cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

arm_spe_pmu.c (34332B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Perf support for the Statistical Profiling Extension, introduced as
      4 * part of ARMv8.2.
      5 *
      6 * Copyright (C) 2016 ARM Limited
      7 *
      8 * Author: Will Deacon <will.deacon@arm.com>
      9 */
     10
     11#define PMUNAME					"arm_spe"
     12#define DRVNAME					PMUNAME "_pmu"
     13#define pr_fmt(fmt)				DRVNAME ": " fmt
     14
     15#include <linux/bitops.h>
     16#include <linux/bug.h>
     17#include <linux/capability.h>
     18#include <linux/cpuhotplug.h>
     19#include <linux/cpumask.h>
     20#include <linux/device.h>
     21#include <linux/errno.h>
     22#include <linux/interrupt.h>
     23#include <linux/irq.h>
     24#include <linux/kernel.h>
     25#include <linux/list.h>
     26#include <linux/module.h>
     27#include <linux/of_address.h>
     28#include <linux/of_device.h>
     29#include <linux/perf_event.h>
     30#include <linux/perf/arm_pmu.h>
     31#include <linux/platform_device.h>
     32#include <linux/printk.h>
     33#include <linux/slab.h>
     34#include <linux/smp.h>
     35#include <linux/vmalloc.h>
     36
     37#include <asm/barrier.h>
     38#include <asm/cpufeature.h>
     39#include <asm/mmu.h>
     40#include <asm/sysreg.h>
     41
     42#define ARM_SPE_BUF_PAD_BYTE			0
     43
     44struct arm_spe_pmu_buf {
     45	int					nr_pages;
     46	bool					snapshot;
     47	void					*base;
     48};
     49
     50struct arm_spe_pmu {
     51	struct pmu				pmu;
     52	struct platform_device			*pdev;
     53	cpumask_t				supported_cpus;
     54	struct hlist_node			hotplug_node;
     55
     56	int					irq; /* PPI */
     57	u16					pmsver;
     58	u16					min_period;
     59	u16					counter_sz;
     60
     61#define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
     62#define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
     63#define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
     64#define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
     65#define SPE_PMU_FEAT_LDS			(1UL << 4)
     66#define SPE_PMU_FEAT_ERND			(1UL << 5)
     67#define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
     68	u64					features;
     69
     70	u16					max_record_sz;
     71	u16					align;
     72	struct perf_output_handle __percpu	*handle;
     73};
     74
     75#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
     76
     77/* Convert a free-running index from perf into an SPE buffer offset */
     78#define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
     79
     80/* Keep track of our dynamic hotplug state */
     81static enum cpuhp_state arm_spe_pmu_online;
     82
     83enum arm_spe_pmu_buf_fault_action {
     84	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
     85	SPE_PMU_BUF_FAULT_ACT_FATAL,
     86	SPE_PMU_BUF_FAULT_ACT_OK,
     87};
     88
     89/* This sysfs gunk was really good fun to write. */
     90enum arm_spe_pmu_capabilities {
     91	SPE_PMU_CAP_ARCH_INST = 0,
     92	SPE_PMU_CAP_ERND,
     93	SPE_PMU_CAP_FEAT_MAX,
     94	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
     95	SPE_PMU_CAP_MIN_IVAL,
     96};
     97
     98static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
     99	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
    100	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
    101};
    102
    103static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
    104{
    105	if (cap < SPE_PMU_CAP_FEAT_MAX)
    106		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
    107
    108	switch (cap) {
    109	case SPE_PMU_CAP_CNT_SZ:
    110		return spe_pmu->counter_sz;
    111	case SPE_PMU_CAP_MIN_IVAL:
    112		return spe_pmu->min_period;
    113	default:
    114		WARN(1, "unknown cap %d\n", cap);
    115	}
    116
    117	return 0;
    118}
    119
    120static ssize_t arm_spe_pmu_cap_show(struct device *dev,
    121				    struct device_attribute *attr,
    122				    char *buf)
    123{
    124	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
    125	struct dev_ext_attribute *ea =
    126		container_of(attr, struct dev_ext_attribute, attr);
    127	int cap = (long)ea->var;
    128
    129	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
    130}
    131
    132#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
    133	&((struct dev_ext_attribute[]) {				\
    134		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
    135	})[0].attr.attr
    136
    137#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
    138	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
    139
    140static struct attribute *arm_spe_pmu_cap_attr[] = {
    141	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
    142	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
    143	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
    144	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
    145	NULL,
    146};
    147
    148static const struct attribute_group arm_spe_pmu_cap_group = {
    149	.name	= "caps",
    150	.attrs	= arm_spe_pmu_cap_attr,
    151};
    152
    153/* User ABI */
    154#define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
    155#define ATTR_CFG_FLD_ts_enable_LO		0
    156#define ATTR_CFG_FLD_ts_enable_HI		0
    157#define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
    158#define ATTR_CFG_FLD_pa_enable_LO		1
    159#define ATTR_CFG_FLD_pa_enable_HI		1
    160#define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
    161#define ATTR_CFG_FLD_pct_enable_LO		2
    162#define ATTR_CFG_FLD_pct_enable_HI		2
    163#define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
    164#define ATTR_CFG_FLD_jitter_LO			16
    165#define ATTR_CFG_FLD_jitter_HI			16
    166#define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
    167#define ATTR_CFG_FLD_branch_filter_LO		32
    168#define ATTR_CFG_FLD_branch_filter_HI		32
    169#define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
    170#define ATTR_CFG_FLD_load_filter_LO		33
    171#define ATTR_CFG_FLD_load_filter_HI		33
    172#define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
    173#define ATTR_CFG_FLD_store_filter_LO		34
    174#define ATTR_CFG_FLD_store_filter_HI		34
    175
    176#define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
    177#define ATTR_CFG_FLD_event_filter_LO		0
    178#define ATTR_CFG_FLD_event_filter_HI		63
    179
    180#define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
    181#define ATTR_CFG_FLD_min_latency_LO		0
    182#define ATTR_CFG_FLD_min_latency_HI		11
    183
    184/* Why does everything I do descend into this? */
    185#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
    186	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
    187
    188#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
    189	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
    190
    191#define GEN_PMU_FORMAT_ATTR(name)					\
    192	PMU_FORMAT_ATTR(name,						\
    193	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
    194			     ATTR_CFG_FLD_##name##_LO,			\
    195			     ATTR_CFG_FLD_##name##_HI))
    196
    197#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
    198	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
    199
    200#define ATTR_CFG_GET_FLD(attr, name)					\
    201	_ATTR_CFG_GET_FLD(attr,						\
    202			  ATTR_CFG_FLD_##name##_CFG,			\
    203			  ATTR_CFG_FLD_##name##_LO,			\
    204			  ATTR_CFG_FLD_##name##_HI)
    205
    206GEN_PMU_FORMAT_ATTR(ts_enable);
    207GEN_PMU_FORMAT_ATTR(pa_enable);
    208GEN_PMU_FORMAT_ATTR(pct_enable);
    209GEN_PMU_FORMAT_ATTR(jitter);
    210GEN_PMU_FORMAT_ATTR(branch_filter);
    211GEN_PMU_FORMAT_ATTR(load_filter);
    212GEN_PMU_FORMAT_ATTR(store_filter);
    213GEN_PMU_FORMAT_ATTR(event_filter);
    214GEN_PMU_FORMAT_ATTR(min_latency);
    215
    216static struct attribute *arm_spe_pmu_formats_attr[] = {
    217	&format_attr_ts_enable.attr,
    218	&format_attr_pa_enable.attr,
    219	&format_attr_pct_enable.attr,
    220	&format_attr_jitter.attr,
    221	&format_attr_branch_filter.attr,
    222	&format_attr_load_filter.attr,
    223	&format_attr_store_filter.attr,
    224	&format_attr_event_filter.attr,
    225	&format_attr_min_latency.attr,
    226	NULL,
    227};
    228
    229static const struct attribute_group arm_spe_pmu_format_group = {
    230	.name	= "format",
    231	.attrs	= arm_spe_pmu_formats_attr,
    232};
    233
    234static ssize_t cpumask_show(struct device *dev,
    235			    struct device_attribute *attr, char *buf)
    236{
    237	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
    238
    239	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
    240}
    241static DEVICE_ATTR_RO(cpumask);
    242
    243static struct attribute *arm_spe_pmu_attrs[] = {
    244	&dev_attr_cpumask.attr,
    245	NULL,
    246};
    247
    248static const struct attribute_group arm_spe_pmu_group = {
    249	.attrs	= arm_spe_pmu_attrs,
    250};
    251
    252static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
    253	&arm_spe_pmu_group,
    254	&arm_spe_pmu_cap_group,
    255	&arm_spe_pmu_format_group,
    256	NULL,
    257};
    258
    259/* Convert between user ABI and register values */
    260static u64 arm_spe_event_to_pmscr(struct perf_event *event)
    261{
    262	struct perf_event_attr *attr = &event->attr;
    263	u64 reg = 0;
    264
    265	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
    266	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
    267	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
    268
    269	if (!attr->exclude_user)
    270		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
    271
    272	if (!attr->exclude_kernel)
    273		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
    274
    275	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
    276		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
    277
    278	return reg;
    279}
    280
    281static void arm_spe_event_sanitise_period(struct perf_event *event)
    282{
    283	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
    284	u64 period = event->hw.sample_period;
    285	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
    286			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
    287
    288	if (period < spe_pmu->min_period)
    289		period = spe_pmu->min_period;
    290	else if (period > max_period)
    291		period = max_period;
    292	else
    293		period &= max_period;
    294
    295	event->hw.sample_period = period;
    296}
    297
    298static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
    299{
    300	struct perf_event_attr *attr = &event->attr;
    301	u64 reg = 0;
    302
    303	arm_spe_event_sanitise_period(event);
    304
    305	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
    306	reg |= event->hw.sample_period;
    307
    308	return reg;
    309}
    310
    311static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
    312{
    313	struct perf_event_attr *attr = &event->attr;
    314	u64 reg = 0;
    315
    316	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
    317	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
    318	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
    319
    320	if (reg)
    321		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
    322
    323	if (ATTR_CFG_GET_FLD(attr, event_filter))
    324		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
    325
    326	if (ATTR_CFG_GET_FLD(attr, min_latency))
    327		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
    328
    329	return reg;
    330}
    331
    332static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
    333{
    334	struct perf_event_attr *attr = &event->attr;
    335	return ATTR_CFG_GET_FLD(attr, event_filter);
    336}
    337
    338static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
    339{
    340	struct perf_event_attr *attr = &event->attr;
    341	return ATTR_CFG_GET_FLD(attr, min_latency)
    342	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
    343}
    344
    345static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
    346{
    347	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
    348	u64 head = PERF_IDX2OFF(handle->head, buf);
    349
    350	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
    351	if (!buf->snapshot)
    352		perf_aux_output_skip(handle, len);
    353}
    354
    355static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
    356{
    357	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
    358	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
    359	u64 head = PERF_IDX2OFF(handle->head, buf);
    360	u64 limit = buf->nr_pages * PAGE_SIZE;
    361
    362	/*
    363	 * The trace format isn't parseable in reverse, so clamp
    364	 * the limit to half of the buffer size in snapshot mode
    365	 * so that the worst case is half a buffer of records, as
    366	 * opposed to a single record.
    367	 */
    368	if (head < limit >> 1)
    369		limit >>= 1;
    370
    371	/*
    372	 * If we're within max_record_sz of the limit, we must
    373	 * pad, move the head index and recompute the limit.
    374	 */
    375	if (limit - head < spe_pmu->max_record_sz) {
    376		arm_spe_pmu_pad_buf(handle, limit - head);
    377		handle->head = PERF_IDX2OFF(limit, buf);
    378		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
    379	}
    380
    381	return limit;
    382}
    383
    384static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
    385{
    386	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
    387	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
    388	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
    389	u64 limit = bufsize;
    390	u64 head, tail, wakeup;
    391
    392	/*
    393	 * The head can be misaligned for two reasons:
    394	 *
    395	 * 1. The hardware left PMBPTR pointing to the first byte after
    396	 *    a record when generating a buffer management event.
    397	 *
    398	 * 2. We used perf_aux_output_skip to consume handle->size bytes
    399	 *    and CIRC_SPACE was used to compute the size, which always
    400	 *    leaves one entry free.
    401	 *
    402	 * Deal with this by padding to the next alignment boundary and
    403	 * moving the head index. If we run out of buffer space, we'll
    404	 * reduce handle->size to zero and end up reporting truncation.
    405	 */
    406	head = PERF_IDX2OFF(handle->head, buf);
    407	if (!IS_ALIGNED(head, spe_pmu->align)) {
    408		unsigned long delta = roundup(head, spe_pmu->align) - head;
    409
    410		delta = min(delta, handle->size);
    411		arm_spe_pmu_pad_buf(handle, delta);
    412		head = PERF_IDX2OFF(handle->head, buf);
    413	}
    414
    415	/* If we've run out of free space, then nothing more to do */
    416	if (!handle->size)
    417		goto no_space;
    418
    419	/* Compute the tail and wakeup indices now that we've aligned head */
    420	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
    421	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
    422
    423	/*
    424	 * Avoid clobbering unconsumed data. We know we have space, so
    425	 * if we see head == tail we know that the buffer is empty. If
    426	 * head > tail, then there's nothing to clobber prior to
    427	 * wrapping.
    428	 */
    429	if (head < tail)
    430		limit = round_down(tail, PAGE_SIZE);
    431
    432	/*
    433	 * Wakeup may be arbitrarily far into the future. If it's not in
    434	 * the current generation, either we'll wrap before hitting it,
    435	 * or it's in the past and has been handled already.
    436	 *
    437	 * If there's a wakeup before we wrap, arrange to be woken up by
    438	 * the page boundary following it. Keep the tail boundary if
    439	 * that's lower.
    440	 */
    441	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
    442		limit = min(limit, round_up(wakeup, PAGE_SIZE));
    443
    444	if (limit > head)
    445		return limit;
    446
    447	arm_spe_pmu_pad_buf(handle, handle->size);
    448no_space:
    449	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
    450	perf_aux_output_end(handle, 0);
    451	return 0;
    452}
    453
    454static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
    455{
    456	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
    457	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
    458	u64 limit = __arm_spe_pmu_next_off(handle);
    459	u64 head = PERF_IDX2OFF(handle->head, buf);
    460
    461	/*
    462	 * If the head has come too close to the end of the buffer,
    463	 * then pad to the end and recompute the limit.
    464	 */
    465	if (limit && (limit - head < spe_pmu->max_record_sz)) {
    466		arm_spe_pmu_pad_buf(handle, limit - head);
    467		limit = __arm_spe_pmu_next_off(handle);
    468	}
    469
    470	return limit;
    471}
    472
    473static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
    474					  struct perf_event *event)
    475{
    476	u64 base, limit;
    477	struct arm_spe_pmu_buf *buf;
    478
    479	/* Start a new aux session */
    480	buf = perf_aux_output_begin(handle, event);
    481	if (!buf) {
    482		event->hw.state |= PERF_HES_STOPPED;
    483		/*
    484		 * We still need to clear the limit pointer, since the
    485		 * profiler might only be disabled by virtue of a fault.
    486		 */
    487		limit = 0;
    488		goto out_write_limit;
    489	}
    490
    491	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
    492			      : arm_spe_pmu_next_off(handle);
    493	if (limit)
    494		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
    495
    496	limit += (u64)buf->base;
    497	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
    498	write_sysreg_s(base, SYS_PMBPTR_EL1);
    499
    500out_write_limit:
    501	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
    502}
    503
    504static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
    505{
    506	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
    507	u64 offset, size;
    508
    509	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
    510	size = offset - PERF_IDX2OFF(handle->head, buf);
    511
    512	if (buf->snapshot)
    513		handle->head = offset;
    514
    515	perf_aux_output_end(handle, size);
    516}
    517
    518static void arm_spe_pmu_disable_and_drain_local(void)
    519{
    520	/* Disable profiling at EL0 and EL1 */
    521	write_sysreg_s(0, SYS_PMSCR_EL1);
    522	isb();
    523
    524	/* Drain any buffered data */
    525	psb_csync();
    526	dsb(nsh);
    527
    528	/* Disable the profiling buffer */
    529	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
    530	isb();
    531}
    532
    533/* IRQ handling */
    534static enum arm_spe_pmu_buf_fault_action
    535arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
    536{
    537	const char *err_str;
    538	u64 pmbsr;
    539	enum arm_spe_pmu_buf_fault_action ret;
    540
    541	/*
    542	 * Ensure new profiling data is visible to the CPU and any external
    543	 * aborts have been resolved.
    544	 */
    545	psb_csync();
    546	dsb(nsh);
    547
    548	/* Ensure hardware updates to PMBPTR_EL1 are visible */
    549	isb();
    550
    551	/* Service required? */
    552	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
    553	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
    554		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
    555
    556	/*
    557	 * If we've lost data, disable profiling and also set the PARTIAL
    558	 * flag to indicate that the last record is corrupted.
    559	 */
    560	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
    561		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
    562					     PERF_AUX_FLAG_PARTIAL);
    563
    564	/* Report collisions to userspace so that it can up the period */
    565	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
    566		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
    567
    568	/* We only expect buffer management events */
    569	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
    570	case SYS_PMBSR_EL1_EC_BUF:
    571		/* Handled below */
    572		break;
    573	case SYS_PMBSR_EL1_EC_FAULT_S1:
    574	case SYS_PMBSR_EL1_EC_FAULT_S2:
    575		err_str = "Unexpected buffer fault";
    576		goto out_err;
    577	default:
    578		err_str = "Unknown error code";
    579		goto out_err;
    580	}
    581
    582	/* Buffer management event */
    583	switch (pmbsr &
    584		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
    585	case SYS_PMBSR_EL1_BUF_BSC_FULL:
    586		ret = SPE_PMU_BUF_FAULT_ACT_OK;
    587		goto out_stop;
    588	default:
    589		err_str = "Unknown buffer status code";
    590	}
    591
    592out_err:
    593	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
    594			   err_str, smp_processor_id(), pmbsr,
    595			   read_sysreg_s(SYS_PMBPTR_EL1),
    596			   read_sysreg_s(SYS_PMBLIMITR_EL1));
    597	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
    598
    599out_stop:
    600	arm_spe_perf_aux_output_end(handle);
    601	return ret;
    602}
    603
    604static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
    605{
    606	struct perf_output_handle *handle = dev;
    607	struct perf_event *event = handle->event;
    608	enum arm_spe_pmu_buf_fault_action act;
    609
    610	if (!perf_get_aux(handle))
    611		return IRQ_NONE;
    612
    613	act = arm_spe_pmu_buf_get_fault_act(handle);
    614	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
    615		return IRQ_NONE;
    616
    617	/*
    618	 * Ensure perf callbacks have completed, which may disable the
    619	 * profiling buffer in response to a TRUNCATION flag.
    620	 */
    621	irq_work_run();
    622
    623	switch (act) {
    624	case SPE_PMU_BUF_FAULT_ACT_FATAL:
    625		/*
    626		 * If a fatal exception occurred then leaving the profiling
    627		 * buffer enabled is a recipe waiting to happen. Since
    628		 * fatal faults don't always imply truncation, make sure
    629		 * that the profiling buffer is disabled explicitly before
    630		 * clearing the syndrome register.
    631		 */
    632		arm_spe_pmu_disable_and_drain_local();
    633		break;
    634	case SPE_PMU_BUF_FAULT_ACT_OK:
    635		/*
    636		 * We handled the fault (the buffer was full), so resume
    637		 * profiling as long as we didn't detect truncation.
    638		 * PMBPTR might be misaligned, but we'll burn that bridge
    639		 * when we get to it.
    640		 */
    641		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
    642			arm_spe_perf_aux_output_begin(handle, event);
    643			isb();
    644		}
    645		break;
    646	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
    647		/* We've seen you before, but GCC has the memory of a sieve. */
    648		break;
    649	}
    650
    651	/* The buffer pointers are now sane, so resume profiling. */
    652	write_sysreg_s(0, SYS_PMBSR_EL1);
    653	return IRQ_HANDLED;
    654}
    655
    656static u64 arm_spe_pmsevfr_res0(u16 pmsver)
    657{
    658	switch (pmsver) {
    659	case ID_AA64DFR0_PMSVER_8_2:
    660		return SYS_PMSEVFR_EL1_RES0_8_2;
    661	case ID_AA64DFR0_PMSVER_8_3:
    662	/* Return the highest version we support in default */
    663	default:
    664		return SYS_PMSEVFR_EL1_RES0_8_3;
    665	}
    666}
    667
    668/* Perf callbacks */
    669static int arm_spe_pmu_event_init(struct perf_event *event)
    670{
    671	u64 reg;
    672	struct perf_event_attr *attr = &event->attr;
    673	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
    674
    675	/* This is, of course, deeply driver-specific */
    676	if (attr->type != event->pmu->type)
    677		return -ENOENT;
    678
    679	if (event->cpu >= 0 &&
    680	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
    681		return -ENOENT;
    682
    683	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
    684		return -EOPNOTSUPP;
    685
    686	if (attr->exclude_idle)
    687		return -EOPNOTSUPP;
    688
    689	/*
    690	 * Feedback-directed frequency throttling doesn't work when we
    691	 * have a buffer of samples. We'd need to manually count the
    692	 * samples in the buffer when it fills up and adjust the event
    693	 * count to reflect that. Instead, just force the user to specify
    694	 * a sample period.
    695	 */
    696	if (attr->freq)
    697		return -EINVAL;
    698
    699	reg = arm_spe_event_to_pmsfcr(event);
    700	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
    701	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
    702		return -EOPNOTSUPP;
    703
    704	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
    705	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
    706		return -EOPNOTSUPP;
    707
    708	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
    709	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
    710		return -EOPNOTSUPP;
    711
    712	reg = arm_spe_event_to_pmscr(event);
    713	if (!perfmon_capable() &&
    714	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
    715		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
    716		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
    717		return -EACCES;
    718
    719	return 0;
    720}
    721
    722static void arm_spe_pmu_start(struct perf_event *event, int flags)
    723{
    724	u64 reg;
    725	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
    726	struct hw_perf_event *hwc = &event->hw;
    727	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
    728
    729	hwc->state = 0;
    730	arm_spe_perf_aux_output_begin(handle, event);
    731	if (hwc->state)
    732		return;
    733
    734	reg = arm_spe_event_to_pmsfcr(event);
    735	write_sysreg_s(reg, SYS_PMSFCR_EL1);
    736
    737	reg = arm_spe_event_to_pmsevfr(event);
    738	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
    739
    740	reg = arm_spe_event_to_pmslatfr(event);
    741	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
    742
    743	if (flags & PERF_EF_RELOAD) {
    744		reg = arm_spe_event_to_pmsirr(event);
    745		write_sysreg_s(reg, SYS_PMSIRR_EL1);
    746		isb();
    747		reg = local64_read(&hwc->period_left);
    748		write_sysreg_s(reg, SYS_PMSICR_EL1);
    749	}
    750
    751	reg = arm_spe_event_to_pmscr(event);
    752	isb();
    753	write_sysreg_s(reg, SYS_PMSCR_EL1);
    754}
    755
    756static void arm_spe_pmu_stop(struct perf_event *event, int flags)
    757{
    758	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
    759	struct hw_perf_event *hwc = &event->hw;
    760	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
    761
    762	/* If we're already stopped, then nothing to do */
    763	if (hwc->state & PERF_HES_STOPPED)
    764		return;
    765
    766	/* Stop all trace generation */
    767	arm_spe_pmu_disable_and_drain_local();
    768
    769	if (flags & PERF_EF_UPDATE) {
    770		/*
    771		 * If there's a fault pending then ensure we contain it
    772		 * to this buffer, since we might be on the context-switch
    773		 * path.
    774		 */
    775		if (perf_get_aux(handle)) {
    776			enum arm_spe_pmu_buf_fault_action act;
    777
    778			act = arm_spe_pmu_buf_get_fault_act(handle);
    779			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
    780				arm_spe_perf_aux_output_end(handle);
    781			else
    782				write_sysreg_s(0, SYS_PMBSR_EL1);
    783		}
    784
    785		/*
    786		 * This may also contain ECOUNT, but nobody else should
    787		 * be looking at period_left, since we forbid frequency
    788		 * based sampling.
    789		 */
    790		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
    791		hwc->state |= PERF_HES_UPTODATE;
    792	}
    793
    794	hwc->state |= PERF_HES_STOPPED;
    795}
    796
    797static int arm_spe_pmu_add(struct perf_event *event, int flags)
    798{
    799	int ret = 0;
    800	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
    801	struct hw_perf_event *hwc = &event->hw;
    802	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
    803
    804	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
    805		return -ENOENT;
    806
    807	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
    808
    809	if (flags & PERF_EF_START) {
    810		arm_spe_pmu_start(event, PERF_EF_RELOAD);
    811		if (hwc->state & PERF_HES_STOPPED)
    812			ret = -EINVAL;
    813	}
    814
    815	return ret;
    816}
    817
    818static void arm_spe_pmu_del(struct perf_event *event, int flags)
    819{
    820	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
    821}
    822
    823static void arm_spe_pmu_read(struct perf_event *event)
    824{
    825}
    826
    827static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
    828				   int nr_pages, bool snapshot)
    829{
    830	int i, cpu = event->cpu;
    831	struct page **pglist;
    832	struct arm_spe_pmu_buf *buf;
    833
    834	/* We need at least two pages for this to work. */
    835	if (nr_pages < 2)
    836		return NULL;
    837
    838	/*
    839	 * We require an even number of pages for snapshot mode, so that
    840	 * we can effectively treat the buffer as consisting of two equal
    841	 * parts and give userspace a fighting chance of getting some
    842	 * useful data out of it.
    843	 */
    844	if (snapshot && (nr_pages & 1))
    845		return NULL;
    846
    847	if (cpu == -1)
    848		cpu = raw_smp_processor_id();
    849
    850	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
    851	if (!buf)
    852		return NULL;
    853
    854	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
    855	if (!pglist)
    856		goto out_free_buf;
    857
    858	for (i = 0; i < nr_pages; ++i)
    859		pglist[i] = virt_to_page(pages[i]);
    860
    861	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
    862	if (!buf->base)
    863		goto out_free_pglist;
    864
    865	buf->nr_pages	= nr_pages;
    866	buf->snapshot	= snapshot;
    867
    868	kfree(pglist);
    869	return buf;
    870
    871out_free_pglist:
    872	kfree(pglist);
    873out_free_buf:
    874	kfree(buf);
    875	return NULL;
    876}
    877
    878static void arm_spe_pmu_free_aux(void *aux)
    879{
    880	struct arm_spe_pmu_buf *buf = aux;
    881
    882	vunmap(buf->base);
    883	kfree(buf);
    884}
    885
    886/* Initialisation and teardown functions */
    887static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
    888{
    889	static atomic_t pmu_idx = ATOMIC_INIT(-1);
    890
    891	int idx;
    892	char *name;
    893	struct device *dev = &spe_pmu->pdev->dev;
    894
    895	spe_pmu->pmu = (struct pmu) {
    896		.module = THIS_MODULE,
    897		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
    898		.attr_groups	= arm_spe_pmu_attr_groups,
    899		/*
    900		 * We hitch a ride on the software context here, so that
    901		 * we can support per-task profiling (which is not possible
    902		 * with the invalid context as it doesn't get sched callbacks).
    903		 * This requires that userspace either uses a dummy event for
    904		 * perf_event_open, since the aux buffer is not setup until
    905		 * a subsequent mmap, or creates the profiling event in a
    906		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
    907		 * once the buffer has been created.
    908		 */
    909		.task_ctx_nr	= perf_sw_context,
    910		.event_init	= arm_spe_pmu_event_init,
    911		.add		= arm_spe_pmu_add,
    912		.del		= arm_spe_pmu_del,
    913		.start		= arm_spe_pmu_start,
    914		.stop		= arm_spe_pmu_stop,
    915		.read		= arm_spe_pmu_read,
    916		.setup_aux	= arm_spe_pmu_setup_aux,
    917		.free_aux	= arm_spe_pmu_free_aux,
    918	};
    919
    920	idx = atomic_inc_return(&pmu_idx);
    921	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
    922	if (!name) {
    923		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
    924		return -ENOMEM;
    925	}
    926
    927	return perf_pmu_register(&spe_pmu->pmu, name, -1);
    928}
    929
    930static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
    931{
    932	perf_pmu_unregister(&spe_pmu->pmu);
    933}
    934
    935static void __arm_spe_pmu_dev_probe(void *info)
    936{
    937	int fld;
    938	u64 reg;
    939	struct arm_spe_pmu *spe_pmu = info;
    940	struct device *dev = &spe_pmu->pdev->dev;
    941
    942	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
    943						   ID_AA64DFR0_PMSVER_SHIFT);
    944	if (!fld) {
    945		dev_err(dev,
    946			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
    947			fld, smp_processor_id());
    948		return;
    949	}
    950	spe_pmu->pmsver = (u16)fld;
    951
    952	/* Read PMBIDR first to determine whether or not we have access */
    953	reg = read_sysreg_s(SYS_PMBIDR_EL1);
    954	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
    955		dev_err(dev,
    956			"profiling buffer owned by higher exception level\n");
    957		return;
    958	}
    959
    960	/* Minimum alignment. If it's out-of-range, then fail the probe */
    961	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
    962	spe_pmu->align = 1 << fld;
    963	if (spe_pmu->align > SZ_2K) {
    964		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
    965			fld, smp_processor_id());
    966		return;
    967	}
    968
    969	/* It's now safe to read PMSIDR and figure out what we've got */
    970	reg = read_sysreg_s(SYS_PMSIDR_EL1);
    971	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
    972		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
    973
    974	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
    975		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
    976
    977	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
    978		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
    979
    980	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
    981		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
    982
    983	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
    984		spe_pmu->features |= SPE_PMU_FEAT_LDS;
    985
    986	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
    987		spe_pmu->features |= SPE_PMU_FEAT_ERND;
    988
    989	/* This field has a spaced out encoding, so just use a look-up */
    990	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
    991	switch (fld) {
    992	case 0:
    993		spe_pmu->min_period = 256;
    994		break;
    995	case 2:
    996		spe_pmu->min_period = 512;
    997		break;
    998	case 3:
    999		spe_pmu->min_period = 768;
   1000		break;
   1001	case 4:
   1002		spe_pmu->min_period = 1024;
   1003		break;
   1004	case 5:
   1005		spe_pmu->min_period = 1536;
   1006		break;
   1007	case 6:
   1008		spe_pmu->min_period = 2048;
   1009		break;
   1010	case 7:
   1011		spe_pmu->min_period = 3072;
   1012		break;
   1013	default:
   1014		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
   1015			 fld);
   1016		fallthrough;
   1017	case 8:
   1018		spe_pmu->min_period = 4096;
   1019	}
   1020
   1021	/* Maximum record size. If it's out-of-range, then fail the probe */
   1022	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
   1023	spe_pmu->max_record_sz = 1 << fld;
   1024	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
   1025		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
   1026			fld, smp_processor_id());
   1027		return;
   1028	}
   1029
   1030	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
   1031	switch (fld) {
   1032	default:
   1033		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
   1034			 fld);
   1035		fallthrough;
   1036	case 2:
   1037		spe_pmu->counter_sz = 12;
   1038		break;
   1039	case 3:
   1040		spe_pmu->counter_sz = 16;
   1041	}
   1042
   1043	dev_info(dev,
   1044		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
   1045		 cpumask_pr_args(&spe_pmu->supported_cpus),
   1046		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
   1047
   1048	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
   1049}
   1050
   1051static void __arm_spe_pmu_reset_local(void)
   1052{
   1053	/*
   1054	 * This is probably overkill, as we have no idea where we're
   1055	 * draining any buffered data to...
   1056	 */
   1057	arm_spe_pmu_disable_and_drain_local();
   1058
   1059	/* Reset the buffer base pointer */
   1060	write_sysreg_s(0, SYS_PMBPTR_EL1);
   1061	isb();
   1062
   1063	/* Clear any pending management interrupts */
   1064	write_sysreg_s(0, SYS_PMBSR_EL1);
   1065	isb();
   1066}
   1067
   1068static void __arm_spe_pmu_setup_one(void *info)
   1069{
   1070	struct arm_spe_pmu *spe_pmu = info;
   1071
   1072	__arm_spe_pmu_reset_local();
   1073	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
   1074}
   1075
   1076static void __arm_spe_pmu_stop_one(void *info)
   1077{
   1078	struct arm_spe_pmu *spe_pmu = info;
   1079
   1080	disable_percpu_irq(spe_pmu->irq);
   1081	__arm_spe_pmu_reset_local();
   1082}
   1083
   1084static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
   1085{
   1086	struct arm_spe_pmu *spe_pmu;
   1087
   1088	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
   1089	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
   1090		return 0;
   1091
   1092	__arm_spe_pmu_setup_one(spe_pmu);
   1093	return 0;
   1094}
   1095
   1096static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
   1097{
   1098	struct arm_spe_pmu *spe_pmu;
   1099
   1100	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
   1101	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
   1102		return 0;
   1103
   1104	__arm_spe_pmu_stop_one(spe_pmu);
   1105	return 0;
   1106}
   1107
   1108static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
   1109{
   1110	int ret;
   1111	cpumask_t *mask = &spe_pmu->supported_cpus;
   1112
   1113	/* Make sure we probe the hardware on a relevant CPU */
   1114	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
   1115	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
   1116		return -ENXIO;
   1117
   1118	/* Request our PPIs (note that the IRQ is still disabled) */
   1119	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
   1120				 spe_pmu->handle);
   1121	if (ret)
   1122		return ret;
   1123
   1124	/*
   1125	 * Register our hotplug notifier now so we don't miss any events.
   1126	 * This will enable the IRQ for any supported CPUs that are already
   1127	 * up.
   1128	 */
   1129	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
   1130				       &spe_pmu->hotplug_node);
   1131	if (ret)
   1132		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
   1133
   1134	return ret;
   1135}
   1136
   1137static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
   1138{
   1139	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
   1140	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
   1141}
   1142
   1143/* Driver and device probing */
   1144static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
   1145{
   1146	struct platform_device *pdev = spe_pmu->pdev;
   1147	int irq = platform_get_irq(pdev, 0);
   1148
   1149	if (irq < 0)
   1150		return -ENXIO;
   1151
   1152	if (!irq_is_percpu(irq)) {
   1153		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
   1154		return -EINVAL;
   1155	}
   1156
   1157	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
   1158		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
   1159		return -EINVAL;
   1160	}
   1161
   1162	spe_pmu->irq = irq;
   1163	return 0;
   1164}
   1165
   1166static const struct of_device_id arm_spe_pmu_of_match[] = {
   1167	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
   1168	{ /* Sentinel */ },
   1169};
   1170MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
   1171
   1172static const struct platform_device_id arm_spe_match[] = {
   1173	{ ARMV8_SPE_PDEV_NAME, 0},
   1174	{ }
   1175};
   1176MODULE_DEVICE_TABLE(platform, arm_spe_match);
   1177
   1178static int arm_spe_pmu_device_probe(struct platform_device *pdev)
   1179{
   1180	int ret;
   1181	struct arm_spe_pmu *spe_pmu;
   1182	struct device *dev = &pdev->dev;
   1183
   1184	/*
   1185	 * If kernelspace is unmapped when running at EL0, then the SPE
   1186	 * buffer will fault and prematurely terminate the AUX session.
   1187	 */
   1188	if (arm64_kernel_unmapped_at_el0()) {
   1189		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
   1190		return -EPERM;
   1191	}
   1192
   1193	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
   1194	if (!spe_pmu)
   1195		return -ENOMEM;
   1196
   1197	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
   1198	if (!spe_pmu->handle)
   1199		return -ENOMEM;
   1200
   1201	spe_pmu->pdev = pdev;
   1202	platform_set_drvdata(pdev, spe_pmu);
   1203
   1204	ret = arm_spe_pmu_irq_probe(spe_pmu);
   1205	if (ret)
   1206		goto out_free_handle;
   1207
   1208	ret = arm_spe_pmu_dev_init(spe_pmu);
   1209	if (ret)
   1210		goto out_free_handle;
   1211
   1212	ret = arm_spe_pmu_perf_init(spe_pmu);
   1213	if (ret)
   1214		goto out_teardown_dev;
   1215
   1216	return 0;
   1217
   1218out_teardown_dev:
   1219	arm_spe_pmu_dev_teardown(spe_pmu);
   1220out_free_handle:
   1221	free_percpu(spe_pmu->handle);
   1222	return ret;
   1223}
   1224
   1225static int arm_spe_pmu_device_remove(struct platform_device *pdev)
   1226{
   1227	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
   1228
   1229	arm_spe_pmu_perf_destroy(spe_pmu);
   1230	arm_spe_pmu_dev_teardown(spe_pmu);
   1231	free_percpu(spe_pmu->handle);
   1232	return 0;
   1233}
   1234
   1235static struct platform_driver arm_spe_pmu_driver = {
   1236	.id_table = arm_spe_match,
   1237	.driver	= {
   1238		.name		= DRVNAME,
   1239		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
   1240		.suppress_bind_attrs = true,
   1241	},
   1242	.probe	= arm_spe_pmu_device_probe,
   1243	.remove	= arm_spe_pmu_device_remove,
   1244};
   1245
   1246static int __init arm_spe_pmu_init(void)
   1247{
   1248	int ret;
   1249
   1250	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
   1251				      arm_spe_pmu_cpu_startup,
   1252				      arm_spe_pmu_cpu_teardown);
   1253	if (ret < 0)
   1254		return ret;
   1255	arm_spe_pmu_online = ret;
   1256
   1257	ret = platform_driver_register(&arm_spe_pmu_driver);
   1258	if (ret)
   1259		cpuhp_remove_multi_state(arm_spe_pmu_online);
   1260
   1261	return ret;
   1262}
   1263
   1264static void __exit arm_spe_pmu_exit(void)
   1265{
   1266	platform_driver_unregister(&arm_spe_pmu_driver);
   1267	cpuhp_remove_multi_state(arm_spe_pmu_online);
   1268}
   1269
   1270module_init(arm_spe_pmu_init);
   1271module_exit(arm_spe_pmu_exit);
   1272
   1273MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
   1274MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
   1275MODULE_LICENSE("GPL v2");