write_config_dword(pdev, offset, saved_val);
   1690		if (retry-- <= 0)
   1691			return;
   1692
   1693		pci_read_config_dword(pdev, offset, &val);
   1694		if (val == saved_val)
   1695			return;
   1696
   1697		mdelay(1);
   1698	}
   1699}
   1700
   1701static void pci_restore_config_space_range(struct pci_dev *pdev,
   1702					   int start, int end, int retry,
   1703					   bool force)
   1704{
   1705	int index;
   1706
   1707	for (index = end; index >= start; index--)
   1708		pci_restore_config_dword(pdev, 4 * index,
   1709					 pdev->saved_config_space[index],
   1710					 retry, force);
   1711}
   1712
   1713static void pci_restore_config_space(struct pci_dev *pdev)
   1714{
   1715	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
   1716		pci_restore_config_space_range(pdev, 10, 15, 0, false);
   1717		/* Restore BARs before the command register. */
   1718		pci_restore_config_space_range(pdev, 4, 9, 10, false);
   1719		pci_restore_config_space_range(pdev, 0, 3, 0, false);
   1720	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
   1721		pci_restore_config_space_range(pdev, 12, 15, 0, false);
   1722
   1723		/*
   1724		 * Force rewriting of prefetch registers to avoid S3 resume
   1725		 * issues on Intel PCI bridges that occur when these
   1726		 * registers are not explicitly written.
   1727		 */
   1728		pci_restore_config_space_range(pdev, 9, 11, 0, true);
   1729		pci_restore_config_space_range(pdev, 0, 8, 0, false);
   1730	} else {
   1731		pci_restore_config_space_range(pdev, 0, 15, 0, false);
   1732	}
   1733}
   1734
   1735static void pci_restore_rebar_state(struct pci_dev *pdev)
   1736{
   1737	unsigned int pos, nbars, i;
   1738	u32 ctrl;
   1739
   1740	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
   1741	if (!pos)
   1742		return;
   1743
   1744	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   1745	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
   1746		    PCI_REBAR_CTRL_NBAR_SHIFT;
   1747
   1748	for (i = 0; i < nbars; i++, pos += 8) {
   1749		struct resource *res;
   1750		int bar_idx, size;
   1751
   1752		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   1753		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
   1754		res = pdev->resource + bar_idx;
   1755		size = pci_rebar_bytes_to_size(resource_size(res));
   1756		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
   1757		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
   1758		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
   1759	}
   1760}
   1761
   1762/**
   1763 * pci_restore_state - Restore the saved state of a PCI device
   1764 * @dev: PCI device that we're dealing with
   1765 */
   1766void pci_restore_state(struct pci_dev *dev)
   1767{
   1768	if (!dev->state_saved)
   1769		return;
   1770
   1771	/*
   1772	 * Restore max latencies (in the LTR capability) before enabling
   1773	 * LTR itself (in the PCIe capability).
   1774	 */
   1775	pci_restore_ltr_state(dev);
   1776
   1777	pci_restore_pcie_state(dev);
   1778	pci_restore_pasid_state(dev);
   1779	pci_restore_pri_state(dev);
   1780	pci_restore_ats_state(dev);
   1781	pci_restore_vc_state(dev);
   1782	pci_restore_rebar_state(dev);
   1783	pci_restore_dpc_state(dev);
   1784	pci_restore_ptm_state(dev);
   1785
   1786	pci_aer_clear_status(dev);
   1787	pci_restore_aer_state(dev);
   1788
   1789	pci_restore_config_space(dev);
   1790
   1791	pci_restore_pcix_state(dev);
   1792	pci_restore_msi_state(dev);
   1793
   1794	/* Restore ACS and IOV configuration state */
   1795	pci_enable_acs(dev);
   1796	pci_restore_iov_state(dev);
   1797
   1798	dev->state_saved = false;
   1799}
   1800EXPORT_SYMBOL(pci_restore_state);
   1801
   1802struct pci_saved_state {
   1803	u32 config_space[16];
   1804	struct pci_cap_saved_data cap[];
   1805};
   1806
   1807/**
   1808 * pci_store_saved_state - Allocate and return an opaque struct containing
   1809 *			   the device saved state.
   1810 * @dev: PCI device that we're dealing with
   1811 *
   1812 * Return NULL if no state or error.
   1813 */
   1814struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
   1815{
   1816	struct pci_saved_state *state;
   1817	struct pci_cap_saved_state *tmp;
   1818	struct pci_cap_saved_data *cap;
   1819	size_t size;
   1820
   1821	if (!dev->state_saved)
   1822		return NULL;
   1823
   1824	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
   1825
   1826	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
   1827		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
   1828
   1829	state = kzalloc(size, GFP_KERNEL);
   1830	if (!state)
   1831		return NULL;
   1832
   1833	memcpy(state->config_space, dev->saved_config_space,
   1834	       sizeof(state->config_space));
   1835
   1836	cap = state->cap;
   1837	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
   1838		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
   1839		memcpy(cap, &tmp->cap, len);
   1840		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
   1841	}
   1842	/* Empty cap_save terminates list */
   1843
   1844	return state;
   1845}
   1846EXPORT_SYMBOL_GPL(pci_store_saved_state);
   1847
   1848/**
   1849 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
   1850 * @dev: PCI device that we're dealing with
   1851 * @state: Saved state returned from pci_store_saved_state()
   1852 */
   1853int pci_load_saved_state(struct pci_dev *dev,
   1854			 struct pci_saved_state *state)
   1855{
   1856	struct pci_cap_saved_data *cap;
   1857
   1858	dev->state_saved = false;
   1859
   1860	if (!state)
   1861		return 0;
   1862
   1863	memcpy(dev->saved_config_space, state->config_space,
   1864	       sizeof(state->config_space));
   1865
   1866	cap = state->cap;
   1867	while (cap->size) {
   1868		struct pci_cap_saved_state *tmp;
   1869
   1870		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
   1871		if (!tmp || tmp->cap.size != cap->size)
   1872			return -EINVAL;
   1873
   1874		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
   1875		cap = (struct pci_cap_saved_data *)((u8 *)cap +
   1876		       sizeof(struct pci_cap_saved_data) + cap->size);
   1877	}
   1878
   1879	dev->state_saved = true;
   1880	return 0;
   1881}
   1882EXPORT_SYMBOL_GPL(pci_load_saved_state);
   1883
   1884/**
   1885 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
   1886 *				   and free the memory allocated for it.
   1887 * @dev: PCI device that we're dealing with
   1888 * @state: Pointer to saved state returned from pci_store_saved_state()
   1889 */
   1890int pci_load_and_free_saved_state(struct pci_dev *dev,
   1891				  struct pci_saved_state **state)
   1892{
   1893	int ret = pci_load_saved_state(dev, *state);
   1894	kfree(*state);
   1895	*state = NULL;
   1896	return ret;
   1897}
   1898EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
   1899
   1900int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
   1901{
   1902	return pci_enable_resources(dev, bars);
   1903}
   1904
   1905static int do_pci_enable_device(struct pci_dev *dev, int bars)
   1906{
   1907	int err;
   1908	struct pci_dev *bridge;
   1909	u16 cmd;
   1910	u8 pin;
   1911
   1912	err = pci_set_power_state(dev, PCI_D0);
   1913	if (err < 0 && err != -EIO)
   1914		return err;
   1915
   1916	bridge = pci_upstream_bridge(dev);
   1917	if (bridge)
   1918		pcie_aspm_powersave_config_link(bridge);
   1919
   1920	err = pcibios_enable_device(dev, bars);
   1921	if (err < 0)
   1922		return err;
   1923	pci_fixup_device(pci_fixup_enable, dev);
   1924
   1925	if (dev->msi_enabled || dev->msix_enabled)
   1926		return 0;
   1927
   1928	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
   1929	if (pin) {
   1930		pci_read_config_word(dev, PCI_COMMAND, &cmd);
   1931		if (cmd & PCI_COMMAND_INTX_DISABLE)
   1932			pci_write_config_word(dev, PCI_COMMAND,
   1933					      cmd & ~PCI_COMMAND_INTX_DISABLE);
   1934	}
   1935
   1936	return 0;
   1937}
   1938
   1939/**
   1940 * pci_reenable_device - Resume abandoned device
   1941 * @dev: PCI device to be resumed
   1942 *
   1943 * NOTE: This function is a backend of pci_default_resume() and is not supposed
   1944 * to be called by normal code, write proper resume handler and use it instead.
   1945 */
   1946int pci_reenable_device(struct pci_dev *dev)
   1947{
   1948	if (pci_is_enabled(dev))
   1949		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
   1950	return 0;
   1951}
   1952EXPORT_SYMBOL(pci_reenable_device);
   1953
   1954static void pci_enable_bridge(struct pci_dev *dev)
   1955{
   1956	struct pci_dev *bridge;
   1957	int retval;
   1958
   1959	bridge = pci_upstream_bridge(dev);
   1960	if (bridge)
   1961		pci_enable_bridge(bridge);
   1962
   1963	if (pci_is_enabled(dev)) {
   1964		if (!dev->is_busmaster)
   1965			pci_set_master(dev);
   1966		return;
   1967	}
   1968
   1969	retval = pci_enable_device(dev);
   1970	if (retval)
   1971		pci_err(dev, "Error enabling bridge (%d), continuing\n",
   1972			retval);
   1973	pci_set_master(dev);
   1974}
   1975
   1976static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
   1977{
   1978	struct pci_dev *bridge;
   1979	int err;
   1980	int i, bars = 0;
   1981
   1982	/*
   1983	 * Power state could be unknown at this point, either due to a fresh
   1984	 * boot or a device removal call.  So get the current power state
   1985	 * so that things like MSI message writing will behave as expected
   1986	 * (e.g. if the device really is in D0 at enable time).
   1987	 */
   1988	pci_update_current_state(dev, dev->current_state);
   1989
   1990	if (atomic_inc_return(&dev->enable_cnt) > 1)
   1991		return 0;		/* already enabled */
   1992
   1993	bridge = pci_upstream_bridge(dev);
   1994	if (bridge)
   1995		pci_enable_bridge(bridge);
   1996
   1997	/* only skip sriov related */
   1998	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
   1999		if (dev->resource[i].flags & flags)
   2000			bars |= (1 << i);
   2001	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
   2002		if (dev->resource[i].flags & flags)
   2003			bars |= (1 << i);
   2004
   2005	err = do_pci_enable_device(dev, bars);
   2006	if (err < 0)
   2007		atomic_dec(&dev->enable_cnt);
   2008	return err;
   2009}
   2010
   2011/**
   2012 * pci_enable_device_io - Initialize a device for use with IO space
   2013 * @dev: PCI device to be initialized
   2014 *
   2015 * Initialize device before it's used by a driver. Ask low-level code
   2016 * to enable I/O resources. Wake up the device if it was suspended.
   2017 * Beware, this function can fail.
   2018 */
   2019int pci_enable_device_io(struct pci_dev *dev)
   2020{
   2021	return pci_enable_device_flags(dev, IORESOURCE_IO);
   2022}
   2023EXPORT_SYMBOL(pci_enable_device_io);
   2024
   2025/**
   2026 * pci_enable_device_mem - Initialize a device for use with Memory space
   2027 * @dev: PCI device to be initialized
   2028 *
   2029 * Initialize device before it's used by a driver. Ask low-level code
   2030 * to enable Memory resources. Wake up the device if it was suspended.
   2031 * Beware, this function can fail.
   2032 */
   2033int pci_enable_device_mem(struct pci_dev *dev)
   2034{
   2035	return pci_enable_device_flags(dev, IORESOURCE_MEM);
   2036}
   2037EXPORT_SYMBOL(pci_enable_device_mem);
   2038
   2039/**
   2040 * pci_enable_device - Initialize device before it's used by a driver.
   2041 * @dev: PCI device to be initialized
   2042 *
   2043 * Initialize device before it's used by a driver. Ask low-level code
   2044 * to enable I/O and memory. Wake up the device if it was suspended.
   2045 * Beware, this function can fail.
   2046 *
   2047 * Note we don't actually enable the device many times if we call
   2048 * this function repeatedly (we just increment the count).
   2049 */
   2050int pci_enable_device(struct pci_dev *dev)
   2051{
   2052	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
   2053}
   2054EXPORT_SYMBOL(pci_enable_device);
   2055
   2056/*
   2057 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
   2058 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
   2059 * there's no need to track it separately.  pci_devres is initialized
   2060 * when a device is enabled using managed PCI device enable interface.
   2061 */
   2062struct pci_devres {
   2063	unsigned int enabled:1;
   2064	unsigned int pinned:1;
   2065	unsigned int orig_intx:1;
   2066	unsigned int restore_intx:1;
   2067	unsigned int mwi:1;
   2068	u32 region_mask;
   2069};
   2070
   2071static void pcim_release(struct device *gendev, void *res)
   2072{
   2073	struct pci_dev *dev = to_pci_dev(gendev);
   2074	struct pci_devres *this = res;
   2075	int i;
   2076
   2077	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
   2078		if (this->region_mask & (1 << i))
   2079			pci_release_region(dev, i);
   2080
   2081	if (this->mwi)
   2082		pci_clear_mwi(dev);
   2083
   2084	if (this->restore_intx)
   2085		pci_intx(dev, this->orig_intx);
   2086
   2087	if (this->enabled && !this->pinned)
   2088		pci_disable_device(dev);
   2089}
   2090
   2091static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
   2092{
   2093	struct pci_devres *dr, *new_dr;
   2094
   2095	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
   2096	if (dr)
   2097		return dr;
   2098
   2099	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
   2100	if (!new_dr)
   2101		return NULL;
   2102	return devres_get(&pdev->dev, new_dr, NULL, NULL);
   2103}
   2104
   2105static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
   2106{
   2107	if (pci_is_managed(pdev))
   2108		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
   2109	return NULL;
   2110}
   2111
   2112/**
   2113 * pcim_enable_device - Managed pci_enable_device()
   2114 * @pdev: PCI device to be initialized
   2115 *
   2116 * Managed pci_enable_device().
   2117 */
   2118int pcim_enable_device(struct pci_dev *pdev)
   2119{
   2120	struct pci_devres *dr;
   2121	int rc;
   2122
   2123	dr = get_pci_dr(pdev);
   2124	if (unlikely(!dr))
   2125		return -ENOMEM;
   2126	if (dr->enabled)
   2127		return 0;
   2128
   2129	rc = pci_enable_device(pdev);
   2130	if (!rc) {
   2131		pdev->is_managed = 1;
   2132		dr->enabled = 1;
   2133	}
   2134	return rc;
   2135}
   2136EXPORT_SYMBOL(pcim_enable_device);
   2137
   2138/**
   2139 * pcim_pin_device - Pin managed PCI device
   2140 * @pdev: PCI device to pin
   2141 *
   2142 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
   2143 * driver detach.  @pdev must have been enabled with
   2144 * pcim_enable_device().
   2145 */
   2146void pcim_pin_device(struct pci_dev *pdev)
   2147{
   2148	struct pci_devres *dr;
   2149
   2150	dr = find_pci_dr(pdev);
   2151	WARN_ON(!dr || !dr->enabled);
   2152	if (dr)
   2153		dr->pinned = 1;
   2154}
   2155EXPORT_SYMBOL(pcim_pin_device);
   2156
   2157/*
   2158 * pcibios_device_add - provide arch specific hooks when adding device dev
   2159 * @dev: the PCI device being added
   2160 *
   2161 * Permits the platform to provide architecture specific functionality when
   2162 * devices are added. This is the default implementation. Architecture
   2163 * implementations can override this.
   2164 */
   2165int __weak pcibios_device_add(struct pci_dev *dev)
   2166{
   2167	return 0;
   2168}
   2169
   2170/**
   2171 * pcibios_release_device - provide arch specific hooks when releasing
   2172 *			    device dev
   2173 * @dev: the PCI device being released
   2174 *
   2175 * Permits the platform to provide architecture specific functionality when
   2176 * devices are released. This is the default implementation. Architecture
   2177 * implementations can override this.
   2178 */
   2179void __weak pcibios_release_device(struct pci_dev *dev) {}
   2180
   2181/**
   2182 * pcibios_disable_device - disable arch specific PCI resources for device dev
   2183 * @dev: the PCI device to disable
   2184 *
   2185 * Disables architecture specific PCI resources for the device. This
   2186 * is the default implementation. Architecture implementations can
   2187 * override this.
   2188 */
   2189void __weak pcibios_disable_device(struct pci_dev *dev) {}
   2190
   2191/**
   2192 * pcibios_penalize_isa_irq - penalize an ISA IRQ
   2193 * @irq: ISA IRQ to penalize
   2194 * @active: IRQ active or not
   2195 *
   2196 * Permits the platform to provide architecture-specific functionality when
   2197 * penalizing ISA IRQs. This is the default implementation. Architecture
   2198 * implementations can override this.
   2199 */
   2200void __weak pcibios_penalize_isa_irq(int irq, int active) {}
   2201
   2202static void do_pci_disable_device(struct pci_dev *dev)
   2203{
   2204	u16 pci_command;
   2205
   2206	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
   2207	if (pci_command & PCI_COMMAND_MASTER) {
   2208		pci_command &= ~PCI_COMMAND_MASTER;
   2209		pci_write_config_word(dev, PCI_COMMAND, pci_command);
   2210	}
   2211
   2212	pcibios_disable_device(dev);
   2213}
   2214
   2215/**
   2216 * pci_disable_enabled_device - Disable device without updating enable_cnt
   2217 * @dev: PCI device to disable
   2218 *
   2219 * NOTE: This function is a backend of PCI power management routines and is
   2220 * not supposed to be called drivers.
   2221 */
   2222void pci_disable_enabled_device(struct pci_dev *dev)
   2223{
   2224	if (pci_is_enabled(dev))
   2225		do_pci_disable_device(dev);
   2226}
   2227
   2228/**
   2229 * pci_disable_device - Disable PCI device after use
   2230 * @dev: PCI device to be disabled
   2231 *
   2232 * Signal to the system that the PCI device is not in use by the system
   2233 * anymore.  This only involves disabling PCI bus-mastering, if active.
   2234 *
   2235 * Note we don't actually disable the device until all callers of
   2236 * pci_enable_device() have called pci_disable_device().
   2237 */
   2238void pci_disable_device(struct pci_dev *dev)
   2239{
   2240	struct pci_devres *dr;
   2241
   2242	dr = find_pci_dr(dev);
   2243	if (dr)
   2244		dr->enabled = 0;
   2245
   2246	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
   2247		      "disabling already-disabled device");
   2248
   2249	if (atomic_dec_return(&dev->enable_cnt) != 0)
   2250		return;
   2251
   2252	do_pci_disable_device(dev);
   2253
   2254	dev->is_busmaster = 0;
   2255}
   2256EXPORT_SYMBOL(pci_disable_device);
   2257
   2258/**
   2259 * pcibios_set_pcie_reset_state - set reset state for device dev
   2260 * @dev: the PCIe device reset
   2261 * @state: Reset state to enter into
   2262 *
   2263 * Set the PCIe reset state for the device. This is the default
   2264 * implementation. Architecture implementations can override this.
   2265 */
   2266int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
   2267					enum pcie_reset_state state)
   2268{
   2269	return -EINVAL;
   2270}
   2271
   2272/**
   2273 * pci_set_pcie_reset_state - set reset state for device dev
   2274 * @dev: the PCIe device reset
   2275 * @state: Reset state to enter into
   2276 *
   2277 * Sets the PCI reset state for the device.
   2278 */
   2279int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
   2280{
   2281	return pcibios_set_pcie_reset_state(dev, state);
   2282}
   2283EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
   2284
   2285#ifdef CONFIG_PCIEAER
   2286void pcie_clear_device_status(struct pci_dev *dev)
   2287{
   2288	u16 sta;
   2289
   2290	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
   2291	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
   2292}
   2293#endif
   2294
   2295/**
   2296 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
   2297 * @dev: PCIe root port or event collector.
   2298 */
   2299void pcie_clear_root_pme_status(struct pci_dev *dev)
   2300{
   2301	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
   2302}
   2303
   2304/**
   2305 * pci_check_pme_status - Check if given device has generated PME.
   2306 * @dev: Device to check.
   2307 *
   2308 * Check the PME status of the device and if set, clear it and clear PME enable
   2309 * (if set).  Return 'true' if PME status and PME enable were both set or
   2310 * 'false' otherwise.
   2311 */
   2312bool pci_check_pme_status(struct pci_dev *dev)
   2313{
   2314	int pmcsr_pos;
   2315	u16 pmcsr;
   2316	bool ret = false;
   2317
   2318	if (!dev->pm_cap)
   2319		return false;
   2320
   2321	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
   2322	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
   2323	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
   2324		return false;
   2325
   2326	/* Clear PME status. */
   2327	pmcsr |= PCI_PM_CTRL_PME_STATUS;
   2328	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
   2329		/* Disable PME to avoid interrupt flood. */
   2330		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
   2331		ret = true;
   2332	}
   2333
   2334	pci_write_config_word(dev, pmcsr_pos, pmcsr);
   2335
   2336	return ret;
   2337}
   2338
   2339/**
   2340 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
   2341 * @dev: Device to handle.
   2342 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
   2343 *
   2344 * Check if @dev has generated PME and queue a resume request for it in that
   2345 * case.
   2346 */
   2347static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
   2348{
   2349	if (pme_poll_reset && dev->pme_poll)
   2350		dev->pme_poll = false;
   2351
   2352	if (pci_check_pme_status(dev)) {
   2353		pci_wakeup_event(dev);
   2354		pm_request_resume(&dev->dev);
   2355	}
   2356	return 0;
   2357}
   2358
   2359/**
   2360 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
   2361 * @bus: Top bus of the subtree to walk.
   2362 */
   2363void pci_pme_wakeup_bus(struct pci_bus *bus)
   2364{
   2365	if (bus)
   2366		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
   2367}
   2368
   2369
   2370/**
   2371 * pci_pme_capable - check the capability of PCI device to generate PME#
   2372 * @dev: PCI device to handle.
   2373 * @state: PCI state from which device will issue PME#.
   2374 */
   2375bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
   2376{
   2377	if (!dev->pm_cap)
   2378		return false;
   2379
   2380	return !!(dev->pme_support & (1 << state));
   2381}
   2382EXPORT_SYMBOL(pci_pme_capable);
   2383
   2384static void pci_pme_list_scan(struct work_struct *work)
   2385{
   2386	struct pci_pme_device *pme_dev, *n;
   2387
   2388	mutex_lock(&pci_pme_list_mutex);
   2389	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
   2390		if (pme_dev->dev->pme_poll) {
   2391			struct pci_dev *bridge;
   2392
   2393			bridge = pme_dev->dev->bus->self;
   2394			/*
   2395			 * If bridge is in low power state, the
   2396			 * configuration space of subordinate devices
   2397			 * may be not accessible
   2398			 */
   2399			if (bridge && bridge->current_state != PCI_D0)
   2400				continue;
   2401			/*
   2402			 * If the device is in D3cold it should not be
   2403			 * polled either.
   2404			 */
   2405			if (pme_dev->dev->current_state == PCI_D3cold)
   2406				continue;
   2407
   2408			pci_pme_wakeup(pme_dev->dev, NULL);
   2409		} else {
   2410			list_del(&pme_dev->list);
   2411			kfree(pme_dev);
   2412		}
   2413	}
   2414	if (!list_empty(&pci_pme_list))
   2415		queue_delayed_work(system_freezable_wq, &pci_pme_work,
   2416				   msecs_to_jiffies(PME_TIMEOUT));
   2417	mutex_unlock(&pci_pme_list_mutex);
   2418}
   2419
   2420static void __pci_pme_active(struct pci_dev *dev, bool enable)
   2421{
   2422	u16 pmcsr;
   2423
   2424	if (!dev->pme_support)
   2425		return;
   2426
   2427	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   2428	/* Clear PME_Status by writing 1 to it and enable PME# */
   2429	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
   2430	if (!enable)
   2431		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
   2432
   2433	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
   2434}
   2435
   2436/**
   2437 * pci_pme_restore - Restore PME configuration after config space restore.
   2438 * @dev: PCI device to update.
   2439 */
   2440void pci_pme_restore(struct pci_dev *dev)
   2441{
   2442	u16 pmcsr;
   2443
   2444	if (!dev->pme_support)
   2445		return;
   2446
   2447	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
   2448	if (dev->wakeup_prepared) {
   2449		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
   2450		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
   2451	} else {
   2452		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
   2453		pmcsr |= PCI_PM_CTRL_PME_STATUS;
   2454	}
   2455	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
   2456}
   2457
   2458/**
   2459 * pci_pme_active - enable or disable PCI device's PME# function
   2460 * @dev: PCI device to handle.
   2461 * @enable: 'true' to enable PME# generation; 'false' to disable it.
   2462 *
   2463 * The caller must verify that the device is capable of generating PME# before
   2464 * calling this function with @enable equal to 'true'.
   2465 */
   2466void pci_pme_active(struct pci_dev *dev, bool enable)
   2467{
   2468	__pci_pme_active(dev, enable);
   2469
   2470	/*
   2471	 * PCI (as opposed to PCIe) PME requires that the device have
   2472	 * its PME# line hooked up correctly. Not all hardware vendors
   2473	 * do this, so the PME never gets delivered and the device
   2474	 * remains asleep. The easiest way around this is to
   2475	 * periodically walk the list of suspended devices and check
   2476	 * whether any have their PME flag set. The assumption is that
   2477	 * we'll wake up often enough anyway that this won't be a huge
   2478	 * hit, and the power savings from the devices will still be a
   2479	 * win.
   2480	 *
   2481	 * Although PCIe uses in-band PME message instead of PME# line
   2482	 * to report PME, PME does not work for some PCIe devices in
   2483	 * reality.  For example, there are devices that set their PME
   2484	 * status bits, but don't really bother to send a PME message;
   2485	 * there are PCI Express Root Ports that don't bother to
   2486	 * trigger interrupts when they receive PME messages from the
   2487	 * devices below.  So PME poll is used for PCIe devices too.
   2488	 */
   2489
   2490	if (dev->pme_poll) {
   2491		struct pci_pme_device *pme_dev;
   2492		if (enable) {
   2493			pme_dev = kmalloc(sizeof(struct pci_pme_device),
   2494					  GFP_KERNEL);
   2495			if (!pme_dev) {
   2496				pci_warn(dev, "can't enable PME#\n");
   2497				return;
   2498			}
   2499			pme_dev->dev = dev;
   2500			mutex_lock(&pci_pme_list_mutex);
   2501			list_add(&pme_dev->list, &pci_pme_list);
   2502			if (list_is_singular(&pci_pme_list))
   2503				queue_delayed_work(system_freezable_wq,
   2504						   &pci_pme_work,
   2505						   msecs_to_jiffies(PME_TIMEOUT));
   2506			mutex_unlock(&pci_pme_list_mutex);
   2507		} else {
   2508			mutex_lock(&pci_pme_list_mutex);
   2509			list_for_each_entry(pme_dev, &pci_pme_list, list) {
   2510				if (pme_dev->dev == dev) {
   2511					list_del(&pme_dev->list);
   2512					kfree(pme_dev);
   2513					break;
   2514				}
   2515			}
   2516			mutex_unlock(&pci_pme_list_mutex);
   2517		}
   2518	}
   2519
   2520	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
   2521}
   2522EXPORT_SYMBOL(pci_pme_active);
   2523
   2524/**
   2525 * __pci_enable_wake - enable PCI device as wakeup event source
   2526 * @dev: PCI device affected
   2527 * @state: PCI state from which device will issue wakeup events
   2528 * @enable: True to enable event generation; false to disable
   2529 *
   2530 * This enables the device as a wakeup event source, or disables it.
   2531 * When such events involves platform-specific hooks, those hooks are
   2532 * called automatically by this routine.
   2533 *
   2534 * Devices with legacy power management (no standard PCI PM capabilities)
   2535 * always require such platform hooks.
   2536 *
   2537 * RETURN VALUE:
   2538 * 0 is returned on success
   2539 * -EINVAL is returned if device is not supposed to wake up the system
   2540 * Error code depending on the platform is returned if both the platform and
   2541 * the native mechanism fail to enable the generation of wake-up events
   2542 */
   2543static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
   2544{
   2545	int ret = 0;
   2546
   2547	/*
   2548	 * Bridges that are not power-manageable directly only signal
   2549	 * wakeup on behalf of subordinate devices which is set up
   2550	 * elsewhere, so skip them. However, bridges that are
   2551	 * power-manageable may signal wakeup for themselves (for example,
   2552	 * on a hotplug event) and they need to be covered here.
   2553	 */
   2554	if (!pci_power_manageable(dev))
   2555		return 0;
   2556
   2557	/* Don't do the same thing twice in a row for one device. */
   2558	if (!!enable == !!dev->wakeup_prepared)
   2559		return 0;
   2560
   2561	/*
   2562	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
   2563	 * Anderson we should be doing PME# wake enable followed by ACPI wake
   2564	 * enable.  To disable wake-up we call the platform first, for symmetry.
   2565	 */
   2566
   2567	if (enable) {
   2568		int error;
   2569
   2570		/*
   2571		 * Enable PME signaling if the device can signal PME from
   2572		 * D3cold regardless of whether or not it can signal PME from
   2573		 * the current target state, because that will allow it to
   2574		 * signal PME when the hierarchy above it goes into D3cold and
   2575		 * the device itself ends up in D3cold as a result of that.
   2576		 */
   2577		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
   2578			pci_pme_active(dev, true);
   2579		else
   2580			ret = 1;
   2581		error = platform_pci_set_wakeup(dev, true);
   2582		if (ret)
   2583			ret = error;
   2584		if (!ret)
   2585			dev->wakeup_prepared = true;
   2586	} else {
   2587		platform_pci_set_wakeup(dev, false);
   2588		pci_pme_active(dev, false);
   2589		dev->wakeup_prepared = false;
   2590	}
   2591
   2592	return ret;
   2593}
   2594
   2595/**
   2596 * pci_enable_wake - change wakeup settings for a PCI device
   2597 * @pci_dev: Target device
   2598 * @state: PCI state from which device will issue wakeup events
   2599 * @enable: Whether or not to enable event generation
   2600 *
   2601 * If @enable is set, check device_may_wakeup() for the device before calling
   2602 * __pci_enable_wake() for it.
   2603 */
   2604int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
   2605{
   2606	if (enable && !device_may_wakeup(&pci_dev->dev))
   2607		return -EINVAL;
   2608
   2609	return __pci_enable_wake(pci_dev, state, enable);
   2610}
   2611EXPORT_SYMBOL(pci_enable_wake);
   2612
   2613/**
   2614 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
   2615 * @dev: PCI device to prepare
   2616 * @enable: True to enable wake-up event generation; false to disable
   2617 *
   2618 * Many drivers want the device to wake up the system from D3_hot or D3_cold
   2619 * and this function allows them to set that up cleanly - pci_enable_wake()
   2620 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
   2621 * ordering constraints.
   2622 *
   2623 * This function only returns error code if the device is not allowed to wake
   2624 * up the system from sleep or it is not capable of generating PME# from both
   2625 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
   2626 */
   2627int pci_wake_from_d3(struct pci_dev *dev, bool enable)
   2628{
   2629	return pci_pme_capable(dev, PCI_D3cold) ?
   2630			pci_enable_wake(dev, PCI_D3cold, enable) :
   2631			pci_enable_wake(dev, PCI_D3hot, enable);
   2632}
   2633EXPORT_SYMBOL(pci_wake_from_d3);
   2634
   2635/**
   2636 * pci_target_state - find an appropriate low power state for a given PCI dev
   2637 * @dev: PCI device
   2638 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
   2639 *
   2640 * Use underlying platform code to find a supported low power state for @dev.
   2641 * If the platform can't manage @dev, return the deepest state from which it
   2642 * can generate wake events, based on any available PME info.
   2643 */
   2644static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
   2645{
   2646	if (platform_pci_power_manageable(dev)) {
   2647		/*
   2648		 * Call the platform to find the target state for the device.
   2649		 */
   2650		pci_power_t state = platform_pci_choose_state(dev);
   2651
   2652		switch (state) {
   2653		case PCI_POWER_ERROR:
   2654		case PCI_UNKNOWN:
   2655			return PCI_D3hot;
   2656
   2657		case PCI_D1:
   2658		case PCI_D2:
   2659			if (pci_no_d1d2(dev))
   2660				return PCI_D3hot;
   2661		}
   2662
   2663		return state;
   2664	}
   2665
   2666	/*
   2667	 * If the device is in D3cold even though it's not power-manageable by
   2668	 * the platform, it may have been powered down by non-standard means.
   2669	 * Best to let it slumber.
   2670	 */
   2671	if (dev->current_state == PCI_D3cold)
   2672		return PCI_D3cold;
   2673	else if (!dev->pm_cap)
   2674		return PCI_D0;
   2675
   2676	if (wakeup && dev->pme_support) {
   2677		pci_power_t state = PCI_D3hot;
   2678
   2679		/*
   2680		 * Find the deepest state from which the device can generate
   2681		 * PME#.
   2682		 */
   2683		while (state && !(dev->pme_support & (1 << state)))
   2684			state--;
   2685
   2686		if (state)
   2687			return state;
   2688		else if (dev->pme_support & 1)
   2689			return PCI_D0;
   2690	}
   2691
   2692	return PCI_D3hot;
   2693}
   2694
   2695/**
   2696 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
   2697 *			  into a sleep state
   2698 * @dev: Device to handle.
   2699 *
   2700 * Choose the power state appropriate for the device depending on whether
   2701 * it can wake up the system and/or is power manageable by the platform
   2702 * (PCI_D3hot is the default) and put the device into that state.
   2703 */
   2704int pci_prepare_to_sleep(struct pci_dev *dev)
   2705{
   2706	bool wakeup = device_may_wakeup(&dev->dev);
   2707	pci_power_t target_state = pci_target_state(dev, wakeup);
   2708	int error;
   2709
   2710	if (target_state == PCI_POWER_ERROR)
   2711		return -EIO;
   2712
   2713	/*
   2714	 * There are systems (for example, Intel mobile chips since Coffee
   2715	 * Lake) where the power drawn while suspended can be significantly
   2716	 * reduced by disabling PTM on PCIe root ports as this allows the
   2717	 * port to enter a lower-power PM state and the SoC to reach a
   2718	 * lower-power idle state as a whole.
   2719	 */
   2720	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
   2721		pci_disable_ptm(dev);
   2722
   2723	pci_enable_wake(dev, target_state, wakeup);
   2724
   2725	error = pci_set_power_state(dev, target_state);
   2726
   2727	if (error) {
   2728		pci_enable_wake(dev, target_state, false);
   2729		pci_restore_ptm_state(dev);
   2730	}
   2731
   2732	return error;
   2733}
   2734EXPORT_SYMBOL(pci_prepare_to_sleep);
   2735
   2736/**
   2737 * pci_back_from_sleep - turn PCI device on during system-wide transition
   2738 *			 into working state
   2739 * @dev: Device to handle.
   2740 *
   2741 * Disable device's system wake-up capability and put it into D0.
   2742 */
   2743int pci_back_from_sleep(struct pci_dev *dev)
   2744{
   2745	int ret = pci_set_power_state(dev, PCI_D0);
   2746
   2747	if (ret)
   2748		return ret;
   2749
   2750	pci_enable_wake(dev, PCI_D0, false);
   2751	return 0;
   2752}
   2753EXPORT_SYMBOL(pci_back_from_sleep);
   2754
   2755/**
   2756 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
   2757 * @dev: PCI device being suspended.
   2758 *
   2759 * Prepare @dev to generate wake-up events at run time and put it into a low
   2760 * power state.
   2761 */
   2762int pci_finish_runtime_suspend(struct pci_dev *dev)
   2763{
   2764	pci_power_t target_state;
   2765	int error;
   2766
   2767	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
   2768	if (target_state == PCI_POWER_ERROR)
   2769		return -EIO;
   2770
   2771	/*
   2772	 * There are systems (for example, Intel mobile chips since Coffee
   2773	 * Lake) where the power drawn while suspended can be significantly
   2774	 * reduced by disabling PTM on PCIe root ports as this allows the
   2775	 * port to enter a lower-power PM state and the SoC to reach a
   2776	 * lower-power idle state as a whole.
   2777	 */
   2778	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
   2779		pci_disable_ptm(dev);
   2780
   2781	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
   2782
   2783	error = pci_set_power_state(dev, target_state);
   2784
   2785	if (error) {
   2786		pci_enable_wake(dev, target_state, false);
   2787		pci_restore_ptm_state(dev);
   2788	}
   2789
   2790	return error;
   2791}
   2792
   2793/**
   2794 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
   2795 * @dev: Device to check.
   2796 *
   2797 * Return true if the device itself is capable of generating wake-up events
   2798 * (through the platform or using the native PCIe PME) or if the device supports
   2799 * PME and one of its upstream bridges can generate wake-up events.
   2800 */
   2801bool pci_dev_run_wake(struct pci_dev *dev)
   2802{
   2803	struct pci_bus *bus = dev->bus;
   2804
   2805	if (!dev->pme_support)
   2806		return false;
   2807
   2808	/* PME-capable in principle, but not from the target power state */
   2809	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
   2810		return false;
   2811
   2812	if (device_can_wakeup(&dev->dev))
   2813		return true;
   2814
   2815	while (bus->parent) {
   2816		struct pci_dev *bridge = bus->self;
   2817
   2818		if (device_can_wakeup(&bridge->dev))
   2819			return true;
   2820
   2821		bus = bus->parent;
   2822	}
   2823
   2824	/* We have reached the root bus. */
   2825	if (bus->bridge)
   2826		return device_can_wakeup(bus->bridge);
   2827
   2828	return false;
   2829}
   2830EXPORT_SYMBOL_GPL(pci_dev_run_wake);
   2831
   2832/**
   2833 * pci_dev_need_resume - Check if it is necessary to resume the device.
   2834 * @pci_dev: Device to check.
   2835 *
   2836 * Return 'true' if the device is not runtime-suspended or it has to be
   2837 * reconfigured due to wakeup settings difference between system and runtime
   2838 * suspend, or the current power state of it is not suitable for the upcoming
   2839 * (system-wide) transition.
   2840 */
   2841bool pci_dev_need_resume(struct pci_dev *pci_dev)
   2842{
   2843	struct device *dev = &pci_dev->dev;
   2844	pci_power_t target_state;
   2845
   2846	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
   2847		return true;
   2848
   2849	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
   2850
   2851	/*
   2852	 * If the earlier platform check has not triggered, D3cold is just power
   2853	 * removal on top of D3hot, so no need to resume the device in that
   2854	 * case.
   2855	 */
   2856	return target_state != pci_dev->current_state &&
   2857		target_state != PCI_D3cold &&
   2858		pci_dev->current_state != PCI_D3hot;
   2859}
   2860
   2861/**
   2862 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
   2863 * @pci_dev: Device to check.
   2864 *
   2865 * If the device is suspended and it is not configured for system wakeup,
   2866 * disable PME for it to prevent it from waking up the system unnecessarily.
   2867 *
   2868 * Note that if the device's power state is D3cold and the platform check in
   2869 * pci_dev_need_resume() has not triggered, the device's configuration need not
   2870 * be changed.
   2871 */
   2872void pci_dev_adjust_pme(struct pci_dev *pci_dev)
   2873{
   2874	struct device *dev = &pci_dev->dev;
   2875
   2876	spin_lock_irq(&dev->power.lock);
   2877
   2878	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
   2879	    pci_dev->current_state < PCI_D3cold)
   2880		__pci_pme_active(pci_dev, false);
   2881
   2882	spin_unlock_irq(&dev->power.lock);
   2883}
   2884
   2885/**
   2886 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
   2887 * @pci_dev: Device to handle.
   2888 *
   2889 * If the device is runtime suspended and wakeup-capable, enable PME for it as
   2890 * it might have been disabled during the prepare phase of system suspend if
   2891 * the device was not configured for system wakeup.
   2892 */
   2893void pci_dev_complete_resume(struct pci_dev *pci_dev)
   2894{
   2895	struct device *dev = &pci_dev->dev;
   2896
   2897	if (!pci_dev_run_wake(pci_dev))
   2898		return;
   2899
   2900	spin_lock_irq(&dev->power.lock);
   2901
   2902	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
   2903		__pci_pme_active(pci_dev, true);
   2904
   2905	spin_unlock_irq(&dev->power.lock);
   2906}
   2907
   2908/**
   2909 * pci_choose_state - Choose the power state of a PCI device.
   2910 * @dev: Target PCI device.
   2911 * @state: Target state for the whole system.
   2912 *
   2913 * Returns PCI power state suitable for @dev and @state.
   2914 */
   2915pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
   2916{
   2917	if (state.event == PM_EVENT_ON)
   2918		return PCI_D0;
   2919
   2920	return pci_target_state(dev, false);
   2921}
   2922EXPORT_SYMBOL(pci_choose_state);
   2923
   2924void pci_config_pm_runtime_get(struct pci_dev *pdev)
   2925{
   2926	struct device *dev = &pdev->dev;
   2927	struct device *parent = dev->parent;
   2928
   2929	if (parent)
   2930		pm_runtime_get_sync(parent);
   2931	pm_runtime_get_noresume(dev);
   2932	/*
   2933	 * pdev->current_state is set to PCI_D3cold during suspending,
   2934	 * so wait until suspending completes
   2935	 */
   2936	pm_runtime_barrier(dev);
   2937	/*
   2938	 * Only need to resume devices in D3cold, because config
   2939	 * registers are still accessible for devices suspended but
   2940	 * not in D3cold.
   2941	 */
   2942	if (pdev->current_state == PCI_D3cold)
   2943		pm_runtime_resume(dev);
   2944}
   2945
   2946void pci_config_pm_runtime_put(struct pci_dev *pdev)
   2947{
   2948	struct device *dev = &pdev->dev;
   2949	struct device *parent = dev->parent;
   2950
   2951	pm_runtime_put(dev);
   2952	if (parent)
   2953		pm_runtime_put_sync(parent);
   2954}
   2955
   2956static const struct dmi_system_id bridge_d3_blacklist[] = {
   2957#ifdef CONFIG_X86
   2958	{
   2959		/*
   2960		 * Gigabyte X299 root port is not marked as hotplug capable
   2961		 * which allows Linux to power manage it.  However, this
   2962		 * confuses the BIOS SMI handler so don't power manage root
   2963		 * ports on that system.
   2964		 */
   2965		.ident = "X299 DESIGNARE EX-CF",
   2966		.matches = {
   2967			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
   2968			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
   2969		},
   2970	},
   2971	{
   2972		/*
   2973		 * Downstream device is not accessible after putting a root port
   2974		 * into D3cold and back into D0 on Elo i2.
   2975		 */
   2976		.ident = "Elo i2",
   2977		.matches = {
   2978			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
   2979			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
   2980			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
   2981		},
   2982	},
   2983#endif
   2984	{ }
   2985};
   2986
   2987/**
   2988 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
   2989 * @bridge: Bridge to check
   2990 *
   2991 * This function checks if it is possible to move the bridge to D3.
   2992 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
   2993 */
   2994bool pci_bridge_d3_possible(struct pci_dev *bridge)
   2995{
   2996	if (!pci_is_pcie(bridge))
   2997		return false;
   2998
   2999	switch (pci_pcie_type(bridge)) {
   3000	case PCI_EXP_TYPE_ROOT_PORT:
   3001	case PCI_EXP_TYPE_UPSTREAM:
   3002	case PCI_EXP_TYPE_DOWNSTREAM:
   3003		if (pci_bridge_d3_disable)
   3004			return false;
   3005
   3006		/*
   3007		 * Hotplug ports handled by firmware in System Management Mode
   3008		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
   3009		 */
   3010		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
   3011			return false;
   3012
   3013		if (pci_bridge_d3_force)
   3014			return true;
   3015
   3016		/* Even the oldest 2010 Thunderbolt controller supports D3. */
   3017		if (bridge->is_thunderbolt)
   3018			return true;
   3019
   3020		/* Platform might know better if the bridge supports D3 */
   3021		if (platform_pci_bridge_d3(bridge))
   3022			return true;
   3023
   3024		/*
   3025		 * Hotplug ports handled natively by the OS were not validated
   3026		 * by vendors for runtime D3 at least until 2018 because there
   3027		 * was no OS support.
   3028		 */
   3029		if (bridge->is_hotplug_bridge)
   3030			return false;
   3031
   3032		if (dmi_check_system(bridge_d3_blacklist))
   3033			return false;
   3034
   3035		/*
   3036		 * It should be safe to put PCIe ports from 2015 or newer
   3037		 * to D3.
   3038		 */
   3039		if (dmi_get_bios_year() >= 2015)
   3040			return true;
   3041		break;
   3042	}
   3043
   3044	return false;
   3045}
   3046
   3047static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
   3048{
   3049	bool *d3cold_ok = data;
   3050
   3051	if (/* The device needs to be allowed to go D3cold ... */
   3052	    dev->no_d3cold || !dev->d3cold_allowed ||
   3053
   3054	    /* ... and if it is wakeup capable to do so from D3cold. */
   3055	    (device_may_wakeup(&dev->dev) &&
   3056	     !pci_pme_capable(dev, PCI_D3cold)) ||
   3057
   3058	    /* If it is a bridge it must be allowed to go to D3. */
   3059	    !pci_power_manageable(dev))
   3060
   3061		*d3cold_ok = false;
   3062
   3063	return !*d3cold_ok;
   3064}
   3065
   3066/*
   3067 * pci_bridge_d3_update - Update bridge D3 capabilities
   3068 * @dev: PCI device which is changed
   3069 *
   3070 * Update upstream bridge PM capabilities accordingly depending on if the
   3071 * device PM configuration was changed or the device is being removed.  The
   3072 * change is also propagated upstream.
   3073 */
   3074void pci_bridge_d3_update(struct pci_dev *dev)
   3075{
   3076	bool remove = !device_is_registered(&dev->dev);
   3077	struct pci_dev *bridge;
   3078	bool d3cold_ok = true;
   3079
   3080	bridge = pci_upstream_bridge(dev);
   3081	if (!bridge || !pci_bridge_d3_possible(bridge))
   3082		return;
   3083
   3084	/*
   3085	 * If D3 is currently allowed for the bridge, removing one of its
   3086	 * children won't change that.
   3087	 */
   3088	if (remove && bridge->bridge_d3)
   3089		return;
   3090
   3091	/*
   3092	 * If D3 is currently allowed for the bridge and a child is added or
   3093	 * changed, disallowance of D3 can only be caused by that child, so
   3094	 * we only need to check that single device, not any of its siblings.
   3095	 *
   3096	 * If D3 is currently not allowed for the bridge, checking the device
   3097	 * first may allow us to skip checking its siblings.
   3098	 */
   3099	if (!remove)
   3100		pci_dev_check_d3cold(dev, &d3cold_ok);
   3101
   3102	/*
   3103	 * If D3 is currently not allowed for the bridge, this may be caused
   3104	 * either by the device being changed/removed or any of its siblings,
   3105	 * so we need to go through all children to find out if one of them
   3106	 * continues to block D3.
   3107	 */
   3108	if (d3cold_ok && !bridge->bridge_d3)
   3109		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
   3110			     &d3cold_ok);
   3111
   3112	if (bridge->bridge_d3 != d3cold_ok) {
   3113		bridge->bridge_d3 = d3cold_ok;
   3114		/* Propagate change to upstream bridges */
   3115		pci_bridge_d3_update(bridge);
   3116	}
   3117}
   3118
   3119/**
   3120 * pci_d3cold_enable - Enable D3cold for device
   3121 * @dev: PCI device to handle
   3122 *
   3123 * This function can be used in drivers to enable D3cold from the device
   3124 * they handle.  It also updates upstream PCI bridge PM capabilities
   3125 * accordingly.
   3126 */
   3127void pci_d3cold_enable(struct pci_dev *dev)
   3128{
   3129	if (dev->no_d3cold) {
   3130		dev->no_d3cold = false;
   3131		pci_bridge_d3_update(dev);
   3132	}
   3133}
   3134EXPORT_SYMBOL_GPL(pci_d3cold_enable);
   3135
   3136/**
   3137 * pci_d3cold_disable - Disable D3cold for device
   3138 * @dev: PCI device to handle
   3139 *
   3140 * This function can be used in drivers to disable D3cold from the device
   3141 * they handle.  It also updates upstream PCI bridge PM capabilities
   3142 * accordingly.
   3143 */
   3144void pci_d3cold_disable(struct pci_dev *dev)
   3145{
   3146	if (!dev->no_d3cold) {
   3147		dev->no_d3cold = true;
   3148		pci_bridge_d3_update(dev);
   3149	}
   3150}
   3151EXPORT_SYMBOL_GPL(pci_d3cold_disable);
   3152
   3153/**
   3154 * pci_pm_init - Initialize PM functions of given PCI device
   3155 * @dev: PCI device to handle.
   3156 */
   3157void pci_pm_init(struct pci_dev *dev)
   3158{
   3159	int pm;
   3160	u16 status;
   3161	u16 pmc;
   3162
   3163	pm_runtime_forbid(&dev->dev);
   3164	pm_runtime_set_active(&dev->dev);
   3165	pm_runtime_enable(&dev->dev);
   3166	device_enable_async_suspend(&dev->dev);
   3167	dev->wakeup_prepared = false;
   3168
   3169	dev->pm_cap = 0;
   3170	dev->pme_support = 0;
   3171
   3172	/* find PCI PM capability in list */
   3173	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
   3174	if (!pm)
   3175		return;
   3176	/* Check device's ability to generate PME# */
   3177	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
   3178
   3179	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
   3180		pci_err(dev, "unsupported PM cap regs version (%u)\n",
   3181			pmc & PCI_PM_CAP_VER_MASK);
   3182		return;
   3183	}
   3184
   3185	dev->pm_cap = pm;
   3186	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
   3187	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
   3188	dev->bridge_d3 = pci_bridge_d3_possible(dev);
   3189	dev->d3cold_allowed = true;
   3190
   3191	dev->d1_support = false;
   3192	dev->d2_support = false;
   3193	if (!pci_no_d1d2(dev)) {
   3194		if (pmc & PCI_PM_CAP_D1)
   3195			dev->d1_support = true;
   3196		if (pmc & PCI_PM_CAP_D2)
   3197			dev->d2_support = true;
   3198
   3199		if (dev->d1_support || dev->d2_support)
   3200			pci_info(dev, "supports%s%s\n",
   3201				   dev->d1_support ? " D1" : "",
   3202				   dev->d2_support ? " D2" : "");
   3203	}
   3204
   3205	pmc &= PCI_PM_CAP_PME_MASK;
   3206	if (pmc) {
   3207		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
   3208			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
   3209			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
   3210			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
   3211			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
   3212			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
   3213		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
   3214		dev->pme_poll = true;
   3215		/*
   3216		 * Make device's PM flags reflect the wake-up capability, but
   3217		 * let the user space enable it to wake up the system as needed.
   3218		 */
   3219		device_set_wakeup_capable(&dev->dev, true);
   3220		/* Disable the PME# generation functionality */
   3221		pci_pme_active(dev, false);
   3222	}
   3223
   3224	pci_read_config_word(dev, PCI_STATUS, &status);
   3225	if (status & PCI_STATUS_IMM_READY)
   3226		dev->imm_ready = 1;
   3227}
   3228
   3229static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
   3230{
   3231	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
   3232
   3233	switch (prop) {
   3234	case PCI_EA_P_MEM:
   3235	case PCI_EA_P_VF_MEM:
   3236		flags |= IORESOURCE_MEM;
   3237		break;
   3238	case PCI_EA_P_MEM_PREFETCH:
   3239	case PCI_EA_P_VF_MEM_PREFETCH:
   3240		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
   3241		break;
   3242	case PCI_EA_P_IO:
   3243		flags |= IORESOURCE_IO;
   3244		break;
   3245	default:
   3246		return 0;
   3247	}
   3248
   3249	return flags;
   3250}
   3251
   3252static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
   3253					    u8 prop)
   3254{
   3255	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
   3256		return &dev->resource[bei];
   3257#ifdef CONFIG_PCI_IOV
   3258	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
   3259		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
   3260		return &dev->resource[PCI_IOV_RESOURCES +
   3261				      bei - PCI_EA_BEI_VF_BAR0];
   3262#endif
   3263	else if (bei == PCI_EA_BEI_ROM)
   3264		return &dev->resource[PCI_ROM_RESOURCE];
   3265	else
   3266		return NULL;
   3267}
   3268
   3269/* Read an Enhanced Allocation (EA) entry */
   3270static int pci_ea_read(struct pci_dev *dev, int offset)
   3271{
   3272	struct resource *res;
   3273	int ent_size, ent_offset = offset;
   3274	resource_size_t start, end;
   3275	unsigned long flags;
   3276	u32 dw0, bei, base, max_offset;
   3277	u8 prop;
   3278	bool support_64 = (sizeof(resource_size_t) >= 8);
   3279
   3280	pci_read_config_dword(dev, ent_offset, &dw0);
   3281	ent_offset += 4;
   3282
   3283	/* Entry size field indicates DWORDs after 1st */
   3284	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
   3285
   3286	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
   3287		goto out;
   3288
   3289	bei = (dw0 & PCI_EA_BEI) >> 4;
   3290	prop = (dw0 & PCI_EA_PP) >> 8;
   3291
   3292	/*
   3293	 * If the Property is in the reserved range, try the Secondary
   3294	 * Property instead.
   3295	 */
   3296	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
   3297		prop = (dw0 & PCI_EA_SP) >> 16;
   3298	if (prop > PCI_EA_P_BRIDGE_IO)
   3299		goto out;
   3300
   3301	res = pci_ea_get_resource(dev, bei, prop);
   3302	if (!res) {
   3303		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
   3304		goto out;
   3305	}
   3306
   3307	flags = pci_ea_flags(dev, prop);
   3308	if (!flags) {
   3309		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
   3310		goto out;
   3311	}
   3312
   3313	/* Read Base */
   3314	pci_read_config_dword(dev, ent_offset, &base);
   3315	start = (base & PCI_EA_FIELD_MASK);
   3316	ent_offset += 4;
   3317
   3318	/* Read MaxOffset */
   3319	pci_read_config_dword(dev, ent_offset, &max_offset);
   3320	ent_offset += 4;
   3321
   3322	/* Read Base MSBs (if 64-bit entry) */
   3323	if (base & PCI_EA_IS_64) {
   3324		u32 base_upper;
   3325
   3326		pci_read_config_dword(dev, ent_offset, &base_upper);
   3327		ent_offset += 4;
   3328
   3329		flags |= IORESOURCE_MEM_64;
   3330
   3331		/* entry starts above 32-bit boundary, can't use */
   3332		if (!support_64 && base_upper)
   3333			goto out;
   3334
   3335		if (support_64)
   3336			start |= ((u64)base_upper << 32);
   3337	}
   3338
   3339	end = start + (max_offset | 0x03);
   3340
   3341	/* Read MaxOffset MSBs (if 64-bit entry) */
   3342	if (max_offset & PCI_EA_IS_64) {
   3343		u32 max_offset_upper;
   3344
   3345		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
   3346		ent_offset += 4;
   3347
   3348		flags |= IORESOURCE_MEM_64;
   3349
   3350		/* entry too big, can't use */
   3351		if (!support_64 && max_offset_upper)
   3352			goto out;
   3353
   3354		if (support_64)
   3355			end += ((u64)max_offset_upper << 32);
   3356	}
   3357
   3358	if (end < start) {
   3359		pci_err(dev, "EA Entry crosses address boundary\n");
   3360		goto out;
   3361	}
   3362
   3363	if (ent_size != ent_offset - offset) {
   3364		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
   3365			ent_size, ent_offset - offset);
   3366		goto out;
   3367	}
   3368
   3369	res->name = pci_name(dev);
   3370	res->start = start;
   3371	res->end = end;
   3372	res->flags = flags;
   3373
   3374	if (bei <= PCI_EA_BEI_BAR5)
   3375		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
   3376			   bei, res, prop);
   3377	else if (bei == PCI_EA_BEI_ROM)
   3378		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
   3379			   res, prop);
   3380	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
   3381		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
   3382			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
   3383	else
   3384		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
   3385			   bei, res, prop);
   3386
   3387out:
   3388	return offset + ent_size;
   3389}
   3390
   3391/* Enhanced Allocation Initialization */
   3392void pci_ea_init(struct pci_dev *dev)
   3393{
   3394	int ea;
   3395	u8 num_ent;
   3396	int offset;
   3397	int i;
   3398
   3399	/* find PCI EA capability in list */
   3400	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
   3401	if (!ea)
   3402		return;
   3403
   3404	/* determine the number of entries */
   3405	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
   3406					&num_ent);
   3407	num_ent &= PCI_EA_NUM_ENT_MASK;
   3408
   3409	offset = ea + PCI_EA_FIRST_ENT;
   3410
   3411	/* Skip DWORD 2 for type 1 functions */
   3412	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
   3413		offset += 4;
   3414
   3415	/* parse each EA entry */
   3416	for (i = 0; i < num_ent; ++i)
   3417		offset = pci_ea_read(dev, offset);
   3418}
   3419
   3420static void pci_add_saved_cap(struct pci_dev *pci_dev,
   3421	struct pci_cap_saved_state *new_cap)
   3422{
   3423	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
   3424}
   3425
   3426/**
   3427 * _pci_add_cap_save_buffer - allocate buffer for saving given
   3428 *			      capability registers
   3429 * @dev: the PCI device
   3430 * @cap: the capability to allocate the buffer for
   3431 * @extended: Standard or Extended capability ID
   3432 * @size: requested size of the buffer
   3433 */
   3434static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
   3435				    bool extended, unsigned int size)
   3436{
   3437	int pos;
   3438	struct pci_cap_saved_state *save_state;
   3439
   3440	if (extended)
   3441		pos = pci_find_ext_capability(dev, cap);
   3442	else
   3443		pos = pci_find_capability(dev, cap);
   3444
   3445	if (!pos)
   3446		return 0;
   3447
   3448	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
   3449	if (!save_state)
   3450		return -ENOMEM;
   3451
   3452	save_state->cap.cap_nr = cap;
   3453	save_state->cap.cap_extended = extended;
   3454	save_state->cap.size = size;
   3455	pci_add_saved_cap(dev, save_state);
   3456
   3457	return 0;
   3458}
   3459
   3460int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
   3461{
   3462	return _pci_add_cap_save_buffer(dev, cap, false, size);
   3463}
   3464
   3465int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
   3466{
   3467	return _pci_add_cap_save_buffer(dev, cap, true, size);
   3468}
   3469
   3470/**
   3471 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
   3472 * @dev: the PCI device
   3473 */
   3474void pci_allocate_cap_save_buffers(struct pci_dev *dev)
   3475{
   3476	int error;
   3477
   3478	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
   3479					PCI_EXP_SAVE_REGS * sizeof(u16));
   3480	if (error)
   3481		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
   3482
   3483	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
   3484	if (error)
   3485		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
   3486
   3487	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
   3488					    2 * sizeof(u16));
   3489	if (error)
   3490		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
   3491
   3492	pci_allocate_vc_save_buffers(dev);
   3493}
   3494
   3495void pci_free_cap_save_buffers(struct pci_dev *dev)
   3496{
   3497	struct pci_cap_saved_state *tmp;
   3498	struct hlist_node *n;
   3499
   3500	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
   3501		kfree(tmp);
   3502}
   3503
   3504/**
   3505 * pci_configure_ari - enable or disable ARI forwarding
   3506 * @dev: the PCI device
   3507 *
   3508 * If @dev and its upstream bridge both support ARI, enable ARI in the
   3509 * bridge.  Otherwise, disable ARI in the bridge.
   3510 */
   3511void pci_configure_ari(struct pci_dev *dev)
   3512{
   3513	u32 cap;
   3514	struct pci_dev *bridge;
   3515
   3516	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
   3517		return;
   3518
   3519	bridge = dev->bus->self;
   3520	if (!bridge)
   3521		return;
   3522
   3523	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
   3524	if (!(cap & PCI_EXP_DEVCAP2_ARI))
   3525		return;
   3526
   3527	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
   3528		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
   3529					 PCI_EXP_DEVCTL2_ARI);
   3530		bridge->ari_enabled = 1;
   3531	} else {
   3532		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
   3533					   PCI_EXP_DEVCTL2_ARI);
   3534		bridge->ari_enabled = 0;
   3535	}
   3536}
   3537
   3538static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
   3539{
   3540	int pos;
   3541	u16 cap, ctrl;
   3542
   3543	pos = pdev->acs_cap;
   3544	if (!pos)
   3545		return false;
   3546
   3547	/*
   3548	 * Except for egress control, capabilities are either required
   3549	 * or only required if controllable.  Features missing from the
   3550	 * capability field can therefore be assumed as hard-wired enabled.
   3551	 */
   3552	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
   3553	acs_flags &= (cap | PCI_ACS_EC);
   3554
   3555	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
   3556	return (ctrl & acs_flags) == acs_flags;
   3557}
   3558
   3559/**
   3560 * pci_acs_enabled - test ACS against required flags for a given device
   3561 * @pdev: device to test
   3562 * @acs_flags: required PCI ACS flags
   3563 *
   3564 * Return true if the device supports the provided flags.  Automatically
   3565 * filters out flags that are not implemented on multifunction devices.
   3566 *
   3567 * Note that this interface checks the effective ACS capabilities of the
   3568 * device rather than the actual capabilities.  For instance, most single
   3569 * function endpoints are not required to support ACS because they have no
   3570 * opportunity for peer-to-peer access.  We therefore return 'true'
   3571 * regardless of whether the device exposes an ACS capability.  This makes
   3572 * it much easier for callers of this function to ignore the actual type
   3573 * or topology of the device when testing ACS support.
   3574 */
   3575bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
   3576{
   3577	int ret;
   3578
   3579	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
   3580	if (ret >= 0)
   3581		return ret > 0;
   3582
   3583	/*
   3584	 * Conventional PCI and PCI-X devices never support ACS, either
   3585	 * effectively or actually.  The shared bus topology implies that
   3586	 * any device on the bus can receive or snoop DMA.
   3587	 */
   3588	if (!pci_is_pcie(pdev))
   3589		return false;
   3590
   3591	switch (pci_pcie_type(pdev)) {
   3592	/*
   3593	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
   3594	 * but since their primary interface is PCI/X, we conservatively
   3595	 * handle them as we would a non-PCIe device.
   3596	 */
   3597	case PCI_EXP_TYPE_PCIE_BRIDGE:
   3598	/*
   3599	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
   3600	 * applicable... must never implement an ACS Extended Capability...".
   3601	 * This seems arbitrary, but we take a conservative interpretation
   3602	 * of this statement.
   3603	 */
   3604	case PCI_EXP_TYPE_PCI_BRIDGE:
   3605	case PCI_EXP_TYPE_RC_EC:
   3606		return false;
   3607	/*
   3608	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
   3609	 * implement ACS in order to indicate their peer-to-peer capabilities,
   3610	 * regardless of whether they are single- or multi-function devices.
   3611	 */
   3612	case PCI_EXP_TYPE_DOWNSTREAM:
   3613	case PCI_EXP_TYPE_ROOT_PORT:
   3614		return pci_acs_flags_enabled(pdev, acs_flags);
   3615	/*
   3616	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
   3617	 * implemented by the remaining PCIe types to indicate peer-to-peer
   3618	 * capabilities, but only when they are part of a multifunction
   3619	 * device.  The footnote for section 6.12 indicates the specific
   3620	 * PCIe types included here.
   3621	 */
   3622	case PCI_EXP_TYPE_ENDPOINT:
   3623	case PCI_EXP_TYPE_UPSTREAM:
   3624	case PCI_EXP_TYPE_LEG_END:
   3625	case PCI_EXP_TYPE_RC_END:
   3626		if (!pdev->multifunction)
   3627			break;
   3628
   3629		return pci_acs_flags_enabled(pdev, acs_flags);
   3630	}
   3631
   3632	/*
   3633	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
   3634	 * to single function devices with the exception of downstream ports.
   3635	 */
   3636	return true;
   3637}
   3638
   3639/**
   3640 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
   3641 * @start: starting downstream device
   3642 * @end: ending upstream device or NULL to search to the root bus
   3643 * @acs_flags: required flags
   3644 *
   3645 * Walk up a device tree from start to end testing PCI ACS support.  If
   3646 * any step along the way does not support the required flags, return false.
   3647 */
   3648bool pci_acs_path_enabled(struct pci_dev *start,
   3649			  struct pci_dev *end, u16 acs_flags)
   3650{
   3651	struct pci_dev *pdev, *parent = start;
   3652
   3653	do {
   3654		pdev = parent;
   3655
   3656		if (!pci_acs_enabled(pdev, acs_flags))
   3657			return false;
   3658
   3659		if (pci_is_root_bus(pdev->bus))
   3660			return (end == NULL);
   3661
   3662		parent = pdev->bus->self;
   3663	} while (pdev != end);
   3664
   3665	return true;
   3666}
   3667
   3668/**
   3669 * pci_acs_init - Initialize ACS if hardware supports it
   3670 * @dev: the PCI device
   3671 */
   3672void pci_acs_init(struct pci_dev *dev)
   3673{
   3674	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
   3675
   3676	/*
   3677	 * Attempt to enable ACS regardless of capability because some Root
   3678	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
   3679	 * the standard ACS capability but still support ACS via those
   3680	 * quirks.
   3681	 */
   3682	pci_enable_acs(dev);
   3683}
   3684
   3685/**
   3686 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
   3687 * @pdev: PCI device
   3688 * @bar: BAR to find
   3689 *
   3690 * Helper to find the position of the ctrl register for a BAR.
   3691 * Returns -ENOTSUPP if resizable BARs are not supported at all.
   3692 * Returns -ENOENT if no ctrl register for the BAR could be found.
   3693 */
   3694static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
   3695{
   3696	unsigned int pos, nbars, i;
   3697	u32 ctrl;
   3698
   3699	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
   3700	if (!pos)
   3701		return -ENOTSUPP;
   3702
   3703	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   3704	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
   3705		    PCI_REBAR_CTRL_NBAR_SHIFT;
   3706
   3707	for (i = 0; i < nbars; i++, pos += 8) {
   3708		int bar_idx;
   3709
   3710		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   3711		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
   3712		if (bar_idx == bar)
   3713			return pos;
   3714	}
   3715
   3716	return -ENOENT;
   3717}
   3718
   3719/**
   3720 * pci_rebar_get_possible_sizes - get possible sizes for BAR
   3721 * @pdev: PCI device
   3722 * @bar: BAR to query
   3723 *
   3724 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
   3725 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
   3726 */
   3727u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
   3728{
   3729	int pos;
   3730	u32 cap;
   3731
   3732	pos = pci_rebar_find_pos(pdev, bar);
   3733	if (pos < 0)
   3734		return 0;
   3735
   3736	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
   3737	cap &= PCI_REBAR_CAP_SIZES;
   3738
   3739	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
   3740	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
   3741	    bar == 0 && cap == 0x7000)
   3742		cap = 0x3f000;
   3743
   3744	return cap >> 4;
   3745}
   3746EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
   3747
   3748/**
   3749 * pci_rebar_get_current_size - get the current size of a BAR
   3750 * @pdev: PCI device
   3751 * @bar: BAR to set size to
   3752 *
   3753 * Read the size of a BAR from the resizable BAR config.
   3754 * Returns size if found or negative error code.
   3755 */
   3756int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
   3757{
   3758	int pos;
   3759	u32 ctrl;
   3760
   3761	pos = pci_rebar_find_pos(pdev, bar);
   3762	if (pos < 0)
   3763		return pos;
   3764
   3765	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   3766	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
   3767}
   3768
   3769/**
   3770 * pci_rebar_set_size - set a new size for a BAR
   3771 * @pdev: PCI device
   3772 * @bar: BAR to set size to
   3773 * @size: new size as defined in the spec (0=1MB, 19=512GB)
   3774 *
   3775 * Set the new size of a BAR as defined in the spec.
   3776 * Returns zero if resizing was successful, error code otherwise.
   3777 */
   3778int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
   3779{
   3780	int pos;
   3781	u32 ctrl;
   3782
   3783	pos = pci_rebar_find_pos(pdev, bar);
   3784	if (pos < 0)
   3785		return pos;
   3786
   3787	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
   3788	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
   3789	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
   3790	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
   3791	return 0;
   3792}
   3793
   3794/**
   3795 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
   3796 * @dev: the PCI device
   3797 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
   3798 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
   3799 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
   3800 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
   3801 *
   3802 * Return 0 if all upstream bridges support AtomicOp routing, egress
   3803 * blocking is disabled on all upstream ports, and the root port supports
   3804 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
   3805 * AtomicOp completion), or negative otherwise.
   3806 */
   3807int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
   3808{
   3809	struct pci_bus *bus = dev->bus;
   3810	struct pci_dev *bridge;
   3811	u32 cap, ctl2;
   3812
   3813	/*
   3814	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
   3815	 * in Device Control 2 is reserved in VFs and the PF value applies
   3816	 * to all associated VFs.
   3817	 */
   3818	if (dev->is_virtfn)
   3819		return -EINVAL;
   3820
   3821	if (!pci_is_pcie(dev))
   3822		return -EINVAL;
   3823
   3824	/*
   3825	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
   3826	 * AtomicOp requesters.  For now, we only support endpoints as
   3827	 * requesters and root ports as completers.  No endpoints as
   3828	 * completers, and no peer-to-peer.
   3829	 */
   3830
   3831	switch (pci_pcie_type(dev)) {
   3832	case PCI_EXP_TYPE_ENDPOINT:
   3833	case PCI_EXP_TYPE_LEG_END:
   3834	case PCI_EXP_TYPE_RC_END:
   3835		break;
   3836	default:
   3837		return -EINVAL;
   3838	}
   3839
   3840	while (bus->parent) {
   3841		bridge = bus->self;
   3842
   3843		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
   3844
   3845		switch (pci_pcie_type(bridge)) {
   3846		/* Ensure switch ports support AtomicOp routing */
   3847		case PCI_EXP_TYPE_UPSTREAM:
   3848		case PCI_EXP_TYPE_DOWNSTREAM:
   3849			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
   3850				return -EINVAL;
   3851			break;
   3852
   3853		/* Ensure root port supports all the sizes we care about */
   3854		case PCI_EXP_TYPE_ROOT_PORT:
   3855			if ((cap & cap_mask) != cap_mask)
   3856				return -EINVAL;
   3857			break;
   3858		}
   3859
   3860		/* Ensure upstream ports don't block AtomicOps on egress */
   3861		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
   3862			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
   3863						   &ctl2);
   3864			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
   3865				return -EINVAL;
   3866		}
   3867
   3868		bus = bus->parent;
   3869	}
   3870
   3871	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
   3872				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
   3873	return 0;
   3874}
   3875EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
   3876
   3877/**
   3878 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
   3879 * @dev: the PCI device
   3880 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
   3881 *
   3882 * Perform INTx swizzling for a device behind one level of bridge.  This is
   3883 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
   3884 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
   3885 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
   3886 * the PCI Express Base Specification, Revision 2.1)
   3887 */
   3888u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
   3889{
   3890	int slot;
   3891
   3892	if (pci_ari_enabled(dev->bus))
   3893		slot = 0;
   3894	else
   3895		slot = PCI_SLOT(dev->devfn);
   3896
   3897	return (((pin - 1) + slot) % 4) + 1;
   3898}
   3899
   3900int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
   3901{
   3902	u8 pin;
   3903
   3904	pin = dev->pin;
   3905	if (!pin)
   3906		return -1;
   3907
   3908	while (!pci_is_root_bus(dev->bus)) {
   3909		pin = pci_swizzle_interrupt_pin(dev, pin);
   3910		dev = dev->bus->self;
   3911	}
   3912	*bridge = dev;
   3913	return pin;
   3914}
   3915
   3916/**
   3917 * pci_common_swizzle - swizzle INTx all the way to root bridge
   3918 * @dev: the PCI device
   3919 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
   3920 *
   3921 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
   3922 * bridges all the way up to a PCI root bus.
   3923 */
   3924u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
   3925{
   3926	u8 pin = *pinp;
   3927
   3928	while (!pci_is_root_bus(dev->bus)) {
   3929		pin = pci_swizzle_interrupt_pin(dev, pin);
   3930		dev = dev->bus->self;
   3931	}
   3932	*pinp = pin;
   3933	return PCI_SLOT(dev->devfn);
   3934}
   3935EXPORT_SYMBOL_GPL(pci_common_swizzle);
   3936
   3937/**
   3938 * pci_release_region - Release a PCI bar
   3939 * @pdev: PCI device whose resources were previously reserved by
   3940 *	  pci_request_region()
   3941 * @bar: BAR to release
   3942 *
   3943 * Releases the PCI I/O and memory resources previously reserved by a
   3944 * successful call to pci_request_region().  Call this function only
   3945 * after all use of the PCI regions has ceased.
   3946 */
   3947void pci_release_region(struct pci_dev *pdev, int bar)
   3948{
   3949	struct pci_devres *dr;
   3950
   3951	if (pci_resource_len(pdev, bar) == 0)
   3952		return;
   3953	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
   3954		release_region(pci_resource_start(pdev, bar),
   3955				pci_resource_len(pdev, bar));
   3956	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
   3957		release_mem_region(pci_resource_start(pdev, bar),
   3958				pci_resource_len(pdev, bar));
   3959
   3960	dr = find_pci_dr(pdev);
   3961	if (dr)
   3962		dr->region_mask &= ~(1 << bar);
   3963}
   3964EXPORT_SYMBOL(pci_release_region);
   3965
   3966/**
   3967 * __pci_request_region - Reserved PCI I/O and memory resource
   3968 * @pdev: PCI device whose resources are to be reserved
   3969 * @bar: BAR to be reserved
   3970 * @res_name: Name to be associated with resource.
   3971 * @exclusive: whether the region access is exclusive or not
   3972 *
   3973 * Mark the PCI region associated with PCI device @pdev BAR @bar as
   3974 * being reserved by owner @res_name.  Do not access any
   3975 * address inside the PCI regions unless this call returns
   3976 * successfully.
   3977 *
   3978 * If @exclusive is set, then the region is marked so that userspace
   3979 * is explicitly not allowed to map the resource via /dev/mem or
   3980 * sysfs MMIO access.
   3981 *
   3982 * Returns 0 on success, or %EBUSY on error.  A warning
   3983 * message is also printed on failure.
   3984 */
   3985static int __pci_request_region(struct pci_dev *pdev, int bar,
   3986				const char *res_name, int exclusive)
   3987{
   3988	struct pci_devres *dr;
   3989
   3990	if (pci_resource_len(pdev, bar) == 0)
   3991		return 0;
   3992
   3993	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
   3994		if (!request_region(pci_resource_start(pdev, bar),
   3995			    pci_resource_len(pdev, bar), res_name))
   3996			goto err_out;
   3997	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
   3998		if (!__request_mem_region(pci_resource_start(pdev, bar),
   3999					pci_resource_len(pdev, bar), res_name,
   4000					exclusive))
   4001			goto err_out;
   4002	}
   4003
   4004	dr = find_pci_dr(pdev);
   4005	if (dr)
   4006		dr->region_mask |= 1 << bar;
   4007
   4008	return 0;
   4009
   4010err_out:
   4011	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
   4012		 &pdev->resource[bar]);
   4013	return -EBUSY;
   4014}
   4015
   4016/**
   4017 * pci_request_region - Reserve PCI I/O and memory resource
   4018 * @pdev: PCI device whose resources are to be reserved
   4019 * @bar: BAR to be reserved
   4020 * @res_name: Name to be associated with resource
   4021 *
   4022 * Mark the PCI region associated with PCI device @pdev BAR @bar as
   4023 * being reserved by owner @res_name.  Do not access any
   4024 * address inside the PCI regions unless this call returns
   4025 * successfully.
   4026 *
   4027 * Returns 0 on success, or %EBUSY on error.  A warning
   4028 * message is also printed on failure.
   4029 */
   4030int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
   4031{
   4032	return __pci_request_region(pdev, bar, res_name, 0);
   4033}
   4034EXPORT_SYMBOL(pci_request_region);
   4035
   4036/**
   4037 * pci_release_selected_regions - Release selected PCI I/O and memory resources
   4038 * @pdev: PCI device whose resources were previously reserved
   4039 * @bars: Bitmask of BARs to be released
   4040 *
   4041 * Release selected PCI I/O and memory resources previously reserved.
   4042 * Call this function only after all use of the PCI regions has ceased.
   4043 */
   4044void pci_release_selected_regions(struct pci_dev *pdev, int bars)
   4045{
   4046	int i;
   4047
   4048	for (i = 0; i < PCI_STD_NUM_BARS; i++)
   4049		if (bars & (1 << i))
   4050			pci_release_region(pdev, i);
   4051}
   4052EXPORT_SYMBOL(pci_release_selected_regions);
   4053
   4054static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
   4055					  const char *res_name, int excl)
   4056{
   4057	int i;
   4058
   4059	for (i = 0; i < PCI_STD_NUM_BARS; i++)
   4060		if (bars & (1 << i))
   4061			if (__pci_request_region(pdev, i, res_name, excl))
   4062				goto err_out;
   4063	return 0;
   4064
   4065err_out:
   4066	while (--i >= 0)
   4067		if (bars & (1 << i))
   4068			pci_release_region(pdev, i);
   4069
   4070	return -EBUSY;
   4071}
   4072
   4073
   4074/**
   4075 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
   4076 * @pdev: PCI device whose resources are to be reserved
   4077 * @bars: Bitmask of BARs to be requested
   4078 * @res_name: Name to be associated with resource
   4079 */
   4080int pci_request_selected_regions(struct pci_dev *pdev, int bars,
   4081				 const char *res_name)
   4082{
   4083	return __pci_request_selected_regions(pdev, bars, res_name, 0);
   4084}
   4085EXPORT_SYMBOL(pci_request_selected_regions);
   4086
   4087int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
   4088					   const char *res_name)
   4089{
   4090	return __pci_request_selected_regions(pdev, bars, res_name,
   4091			IORESOURCE_EXCLUSIVE);
   4092}
   4093EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
   4094
   4095/**
   4096 * pci_release_regions - Release reserved PCI I/O and memory resources
   4097 * @pdev: PCI device whose resources were previously reserved by
   4098 *	  pci_request_regions()
   4099 *
   4100 * Releases all PCI I/O and memory resources previously reserved by a
   4101 * successful call to pci_request_regions().  Call this function only
   4102 * after all use of the PCI regions has ceased.
   4103 */
   4104
   4105void pci_release_regions(struct pci_dev *pdev)
   4106{
   4107	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
   4108}
   4109EXPORT_SYMBOL(pci_release_regions);
   4110
   4111/**
   4112 * pci_request_regions - Reserve PCI I/O and memory resources
   4113 * @pdev: PCI device whose resources are to be reserved
   4114 * @res_name: Name to be associated with resource.
   4115 *
   4116 * Mark all PCI regions associated with PCI device @pdev as
   4117 * being reserved by owner @res_name.  Do not access any
   4118 * address inside the PCI regions unless this call returns
   4119 * successfully.
   4120 *
   4121 * Returns 0 on success, or %EBUSY on error.  A warning
   4122 * message is also printed on failure.
   4123 */
   4124int pci_request_regions(struct pci_dev *pdev, const char *res_name)
   4125{
   4126	return pci_request_selected_regions(pdev,
   4127			((1 << PCI_STD_NUM_BARS) - 1), res_name);
   4128}
   4129EXPORT_SYMBOL(pci_request_regions);
   4130
   4131/**
   4132 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
   4133 * @pdev: PCI device whose resources are to be reserved
   4134 * @res_name: Name to be associated with resource.
   4135 *
   4136 * Mark all PCI regions associated with PCI device @pdev as being reserved
   4137 * by owner @res_name.  Do not access any address inside the PCI regions
   4138 * unless this call returns successfully.
   4139 *
   4140 * pci_request_regions_exclusive() will mark the region so that /dev/mem
   4141 * and the sysfs MMIO access will not be allowed.
   4142 *
   4143 * Returns 0 on success, or %EBUSY on error.  A warning message is also
   4144 * printed on failure.
   4145 */
   4146int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
   4147{
   4148	return pci_request_selected_regions_exclusive(pdev,
   4149				((1 << PCI_STD_NUM_BARS) - 1), res_name);
   4150}
   4151EXPORT_SYMBOL(pci_request_regions_exclusive);
   4152
   4153/*
   4154 * Record the PCI IO range (expressed as CPU physical address + size).
   4155 * Return a negative value if an error has occurred, zero otherwise
   4156 */
   4157int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
   4158			resource_size_t	size)
   4159{
   4160	int ret = 0;
   4161#ifdef PCI_IOBASE
   4162	struct logic_pio_hwaddr *range;
   4163
   4164	if (!size || addr + size < addr)
   4165		return -EINVAL;
   4166
   4167	range = kzalloc(sizeof(*range), GFP_ATOMIC);
   4168	if (!range)
   4169		return -ENOMEM;
   4170
   4171	range->fwnode = fwnode;
   4172	range->size = size;
   4173	range->hw_start = addr;
   4174	range->flags = LOGIC_PIO_CPU_MMIO;
   4175
   4176	ret = logic_pio_register_range(range);
   4177	if (ret)
   4178		kfree(range);
   4179
   4180	/* Ignore duplicates due to deferred probing */
   4181	if (ret == -EEXIST)
   4182		ret = 0;
   4183#endif
   4184
   4185	return ret;
   4186}
   4187
   4188phys_addr_t pci_pio_to_address(unsigned long pio)
   4189{
   4190	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
   4191
   4192#ifdef PCI_IOBASE
   4193	if (pio >= MMIO_UPPER_LIMIT)
   4194		return address;
   4195
   4196	address = logic_pio_to_hwaddr(pio);
   4197#endif
   4198
   4199	return address;
   4200}
   4201EXPORT_SYMBOL_GPL(pci_pio_to_address);
   4202
   4203unsigned long __weak pci_address_to_pio(phys_addr_t address)
   4204{
   4205#ifdef PCI_IOBASE
   4206	return logic_pio_trans_cpuaddr(address);
   4207#else
   4208	if (address > IO_SPACE_LIMIT)
   4209		return (unsigned long)-1;
   4210
   4211	return (unsigned long) address;
   4212#endif
   4213}
   4214
   4215/**
   4216 * pci_remap_iospace - Remap the memory mapped I/O space
   4217 * @res: Resource describing the I/O space
   4218 * @phys_addr: physical address of range to be mapped
   4219 *
   4220 * Remap the memory mapped I/O space described by the @res and the CPU
   4221 * physical address @phys_addr into virtual address space.  Only
   4222 * architectures that have memory mapped IO functions defined (and the
   4223 * PCI_IOBASE value defined) should call this function.
   4224 */
   4225#ifndef pci_remap_iospace
   4226int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
   4227{
   4228#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
   4229	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
   4230
   4231	if (!(res->flags & IORESOURCE_IO))
   4232		return -EINVAL;
   4233
   4234	if (res->end > IO_SPACE_LIMIT)
   4235		return -EINVAL;
   4236
   4237	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
   4238				  pgprot_device(PAGE_KERNEL));
   4239#else
   4240	/*
   4241	 * This architecture does not have memory mapped I/O space,
   4242	 * so this function should never be called
   4243	 */
   4244	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
   4245	return -ENODEV;
   4246#endif
   4247}
   4248EXPORT_SYMBOL(pci_remap_iospace);
   4249#endif
   4250
   4251/**
   4252 * pci_unmap_iospace - Unmap the memory mapped I/O space
   4253 * @res: resource to be unmapped
   4254 *
   4255 * Unmap the CPU virtual address @res from virtual address space.  Only
   4256 * architectures that have memory mapped IO functions defined (and the
   4257 * PCI_IOBASE value defined) should call this function.
   4258 */
   4259void pci_unmap_iospace(struct resource *res)
   4260{
   4261#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
   4262	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
   4263
   4264	vunmap_range(vaddr, vaddr + resource_size(res));
   4265#endif
   4266}
   4267EXPORT_SYMBOL(pci_unmap_iospace);
   4268
   4269static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
   4270{
   4271	struct resource **res = ptr;
   4272
   4273	pci_unmap_iospace(*res);
   4274}
   4275
   4276/**
   4277 * devm_pci_remap_iospace - Managed pci_remap_iospace()
   4278 * @dev: Generic device to remap IO address for
   4279 * @res: Resource describing the I/O space
   4280 * @phys_addr: physical address of range to be mapped
   4281 *
   4282 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
   4283 * detach.
   4284 */
   4285int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
   4286			   phys_addr_t phys_addr)
   4287{
   4288	const struct resource **ptr;
   4289	int error;
   4290
   4291	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
   4292	if (!ptr)
   4293		return -ENOMEM;
   4294
   4295	error = pci_remap_iospace(res, phys_addr);
   4296	if (error) {
   4297		devres_free(ptr);
   4298	} else	{
   4299		*ptr = res;
   4300		devres_add(dev, ptr);
   4301	}
   4302
   4303	return error;
   4304}
   4305EXPORT_SYMBOL(devm_pci_remap_iospace);
   4306
   4307/**
   4308 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
   4309 * @dev: Generic device to remap IO address for
   4310 * @offset: Resource address to map
   4311 * @size: Size of map
   4312 *
   4313 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
   4314 * detach.
   4315 */
   4316void __iomem *devm_pci_remap_cfgspace(struct device *dev,
   4317				      resource_size_t offset,
   4318				      resource_size_t size)
   4319{
   4320	void __iomem **ptr, *addr;
   4321
   4322	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
   4323	if (!ptr)
   4324		return NULL;
   4325
   4326	addr = pci_remap_cfgspace(offset, size);
   4327	if (addr) {
   4328		*ptr = addr;
   4329		devres_add(dev, ptr);
   4330	} else
   4331		devres_free(ptr);
   4332
   4333	return addr;
   4334}
   4335EXPORT_SYMBOL(devm_pci_remap_cfgspace);
   4336
   4337/**
   4338 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
   4339 * @dev: generic device to handle the resource for
   4340 * @res: configuration space resource to be handled
   4341 *
   4342 * Checks that a resource is a valid memory region, requests the memory
   4343 * region and ioremaps with pci_remap_cfgspace() API that ensures the
   4344 * proper PCI configuration space memory attributes are guaranteed.
   4345 *
   4346 * All operations are managed and will be undone on driver detach.
   4347 *
   4348 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
   4349 * on failure. Usage example::
   4350 *
   4351 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   4352 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
   4353 *	if (IS_ERR(base))
   4354 *		return PTR_ERR(base);
   4355 */
   4356void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
   4357					  struct resource *res)
   4358{
   4359	resource_size_t size;
   4360	const char *name;
   4361	void __iomem *dest_ptr;
   4362
   4363	BUG_ON(!dev);
   4364
   4365	if (!res || resource_type(res) != IORESOURCE_MEM) {
   4366		dev_err(dev, "invalid resource\n");
   4367		return IOMEM_ERR_PTR(-EINVAL);
   4368	}
   4369
   4370	size = resource_size(res);
   4371
   4372	if (res->name)
   4373		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
   4374				      res->name);
   4375	else
   4376		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
   4377	if (!name)
   4378		return IOMEM_ERR_PTR(-ENOMEM);
   4379
   4380	if (!devm_request_mem_region(dev, res->start, size, name)) {
   4381		dev_err(dev, "can't request region for resource %pR\n", res);
   4382		return IOMEM_ERR_PTR(-EBUSY);
   4383	}
   4384
   4385	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
   4386	if (!dest_ptr) {
   4387		dev_err(dev, "ioremap failed for resource %pR\n", res);
   4388		devm_release_mem_region(dev, res->start, size);
   4389		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
   4390	}
   4391
   4392	return dest_ptr;
   4393}
   4394EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
   4395
   4396static void __pci_set_master(struct pci_dev *dev, bool enable)
   4397{
   4398	u16 old_cmd, cmd;
   4399
   4400	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
   4401	if (enable)
   4402		cmd = old_cmd | PCI_COMMAND_MASTER;
   4403	else
   4404		cmd = old_cmd & ~PCI_COMMAND_MASTER;
   4405	if (cmd != old_cmd) {
   4406		pci_dbg(dev, "%s bus mastering\n",
   4407			enable ? "enabling" : "disabling");
   4408		pci_write_config_word(dev, PCI_COMMAND, cmd);
   4409	}
   4410	dev->is_busmaster = enable;
   4411}
   4412
   4413/**
   4414 * pcibios_setup - process "pci=" kernel boot arguments
   4415 * @str: string used to pass in "pci=" kernel boot arguments
   4416 *
   4417 * Process kernel boot arguments.  This is the default implementation.
   4418 * Architecture specific implementations can override this as necessary.
   4419 */
   4420char * __weak __init pcibios_setup(char *str)
   4421{
   4422	return str;
   4423}
   4424
   4425/**
   4426 * pcibios_set_master - enable PCI bus-mastering for device dev
   4427 * @dev: the PCI device to enable
   4428 *
   4429 * Enables PCI bus-mastering for the device.  This is the default
   4430 * implementation.  Architecture specific implementations can override
   4431 * this if necessary.
   4432 */
   4433void __weak pcibios_set_master(struct pci_dev *dev)
   4434{
   4435	u8 lat;
   4436
   4437	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
   4438	if (pci_is_pcie(dev))
   4439		return;
   4440
   4441	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
   4442	if (lat < 16)
   4443		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
   4444	else if (lat > pcibios_max_latency)
   4445		lat = pcibios_max_latency;
   4446	else
   4447		return;
   4448
   4449	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
   4450}
   4451
   4452/**
   4453 * pci_set_master - enables bus-mastering for device dev
   4454 * @dev: the PCI device to enable
   4455 *
   4456 * Enables bus-mastering on the device and calls pcibios_set_master()
   4457 * to do the needed arch specific settings.
   4458 */
   4459void pci_set_master(struct pci_dev *dev)
   4460{
   4461	__pci_set_master(dev, true);
   4462	pcibios_set_master(dev);
   4463}
   4464EXPORT_SYMBOL(pci_set_master);
   4465
   4466/**
   4467 * pci_clear_master - disables bus-mastering for device dev
   4468 * @dev: the PCI device to disable
   4469 */
   4470void pci_clear_master(struct pci_dev *dev)
   4471{
   4472	__pci_set_master(dev, false);
   4473}
   4474EXPORT_SYMBOL(pci_clear_master);
   4475
   4476/**
   4477 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
   4478 * @dev: the PCI device for which MWI is to be enabled
   4479 *
   4480 * Helper function for pci_set_mwi.
   4481 * Originally copied from drivers/net/acenic.c.
   4482 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
   4483 *
   4484 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
   4485 */
   4486int pci_set_cacheline_size(struct pci_dev *dev)
   4487{
   4488	u8 cacheline_size;
   4489
   4490	if (!pci_cache_line_size)
   4491		return -EINVAL;
   4492
   4493	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
   4494	   equal to or multiple of the right value. */
   4495	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
   4496	if (cacheline_size >= pci_cache_line_size &&
   4497	    (cacheline_size % pci_cache_line_size) == 0)
   4498		return 0;
   4499
   4500	/* Write the correct value. */
   4501	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
   4502	/* Read it back. */
   4503	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
   4504	if (cacheline_size == pci_cache_line_size)
   4505		return 0;
   4506
   4507	pci_dbg(dev, "cache line size of %d is not supported\n",
   4508		   pci_cache_line_size << 2);
   4509
   4510	return -EINVAL;
   4511}
   4512EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
   4513
   4514/**
   4515 * pci_set_mwi - enables memory-write-invalidate PCI transaction
   4516 * @dev: the PCI device for which MWI is enabled
   4517 *
   4518 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
   4519 *
   4520 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
   4521 */
   4522int pci_set_mwi(struct pci_dev *dev)
   4523{
   4524#ifdef PCI_DISABLE_MWI
   4525	return 0;
   4526#else
   4527	int rc;
   4528	u16 cmd;
   4529
   4530	rc = pci_set_cacheline_size(dev);
   4531	if (rc)
   4532		return rc;
   4533
   4534	pci_read_config_word(dev, PCI_COMMAND, &cmd);
   4535	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
   4536		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
   4537		cmd |= PCI_COMMAND_INVALIDATE;
   4538		pci_write_config_word(dev, PCI_COMMAND, cmd);
   4539	}
   4540	return 0;
   4541#endif
   4542}
   4543EXPORT_SYMBOL(pci_set_mwi);
   4544
   4545/**
   4546 * pcim_set_mwi - a device-managed pci_set_mwi()
   4547 * @dev: the PCI device for which MWI is enabled
   4548 *
   4549 * Managed pci_set_mwi().
   4550 *
   4551 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
   4552 */
   4553int pcim_set_mwi(struct pci_dev *dev)
   4554{
   4555	struct pci_devres *dr;
   4556
   4557	dr = find_pci_dr(dev);
   4558	if (!dr)
   4559		return -ENOMEM;
   4560
   4561	dr->mwi = 1;
   4562	return pci_set_mwi(dev);
   4563}
   4564EXPORT_SYMBOL(pcim_set_mwi);
   4565
   4566/**
   4567 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
   4568 * @dev: the PCI device for which MWI is enabled
   4569 *
   4570 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
   4571 * Callers are not required to check the return value.
   4572 *
   4573 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
   4574 */
   4575int pci_try_set_mwi(struct pci_dev *dev)
   4576{
   4577#ifdef PCI_DISABLE_MWI
   4578	return 0;
   4579#else
   4580	return pci_set_mwi(dev);
   4581#endif
   4582}
   4583EXPORT_SYMBOL(pci_try_set_mwi);
   4584
   4585/**
   4586 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
   4587 * @dev: the PCI device to disable
   4588 *
   4589 * Disables PCI Memory-Write-Invalidate transaction on the device
   4590 */
   4591void pci_clear_mwi(struct pci_dev *dev)
   4592{
   4593#ifndef PCI_DISABLE_MWI
   4594	u16 cmd;
   4595
   4596	pci_read_config_word(dev, PCI_COMMAND, &cmd);
   4597	if (cmd & PCI_COMMAND_INVALIDATE) {
   4598		cmd &= ~PCI_COMMAND_INVALIDATE;
   4599		pci_write_config_word(dev, PCI_COMMAND, cmd);
   4600	}
   4601#endif
   4602}
   4603EXPORT_SYMBOL(pci_clear_mwi);
   4604
   4605/**
   4606 * pci_disable_parity - disable parity checking for device
   4607 * @dev: the PCI device to operate on
   4608 *
   4609 * Disable parity checking for device @dev
   4610 */
   4611void pci_disable_parity(struct pci_dev *dev)
   4612{
   4613	u16 cmd;
   4614
   4615	pci_read_config_word(dev, PCI_COMMAND, &cmd);
   4616	if (cmd & PCI_COMMAND_PARITY) {
   4617		cmd &= ~PCI_COMMAND_PARITY;
   4618		pci_write_config_word(dev, PCI_COMMAND, cmd);
   4619	}
   4620}
   4621
   4622/**
   4623 * pci_intx - enables/disables PCI INTx for device dev
   4624 * @pdev: the PCI device to operate on
   4625 * @enable: boolean: whether to enable or disable PCI INTx
   4626 *
   4627 * Enables/disables PCI INTx for device @pdev
   4628 */
   4629void pci_intx(struct pci_dev *pdev, int enable)
   4630{
   4631	u16 pci_command, new;
   4632
   4633	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
   4634
   4635	if (enable)
   4636		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
   4637	else
   4638		new = pci_command | PCI_COMMAND_INTX_DISABLE;
   4639
   4640	if (new != pci_command) {
   4641		struct pci_devres *dr;
   4642
   4643		pci_write_config_word(pdev, PCI_COMMAND, new);
   4644
   4645		dr = find_pci_dr(pdev);
   4646		if (dr && !dr->restore_intx) {
   4647			dr->restore_intx = 1;
   4648			dr->orig_intx = !enable;
   4649		}
   4650	}
   4651}
   4652EXPORT_SYMBOL_GPL(pci_intx);
   4653
   4654static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
   4655{
   4656	struct pci_bus *bus = dev->bus;
   4657	bool mask_updated = true;
   4658	u32 cmd_status_dword;
   4659	u16 origcmd, newcmd;
   4660	unsigned long flags;
   4661	bool irq_pending;
   4662
   4663	/*
   4664	 * We do a single dword read to retrieve both command and status.
   4665	 * Document assumptions that make this possible.
   4666	 */
   4667	BUILD_BUG_ON(PCI_COMMAND % 4);
   4668	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
   4669
   4670	raw_spin_lock_irqsave(&pci_lock, flags);
   4671
   4672	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
   4673
   4674	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
   4675
   4676	/*
   4677	 * Check interrupt status register to see whether our device
   4678	 * triggered the interrupt (when masking) or the next IRQ is
   4679	 * already pending (when unmasking).
   4680	 */
   4681	if (mask != irq_pending) {
   4682		mask_updated = false;
   4683		goto done;
   4684	}
   4685
   4686	origcmd = cmd_status_dword;
   4687	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
   4688	if (mask)
   4689		newcmd |= PCI_COMMAND_INTX_DISABLE;
   4690	if (newcmd != origcmd)
   4691		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
   4692
   4693done:
   4694	raw_spin_unlock_irqrestore(&pci_lock, flags);
   4695
   4696	return mask_updated;
   4697}
   4698
   4699/**
   4700 * pci_check_and_mask_intx - mask INTx on pending interrupt
   4701 * @dev: the PCI device to operate on
   4702 *
   4703 * Check if the device dev has its INTx line asserted, mask it and return
   4704 * true in that case. False is returned if no interrupt was pending.
   4705 */
   4706bool pci_check_and_mask_intx(struct pci_dev *dev)
   4707{
   4708	return pci_check_and_set_intx_mask(dev, true);
   4709}
   4710EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
   4711
   4712/**
   4713 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
   4714 * @dev: the PCI device to operate on
   4715 *
   4716 * Check if the device dev has its INTx line asserted, unmask it if not and
   4717 * return true. False is returned and the mask remains active if there was
   4718 * still an interrupt pending.
   4719 */
   4720bool pci_check_and_unmask_intx(struct pci_dev *dev)
   4721{
   4722	return pci_check_and_set_intx_mask(dev, false);
   4723}
   4724EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
   4725
   4726/**
   4727 * pci_wait_for_pending_transaction - wait for pending transaction
   4728 * @dev: the PCI device to operate on
   4729 *
   4730 * Return 0 if transaction is pending 1 otherwise.
   4731 */
   4732int pci_wait_for_pending_transaction(struct pci_dev *dev)
   4733{
   4734	if (!pci_is_pcie(dev))
   4735		return 1;
   4736
   4737	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
   4738				    PCI_EXP_DEVSTA_TRPND);
   4739}
   4740EXPORT_SYMBOL(pci_wait_for_pending_transaction);
   4741
   4742/**
   4743 * pcie_flr - initiate a PCIe function level reset
   4744 * @dev: device to reset
   4745 *
   4746 * Initiate a function level reset unconditionally on @dev without
   4747 * checking any flags and DEVCAP
   4748 */
   4749int pcie_flr(struct pci_dev *dev)
   4750{
   4751	if (!pci_wait_for_pending_transaction(dev))
   4752		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
   4753
   4754	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
   4755
   4756	if (dev->imm_ready)
   4757		return 0;
   4758
   4759	/*
   4760	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
   4761	 * 100ms, but may silently discard requests while the FLR is in
   4762	 * progress.  Wait 100ms before trying to access the device.
   4763	 */
   4764	msleep(100);
   4765
   4766	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
   4767}
   4768EXPORT_SYMBOL_GPL(pcie_flr);
   4769
   4770/**
   4771 * pcie_reset_flr - initiate a PCIe function level reset
   4772 * @dev: device to reset
   4773 * @probe: if true, return 0 if device can be reset this way
   4774 *
   4775 * Initiate a function level reset on @dev.
   4776 */
   4777int pcie_reset_flr(struct pci_dev *dev, bool probe)
   4778{
   4779	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
   4780		return -ENOTTY;
   4781
   4782	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
   4783		return -ENOTTY;
   4784
   4785	if (probe)
   4786		return 0;
   4787
   4788	return pcie_flr(dev);
   4789}
   4790EXPORT_SYMBOL_GPL(pcie_reset_flr);
   4791
   4792static int pci_af_flr(struct pci_dev *dev, bool probe)
   4793{
   4794	int pos;
   4795	u8 cap;
   4796
   4797	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
   4798	if (!pos)
   4799		return -ENOTTY;
   4800
   4801	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
   4802		return -ENOTTY;
   4803
   4804	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
   4805	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
   4806		return -ENOTTY;
   4807
   4808	if (probe)
   4809		return 0;
   4810
   4811	/*
   4812	 * Wait for Transaction Pending bit to clear.  A word-aligned test
   4813	 * is used, so we use the control offset rather than status and shift
   4814	 * the test bit to match.
   4815	 */
   4816	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
   4817				 PCI_AF_STATUS_TP << 8))
   4818		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
   4819
   4820	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
   4821
   4822	if (dev->imm_ready)
   4823		return 0;
   4824
   4825	/*
   4826	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
   4827	 * updated 27 July 2006; a device must complete an FLR within
   4828	 * 100ms, but may silently discard requests while the FLR is in
   4829	 * progress.  Wait 100ms before trying to access the device.
   4830	 */
   4831	msleep(100);
   4832
   4833	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
   4834}
   4835
   4836/**
   4837 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
   4838 * @dev: Device to reset.
   4839 * @probe: if true, return 0 if the device can be reset this way.
   4840 *
   4841 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
   4842 * unset, it will be reinitialized internally when going from PCI_D3hot to
   4843 * PCI_D0.  If that's the case and the device is not in a low-power state
   4844 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
   4845 *
   4846 * NOTE: This causes the caller to sleep for twice the device power transition
   4847 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
   4848 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
   4849 * Moreover, only devices in D0 can be reset by this function.
   4850 */
   4851static int pci_pm_reset(struct pci_dev *dev, bool probe)
   4852{
   4853	u16 csr;
   4854
   4855	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
   4856		return -ENOTTY;
   4857
   4858	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
   4859	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
   4860		return -ENOTTY;
   4861
   4862	if (probe)
   4863		return 0;
   4864
   4865	if (dev->current_state != PCI_D0)
   4866		return -EINVAL;
   4867
   4868	csr &= ~PCI_PM_CTRL_STATE_MASK;
   4869	csr |= PCI_D3hot;
   4870	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
   4871	pci_dev_d3_sleep(dev);
   4872
   4873	csr &= ~PCI_PM_CTRL_STATE_MASK;
   4874	csr |= PCI_D0;
   4875	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
   4876	pci_dev_d3_sleep(dev);
   4877
   4878	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
   4879}
   4880
   4881/**
   4882 * pcie_wait_for_link_delay - Wait until link is active or inactive
   4883 * @pdev: Bridge device
   4884 * @active: waiting for active or inactive?
   4885 * @delay: Delay to wait after link has become active (in ms)
   4886 *
   4887 * Use this to wait till link becomes active or inactive.
   4888 */
   4889static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
   4890				     int delay)
   4891{
   4892	int timeout = 1000;
   4893	bool ret;
   4894	u16 lnk_status;
   4895
   4896	/*
   4897	 * Some controllers might not implement link active reporting. In this
   4898	 * case, we wait for 1000 ms + any delay requested by the caller.
   4899	 */
   4900	if (!pdev->link_active_reporting) {
   4901		msleep(timeout + delay);
   4902		return true;
   4903	}
   4904
   4905	/*
   4906	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
   4907	 * after which we should expect an link active if the reset was
   4908	 * successful. If so, software must wait a minimum 100ms before sending
   4909	 * configuration requests to devices downstream this port.
   4910	 *
   4911	 * If the link fails to activate, either the device was physically
   4912	 * removed or the link is permanently failed.
   4913	 */
   4914	if (active)
   4915		msleep(20);
   4916	for (;;) {
   4917		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
   4918		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
   4919		if (ret == active)
   4920			break;
   4921		if (timeout <= 0)
   4922			break;
   4923		msleep(10);
   4924		timeout -= 10;
   4925	}
   4926	if (active && ret)
   4927		msleep(delay);
   4928
   4929	return ret == active;
   4930}
   4931
   4932/**
   4933 * pcie_wait_for_link - Wait until link is active or inactive
   4934 * @pdev: Bridge device
   4935 * @active: waiting for active or inactive?
   4936 *
   4937 * Use this to wait till link becomes active or inactive.
   4938 */
   4939bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
   4940{
   4941	return pcie_wait_for_link_delay(pdev, active, 100);
   4942}
   4943
   4944/*
   4945 * Find maximum D3cold delay required by all the devices on the bus.  The
   4946 * spec says 100 ms, but firmware can lower it and we allow drivers to
   4947 * increase it as well.
   4948 *
   4949 * Called with @pci_bus_sem locked for reading.
   4950 */
   4951static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
   4952{
   4953	const struct pci_dev *pdev;
   4954	int min_delay = 100;
   4955	int max_delay = 0;
   4956
   4957	list_for_each_entry(pdev, &bus->devices, bus_list) {
   4958		if (pdev->d3cold_delay < min_delay)
   4959			min_delay = pdev->d3cold_delay;
   4960		if (pdev->d3cold_delay > max_delay)
   4961			max_delay = pdev->d3cold_delay;
   4962	}
   4963
   4964	return max(min_delay, max_delay);
   4965}
   4966
   4967/**
   4968 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
   4969 * @dev: PCI bridge
   4970 *
   4971 * Handle necessary delays before access to the devices on the secondary
   4972 * side of the bridge are permitted after D3cold to D0 transition.
   4973 *
   4974 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
   4975 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
   4976 * 4.3.2.
   4977 */
   4978void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
   4979{
   4980	struct pci_dev *child;
   4981	int delay;
   4982
   4983	if (pci_dev_is_disconnected(dev))
   4984		return;
   4985
   4986	if (!pci_is_bridge(dev) || !dev->bridge_d3)
   4987		return;
   4988
   4989	down_read(&pci_bus_sem);
   4990
   4991	/*
   4992	 * We only deal with devices that are present currently on the bus.
   4993	 * For any hot-added devices the access delay is handled in pciehp
   4994	 * board_added(). In case of ACPI hotplug the firmware is expected
   4995	 * to configure the devices before OS is notified.
   4996	 */
   4997	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
   4998		up_read(&pci_bus_sem);
   4999		return;
   5000	}
   5001
   5002	/* Take d3cold_delay requirements into account */
   5003	delay = pci_bus_max_d3cold_delay(dev->subordinate);
   5004	if (!delay) {
   5005		up_read(&pci_bus_sem);
   5006		return;
   5007	}
   5008
   5009	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
   5010				 bus_list);
   5011	up_read(&pci_bus_sem);
   5012
   5013	/*
   5014	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
   5015	 * accessing the device after reset (that is 1000 ms + 100 ms). In
   5016	 * practice this should not be needed because we don't do power
   5017	 * management for them (see pci_bridge_d3_possible()).
   5018	 */
   5019	if (!pci_is_pcie(dev)) {
   5020		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
   5021		msleep(1000 + delay);
   5022		return;
   5023	}
   5024
   5025	/*
   5026	 * For PCIe downstream and root ports that do not support speeds
   5027	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
   5028	 * speeds (gen3) we need to wait first for the data link layer to
   5029	 * become active.
   5030	 *
   5031	 * However, 100 ms is the minimum and the PCIe spec says the
   5032	 * software must allow at least 1s before it can determine that the
   5033	 * device that did not respond is a broken device. There is
   5034	 * evidence that 100 ms is not always enough, for example certain
   5035	 * Titan Ridge xHCI controller does not always respond to
   5036	 * configuration requests if we only wait for 100 ms (see
   5037	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
   5038	 *
   5039	 * Therefore we wait for 100 ms and check for the device presence.
   5040	 * If it is still not present give it an additional 100 ms.
   5041	 */
   5042	if (!pcie_downstream_port(dev))
   5043		return;
   5044
   5045	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
   5046		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
   5047		msleep(delay);
   5048	} else {
   5049		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
   5050			delay);
   5051		if (!pcie_wait_for_link_delay(dev, true, delay)) {
   5052			/* Did not train, no need to wait any further */
   5053			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
   5054			return;
   5055		}
   5056	}
   5057
   5058	if (!pci_device_is_present(child)) {
   5059		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
   5060		msleep(delay);
   5061	}
   5062}
   5063
   5064void pci_reset_secondary_bus(struct pci_dev *dev)
   5065{
   5066	u16 ctrl;
   5067
   5068	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
   5069	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
   5070	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
   5071
   5072	/*
   5073	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
   5074	 * this to 2ms to ensure that we meet the minimum requirement.
   5075	 */
   5076	msleep(2);
   5077
   5078	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
   5079	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
   5080
   5081	/*
   5082	 * Trhfa for conventional PCI is 2^25 clock cycles.
   5083	 * Assuming a minimum 33MHz clock this results in a 1s
   5084	 * delay before we can consider subordinate devices to
   5085	 * be re-initialized.  PCIe has some ways to shorten this,
   5086	 * but we don't make use of them yet.
   5087	 */
   5088	ssleep(1);
   5089}
   5090
   5091void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
   5092{
   5093	pci_reset_secondary_bus(dev);
   5094}
   5095
   5096/**
   5097 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
   5098 * @dev: Bridge device
   5099 *
   5100 * Use the bridge control register to assert reset on the secondary bus.
   5101 * Devices on the secondary bus are left in power-on state.
   5102 */
   5103int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
   5104{
   5105	pcibios_reset_secondary_bus(dev);
   5106
   5107	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
   5108}
   5109EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
   5110
   5111static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
   5112{
   5113	struct pci_dev *pdev;
   5114
   5115	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
   5116	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
   5117		return -ENOTTY;
   5118
   5119	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
   5120		if (pdev != dev)
   5121			return -ENOTTY;
   5122
   5123	if (probe)
   5124		return 0;
   5125
   5126	return pci_bridge_secondary_bus_reset(dev->bus->self);
   5127}
   5128
   5129static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
   5130{
   5131	int rc = -ENOTTY;
   5132
   5133	if (!hotplug || !try_module_get(hotplug->owner))
   5134		return rc;
   5135
   5136	if (hotplug->ops->reset_slot)
   5137		rc = hotplug->ops->reset_slot(hotplug, probe);
   5138
   5139	module_put(hotplug->owner);
   5140
   5141	return rc;
   5142}
   5143
   5144static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
   5145{
   5146	if (dev->multifunction || dev->subordinate || !dev->slot ||
   5147	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
   5148		return -ENOTTY;
   5149
   5150	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
   5151}
   5152
   5153static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
   5154{
   5155	int rc;
   5156
   5157	rc = pci_dev_reset_slot_function(dev, probe);
   5158	if (rc != -ENOTTY)
   5159		return rc;
   5160	return pci_parent_bus_reset(dev, probe);
   5161}
   5162
   5163void pci_dev_lock(struct pci_dev *dev)
   5164{
   5165	/* block PM suspend, driver probe, etc. */
   5166	device_lock(&dev->dev);
   5167	pci_cfg_access_lock(dev);
   5168}
   5169EXPORT_SYMBOL_GPL(pci_dev_lock);
   5170
   5171/* Return 1 on successful lock, 0 on contention */
   5172int pci_dev_trylock(struct pci_dev *dev)
   5173{
   5174	if (device_trylock(&dev->dev)) {
   5175		if (pci_cfg_access_trylock(dev))
   5176			return 1;
   5177		device_unlock(&dev->dev);
   5178	}
   5179
   5180	return 0;
   5181}
   5182EXPORT_SYMBOL_GPL(pci_dev_trylock);
   5183
   5184void pci_dev_unlock(struct pci_dev *dev)
   5185{
   5186	pci_cfg_access_unlock(dev);
   5187	device_unlock(&dev->dev);
   5188}
   5189EXPORT_SYMBOL_GPL(pci_dev_unlock);
   5190
   5191static void pci_dev_save_and_disable(struct pci_dev *dev)
   5192{
   5193	const struct pci_error_handlers *err_handler =
   5194			dev->driver ? dev->driver->err_handler : NULL;
   5195
   5196	/*
   5197	 * dev->driver->err_handler->reset_prepare() is protected against
   5198	 * races with ->remove() by the device lock, which must be held by
   5199	 * the caller.
   5200	 */
   5201	if (err_handler && err_handler->reset_prepare)
   5202		err_handler->reset_prepare(dev);
   5203
   5204	/*
   5205	 * Wake-up device prior to save.  PM registers default to D0 after
   5206	 * reset and a simple register restore doesn't reliably return
   5207	 * to a non-D0 state anyway.
   5208	 */
   5209	pci_set_power_state(dev, PCI_D0);
   5210
   5211	pci_save_state(dev);
   5212	/*
   5213	 * Disable the device by clearing the Command register, except for
   5214	 * INTx-disable which is set.  This not only disables MMIO and I/O port
   5215	 * BARs, but also prevents the device from being Bus Master, preventing
   5216	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
   5217	 * compliant devices, INTx-disable prevents legacy interrupts.
   5218	 */
   5219	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
   5220}
   5221
   5222static void pci_dev_restore(struct pci_dev *dev)
   5223{
   5224	const struct pci_error_handlers *err_handler =
   5225			dev->driver ? dev->driver->err_handler : NULL;
   5226
   5227	pci_restore_state(dev);
   5228
   5229	/*
   5230	 * dev->driver->err_handler->reset_done() is protected against
   5231	 * races with ->remove() by the device lock, which must be held by
   5232	 * the caller.
   5233	 */
   5234	if (err_handler && err_handler->reset_done)
   5235		err_handler->reset_done(dev);
   5236}
   5237
   5238/* dev->reset_methods[] is a 0-terminated list of indices into this array */
   5239static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
   5240	{ },
   5241	{ pci_dev_specific_reset, .name = "device_specific" },
   5242	{ pci_dev_acpi_reset, .name = "acpi" },
   5243	{ pcie_reset_flr, .name = "flr" },
   5244	{ pci_af_flr, .name = "af_flr" },
   5245	{ pci_pm_reset, .name = "pm" },
   5246	{ pci_reset_bus_function, .name = "bus" },
   5247};
   5248
   5249static ssize_t reset_method_show(struct device *dev,
   5250				 struct device_attribute *attr, char *buf)
   5251{
   5252	struct pci_dev *pdev = to_pci_dev(dev);
   5253	ssize_t len = 0;
   5254	int i, m;
   5255
   5256	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
   5257		m = pdev->reset_methods[i];
   5258		if (!m)
   5259			break;
   5260
   5261		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
   5262				     pci_reset_fn_methods[m].name);
   5263	}
   5264
   5265	if (len)
   5266		len += sysfs_emit_at(buf, len, "\n");
   5267
   5268	return len;
   5269}
   5270
   5271static int reset_method_lookup(const char *name)
   5272{
   5273	int m;
   5274
   5275	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
   5276		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
   5277			return m;
   5278	}
   5279
   5280	return 0;	/* not found */
   5281}
   5282
   5283static ssize_t reset_method_store(struct device *dev,
   5284				  struct device_attribute *attr,
   5285				  const char *buf, size_t count)
   5286{
   5287	struct pci_dev *pdev = to_pci_dev(dev);
   5288	char *options, *name;
   5289	int m, n;
   5290	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
   5291
   5292	if (sysfs_streq(buf, "")) {
   5293		pdev->reset_methods[0] = 0;
   5294		pci_warn(pdev, "All device reset methods disabled by user");
   5295		return count;
   5296	}
   5297
   5298	if (sysfs_streq(buf, "default")) {
   5299		pci_init_reset_methods(pdev);
   5300		return count;
   5301	}
   5302
   5303	options = kstrndup(buf, count, GFP_KERNEL);
   5304	if (!options)
   5305		return -ENOMEM;
   5306
   5307	n = 0;
   5308	while ((name = strsep(&options, " ")) != NULL) {
   5309		if (sysfs_streq(name, ""))
   5310			continue;
   5311
   5312		name = strim(name);
   5313
   5314		m = reset_method_lookup(name);
   5315		if (!m) {
   5316			pci_err(pdev, "Invalid reset method '%s'", name);
   5317			goto error;
   5318		}
   5319
   5320		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
   5321			pci_err(pdev, "Unsupported reset method '%s'", name);
   5322			goto error;
   5323		}
   5324
   5325		if (n == PCI_NUM_RESET_METHODS - 1) {
   5326			pci_err(pdev, "Too many reset methods\n");
   5327			goto error;
   5328		}
   5329
   5330		reset_methods[n++] = m;
   5331	}
   5332
   5333	reset_methods[n] = 0;
   5334
   5335	/* Warn if dev-specific supported but not highest priority */
   5336	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
   5337	    reset_methods[0] != 1)
   5338		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
   5339	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
   5340	kfree(options);
   5341	return count;
   5342
   5343error:
   5344	/* Leave previous methods unchanged */
   5345	kfree(options);
   5346	return -EINVAL;
   5347}
   5348static DEVICE_ATTR_RW(reset_method);
   5349
   5350static struct attribute *pci_dev_reset_method_attrs[] = {
   5351	&dev_attr_reset_method.attr,
   5352	NULL,
   5353};
   5354
   5355static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
   5356						    struct attribute *a, int n)
   5357{
   5358	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
   5359
   5360	if (!pci_reset_supported(pdev))
   5361		return 0;
   5362
   5363	return a->mode;
   5364}
   5365
   5366const struct attribute_group pci_dev_reset_method_attr_group = {
   5367	.attrs = pci_dev_reset_method_attrs,
   5368	.is_visible = pci_dev_reset_method_attr_is_visible,
   5369};
   5370
   5371/**
   5372 * __pci_reset_function_locked - reset a PCI device function while holding
   5373 * the @dev mutex lock.
   5374 * @dev: PCI device to reset
   5375 *
   5376 * Some devices allow an individual function to be reset without affecting
   5377 * other functions in the same device.  The PCI device must be responsive
   5378 * to PCI config space in order to use this function.
   5379 *
   5380 * The device function is presumed to be unused and the caller is holding
   5381 * the device mutex lock when this function is called.
   5382 *
   5383 * Resetting the device will make the contents of PCI configuration space
   5384 * random, so any caller of this must be prepared to reinitialise the
   5385 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
   5386 * etc.
   5387 *
   5388 * Returns 0 if the device function was successfully reset or negative if the
   5389 * device doesn't support resetting a single function.
   5390 */
   5391int __pci_reset_function_locked(struct pci_dev *dev)
   5392{
   5393	int i, m, rc;
   5394
   5395	might_sleep();
   5396
   5397	/*
   5398	 * A reset method returns -ENOTTY if it doesn't support this device and
   5399	 * we should try the next method.
   5400	 *
   5401	 * If it returns 0 (success), we're finished.  If it returns any other
   5402	 * error, we're also finished: this indicates that further reset
   5403	 * mechanisms might be broken on the device.
   5404	 */
   5405	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
   5406		m = dev->reset_methods[i];
   5407		if (!m)
   5408			return -ENOTTY;
   5409
   5410		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
   5411		if (!rc)
   5412			return 0;
   5413		if (rc != -ENOTTY)
   5414			return rc;
   5415	}
   5416
   5417	return -ENOTTY;
   5418}
   5419EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
   5420
   5421/**
   5422 * pci_init_reset_methods - check whether device can be safely reset
   5423 * and store supported reset mechanisms.
   5424 * @dev: PCI device to check for reset mechanisms
   5425 *
   5426 * Some devices allow an individual function to be reset without affecting
   5427 * other functions in the same device.  The PCI device must be in D0-D3hot
   5428 * state.
   5429 *
   5430 * Stores reset mechanisms supported by device in reset_methods byte array
   5431 * which is a member of struct pci_dev.
   5432 */
   5433void pci_init_reset_methods(struct pci_dev *dev)
   5434{
   5435	int m, i, rc;
   5436
   5437	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
   5438
   5439	might_sleep();
   5440
   5441	i = 0;
   5442	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
   5443		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
   5444		if (!rc)
   5445			dev->reset_methods[i++] = m;
   5446		else if (rc != -ENOTTY)
   5447			break;
   5448	}
   5449
   5450	dev->reset_methods[i] = 0;
   5451}
   5452
   5453/**
   5454 * pci_reset_function - quiesce and reset a PCI device function
   5455 * @dev: PCI device to reset
   5456 *
   5457 * Some devices allow an individual function to be reset without affecting
   5458 * other functions in the same device.  The PCI device must be responsive
   5459 * to PCI config space in order to use this function.
   5460 *
   5461 * This function does not just reset the PCI portion of a device, but
   5462 * clears all the state associated with the device.  This function differs
   5463 * from __pci_reset_function_locked() in that it saves and restores device state
   5464 * over the reset and takes the PCI device lock.
   5465 *
   5466 * Returns 0 if the device function was successfully reset or negative if the
   5467 * device doesn't support resetting a single function.
   5468 */
   5469int pci_reset_function(struct pci_dev *dev)
   5470{
   5471	int rc;
   5472
   5473	if (!pci_reset_supported(dev))
   5474		return -ENOTTY;
   5475
   5476	pci_dev_lock(dev);
   5477	pci_dev_save_and_disable(dev);
   5478
   5479	rc = __pci_reset_function_locked(dev);
   5480
   5481	pci_dev_restore(dev);
   5482	pci_dev_unlock(dev);
   5483
   5484	return rc;
   5485}
   5486EXPORT_SYMBOL_GPL(pci_reset_function);
   5487
   5488/**
   5489 * pci_reset_function_locked - quiesce and reset a PCI device function
   5490 * @dev: PCI device to reset
   5491 *
   5492 * Some devices allow an individual function to be reset without affecting
   5493 * other functions in the same device.  The PCI device must be responsive
   5494 * to PCI config space in order to use this function.
   5495 *
   5496 * This function does not just reset the PCI portion of a device, but
   5497 * clears all the state associated with the device.  This function differs
   5498 * from __pci_reset_function_locked() in that it saves and restores device state
   5499 * over the reset.  It also differs from pci_reset_function() in that it
   5500 * requires the PCI device lock to be held.
   5501 *
   5502 * Returns 0 if the device function was successfully reset or negative if the
   5503 * device doesn't support resetting a single function.
   5504 */
   5505int pci_reset_function_locked(struct pci_dev *dev)
   5506{
   5507	int rc;
   5508
   5509	if (!pci_reset_supported(dev))
   5510		return -ENOTTY;
   5511
   5512	pci_dev_save_and_disable(dev);
   5513
   5514	rc = __pci_reset_function_locked(dev);
   5515
   5516	pci_dev_restore(dev);
   5517
   5518	return rc;
   5519}
   5520EXPORT_SYMBOL_GPL(pci_reset_function_locked);
   5521
   5522/**
   5523 * pci_try_reset_function - quiesce and reset a PCI device function
   5524 * @dev: PCI device to reset
   5525 *
   5526 * Same as above, except return -EAGAIN if unable to lock device.
   5527 */
   5528int pci_try_reset_function(struct pci_dev *dev)
   5529{
   5530	int rc;
   5531
   5532	if (!pci_reset_supported(dev))
   5533		return -ENOTTY;
   5534
   5535	if (!pci_dev_trylock(dev))
   5536		return -EAGAIN;
   5537
   5538	pci_dev_save_and_disable(dev);
   5539	rc = __pci_reset_function_locked(dev);
   5540	pci_dev_restore(dev);
   5541	pci_dev_unlock(dev);
   5542
   5543	return rc;
   5544}
   5545EXPORT_SYMBOL_GPL(pci_try_reset_function);
   5546
   5547/* Do any devices on or below this bus prevent a bus reset? */
   5548static bool pci_bus_resetable(struct pci_bus *bus)
   5549{
   5550	struct pci_dev *dev;
   5551
   5552
   5553	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
   5554		return false;
   5555
   5556	list_for_each_entry(dev, &bus->devices, bus_list) {
   5557		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
   5558		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
   5559			return false;
   5560	}
   5561
   5562	return true;
   5563}
   5564
   5565/* Lock devices from the top of the tree down */
   5566static void pci_bus_lock(struct pci_bus *bus)
   5567{
   5568	struct pci_dev *dev;
   5569
   5570	list_for_each_entry(dev, &bus->devices, bus_list) {
   5571		pci_dev_lock(dev);
   5572		if (dev->subordinate)
   5573			pci_bus_lock(dev->subordinate);
   5574	}
   5575}
   5576
   5577/* Unlock devices from the bottom of the tree up */
   5578static void pci_bus_unlock(struct pci_bus *bus)
   5579{
   5580	struct pci_dev *dev;
   5581
   5582	list_for_each_entry(dev, &bus->devices, bus_list) {
   5583		if (dev->subordinate)
   5584			pci_bus_unlock(dev->subordinate);
   5585		pci_dev_unlock(dev);
   5586	}
   5587}
   5588
   5589/* Return 1 on successful lock, 0 on contention */
   5590static int pci_bus_trylock(struct pci_bus *bus)
   5591{
   5592	struct pci_dev *dev;
   5593
   5594	list_for_each_entry(dev, &bus->devices, bus_list) {
   5595		if (!pci_dev_trylock(dev))
   5596			goto unlock;
   5597		if (dev->subordinate) {
   5598			if (!pci_bus_trylock(dev->subordinate)) {
   5599				pci_dev_unlock(dev);
   5600				goto unlock;
   5601			}
   5602		}
   5603	}
   5604	return 1;
   5605
   5606unlock:
   5607	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
   5608		if (dev->subordinate)
   5609			pci_bus_unlock(dev->subordinate);
   5610		pci_dev_unlock(dev);
   5611	}
   5612	return 0;
   5613}
   5614
   5615/* Do any devices on or below this slot prevent a bus reset? */
   5616static bool pci_slot_resetable(struct pci_slot *slot)
   5617{
   5618	struct pci_dev *dev;
   5619
   5620	if (slot->bus->self &&
   5621	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
   5622		return false;
   5623
   5624	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5625		if (!dev->slot || dev->slot != slot)
   5626			continue;
   5627		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
   5628		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
   5629			return false;
   5630	}
   5631
   5632	return true;
   5633}
   5634
   5635/* Lock devices from the top of the tree down */
   5636static void pci_slot_lock(struct pci_slot *slot)
   5637{
   5638	struct pci_dev *dev;
   5639
   5640	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5641		if (!dev->slot || dev->slot != slot)
   5642			continue;
   5643		pci_dev_lock(dev);
   5644		if (dev->subordinate)
   5645			pci_bus_lock(dev->subordinate);
   5646	}
   5647}
   5648
   5649/* Unlock devices from the bottom of the tree up */
   5650static void pci_slot_unlock(struct pci_slot *slot)
   5651{
   5652	struct pci_dev *dev;
   5653
   5654	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5655		if (!dev->slot || dev->slot != slot)
   5656			continue;
   5657		if (dev->subordinate)
   5658			pci_bus_unlock(dev->subordinate);
   5659		pci_dev_unlock(dev);
   5660	}
   5661}
   5662
   5663/* Return 1 on successful lock, 0 on contention */
   5664static int pci_slot_trylock(struct pci_slot *slot)
   5665{
   5666	struct pci_dev *dev;
   5667
   5668	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5669		if (!dev->slot || dev->slot != slot)
   5670			continue;
   5671		if (!pci_dev_trylock(dev))
   5672			goto unlock;
   5673		if (dev->subordinate) {
   5674			if (!pci_bus_trylock(dev->subordinate)) {
   5675				pci_dev_unlock(dev);
   5676				goto unlock;
   5677			}
   5678		}
   5679	}
   5680	return 1;
   5681
   5682unlock:
   5683	list_for_each_entry_continue_reverse(dev,
   5684					     &slot->bus->devices, bus_list) {
   5685		if (!dev->slot || dev->slot != slot)
   5686			continue;
   5687		if (dev->subordinate)
   5688			pci_bus_unlock(dev->subordinate);
   5689		pci_dev_unlock(dev);
   5690	}
   5691	return 0;
   5692}
   5693
   5694/*
   5695 * Save and disable devices from the top of the tree down while holding
   5696 * the @dev mutex lock for the entire tree.
   5697 */
   5698static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
   5699{
   5700	struct pci_dev *dev;
   5701
   5702	list_for_each_entry(dev, &bus->devices, bus_list) {
   5703		pci_dev_save_and_disable(dev);
   5704		if (dev->subordinate)
   5705			pci_bus_save_and_disable_locked(dev->subordinate);
   5706	}
   5707}
   5708
   5709/*
   5710 * Restore devices from top of the tree down while holding @dev mutex lock
   5711 * for the entire tree.  Parent bridges need to be restored before we can
   5712 * get to subordinate devices.
   5713 */
   5714static void pci_bus_restore_locked(struct pci_bus *bus)
   5715{
   5716	struct pci_dev *dev;
   5717
   5718	list_for_each_entry(dev, &bus->devices, bus_list) {
   5719		pci_dev_restore(dev);
   5720		if (dev->subordinate)
   5721			pci_bus_restore_locked(dev->subordinate);
   5722	}
   5723}
   5724
   5725/*
   5726 * Save and disable devices from the top of the tree down while holding
   5727 * the @dev mutex lock for the entire tree.
   5728 */
   5729static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
   5730{
   5731	struct pci_dev *dev;
   5732
   5733	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5734		if (!dev->slot || dev->slot != slot)
   5735			continue;
   5736		pci_dev_save_and_disable(dev);
   5737		if (dev->subordinate)
   5738			pci_bus_save_and_disable_locked(dev->subordinate);
   5739	}
   5740}
   5741
   5742/*
   5743 * Restore devices from top of the tree down while holding @dev mutex lock
   5744 * for the entire tree.  Parent bridges need to be restored before we can
   5745 * get to subordinate devices.
   5746 */
   5747static void pci_slot_restore_locked(struct pci_slot *slot)
   5748{
   5749	struct pci_dev *dev;
   5750
   5751	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
   5752		if (!dev->slot || dev->slot != slot)
   5753			continue;
   5754		pci_dev_restore(dev);
   5755		if (dev->subordinate)
   5756			pci_bus_restore_locked(dev->subordinate);
   5757	}
   5758}
   5759
   5760static int pci_slot_reset(struct pci_slot *slot, bool probe)
   5761{
   5762	int rc;
   5763
   5764	if (!slot || !pci_slot_resetable(slot))
   5765		return -ENOTTY;
   5766
   5767	if (!probe)
   5768		pci_slot_lock(slot);
   5769
   5770	might_sleep();
   5771
   5772	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
   5773
   5774	if (!probe)
   5775		pci_slot_unlock(slot);
   5776
   5777	return rc;
   5778}
   5779
   5780/**
   5781 * pci_probe_reset_slot - probe whether a PCI slot can be reset
   5782 * @slot: PCI slot to probe
   5783 *
   5784 * Return 0 if slot can be reset, negative if a slot reset is not supported.
   5785 */
   5786int pci_probe_reset_slot(struct pci_slot *slot)
   5787{
   5788	return pci_slot_reset(slot, PCI_RESET_PROBE);
   5789}
   5790EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
   5791
   5792/**
   5793 * __pci_reset_slot - Try to reset a PCI slot
   5794 * @slot: PCI slot to reset
   5795 *
   5796 * A PCI bus may host multiple slots, each slot may support a reset mechanism
   5797 * independent of other slots.  For instance, some slots may support slot power
   5798 * control.  In the case of a 1:1 bus to slot architecture, this function may
   5799 * wrap the bus reset to avoid spurious slot related events such as hotplug.
   5800 * Generally a slot reset should be attempted before a bus reset.  All of the
   5801 * function of the slot and any subordinate buses behind the slot are reset
   5802 * through this function.  PCI config space of all devices in the slot and
   5803 * behind the slot is saved before and restored after reset.
   5804 *
   5805 * Same as above except return -EAGAIN if the slot cannot be locked
   5806 */
   5807static int __pci_reset_slot(struct pci_slot *slot)
   5808{
   5809	int rc;
   5810
   5811	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
   5812	if (rc)
   5813		return rc;
   5814
   5815	if (pci_slot_trylock(slot)) {
   5816		pci_slot_save_and_disable_locked(slot);
   5817		might_sleep();
   5818		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
   5819		pci_slot_restore_locked(slot);
   5820		pci_slot_unlock(slot);
   5821	} else
   5822		rc = -EAGAIN;
   5823
   5824	return rc;
   5825}
   5826
   5827static int pci_bus_reset(struct pci_bus *bus, bool probe)
   5828{
   5829	int ret;
   5830
   5831	if (!bus->self || !pci_bus_resetable(bus))
   5832		return -ENOTTY;
   5833
   5834	if (probe)
   5835		return 0;
   5836
   5837	pci_bus_lock(bus);
   5838
   5839	might_sleep();
   5840
   5841	ret = pci_bridge_secondary_bus_reset(bus->self);
   5842
   5843	pci_bus_unlock(bus);
   5844
   5845	return ret;
   5846}
   5847
   5848/**
   5849 * pci_bus_error_reset - reset the bridge's subordinate bus
   5850 * @bridge: The parent device that connects to the bus to reset
   5851 *
   5852 * This function will first try to reset the slots on this bus if the method is
   5853 * available. If slot reset fails or is not available, this will fall back to a
   5854 * secondary bus reset.
   5855 */
   5856int pci_bus_error_reset(struct pci_dev *bridge)
   5857{
   5858	struct pci_bus *bus = bridge->subordinate;
   5859	struct pci_slot *slot;
   5860
   5861	if (!bus)
   5862		return -ENOTTY;
   5863
   5864	mutex_lock(&pci_slot_mutex);
   5865	if (list_empty(&bus->slots))
   5866		goto bus_reset;
   5867
   5868	list_for_each_entry(slot, &bus->slots, list)
   5869		if (pci_probe_reset_slot(slot))
   5870			goto bus_reset;
   5871
   5872	list_for_each_entry(slot, &bus->slots, list)
   5873		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
   5874			goto bus_reset;
   5875
   5876	mutex_unlock(&pci_slot_mutex);
   5877	return 0;
   5878bus_reset:
   5879	mutex_unlock(&pci_slot_mutex);
   5880	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
   5881}
   5882
   5883/**
   5884 * pci_probe_reset_bus - probe whether a PCI bus can be reset
   5885 * @bus: PCI bus to probe
   5886 *
   5887 * Return 0 if bus can be reset, negative if a bus reset is not supported.
   5888 */
   5889int pci_probe_reset_bus(struct pci_bus *bus)
   5890{
   5891	return pci_bus_reset(bus, PCI_RESET_PROBE);
   5892}
   5893EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
   5894
   5895/**
   5896 * __pci_reset_bus - Try to reset a PCI bus
   5897 * @bus: top level PCI bus to reset
   5898 *
   5899 * Same as above except return -EAGAIN if the bus cannot be locked
   5900 */
   5901static int __pci_reset_bus(struct pci_bus *bus)
   5902{
   5903	int rc;
   5904
   5905	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
   5906	if (rc)
   5907		return rc;
   5908
   5909	if (pci_bus_trylock(bus)) {
   5910		pci_bus_save_and_disable_locked(bus);
   5911		might_sleep();
   5912		rc = pci_bridge_secondary_bus_reset(bus->self);
   5913		pci_bus_restore_locked(bus);
   5914		pci_bus_unlock(bus);
   5915	} else
   5916		rc = -EAGAIN;
   5917
   5918	return rc;
   5919}
   5920
   5921/**
   5922 * pci_reset_bus - Try to reset a PCI bus
   5923 * @pdev: top level PCI device to reset via slot/bus
   5924 *
   5925 * Same as above except return -EAGAIN if the bus cannot be locked
   5926 */
   5927int pci_reset_bus(struct pci_dev *pdev)
   5928{
   5929	return (!pci_probe_reset_slot(pdev->slot)) ?
   5930	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
   5931}
   5932EXPORT_SYMBOL_GPL(pci_reset_bus);
   5933
   5934/**
   5935 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
   5936 * @dev: PCI device to query
   5937 *
   5938 * Returns mmrbc: maximum designed memory read count in bytes or
   5939 * appropriate error value.
   5940 */
   5941int pcix_get_max_mmrbc(struct pci_dev *dev)
   5942{
   5943	int cap;
   5944	u32 stat;
   5945
   5946	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
   5947	if (!cap)
   5948		return -EINVAL;
   5949
   5950	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
   5951		return -EINVAL;
   5952
   5953	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
   5954}
   5955EXPORT_SYMBOL(pcix_get_max_mmrbc);
   5956
   5957/**
   5958 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
   5959 * @dev: PCI device to query
   5960 *
   5961 * Returns mmrbc: maximum memory read count in bytes or appropriate error
   5962 * value.
   5963 */
   5964int pcix_get_mmrbc(struct pci_dev *dev)
   5965{
   5966	int cap;
   5967	u16 cmd;
   5968
   5969	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
   5970	if (!cap)
   5971		return -EINVAL;
   5972
   5973	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
   5974		return -EINVAL;
   5975
   5976	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
   5977}
   5978EXPORT_SYMBOL(pcix_get_mmrbc);
   5979
   5980/**
   5981 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
   5982 * @dev: PCI device to query
   5983 * @mmrbc: maximum memory read count in bytes
   5984 *    valid values are 512, 1024, 2048, 4096
   5985 *
   5986 * If possible sets maximum memory read byte count, some bridges have errata
   5987 * that prevent this.
   5988 */
   5989int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
   5990{
   5991	int cap;
   5992	u32 stat, v, o;
   5993	u16 cmd;
   5994
   5995	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
   5996		return -EINVAL;
   5997
   5998	v = ffs(mmrbc) - 10;
   5999
   6000	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
   6001	if (!cap)
   6002		return -EINVAL;
   6003
   6004	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
   6005		return -EINVAL;
   6006
   6007	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
   6008		return -E2BIG;
   6009
   6010	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
   6011		return -EINVAL;
   6012
   6013	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
   6014	if (o != v) {
   6015		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
   6016			return -EIO;
   6017
   6018		cmd &= ~PCI_X_CMD_MAX_READ;
   6019		cmd |= v << 2;
   6020		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
   6021			return -EIO;
   6022	}
   6023	return 0;
   6024}
   6025EXPORT_SYMBOL(pcix_set_mmrbc);
   6026
   6027/**
   6028 * pcie_get_readrq - get PCI Express read request size
   6029 * @dev: PCI device to query
   6030 *
   6031 * Returns maximum memory read request in bytes or appropriate error value.
   6032 */
   6033int pcie_get_readrq(struct pci_dev *dev)
   6034{
   6035	u16 ctl;
   6036
   6037	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
   6038
   6039	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
   6040}
   6041EXPORT_SYMBOL(pcie_get_readrq);
   6042
   6043/**
   6044 * pcie_set_readrq - set PCI Express maximum memory read request
   6045 * @dev: PCI device to query
   6046 * @rq: maximum memory read count in bytes
   6047 *    valid values are 128, 256, 512, 1024, 2048, 4096
   6048 *
   6049 * If possible sets maximum memory read request in bytes
   6050 */
   6051int pcie_set_readrq(struct pci_dev *dev, int rq)
   6052{
   6053	u16 v;
   6054	int ret;
   6055
   6056	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
   6057		return -EINVAL;
   6058
   6059	/*
   6060	 * If using the "performance" PCIe config, we clamp the read rq
   6061	 * size to the max packet size to keep the host bridge from
   6062	 * generating requests larger than we can cope with.
   6063	 */
   6064	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
   6065		int mps = pcie_get_mps(dev);
   6066
   6067		if (mps < rq)
   6068			rq = mps;
   6069	}
   6070
   6071	v = (ffs(rq) - 8) << 12;
   6072
   6073	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
   6074						  PCI_EXP_DEVCTL_READRQ, v);
   6075
   6076	return pcibios_err_to_errno(ret);
   6077}
   6078EXPORT_SYMBOL(pcie_set_readrq);
   6079
   6080/**
   6081 * pcie_get_mps - get PCI Express maximum payload size
   6082 * @dev: PCI device to query
   6083 *
   6084 * Returns maximum payload size in bytes
   6085 */
   6086int pcie_get_mps(struct pci_dev *dev)
   6087{
   6088	u16 ctl;
   6089
   6090	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
   6091
   6092	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
   6093}
   6094EXPORT_SYMBOL(pcie_get_mps);
   6095
   6096/**
   6097 * pcie_set_mps - set PCI Express maximum payload size
   6098 * @dev: PCI device to query
   6099 * @mps: maximum payload size in bytes
   6100 *    valid values are 128, 256, 512, 1024, 2048, 4096
   6101 *
   6102 * If possible sets maximum payload size
   6103 */
   6104int pcie_set_mps(struct pci_dev *dev, int mps)
   6105{
   6106	u16 v;
   6107	int ret;
   6108
   6109	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
   6110		return -EINVAL;
   6111
   6112	v = ffs(mps) - 8;
   6113	if (v > dev->pcie_mpss)
   6114		return -EINVAL;
   6115	v <<= 5;
   6116
   6117	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
   6118						  PCI_EXP_DEVCTL_PAYLOAD, v);
   6119
   6120	return pcibios_err_to_errno(ret);
   6121}
   6122EXPORT_SYMBOL(pcie_set_mps);
   6123
   6124/**
   6125 * pcie_bandwidth_available - determine minimum link settings of a PCIe
   6126 *			      device and its bandwidth limitation
   6127 * @dev: PCI device to query
   6128 * @limiting_dev: storage for device causing the bandwidth limitation
   6129 * @speed: storage for speed of limiting device
   6130 * @width: storage for width of limiting device
   6131 *
   6132 * Walk up the PCI device chain and find the point where the minimum
   6133 * bandwidth is available.  Return the bandwidth available there and (if
   6134 * limiting_dev, speed, and width pointers are supplied) information about
   6135 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
   6136 * raw bandwidth.
   6137 */
   6138u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
   6139			     enum pci_bus_speed *speed,
   6140			     enum pcie_link_width *width)
   6141{
   6142	u16 lnksta;
   6143	enum pci_bus_speed next_speed;
   6144	enum pcie_link_width next_width;
   6145	u32 bw, next_bw;
   6146
   6147	if (speed)
   6148		*speed = PCI_SPEED_UNKNOWN;
   6149	if (width)
   6150		*width = PCIE_LNK_WIDTH_UNKNOWN;
   6151
   6152	bw = 0;
   6153
   6154	while (dev) {
   6155		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
   6156
   6157		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
   6158		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
   6159			PCI_EXP_LNKSTA_NLW_SHIFT;
   6160
   6161		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
   6162
   6163		/* Check if current device limits the total bandwidth */
   6164		if (!bw || next_bw <= bw) {
   6165			bw = next_bw;
   6166
   6167			if (limiting_dev)
   6168				*limiting_dev = dev;
   6169			if (speed)
   6170				*speed = next_speed;
   6171			if (width)
   6172				*width = next_width;
   6173		}
   6174
   6175		dev = pci_upstream_bridge(dev);
   6176	}
   6177
   6178	return bw;
   6179}
   6180EXPORT_SYMBOL(pcie_bandwidth_available);
   6181
   6182/**
   6183 * pcie_get_speed_cap - query for the PCI device's link speed capability
   6184 * @dev: PCI device to query
   6185 *
   6186 * Query the PCI device speed capability.  Return the maximum link speed
   6187 * supported by the device.
   6188 */
   6189enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
   6190{
   6191	u32 lnkcap2, lnkcap;
   6192
   6193	/*
   6194	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
   6195	 * implementation note there recommends using the Supported Link
   6196	 * Speeds Vector in Link Capabilities 2 when supported.
   6197	 *
   6198	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
   6199	 * should use the Supported Link Speeds field in Link Capabilities,
   6200	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
   6201	 */
   6202	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
   6203
   6204	/* PCIe r3.0-compliant */
   6205	if (lnkcap2)
   6206		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
   6207
   6208	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
   6209	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
   6210		return PCIE_SPEED_5_0GT;
   6211	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
   6212		return PCIE_SPEED_2_5GT;
   6213
   6214	return PCI_SPEED_UNKNOWN;
   6215}
   6216EXPORT_SYMBOL(pcie_get_speed_cap);
   6217
   6218/**
   6219 * pcie_get_width_cap - query for the PCI device's link width capability
   6220 * @dev: PCI device to query
   6221 *
   6222 * Query the PCI device width capability.  Return the maximum link width
   6223 * supported by the device.
   6224 */
   6225enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
   6226{
   6227	u32 lnkcap;
   6228
   6229	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
   6230	if (lnkcap)
   6231		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
   6232
   6233	return PCIE_LNK_WIDTH_UNKNOWN;
   6234}
   6235EXPORT_SYMBOL(pcie_get_width_cap);
   6236
   6237/**
   6238 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
   6239 * @dev: PCI device
   6240 * @speed: storage for link speed
   6241 * @width: storage for link width
   6242 *
   6243 * Calculate a PCI device's link bandwidth by querying for its link speed
   6244 * and width, multiplying them, and applying encoding overhead.  The result
   6245 * is in Mb/s, i.e., megabits/second of raw bandwidth.
   6246 */
   6247u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
   6248			   enum pcie_link_width *width)
   6249{
   6250	*speed = pcie_get_speed_cap(dev);
   6251	*width = pcie_get_width_cap(dev);
   6252
   6253	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
   6254		return 0;
   6255
   6256	return *width * PCIE_SPEED2MBS_ENC(*speed);
   6257}
   6258
   6259/**
   6260 * __pcie_print_link_status - Report the PCI device's link speed and width
   6261 * @dev: PCI device to query
   6262 * @verbose: Print info even when enough bandwidth is available
   6263 *
   6264 * If the available bandwidth at the device is less than the device is
   6265 * capable of, report the device's maximum possible bandwidth and the
   6266 * upstream link that limits its performance.  If @verbose, always print
   6267 * the available bandwidth, even if the device isn't constrained.
   6268 */
   6269void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
   6270{
   6271	enum pcie_link_width width, width_cap;
   6272	enum pci_bus_speed speed, speed_cap;
   6273	struct pci_dev *limiting_dev = NULL;
   6274	u32 bw_avail, bw_cap;
   6275
   6276	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
   6277	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
   6278
   6279	if (bw_avail >= bw_cap && verbose)
   6280		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
   6281			 bw_cap / 1000, bw_cap % 1000,
   6282			 pci_speed_string(speed_cap), width_cap);
   6283	else if (bw_avail < bw_cap)
   6284		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
   6285			 bw_avail / 1000, bw_avail % 1000,
   6286			 pci_speed_string(speed), width,
   6287			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
   6288			 bw_cap / 1000, bw_cap % 1000,
   6289			 pci_speed_string(speed_cap), width_cap);
   6290}
   6291
   6292/**
   6293 * pcie_print_link_status - Report the PCI device's link speed and width
   6294 * @dev: PCI device to query
   6295 *
   6296 * Report the available bandwidth at the device.
   6297 */
   6298void pcie_print_link_status(struct pci_dev *dev)
   6299{
   6300	__pcie_print_link_status(dev, true);
   6301}
   6302EXPORT_SYMBOL(pcie_print_link_status);
   6303
   6304/**
   6305 * pci_select_bars - Make BAR mask from the type of resource
   6306 * @dev: the PCI device for which BAR mask is made
   6307 * @flags: resource type mask to be selected
   6308 *
   6309 * This helper routine makes bar mask from the type of resource.
   6310 */
   6311int pci_select_bars(struct pci_dev *dev, unsigned long flags)
   6312{
   6313	int i, bars = 0;
   6314	for (i = 0; i < PCI_NUM_RESOURCES; i++)
   6315		if (pci_resource_flags(dev, i) & flags)
   6316			bars |= (1 << i);
   6317	return bars;
   6318}
   6319EXPORT_SYMBOL(pci_select_bars);
   6320
   6321/* Some architectures require additional programming to enable VGA */
   6322static arch_set_vga_state_t arch_set_vga_state;
   6323
   6324void __init pci_register_set_vga_state(arch_set_vga_state_t func)
   6325{
   6326	arch_set_vga_state = func;	/* NULL disables */
   6327}
   6328
   6329static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
   6330				  unsigned int command_bits, u32 flags)
   6331{
   6332	if (arch_set_vga_state)
   6333		return arch_set_vga_state(dev, decode, command_bits,
   6334						flags);
   6335	return 0;
   6336}
   6337
   6338/**
   6339 * pci_set_vga_state - set VGA decode state on device and parents if requested
   6340 * @dev: the PCI device
   6341 * @decode: true = enable decoding, false = disable decoding
   6342 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
   6343 * @flags: traverse ancestors and change bridges
   6344 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
   6345 */
   6346int pci_set_vga_state(struct pci_dev *dev, bool decode,
   6347		      unsigned int command_bits, u32 flags)
   6348{
   6349	struct pci_bus *bus;
   6350	struct pci_dev *bridge;
   6351	u16 cmd;
   6352	int rc;
   6353
   6354	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
   6355
   6356	/* ARCH specific VGA enables */
   6357	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
   6358	if (rc)
   6359		return rc;
   6360
   6361	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
   6362		pci_read_config_word(dev, PCI_COMMAND, &cmd);
   6363		if (decode)
   6364			cmd |= command_bits;
   6365		else
   6366			cmd &= ~command_bits;
   6367		pci_write_config_word(dev, PCI_COMMAND, cmd);
   6368	}
   6369
   6370	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
   6371		return 0;
   6372
   6373	bus = dev->bus;
   6374	while (bus) {
   6375		bridge = bus->self;
   6376		if (bridge) {
   6377			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
   6378					     &cmd);
   6379			if (decode)
   6380				cmd |= PCI_BRIDGE_CTL_VGA;
   6381			else
   6382				cmd &= ~PCI_BRIDGE_CTL_VGA;
   6383			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
   6384					      cmd);
   6385		}
   6386		bus = bus->parent;
   6387	}
   6388	return 0;
   6389}
   6390
   6391#ifdef CONFIG_ACPI
   6392bool pci_pr3_present(struct pci_dev *pdev)
   6393{
   6394	struct acpi_device *adev;
   6395
   6396	if (acpi_disabled)
   6397		return false;
   6398
   6399	adev = ACPI_COMPANION(&pdev->dev);
   6400	if (!adev)
   6401		return false;
   6402
   6403	return adev->power.flags.power_resources &&
   6404		acpi_has_method(adev->handle, "_PR3");
   6405}
   6406EXPORT_SYMBOL_GPL(pci_pr3_present);
   6407#endif
   6408
   6409/**
   6410 * pci_add_dma_alias - Add a DMA devfn alias for a device
   6411 * @dev: the PCI device for which alias is added
   6412 * @devfn_from: alias slot and function
   6413 * @nr_devfns: number of subsequent devfns to alias
   6414 *
   6415 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
   6416 * which is used to program permissible bus-devfn source addresses for DMA
   6417 * requests in an IOMMU.  These aliases factor into IOMMU group creation
   6418 * and are useful for devices generating DMA requests beyond or different
   6419 * from their logical bus-devfn.  Examples include device quirks where the
   6420 * device simply uses the wrong devfn, as well as non-transparent bridges
   6421 * where the alias may be a proxy for devices in another domain.
   6422 *
   6423 * IOMMU group creation is performed during device discovery or addition,
   6424 * prior to any potential DMA mapping and therefore prior to driver probing
   6425 * (especially for userspace assigned devices where IOMMU group definition
   6426 * cannot be left as a userspace activity).  DMA aliases should therefore
   6427 * be configured via quirks, such as the PCI fixup header quirk.
   6428 */
   6429void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
   6430		       unsigned int nr_devfns)
   6431{
   6432	int devfn_to;
   6433
   6434	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
   6435	devfn_to = devfn_from + nr_devfns - 1;
   6436
   6437	if (!dev->dma_alias_mask)
   6438		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
   6439	if (!dev->dma_alias_mask) {
   6440		pci_warn(dev, "Unable to allocate DMA alias mask\n");
   6441		return;
   6442	}
   6443
   6444	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
   6445
   6446	if (nr_devfns == 1)
   6447		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
   6448				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
   6449	else if (nr_devfns > 1)
   6450		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
   6451				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
   6452				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
   6453}
   6454
   6455bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
   6456{
   6457	return (dev1->dma_alias_mask &&
   6458		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
   6459	       (dev2->dma_alias_mask &&
   6460		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
   6461	       pci_real_dma_dev(dev1) == dev2 ||
   6462	       pci_real_dma_dev(dev2) == dev1;
   6463}
   6464
   6465bool pci_device_is_present(struct pci_dev *pdev)
   6466{
   6467	u32 v;
   6468
   6469	if (pci_dev_is_disconnected(pdev))
   6470		return false;
   6471	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
   6472}
   6473EXPORT_SYMBOL_GPL(pci_device_is_present);
   6474
   6475void pci_ignore_hotplug(struct pci_dev *dev)
   6476{
   6477	struct pci_dev *bridge = dev->bus->self;
   6478
   6479	dev->ignore_hotplug = 1;
   6480	/* Propagate the "ignore hotplug" setting to the parent bridge. */
   6481	if (bridge)
   6482		bridge->ignore_hotplug = 1;
   6483}
   6484EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
   6485
   6486/**
   6487 * pci_real_dma_dev - Get PCI DMA device for PCI device
   6488 * @dev: the PCI device that may have a PCI DMA alias
   6489 *
   6490 * Permits the platform to provide architecture-specific functionality to
   6491 * devices needing to alias DMA to another PCI device on another PCI bus. If
   6492 * the PCI device is on the same bus, it is recommended to use
   6493 * pci_add_dma_alias(). This is the default implementation. Architecture
   6494 * implementations can override this.
   6495 */
   6496struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
   6497{
   6498	return dev;
   6499}
   6500
   6501resource_size_t __weak pcibios_default_alignment(void)
   6502{
   6503	return 0;
   6504}
   6505
   6506/*
   6507 * Arches that don't want to expose struct resource to userland as-is in
   6508 * sysfs and /proc can implement their own pci_resource_to_user().
   6509 */
   6510void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
   6511				 const struct resource *rsrc,
   6512				 resource_size_t *start, resource_size_t *end)
   6513{
   6514	*start = rsrc->start;
   6515	*end = rsrc->end;
   6516}
   6517
   6518static char *resource_alignment_param;
   6519static DEFINE_SPINLOCK(resource_alignment_lock);
   6520
   6521/**
   6522 * pci_specified_resource_alignment - get resource alignment specified by user.
   6523 * @dev: the PCI device to get
   6524 * @resize: whether or not to change resources' size when reassigning alignment
   6525 *
   6526 * RETURNS: Resource alignment if it is specified.
   6527 *          Zero if it is not specified.
   6528 */
   6529static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
   6530							bool *resize)
   6531{
   6532	int align_order, count;
   6533	resource_size_t align = pcibios_default_alignment();
   6534	const char *p;
   6535	int ret;
   6536
   6537	spin_lock(&resource_alignment_lock);
   6538	p = resource_alignment_param;
   6539	if (!p || !*p)
   6540		goto out;
   6541	if (pci_has_flag(PCI_PROBE_ONLY)) {
   6542		align = 0;
   6543		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
   6544		goto out;
   6545	}
   6546
   6547	while (*p) {
   6548		count = 0;
   6549		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
   6550		    p[count] == '@') {
   6551			p += count + 1;
   6552			if (align_order > 63) {
   6553				pr_err("PCI: Invalid requested alignment (order %d)\n",
   6554				       align_order);
   6555				align_order = PAGE_SHIFT;
   6556			}
   6557		} else {
   6558			align_order = PAGE_SHIFT;
   6559		}
   6560
   6561		ret = pci_dev_str_match(dev, p, &p);
   6562		if (ret == 1) {
   6563			*resize = true;
   6564			align = 1ULL << align_order;
   6565			break;
   6566		} else if (ret < 0) {
   6567			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
   6568			       p);
   6569			break;
   6570		}
   6571
   6572		if (*p != ';' && *p != ',') {
   6573			/* End of param or invalid format */
   6574			break;
   6575		}
   6576		p++;
   6577	}
   6578out:
   6579	spin_unlock(&resource_alignment_lock);
   6580	return align;
   6581}
   6582
   6583static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
   6584					   resource_size_t align, bool resize)
   6585{
   6586	struct resource *r = &dev->resource[bar];
   6587	resource_size_t size;
   6588
   6589	if (!(r->flags & IORESOURCE_MEM))
   6590		return;
   6591
   6592	if (r->flags & IORESOURCE_PCI_FIXED) {
   6593		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
   6594			 bar, r, (unsigned long long)align);
   6595		return;
   6596	}
   6597
   6598	size = resource_size(r);
   6599	if (size >= align)
   6600		return;
   6601
   6602	/*
   6603	 * Increase the alignment of the resource.  There are two ways we
   6604	 * can do this:
   6605	 *
   6606	 * 1) Increase the size of the resource.  BARs are aligned on their
   6607	 *    size, so when we reallocate space for this resource, we'll
   6608	 *    allocate it with the larger alignment.  This also prevents
   6609	 *    assignment of any other BARs inside the alignment region, so
   6610	 *    if we're requesting page alignment, this means no other BARs
   6611	 *    will share the page.
   6612	 *
   6613	 *    The disadvantage is that this makes the resource larger than
   6614	 *    the hardware BAR, which may break drivers that compute things
   6615	 *    based on the resource size, e.g., to find registers at a
   6616	 *    fixed offset before the end of the BAR.
   6617	 *
   6618	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
   6619	 *    set r->start to the desired alignment.  By itself this
   6620	 *    doesn't prevent other BARs being put inside the alignment
   6621	 *    region, but if we realign *every* resource of every device in
   6622	 *    the system, none of them will share an alignment region.
   6623	 *
   6624	 * When the user has requested alignment for only some devices via
   6625	 * the "pci=resource_alignment" argument, "resize" is true and we
   6626	 * use the first method.  Otherwise we assume we're aligning all
   6627	 * devices and we use the second.
   6628	 */
   6629
   6630	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
   6631		 bar, r, (unsigned long long)align);
   6632
   6633	if (resize) {
   6634		r->start = 0;
   6635		r->end = align - 1;
   6636	} else {
   6637		r->flags &= ~IORESOURCE_SIZEALIGN;
   6638		r->flags |= IORESOURCE_STARTALIGN;
   6639		r->start = align;
   6640		r->end = r->start + size - 1;
   6641	}
   6642	r->flags |= IORESOURCE_UNSET;
   6643}
   6644
   6645/*
   6646 * This function disables memory decoding and releases memory resources
   6647 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
   6648 * It also rounds up size to specified alignment.
   6649 * Later on, the kernel will assign page-aligned memory resource back
   6650 * to the device.
   6651 */
   6652void pci_reassigndev_resource_alignment(struct pci_dev *dev)
   6653{
   6654	int i;
   6655	struct resource *r;
   6656	resource_size_t align;
   6657	u16 command;
   6658	bool resize = false;
   6659
   6660	/*
   6661	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
   6662	 * 3.4.1.11.  Their resources are allocated from the space
   6663	 * described by the VF BARx register in the PF's SR-IOV capability.
   6664	 * We can't influence their alignment here.
   6665	 */
   6666	if (dev->is_virtfn)
   6667		return;
   6668
   6669	/* check if specified PCI is target device to reassign */
   6670	align = pci_specified_resource_alignment(dev, &resize);
   6671	if (!align)
   6672		return;
   6673
   6674	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
   6675	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
   6676		pci_warn(dev, "Can't reassign resources to host bridge\n");
   6677		return;
   6678	}
   6679
   6680	pci_read_config_word(dev, PCI_COMMAND, &command);
   6681	command &= ~PCI_COMMAND_MEMORY;
   6682	pci_write_config_word(dev, PCI_COMMAND, command);
   6683
   6684	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
   6685		pci_request_resource_alignment(dev, i, align, resize);
   6686
   6687	/*
   6688	 * Need to disable bridge's resource window,
   6689	 * to enable the kernel to reassign new resource
   6690	 * window later on.
   6691	 */
   6692	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
   6693		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
   6694			r = &dev->resource[i];
   6695			if (!(r->flags & IORESOURCE_MEM))
   6696				continue;
   6697			r->flags |= IORESOURCE_UNSET;
   6698			r->end = resource_size(r) - 1;
   6699			r->start = 0;
   6700		}
   6701		pci_disable_bridge_window(dev);
   6702	}
   6703}
   6704
   6705static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
   6706{
   6707	size_t count = 0;
   6708
   6709	spin_lock(&resource_alignment_lock);
   6710	if (resource_alignment_param)
   6711		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
   6712	spin_unlock(&resource_alignment_lock);
   6713
   6714	return count;
   6715}
   6716
   6717static ssize_t resource_alignment_store(struct bus_type *bus,
   6718					const char *buf, size_t count)
   6719{
   6720	char *param, *old, *end;
   6721
   6722	if (count >= (PAGE_SIZE - 1))
   6723		return -EINVAL;
   6724
   6725	param = kstrndup(buf, count, GFP_KERNEL);
   6726	if (!param)
   6727		return -ENOMEM;
   6728
   6729	end = strchr(param, '\n');
   6730	if (end)
   6731		*end = '\0';
   6732
   6733	spin_lock(&resource_alignment_lock);
   6734	old = resource_alignment_param;
   6735	if (strlen(param)) {
   6736		resource_alignment_param = param;
   6737	} else {
   6738		kfree(param);
   6739		resource_alignment_param = NULL;
   6740	}
   6741	spin_unlock(&resource_alignment_lock);
   6742
   6743	kfree(old);
   6744
   6745	return count;
   6746}
   6747
   6748static BUS_ATTR_RW(resource_alignment);
   6749
   6750static int __init pci_resource_alignment_sysfs_init(void)
   6751{
   6752	return bus_create_file(&pci_bus_type,
   6753					&bus_attr_resource_alignment);
   6754}
   6755late_initcall(pci_resource_alignment_sysfs_init);
   6756
   6757static void pci_no_domains(void)
   6758{
   6759#ifdef CONFIG_PCI_DOMAINS
   6760	pci_domains_supported = 0;
   6761#endif
   6762}
   6763
   6764#ifdef CONFIG_PCI_DOMAINS_GENERIC
   6765static atomic_t __domain_nr = ATOMIC_INIT(-1);
   6766
   6767static int pci_get_new_domain_nr(void)
   6768{
   6769	return atomic_inc_return(&__domain_nr);
   6770}
   6771
   6772static int of_pci_bus_find_domain_nr(struct device *parent)
   6773{
   6774	static int use_dt_domains = -1;
   6775	int domain = -1;
   6776
   6777	if (parent)
   6778		domain = of_get_pci_domain_nr(parent->of_node);
   6779
   6780	/*
   6781	 * Check DT domain and use_dt_domains values.
   6782	 *
   6783	 * If DT domain property is valid (domain >= 0) and
   6784	 * use_dt_domains != 0, the DT assignment is valid since this means
   6785	 * we have not previously allocated a domain number by using
   6786	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
   6787	 * 1, to indicate that we have just assigned a domain number from
   6788	 * DT.
   6789	 *
   6790	 * If DT domain property value is not valid (ie domain < 0), and we
   6791	 * have not previously assigned a domain number from DT
   6792	 * (use_dt_domains != 1) we should assign a domain number by
   6793	 * using the:
   6794	 *
   6795	 * pci_get_new_domain_nr()
   6796	 *
   6797	 * API and update the use_dt_domains value to keep track of method we
   6798	 * are using to assign domain numbers (use_dt_domains = 0).
   6799	 *
   6800	 * All other combinations imply we have a platform that is trying
   6801	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
   6802	 * which is a recipe for domain mishandling and it is prevented by
   6803	 * invalidating the domain value (domain = -1) and printing a
   6804	 * corresponding error.
   6805	 */
   6806	if (domain >= 0 && use_dt_domains) {
   6807		use_dt_domains = 1;
   6808	} else if (domain < 0 && use_dt_domains != 1) {
   6809		use_dt_domains = 0;
   6810		domain = pci_get_new_domain_nr();
   6811	} else {
   6812		if (parent)
   6813			pr_err("Node %pOF has ", parent->of_node);
   6814		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
   6815		domain = -1;
   6816	}
   6817
   6818	return domain;
   6819}
   6820
   6821int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
   6822{
   6823	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
   6824			       acpi_pci_bus_find_domain_nr(bus);
   6825}
   6826#endif
   6827
   6828/**
   6829 * pci_ext_cfg_avail - can we access extended PCI config space?
   6830 *
   6831 * Returns 1 if we can access PCI extended config space (offsets
   6832 * greater than 0xff). This is the default implementation. Architecture
   6833 * implementations can override this.
   6834 */
   6835int __weak pci_ext_cfg_avail(void)
   6836{
   6837	return 1;
   6838}
   6839
   6840void __weak pci_fixup_cardbus(struct pci_bus *bus)
   6841{
   6842}
   6843EXPORT_SYMBOL(pci_fixup_cardbus);
   6844
   6845static int __init pci_setup(char *str)
   6846{
   6847	while (str) {
   6848		char *k = strchr(str, ',');
   6849		if (k)
   6850			*k++ = 0;
   6851		if (*str && (str = pcibios_setup(str)) && *str) {
   6852			if (!strcmp(str, "nomsi")) {
   6853				pci_no_msi();
   6854			} else if (!strncmp(str, "noats", 5)) {
   6855				pr_info("PCIe: ATS is disabled\n");
   6856				pcie_ats_disabled = true;
   6857			} else if (!strcmp(str, "noaer")) {
   6858				pci_no_aer();
   6859			} else if (!strcmp(str, "earlydump")) {
   6860				pci_early_dump = true;
   6861			} else if (!strncmp(str, "realloc=", 8)) {
   6862				pci_realloc_get_opt(str + 8);
   6863			} else if (!strncmp(str, "realloc", 7)) {
   6864				pci_realloc_get_opt("on");
   6865			} else if (!strcmp(str, "nodomains")) {
   6866				pci_no_domains();
   6867			} else if (!strncmp(str, "noari", 5)) {
   6868				pcie_ari_disabled = true;
   6869			} else if (!strncmp(str, "cbiosize=", 9)) {
   6870				pci_cardbus_io_size = memparse(str + 9, &str);
   6871			} else if (!strncmp(str, "cbmemsize=", 10)) {
   6872				pci_cardbus_mem_size = memparse(str + 10, &str);
   6873			} else if (!strncmp(str, "resource_alignment=", 19)) {
   6874				resource_alignment_param = str + 19;
   6875			} else if (!strncmp(str, "ecrc=", 5)) {
   6876				pcie_ecrc_get_policy(str + 5);
   6877			} else if (!strncmp(str, "hpiosize=", 9)) {
   6878				pci_hotplug_io_size = memparse(str + 9, &str);
   6879			} else if (!strncmp(str, "hpmmiosize=", 11)) {
   6880				pci_hotplug_mmio_size = memparse(str + 11, &str);
   6881			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
   6882				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
   6883			} else if (!strncmp(str, "hpmemsize=", 10)) {
   6884				pci_hotplug_mmio_size = memparse(str + 10, &str);
   6885				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
   6886			} else if (!strncmp(str, "hpbussize=", 10)) {
   6887				pci_hotplug_bus_size =
   6888					simple_strtoul(str + 10, &str, 0);
   6889				if (pci_hotplug_bus_size > 0xff)
   6890					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
   6891			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
   6892				pcie_bus_config = PCIE_BUS_TUNE_OFF;
   6893			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
   6894				pcie_bus_config = PCIE_BUS_SAFE;
   6895			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
   6896				pcie_bus_config = PCIE_BUS_PERFORMANCE;
   6897			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
   6898				pcie_bus_config = PCIE_BUS_PEER2PEER;
   6899			} else if (!strncmp(str, "pcie_scan_all", 13)) {
   6900				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
   6901			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
   6902				disable_acs_redir_param = str + 18;
   6903			} else {
   6904				pr_err("PCI: Unknown option `%s'\n", str);
   6905			}
   6906		}
   6907		str = k;
   6908	}
   6909	return 0;
   6910}
   6911early_param("pci", pci_setup);
   6912
   6913/*
   6914 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
   6915 * in pci_setup(), above, to point to data in the __initdata section which
   6916 * will be freed after the init sequence is complete. We can't allocate memory
   6917 * in pci_setup() because some architectures do not have any memory allocation
   6918 * service available during an early_param() call. So we allocate memory and
   6919 * copy the variable here before the init section is freed.
   6920 *
   6921 */
   6922static int __init pci_realloc_setup_params(void)
   6923{
   6924	resource_alignment_param = kstrdup(resource_alignment_param,
   6925					   GFP_KERNEL);
   6926	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
   6927
   6928	return 0;
   6929}
   6930pure_initcall(pci_realloc_setup_params);