cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

phy-xgene.c (60570B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * AppliedMicro X-Gene Multi-purpose PHY driver
      4 *
      5 * Copyright (c) 2014, Applied Micro Circuits Corporation
      6 * Author: Loc Ho <lho@apm.com>
      7 *         Tuan Phan <tphan@apm.com>
      8 *         Suman Tripathi <stripathi@apm.com>
      9 *
     10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
     11 * The first PLL clock macro is used for internal reference clock. The second
     12 * PLL clock macro is used to generate the clock for the PHY. This driver
     13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
     14 * operate according to the mode of operation. The first PLL CMU is only
     15 * required if internal clock is enabled.
     16 *
     17 * Logical Layer Out Of HW module units:
     18 *
     19 * -----------------
     20 * | Internal      |    |------|
     21 * | Ref PLL CMU   |----|      |     -------------    ---------
     22 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
     23 *                      |      |     |           |    ---------
     24 * External Clock ------|      |     -------------
     25 *                      |------|
     26 *
     27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
     28 * indirectly from the SDS offset at 0x2000. It is only required for
     29 * internal reference clock.
     30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
     31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
     32 *
     33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
     34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
     35 * it is located outside the PHY IP. This is the case for the PHY located
     36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
     37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
     38 *
     39 * Currently, this driver only supports Gen3 SATA mode with external clock.
     40 */
     41#include <linux/module.h>
     42#include <linux/platform_device.h>
     43#include <linux/io.h>
     44#include <linux/delay.h>
     45#include <linux/phy/phy.h>
     46#include <linux/clk.h>
     47
     48/* Max 2 lanes per a PHY unit */
     49#define MAX_LANE			2
     50
     51/* Register offset inside the PHY */
     52#define SERDES_PLL_INDIRECT_OFFSET	0x0000
     53#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
     54#define SERDES_INDIRECT_OFFSET		0x0400
     55#define SERDES_LANE_STRIDE		0x0200
     56
     57/* Some default Serdes parameters */
     58#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
     59#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
     60#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
     61#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
     62#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
     63#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
     64#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
     65#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
     66
     67#define SATA_SPD_SEL_GEN3		0x7
     68#define SATA_SPD_SEL_GEN2		0x3
     69#define SATA_SPD_SEL_GEN1		0x1
     70
     71#define SSC_DISABLE			0
     72#define SSC_ENABLE			1
     73
     74#define FBDIV_VAL_50M			0x77
     75#define REFDIV_VAL_50M			0x1
     76#define FBDIV_VAL_100M			0x3B
     77#define REFDIV_VAL_100M			0x0
     78
     79/* SATA Clock/Reset CSR */
     80#define SATACLKENREG			0x00000000
     81#define  SATA0_CORE_CLKEN		0x00000002
     82#define  SATA1_CORE_CLKEN		0x00000004
     83#define SATASRESETREG			0x00000004
     84#define  SATA_MEM_RESET_MASK		0x00000020
     85#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
     86#define  SATA_SDS_RESET_MASK		0x00000004
     87#define  SATA_CSR_RESET_MASK		0x00000001
     88#define  SATA_CORE_RESET_MASK		0x00000002
     89#define  SATA_PMCLK_RESET_MASK		0x00000010
     90#define  SATA_PCLK_RESET_MASK		0x00000008
     91
     92/* SDS CSR used for PHY Indirect access */
     93#define SATA_ENET_SDS_PCS_CTL0		0x00000000
     94#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
     95		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
     96#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
     97		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
     98#define SATA_ENET_SDS_CTL0		0x0000000c
     99#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
    100		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
    101#define SATA_ENET_SDS_CTL1		0x00000010
    102#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
    103		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
    104#define SATA_ENET_SDS_RST_CTL		0x00000024
    105#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
    106#define  CFG_IND_WR_CMD_MASK		0x00000001
    107#define  CFG_IND_RD_CMD_MASK		0x00000002
    108#define  CFG_IND_CMD_DONE_MASK		0x00000004
    109#define  CFG_IND_ADDR_SET(dst, src) \
    110		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
    111#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
    112#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
    113#define SATA_ENET_CLK_MACRO_REG		0x0000004c
    114#define  I_RESET_B_SET(dst, src) \
    115		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
    116#define  I_PLL_FBDIV_SET(dst, src) \
    117		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
    118#define  I_CUSTOMEROV_SET(dst, src) \
    119		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
    120#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
    121#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
    122
    123/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
    124#define CMU_REG0			0x00000
    125#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
    126#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
    127		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
    128#define  CMU_REG0_PDOWN_MASK		0x00004000
    129#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
    130		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
    131#define CMU_REG1			0x00002
    132#define  CMU_REG1_PLL_CP_SET(dst, src) \
    133		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
    134#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
    135		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    136#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
    137		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
    138#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
    139#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
    140		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
    141#define CMU_REG2			0x00004
    142#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
    143		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
    144#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
    145		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
    146#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
    147		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
    148#define CMU_REG3			0x00006
    149#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
    150		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
    151#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
    152		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
    153#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
    154		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
    155#define CMU_REG4			0x00008
    156#define CMU_REG5			0x0000a
    157#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
    158		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
    159#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
    160		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
    161#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
    162		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
    163#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
    164#define CMU_REG6			0x0000c
    165#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
    166		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
    167#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
    168		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
    169#define CMU_REG7			0x0000e
    170#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
    171#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
    172#define CMU_REG8			0x00010
    173#define CMU_REG9			0x00012
    174#define  CMU_REG9_WORD_LEN_8BIT		0x000
    175#define  CMU_REG9_WORD_LEN_10BIT	0x001
    176#define  CMU_REG9_WORD_LEN_16BIT	0x002
    177#define  CMU_REG9_WORD_LEN_20BIT	0x003
    178#define  CMU_REG9_WORD_LEN_32BIT	0x004
    179#define  CMU_REG9_WORD_LEN_40BIT	0x005
    180#define  CMU_REG9_WORD_LEN_64BIT	0x006
    181#define  CMU_REG9_WORD_LEN_66BIT	0x007
    182#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
    183		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
    184#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
    185		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
    186#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
    187		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    188#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
    189		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
    190#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
    191		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    192#define CMU_REG10			0x00014
    193#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
    194		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
    195#define CMU_REG11			0x00016
    196#define CMU_REG12			0x00018
    197#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
    198		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
    199#define CMU_REG13			0x0001a
    200#define CMU_REG14			0x0001c
    201#define CMU_REG15			0x0001e
    202#define CMU_REG16			0x00020
    203#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
    204#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
    205#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
    206		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
    207#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
    208		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
    209#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
    210		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
    211#define CMU_REG17			0x00022
    212#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
    213		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
    214#define  CMU_REG17_RESERVED_7_SET(dst, src) \
    215		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
    216#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
    217#define CMU_REG18			0x00024
    218#define CMU_REG19			0x00026
    219#define CMU_REG20			0x00028
    220#define CMU_REG21			0x0002a
    221#define CMU_REG22			0x0002c
    222#define CMU_REG23			0x0002e
    223#define CMU_REG24			0x00030
    224#define CMU_REG25			0x00032
    225#define CMU_REG26			0x00034
    226#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
    227		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
    228#define CMU_REG27			0x00036
    229#define CMU_REG28			0x00038
    230#define CMU_REG29			0x0003a
    231#define CMU_REG30			0x0003c
    232#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
    233		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
    234#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
    235		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    236#define CMU_REG31			0x0003e
    237#define CMU_REG32			0x00040
    238#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
    239#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
    240		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
    241#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
    242		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
    243#define CMU_REG33			0x00042
    244#define CMU_REG34			0x00044
    245#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
    246		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
    247#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
    248		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
    249#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
    250		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
    251#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
    252		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
    253#define CMU_REG35			0x00046
    254#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
    255		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
    256#define CMU_REG36				0x00048
    257#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
    258		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
    259#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
    260		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
    261#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
    262		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
    263#define CMU_REG37			0x0004a
    264#define CMU_REG38			0x0004c
    265#define CMU_REG39			0x0004e
    266
    267/* PHY lane CSR accessing from SDS indirectly */
    268#define RXTX_REG0			0x000
    269#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
    270		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    271#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
    272		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
    273#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
    274		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
    275#define RXTX_REG1			0x002
    276#define  RXTX_REG1_RXACVCM_SET(dst, src) \
    277		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
    278#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
    279		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
    280#define  RXTX_REG1_RXVREG1_SET(dst, src) \
    281		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
    282#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
    283		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
    284#define RXTX_REG2			0x004
    285#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
    286		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
    287#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
    288		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
    289#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
    290		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
    291#define RXTX_REG4			0x008
    292#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
    293#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
    294		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
    295#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
    296		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
    297#define RXTX_REG5			0x00a
    298#define  RXTX_REG5_TX_CN1_SET(dst, src) \
    299		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    300#define  RXTX_REG5_TX_CP1_SET(dst, src) \
    301		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
    302#define  RXTX_REG5_TX_CN2_SET(dst, src) \
    303		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
    304#define RXTX_REG6			0x00c
    305#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
    306		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
    307#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
    308		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
    309#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
    310		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
    311#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
    312		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    313#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
    314		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    315#define RXTX_REG7			0x00e
    316#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
    317#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
    318#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
    319		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
    320#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
    321		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
    322#define RXTX_REG8			0x010
    323#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
    324		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
    325#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
    326		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
    327#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
    328		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
    329#define  RXTX_REG8_SD_VREF_SET(dst, src) \
    330		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
    331#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
    332		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
    333#define RXTX_REG7			0x00e
    334#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
    335		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
    336#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
    337		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
    338#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
    339#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
    340		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
    341#define RXTX_REG11			0x016
    342#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
    343		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    344#define RXTX_REG12			0x018
    345#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
    346		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
    347#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
    348		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
    349#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
    350#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
    351		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    352#define RXTX_REG13			0x01a
    353#define RXTX_REG14			0x01c
    354#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
    355		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
    356#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
    357		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
    358#define RXTX_REG26			0x034
    359#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
    360		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
    361#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
    362		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    363#define RXTX_REG21			0x02a
    364#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
    365#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
    366#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
    367#define RXTX_REG22			0x02c
    368#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
    369#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
    370#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
    371#define RXTX_REG23			0x02e
    372#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
    373#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
    374#define RXTX_REG24			0x030
    375#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
    376#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
    377#define RXTX_REG27			0x036
    378#define RXTX_REG28			0x038
    379#define RXTX_REG31			0x03e
    380#define RXTX_REG38			0x04c
    381#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
    382		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
    383#define RXTX_REG39			0x04e
    384#define RXTX_REG40			0x050
    385#define RXTX_REG41			0x052
    386#define RXTX_REG42			0x054
    387#define RXTX_REG43			0x056
    388#define RXTX_REG44			0x058
    389#define RXTX_REG45			0x05a
    390#define RXTX_REG46			0x05c
    391#define RXTX_REG47			0x05e
    392#define RXTX_REG48			0x060
    393#define RXTX_REG49			0x062
    394#define RXTX_REG50			0x064
    395#define RXTX_REG51			0x066
    396#define RXTX_REG52			0x068
    397#define RXTX_REG53			0x06a
    398#define RXTX_REG54			0x06c
    399#define RXTX_REG55			0x06e
    400#define RXTX_REG61			0x07a
    401#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
    402		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
    403#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
    404		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    405#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
    406		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
    407#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
    408		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
    409#define RXTX_REG62			0x07c
    410#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
    411		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
    412#define RXTX_REG81			0x0a2
    413#define  RXTX_REG89_MU_TH7_SET(dst, src) \
    414		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    415#define  RXTX_REG89_MU_TH8_SET(dst, src) \
    416		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
    417#define  RXTX_REG89_MU_TH9_SET(dst, src) \
    418		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
    419#define RXTX_REG96			0x0c0
    420#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
    421		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    422#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
    423		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
    424#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
    425		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
    426#define RXTX_REG99			0x0c6
    427#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
    428		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
    429#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
    430		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
    431#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
    432		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
    433#define RXTX_REG102			0x0cc
    434#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
    435		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
    436#define RXTX_REG114			0x0e4
    437#define RXTX_REG121			0x0f2
    438#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
    439#define RXTX_REG125			0x0fa
    440#define  RXTX_REG125_PQ_REG_SET(dst, src) \
    441		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
    442#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
    443		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
    444#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
    445		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
    446#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
    447		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
    448#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
    449		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    450#define RXTX_REG127			0x0fe
    451#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
    452#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
    453#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
    454		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    455#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
    456		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
    457#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
    458		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
    459#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
    460		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
    461#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
    462		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
    463#define RXTX_REG128			0x100
    464#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
    465		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
    466#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
    467		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
    468#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
    469		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
    470#define RXTX_REG129			0x102
    471#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
    472		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
    473#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
    474		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
    475#define RXTX_REG130			0x104
    476#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
    477		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
    478#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
    479		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
    480#define RXTX_REG145			0x122
    481#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
    482		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
    483#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
    484		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
    485#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
    486		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
    487#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
    488		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
    489#define RXTX_REG147			0x126
    490#define RXTX_REG148			0x128
    491
    492/* Clock macro type */
    493enum cmu_type_t {
    494	REF_CMU = 0,	/* Clock macro is the internal reference clock */
    495	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
    496};
    497
    498enum mux_type_t {
    499	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
    500	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
    501};
    502
    503enum clk_type_t {
    504	CLK_EXT_DIFF = 0,	/* External differential */
    505	CLK_INT_DIFF = 1,	/* Internal differential */
    506	CLK_INT_SING = 2,	/* Internal single ended */
    507};
    508
    509enum xgene_phy_mode {
    510	MODE_SATA	= 0,	/* List them for simple reference */
    511	MODE_SGMII	= 1,
    512	MODE_PCIE	= 2,
    513	MODE_USB	= 3,
    514	MODE_XFI	= 4,
    515	MODE_MAX
    516};
    517
    518struct xgene_sata_override_param {
    519	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
    520	u32 txspeed[3];			/* Tx speed */
    521	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
    522	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
    523	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
    524	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
    525	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
    526	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
    527	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
    528};
    529
    530struct xgene_phy_ctx {
    531	struct device *dev;
    532	struct phy *phy;
    533	enum xgene_phy_mode mode;		/* Mode of operation */
    534	enum clk_type_t clk_type;	/* Input clock selection */
    535	void __iomem *sds_base;		/* PHY CSR base addr */
    536	struct clk *clk;		/* Optional clock */
    537
    538	/* Override Serdes parameters */
    539	struct xgene_sata_override_param sata_param;
    540};
    541
    542/*
    543 * For chip earlier than A3 version, enable this flag.
    544 * To enable, pass boot argument phy_xgene.preA3Chip=1
    545 */
    546static int preA3Chip;
    547MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
    548module_param_named(preA3Chip, preA3Chip, int, 0444);
    549
    550static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
    551		   u32 indirect_data_reg, u32 addr, u32 data)
    552{
    553	unsigned long deadline = jiffies + HZ;
    554	u32 val;
    555	u32 cmd;
    556
    557	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
    558	cmd = CFG_IND_ADDR_SET(cmd, addr);
    559	writel(data, csr_base + indirect_data_reg);
    560	readl(csr_base + indirect_data_reg); /* Force a barrier */
    561	writel(cmd, csr_base + indirect_cmd_reg);
    562	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
    563	do {
    564		val = readl(csr_base + indirect_cmd_reg);
    565	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
    566		 time_before(jiffies, deadline));
    567	if (!(val & CFG_IND_CMD_DONE_MASK))
    568		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
    569		       csr_base + indirect_cmd_reg, addr, data);
    570}
    571
    572static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
    573		   u32 indirect_data_reg, u32 addr, u32 *data)
    574{
    575	unsigned long deadline = jiffies + HZ;
    576	u32 val;
    577	u32 cmd;
    578
    579	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
    580	cmd = CFG_IND_ADDR_SET(cmd, addr);
    581	writel(cmd, csr_base + indirect_cmd_reg);
    582	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
    583	do {
    584		val = readl(csr_base + indirect_cmd_reg);
    585	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
    586		 time_before(jiffies, deadline));
    587	*data = readl(csr_base + indirect_data_reg);
    588	if (!(val & CFG_IND_CMD_DONE_MASK))
    589		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
    590		       csr_base + indirect_cmd_reg, addr, *data);
    591}
    592
    593static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
    594		   u32 reg, u32 data)
    595{
    596	void __iomem *sds_base = ctx->sds_base;
    597	u32 val;
    598
    599	if (cmu_type == REF_CMU)
    600		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
    601	else
    602		reg += SERDES_PLL_INDIRECT_OFFSET;
    603	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    604		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
    605	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    606		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
    607	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
    608}
    609
    610static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
    611		   u32 reg, u32 *data)
    612{
    613	void __iomem *sds_base = ctx->sds_base;
    614
    615	if (cmu_type == REF_CMU)
    616		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
    617	else
    618		reg += SERDES_PLL_INDIRECT_OFFSET;
    619	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    620		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
    621	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
    622}
    623
    624static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
    625			   u32 reg, u32 bits)
    626{
    627	u32 val;
    628
    629	cmu_rd(ctx, cmu_type, reg, &val);
    630	val |= bits;
    631	cmu_wr(ctx, cmu_type, reg, val);
    632	cmu_rd(ctx, cmu_type, reg, &val);
    633	val &= ~bits;
    634	cmu_wr(ctx, cmu_type, reg, val);
    635}
    636
    637static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
    638			u32 reg, u32 bits)
    639{
    640	u32 val;
    641
    642	cmu_rd(ctx, cmu_type, reg, &val);
    643	val &= ~bits;
    644	cmu_wr(ctx, cmu_type, reg, val);
    645}
    646
    647static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
    648			u32 reg, u32 bits)
    649{
    650	u32 val;
    651
    652	cmu_rd(ctx, cmu_type, reg, &val);
    653	val |= bits;
    654	cmu_wr(ctx, cmu_type, reg, val);
    655}
    656
    657static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
    658{
    659	void __iomem *sds_base = ctx->sds_base;
    660	u32 val;
    661
    662	reg += SERDES_INDIRECT_OFFSET;
    663	reg += lane * SERDES_LANE_STRIDE;
    664	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    665	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
    666	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    667	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
    668	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
    669		 val);
    670}
    671
    672static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
    673{
    674	void __iomem *sds_base = ctx->sds_base;
    675
    676	reg += SERDES_INDIRECT_OFFSET;
    677	reg += lane * SERDES_LANE_STRIDE;
    678	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
    679	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
    680	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
    681}
    682
    683static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
    684			   u32 bits)
    685{
    686	u32 val;
    687
    688	serdes_rd(ctx, lane, reg, &val);
    689	val &= ~bits;
    690	serdes_wr(ctx, lane, reg, val);
    691}
    692
    693static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
    694			   u32 bits)
    695{
    696	u32 val;
    697
    698	serdes_rd(ctx, lane, reg, &val);
    699	val |= bits;
    700	serdes_wr(ctx, lane, reg, val);
    701}
    702
    703static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
    704				       enum cmu_type_t cmu_type,
    705				       enum clk_type_t clk_type)
    706{
    707	u32 val;
    708
    709	/* Set the reset sequence delay for TX ready assertion */
    710	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
    711	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
    712	cmu_wr(ctx, cmu_type, CMU_REG12, val);
    713	/* Set the programmable stage delays between various enable stages */
    714	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
    715	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
    716
    717	/* Configure clock type */
    718	if (clk_type == CLK_EXT_DIFF) {
    719		/* Select external clock mux */
    720		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
    721		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
    722		cmu_wr(ctx, cmu_type, CMU_REG0, val);
    723		/* Select CMOS as reference clock  */
    724		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
    725		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
    726		cmu_wr(ctx, cmu_type, CMU_REG1, val);
    727		dev_dbg(ctx->dev, "Set external reference clock\n");
    728	} else if (clk_type == CLK_INT_DIFF) {
    729		/* Select internal clock mux */
    730		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
    731		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
    732		cmu_wr(ctx, cmu_type, CMU_REG0, val);
    733		/* Select CMOS as reference clock  */
    734		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
    735		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
    736		cmu_wr(ctx, cmu_type, CMU_REG1, val);
    737		dev_dbg(ctx->dev, "Set internal reference clock\n");
    738	} else if (clk_type == CLK_INT_SING) {
    739		/*
    740		 * NOTE: This clock type is NOT support for controller
    741		 *	 whose internal clock shared in the PCIe controller
    742		 *
    743		 * Select internal clock mux
    744		 */
    745		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
    746		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
    747		cmu_wr(ctx, cmu_type, CMU_REG1, val);
    748		/* Select CML as reference clock */
    749		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
    750		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
    751		cmu_wr(ctx, cmu_type, CMU_REG1, val);
    752		dev_dbg(ctx->dev,
    753			"Set internal single ended reference clock\n");
    754	}
    755}
    756
    757static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
    758					enum cmu_type_t cmu_type,
    759					enum clk_type_t clk_type)
    760{
    761	u32 val;
    762	int ref_100MHz;
    763
    764	if (cmu_type == REF_CMU) {
    765		/* Set VCO calibration voltage threshold */
    766		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
    767		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
    768		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
    769		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
    770		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
    771		cmu_wr(ctx, cmu_type, CMU_REG34, val);
    772	}
    773
    774	/* Set the VCO calibration counter */
    775	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
    776	if (cmu_type == REF_CMU || preA3Chip)
    777		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
    778	else
    779		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
    780	cmu_wr(ctx, cmu_type, CMU_REG0, val);
    781
    782	/* Configure PLL for calibration */
    783	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
    784	val = CMU_REG1_PLL_CP_SET(val, 0x1);
    785	if (cmu_type == REF_CMU || preA3Chip)
    786		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
    787	else
    788		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
    789	if (cmu_type == REF_CMU)
    790		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
    791	else
    792		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
    793	cmu_wr(ctx, cmu_type, CMU_REG1, val);
    794
    795	if (cmu_type != REF_CMU)
    796		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
    797
    798	/* Configure the PLL for either 100MHz or 50MHz */
    799	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
    800	if (cmu_type == REF_CMU) {
    801		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
    802		ref_100MHz = 1;
    803	} else {
    804		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
    805		if (clk_type == CLK_EXT_DIFF)
    806			ref_100MHz = 0;
    807		else
    808			ref_100MHz = 1;
    809	}
    810	if (ref_100MHz) {
    811		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
    812		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
    813	} else {
    814		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
    815		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
    816	}
    817	cmu_wr(ctx, cmu_type, CMU_REG2, val);
    818
    819	/* Configure the VCO */
    820	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
    821	if (cmu_type == REF_CMU) {
    822		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
    823		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
    824	} else {
    825		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
    826		if (preA3Chip)
    827			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
    828		else
    829			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
    830		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
    831	}
    832	cmu_wr(ctx, cmu_type, CMU_REG3, val);
    833
    834	/* Disable force PLL lock */
    835	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
    836	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
    837	cmu_wr(ctx, cmu_type, CMU_REG26, val);
    838
    839	/* Setup PLL loop filter */
    840	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
    841	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
    842	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
    843	if (cmu_type == REF_CMU || !preA3Chip)
    844		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
    845	else
    846		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
    847	cmu_wr(ctx, cmu_type, CMU_REG5, val);
    848
    849	/* Enable or disable manual calibration */
    850	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
    851	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
    852	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
    853	cmu_wr(ctx, cmu_type, CMU_REG6, val);
    854
    855	/* Configure lane for 20-bits */
    856	if (cmu_type == PHY_CMU) {
    857		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
    858		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
    859						    CMU_REG9_WORD_LEN_20BIT);
    860		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
    861						    CMU_REG9_WORD_LEN_20BIT);
    862		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
    863		if (!preA3Chip) {
    864			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
    865			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
    866		}
    867		cmu_wr(ctx, cmu_type, CMU_REG9, val);
    868
    869		if (!preA3Chip) {
    870			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
    871			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
    872			cmu_wr(ctx, cmu_type, CMU_REG10, val);
    873		}
    874	}
    875
    876	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
    877	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
    878	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
    879	if (cmu_type == REF_CMU || preA3Chip)
    880		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
    881	else
    882		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
    883	cmu_wr(ctx, cmu_type, CMU_REG16, val);
    884
    885	/* Configure for SATA */
    886	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
    887	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
    888	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
    889	cmu_wr(ctx, cmu_type, CMU_REG30, val);
    890
    891	/* Disable state machine bypass */
    892	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
    893
    894	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
    895	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
    896	if (cmu_type == REF_CMU || preA3Chip)
    897		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
    898	else
    899		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
    900	cmu_wr(ctx, cmu_type, CMU_REG32, val);
    901
    902	/* Set VCO calibration threshold */
    903	if (cmu_type != REF_CMU && preA3Chip)
    904		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
    905	else
    906		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
    907
    908	/* Set CTLE Override and override waiting from state machine */
    909	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
    910}
    911
    912static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
    913				 enum cmu_type_t cmu_type)
    914{
    915	u32 val;
    916
    917	/* Set SSC modulation value */
    918	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
    919	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
    920	cmu_wr(ctx, cmu_type, CMU_REG35, val);
    921
    922	/* Enable SSC, set vertical step and DSM value */
    923	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
    924	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
    925	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
    926	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
    927	cmu_wr(ctx, cmu_type, CMU_REG36, val);
    928
    929	/* Reset the PLL */
    930	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
    931	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
    932
    933	/* Force VCO calibration to restart */
    934	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
    935		       CMU_REG32_FORCE_VCOCAL_START_MASK);
    936}
    937
    938static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
    939{
    940	u32 val;
    941	u32 reg;
    942	int i;
    943	int lane;
    944
    945	for (lane = 0; lane < MAX_LANE; lane++) {
    946		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
    947
    948		/* Set boost control for quarter, half, and full rate */
    949		serdes_rd(ctx, lane, RXTX_REG0, &val);
    950		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
    951		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
    952		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
    953		serdes_wr(ctx, lane, RXTX_REG0, val);
    954
    955		/* Set boost control value */
    956		serdes_rd(ctx, lane, RXTX_REG1, &val);
    957		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
    958		val = RXTX_REG1_CTLE_EQ_SET(val,
    959			ctx->sata_param.txboostgain[lane * 3 +
    960			ctx->sata_param.speed[lane]]);
    961		serdes_wr(ctx, lane, RXTX_REG1, val);
    962
    963		/* Latch VTT value based on the termination to ground and
    964		 * enable TX FIFO
    965		 */
    966		serdes_rd(ctx, lane, RXTX_REG2, &val);
    967		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
    968		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
    969		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
    970		serdes_wr(ctx, lane, RXTX_REG2, val);
    971
    972		/* Configure Tx for 20-bits */
    973		serdes_rd(ctx, lane, RXTX_REG4, &val);
    974		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
    975		serdes_wr(ctx, lane, RXTX_REG4, val);
    976
    977		if (!preA3Chip) {
    978			serdes_rd(ctx, lane, RXTX_REG1, &val);
    979			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
    980			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
    981			serdes_wr(ctx, lane, RXTX_REG1, val);
    982		}
    983
    984		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
    985		serdes_rd(ctx, lane, RXTX_REG5, &val);
    986		val = RXTX_REG5_TX_CN1_SET(val,
    987			ctx->sata_param.txprecursor_cn1[lane * 3 +
    988			ctx->sata_param.speed[lane]]);
    989		val = RXTX_REG5_TX_CP1_SET(val,
    990			ctx->sata_param.txpostcursor_cp1[lane * 3 +
    991			ctx->sata_param.speed[lane]]);
    992		val = RXTX_REG5_TX_CN2_SET(val,
    993			ctx->sata_param.txprecursor_cn2[lane * 3 +
    994			ctx->sata_param.speed[lane]]);
    995		serdes_wr(ctx, lane, RXTX_REG5, val);
    996
    997		/* Set TX amplitude value */
    998		serdes_rd(ctx, lane, RXTX_REG6, &val);
    999		val = RXTX_REG6_TXAMP_CNTL_SET(val,
   1000			ctx->sata_param.txamplitude[lane * 3 +
   1001			ctx->sata_param.speed[lane]]);
   1002		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
   1003		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
   1004		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
   1005		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
   1006		serdes_wr(ctx, lane, RXTX_REG6, val);
   1007
   1008		/* Configure Rx for 20-bits */
   1009		serdes_rd(ctx, lane, RXTX_REG7, &val);
   1010		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
   1011		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
   1012		serdes_wr(ctx, lane, RXTX_REG7, val);
   1013
   1014		/* Set CDR and LOS values and enable Rx SSC */
   1015		serdes_rd(ctx, lane, RXTX_REG8, &val);
   1016		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
   1017		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
   1018		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
   1019		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
   1020		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
   1021		serdes_wr(ctx, lane, RXTX_REG8, val);
   1022
   1023		/* Set phase adjust upper/lower limits */
   1024		serdes_rd(ctx, lane, RXTX_REG11, &val);
   1025		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
   1026		serdes_wr(ctx, lane, RXTX_REG11, val);
   1027
   1028		/* Enable Latch Off; disable SUMOS and Tx termination */
   1029		serdes_rd(ctx, lane, RXTX_REG12, &val);
   1030		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
   1031		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
   1032		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
   1033		serdes_wr(ctx, lane, RXTX_REG12, val);
   1034
   1035		/* Set period error latch to 512T and enable BWL */
   1036		serdes_rd(ctx, lane, RXTX_REG26, &val);
   1037		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
   1038		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
   1039		serdes_wr(ctx, lane, RXTX_REG26, val);
   1040
   1041		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
   1042
   1043		/* Set DFE loop preset value */
   1044		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
   1045
   1046		/* Set Eye Monitor counter width to 12-bit */
   1047		serdes_rd(ctx, lane, RXTX_REG61, &val);
   1048		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
   1049		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
   1050		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
   1051		serdes_wr(ctx, lane, RXTX_REG61, val);
   1052
   1053		serdes_rd(ctx, lane, RXTX_REG62, &val);
   1054		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
   1055		serdes_wr(ctx, lane, RXTX_REG62, val);
   1056
   1057		/* Set BW select tap X for DFE loop */
   1058		for (i = 0; i < 9; i++) {
   1059			reg = RXTX_REG81 + i * 2;
   1060			serdes_rd(ctx, lane, reg, &val);
   1061			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
   1062			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
   1063			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
   1064			serdes_wr(ctx, lane, reg, val);
   1065		}
   1066
   1067		/* Set BW select tap X for frequency adjust loop */
   1068		for (i = 0; i < 3; i++) {
   1069			reg = RXTX_REG96 + i * 2;
   1070			serdes_rd(ctx, lane, reg, &val);
   1071			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
   1072			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
   1073			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
   1074			serdes_wr(ctx, lane, reg, val);
   1075		}
   1076
   1077		/* Set BW select tap X for phase adjust loop */
   1078		for (i = 0; i < 3; i++) {
   1079			reg = RXTX_REG99 + i * 2;
   1080			serdes_rd(ctx, lane, reg, &val);
   1081			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
   1082			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
   1083			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
   1084			serdes_wr(ctx, lane, reg, val);
   1085		}
   1086
   1087		serdes_rd(ctx, lane, RXTX_REG102, &val);
   1088		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
   1089		serdes_wr(ctx, lane, RXTX_REG102, val);
   1090
   1091		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
   1092
   1093		serdes_rd(ctx, lane, RXTX_REG125, &val);
   1094		val = RXTX_REG125_SIGN_PQ_SET(val,
   1095			ctx->sata_param.txeyedirection[lane * 3 +
   1096			ctx->sata_param.speed[lane]]);
   1097		val = RXTX_REG125_PQ_REG_SET(val,
   1098			ctx->sata_param.txeyetuning[lane * 3 +
   1099			ctx->sata_param.speed[lane]]);
   1100		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
   1101		serdes_wr(ctx, lane, RXTX_REG125, val);
   1102
   1103		serdes_rd(ctx, lane, RXTX_REG127, &val);
   1104		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
   1105		serdes_wr(ctx, lane, RXTX_REG127, val);
   1106
   1107		serdes_rd(ctx, lane, RXTX_REG128, &val);
   1108		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
   1109		serdes_wr(ctx, lane, RXTX_REG128, val);
   1110
   1111		serdes_rd(ctx, lane, RXTX_REG145, &val);
   1112		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
   1113		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
   1114		if (preA3Chip) {
   1115			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
   1116			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
   1117		} else {
   1118			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
   1119			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
   1120		}
   1121		serdes_wr(ctx, lane, RXTX_REG145, val);
   1122
   1123		/*
   1124		 * Set Rx LOS filter clock rate, sample rate, and threshold
   1125		 * windows
   1126		 */
   1127		for (i = 0; i < 4; i++) {
   1128			reg = RXTX_REG148 + i * 2;
   1129			serdes_wr(ctx, lane, reg, 0xFFFF);
   1130		}
   1131	}
   1132}
   1133
   1134static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
   1135				 enum cmu_type_t cmu_type,
   1136				 enum clk_type_t clk_type)
   1137{
   1138	void __iomem *csr_serdes = ctx->sds_base;
   1139	int loop;
   1140	u32 val;
   1141
   1142	/* Release PHY main reset */
   1143	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
   1144	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
   1145
   1146	if (cmu_type != REF_CMU) {
   1147		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
   1148		/*
   1149		 * As per PHY design spec, the PLL reset requires a minimum
   1150		 * of 800us.
   1151		 */
   1152		usleep_range(800, 1000);
   1153
   1154		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
   1155		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
   1156		cmu_wr(ctx, cmu_type, CMU_REG1, val);
   1157		/*
   1158		 * As per PHY design spec, the PLL auto calibration requires
   1159		 * a minimum of 800us.
   1160		 */
   1161		usleep_range(800, 1000);
   1162
   1163		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
   1164			       CMU_REG32_FORCE_VCOCAL_START_MASK);
   1165		/*
   1166		 * As per PHY design spec, the PLL requires a minimum of
   1167		 * 800us to settle.
   1168		 */
   1169		usleep_range(800, 1000);
   1170	}
   1171
   1172	if (!preA3Chip)
   1173		goto skip_manual_cal;
   1174
   1175	/*
   1176	 * Configure the termination resister calibration
   1177	 * The serial receive pins, RXP/RXN, have TERMination resistor
   1178	 * that is required to be calibrated.
   1179	 */
   1180	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
   1181	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
   1182	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
   1183	cmu_wr(ctx, cmu_type, CMU_REG17, val);
   1184	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
   1185		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
   1186	/*
   1187	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
   1188	 * resistors that are required to the calibrated.
   1189	 * Configure the pull DOWN calibration
   1190	 */
   1191	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
   1192	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
   1193	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
   1194	cmu_wr(ctx, cmu_type, CMU_REG17, val);
   1195	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
   1196		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
   1197	/* Configure the pull UP calibration */
   1198	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
   1199	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
   1200	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
   1201	cmu_wr(ctx, cmu_type, CMU_REG17, val);
   1202	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
   1203		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
   1204
   1205skip_manual_cal:
   1206	/* Poll the PLL calibration completion status for at least 1 ms */
   1207	loop = 100;
   1208	do {
   1209		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
   1210		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
   1211			break;
   1212		/*
   1213		 * As per PHY design spec, PLL calibration status requires
   1214		 * a minimum of 10us to be updated.
   1215		 */
   1216		usleep_range(10, 100);
   1217	} while (--loop > 0);
   1218
   1219	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
   1220	dev_dbg(ctx->dev, "PLL calibration %s\n",
   1221		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
   1222	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
   1223		dev_err(ctx->dev,
   1224			"PLL calibration failed due to VCO failure\n");
   1225		return -1;
   1226	}
   1227	dev_dbg(ctx->dev, "PLL calibration successful\n");
   1228
   1229	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
   1230	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
   1231	return 0;
   1232}
   1233
   1234static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
   1235				     enum cmu_type_t cmu_type,
   1236				     enum clk_type_t clk_type)
   1237{
   1238	u32 val;
   1239
   1240	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
   1241	if (cmu_type == PHY_CMU) {
   1242		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
   1243		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
   1244		cmu_wr(ctx, cmu_type, CMU_REG16, val);
   1245	}
   1246
   1247	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
   1248	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
   1249		       CMU_REG32_FORCE_VCOCAL_START_MASK);
   1250}
   1251
   1252static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
   1253				  enum clk_type_t clk_type, int ssc_enable)
   1254{
   1255	void __iomem *sds_base = ctx->sds_base;
   1256	u32 val;
   1257	int i;
   1258
   1259	/* Configure the PHY for operation */
   1260	dev_dbg(ctx->dev, "Reset PHY\n");
   1261	/* Place PHY into reset */
   1262	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
   1263	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
   1264	/* Release PHY lane from reset (active high) */
   1265	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
   1266	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
   1267	/* Release all PHY module out of reset except PHY main reset */
   1268	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
   1269	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
   1270
   1271	/* Set the operation speed */
   1272	val = readl(sds_base + SATA_ENET_SDS_CTL1);
   1273	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
   1274		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
   1275	writel(val, sds_base + SATA_ENET_SDS_CTL1);
   1276
   1277	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
   1278	val = readl(sds_base + SATA_ENET_SDS_CTL0);
   1279	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
   1280	writel(val, sds_base + SATA_ENET_SDS_CTL0);
   1281
   1282	/* Configure the clock macro unit (CMU) clock type */
   1283	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
   1284
   1285	/* Configure the clock macro */
   1286	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
   1287
   1288	/* Enable SSC if enabled */
   1289	if (ssc_enable)
   1290		xgene_phy_ssc_enable(ctx, PHY_CMU);
   1291
   1292	/* Configure PHY lanes */
   1293	xgene_phy_sata_cfg_lanes(ctx);
   1294
   1295	/* Set Rx/Tx 20-bit */
   1296	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
   1297	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
   1298	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
   1299	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
   1300
   1301	/* Start PLL calibration and try for three times */
   1302	i = 10;
   1303	do {
   1304		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
   1305			break;
   1306		/* If failed, toggle the VCO power signal and start again */
   1307		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
   1308	} while (--i > 0);
   1309	/* Even on failure, allow to continue any way */
   1310	if (i <= 0)
   1311		dev_err(ctx->dev, "PLL calibration failed\n");
   1312
   1313	return 0;
   1314}
   1315
   1316static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
   1317				   enum clk_type_t clk_type,
   1318				   int ssc_enable)
   1319{
   1320	int rc;
   1321
   1322	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
   1323
   1324	if (ctx->mode == MODE_SATA) {
   1325		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
   1326		if (rc)
   1327			return rc;
   1328	} else {
   1329		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
   1330			ctx->mode);
   1331		return -ENODEV;
   1332	}
   1333
   1334	return 0;
   1335}
   1336
   1337/*
   1338 * Receiver Offset Calibration:
   1339 *
   1340 * Calibrate the receiver signal path offset in two steps - summar and
   1341 * latch calibrations
   1342 */
   1343static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
   1344{
   1345	int i;
   1346	static const struct {
   1347		u32 reg;
   1348		u32 val;
   1349	} serdes_reg[] = {
   1350		{RXTX_REG38, 0x0},
   1351		{RXTX_REG39, 0xff00},
   1352		{RXTX_REG40, 0xffff},
   1353		{RXTX_REG41, 0xffff},
   1354		{RXTX_REG42, 0xffff},
   1355		{RXTX_REG43, 0xffff},
   1356		{RXTX_REG44, 0xffff},
   1357		{RXTX_REG45, 0xffff},
   1358		{RXTX_REG46, 0xffff},
   1359		{RXTX_REG47, 0xfffc},
   1360		{RXTX_REG48, 0x0},
   1361		{RXTX_REG49, 0x0},
   1362		{RXTX_REG50, 0x0},
   1363		{RXTX_REG51, 0x0},
   1364		{RXTX_REG52, 0x0},
   1365		{RXTX_REG53, 0x0},
   1366		{RXTX_REG54, 0x0},
   1367		{RXTX_REG55, 0x0},
   1368	};
   1369
   1370	/* Start SUMMER calibration */
   1371	serdes_setbits(ctx, lane, RXTX_REG127,
   1372		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
   1373	/*
   1374	 * As per PHY design spec, the Summer calibration requires a minimum
   1375	 * of 100us to complete.
   1376	 */
   1377	usleep_range(100, 500);
   1378	serdes_clrbits(ctx, lane, RXTX_REG127,
   1379			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
   1380	/*
   1381	 * As per PHY design spec, the auto calibration requires a minimum
   1382	 * of 100us to complete.
   1383	 */
   1384	usleep_range(100, 500);
   1385
   1386	/* Start latch calibration */
   1387	serdes_setbits(ctx, lane, RXTX_REG127,
   1388		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
   1389	/*
   1390	 * As per PHY design spec, the latch calibration requires a minimum
   1391	 * of 100us to complete.
   1392	 */
   1393	usleep_range(100, 500);
   1394	serdes_clrbits(ctx, lane, RXTX_REG127,
   1395		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
   1396
   1397	/* Configure the PHY lane for calibration */
   1398	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
   1399	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
   1400	serdes_clrbits(ctx, lane, RXTX_REG4,
   1401		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
   1402	serdes_clrbits(ctx, lane, RXTX_REG7,
   1403		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
   1404	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
   1405		serdes_wr(ctx, lane, serdes_reg[i].reg,
   1406			  serdes_reg[i].val);
   1407}
   1408
   1409static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
   1410{
   1411	/* Reset digital Rx */
   1412	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
   1413	/* As per PHY design spec, the reset requires a minimum of 100us. */
   1414	usleep_range(100, 150);
   1415	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
   1416}
   1417
   1418static int xgene_phy_get_avg(int accum, int samples)
   1419{
   1420	return (accum + (samples / 2)) / samples;
   1421}
   1422
   1423static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
   1424{
   1425	int max_loop = 10;
   1426	int avg_loop = 0;
   1427	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
   1428	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
   1429	int sum_cal = 0;
   1430	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
   1431	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
   1432	int sum_cal_itr;
   1433	int fail_even;
   1434	int fail_odd;
   1435	u32 val;
   1436
   1437	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
   1438		lane);
   1439
   1440	/* Enable RX Hi-Z termination */
   1441	serdes_setbits(ctx, lane, RXTX_REG12,
   1442			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
   1443	/* Turn off DFE */
   1444	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
   1445	/* DFE Presets to zero */
   1446	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
   1447
   1448	/*
   1449	 * Receiver Offset Calibration:
   1450	 * Calibrate the receiver signal path offset in two steps - summar
   1451	 * and latch calibration.
   1452	 * Runs the "Receiver Offset Calibration multiple times to determine
   1453	 * the average value to use.
   1454	 */
   1455	while (avg_loop < max_loop) {
   1456		/* Start the calibration */
   1457		xgene_phy_force_lat_summer_cal(ctx, lane);
   1458
   1459		serdes_rd(ctx, lane, RXTX_REG21, &val);
   1460		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
   1461		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
   1462		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
   1463
   1464		serdes_rd(ctx, lane, RXTX_REG22, &val);
   1465		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
   1466		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
   1467		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
   1468
   1469		serdes_rd(ctx, lane, RXTX_REG23, &val);
   1470		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
   1471		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
   1472
   1473		serdes_rd(ctx, lane, RXTX_REG24, &val);
   1474		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
   1475		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
   1476
   1477		serdes_rd(ctx, lane, RXTX_REG121, &val);
   1478		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
   1479
   1480		/* Check for failure. If passed, sum them for averaging */
   1481		if ((fail_even == 0 || fail_even == 1) &&
   1482		    (fail_odd == 0 || fail_odd == 1)) {
   1483			lat_do += lat_do_itr;
   1484			lat_xo += lat_xo_itr;
   1485			lat_eo += lat_eo_itr;
   1486			lat_so += lat_so_itr;
   1487			lat_de += lat_de_itr;
   1488			lat_xe += lat_xe_itr;
   1489			lat_ee += lat_ee_itr;
   1490			lat_se += lat_se_itr;
   1491			sum_cal += sum_cal_itr;
   1492
   1493			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
   1494			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
   1495				lat_do_itr, lat_xo_itr, lat_eo_itr,
   1496				lat_so_itr);
   1497			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
   1498				lat_de_itr, lat_xe_itr, lat_ee_itr,
   1499				lat_se_itr);
   1500			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
   1501			++avg_loop;
   1502		} else {
   1503			dev_err(ctx->dev,
   1504				"Receiver calibration failed at %d loop\n",
   1505				avg_loop);
   1506		}
   1507		xgene_phy_reset_rxd(ctx, lane);
   1508	}
   1509
   1510	/* Update latch manual calibration with average value */
   1511	serdes_rd(ctx, lane, RXTX_REG127, &val);
   1512	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
   1513		xgene_phy_get_avg(lat_do, max_loop));
   1514	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
   1515		xgene_phy_get_avg(lat_xo, max_loop));
   1516	serdes_wr(ctx, lane, RXTX_REG127, val);
   1517
   1518	serdes_rd(ctx, lane, RXTX_REG128, &val);
   1519	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
   1520		xgene_phy_get_avg(lat_eo, max_loop));
   1521	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
   1522		xgene_phy_get_avg(lat_so, max_loop));
   1523	serdes_wr(ctx, lane, RXTX_REG128, val);
   1524
   1525	serdes_rd(ctx, lane, RXTX_REG129, &val);
   1526	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
   1527		xgene_phy_get_avg(lat_de, max_loop));
   1528	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
   1529		xgene_phy_get_avg(lat_xe, max_loop));
   1530	serdes_wr(ctx, lane, RXTX_REG129, val);
   1531
   1532	serdes_rd(ctx, lane, RXTX_REG130, &val);
   1533	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
   1534		xgene_phy_get_avg(lat_ee, max_loop));
   1535	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
   1536		xgene_phy_get_avg(lat_se, max_loop));
   1537	serdes_wr(ctx, lane, RXTX_REG130, val);
   1538
   1539	/* Update SUMMER calibration with average value */
   1540	serdes_rd(ctx, lane, RXTX_REG14, &val);
   1541	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
   1542		xgene_phy_get_avg(sum_cal, max_loop));
   1543	serdes_wr(ctx, lane, RXTX_REG14, val);
   1544
   1545	dev_dbg(ctx->dev, "Average Value:\n");
   1546	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
   1547		 xgene_phy_get_avg(lat_do, max_loop),
   1548		 xgene_phy_get_avg(lat_xo, max_loop),
   1549		 xgene_phy_get_avg(lat_eo, max_loop),
   1550		 xgene_phy_get_avg(lat_so, max_loop));
   1551	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
   1552		 xgene_phy_get_avg(lat_de, max_loop),
   1553		 xgene_phy_get_avg(lat_xe, max_loop),
   1554		 xgene_phy_get_avg(lat_ee, max_loop),
   1555		 xgene_phy_get_avg(lat_se, max_loop));
   1556	dev_dbg(ctx->dev, "SUM 0x%x\n",
   1557		xgene_phy_get_avg(sum_cal, max_loop));
   1558
   1559	serdes_rd(ctx, lane, RXTX_REG14, &val);
   1560	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
   1561	serdes_wr(ctx, lane, RXTX_REG14, val);
   1562	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
   1563
   1564	serdes_rd(ctx, lane, RXTX_REG127, &val);
   1565	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
   1566	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
   1567	serdes_wr(ctx, lane, RXTX_REG127, val);
   1568
   1569	/* Disable RX Hi-Z termination */
   1570	serdes_rd(ctx, lane, RXTX_REG12, &val);
   1571	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
   1572	serdes_wr(ctx, lane, RXTX_REG12, val);
   1573	/* Turn on DFE */
   1574	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
   1575	/* Set DFE preset */
   1576	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
   1577}
   1578
   1579static int xgene_phy_hw_init(struct phy *phy)
   1580{
   1581	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
   1582	int rc;
   1583	int i;
   1584
   1585	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
   1586	if (rc) {
   1587		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
   1588		return rc;
   1589	}
   1590
   1591	/* Setup clock properly after PHY configuration */
   1592	if (!IS_ERR(ctx->clk)) {
   1593		/* HW requires an toggle of the clock */
   1594		clk_prepare_enable(ctx->clk);
   1595		clk_disable_unprepare(ctx->clk);
   1596		clk_prepare_enable(ctx->clk);
   1597	}
   1598
   1599	/* Compute average value */
   1600	for (i = 0; i < MAX_LANE; i++)
   1601		xgene_phy_gen_avg_val(ctx, i);
   1602
   1603	dev_dbg(ctx->dev, "PHY initialized\n");
   1604	return 0;
   1605}
   1606
   1607static const struct phy_ops xgene_phy_ops = {
   1608	.init		= xgene_phy_hw_init,
   1609	.owner		= THIS_MODULE,
   1610};
   1611
   1612static struct phy *xgene_phy_xlate(struct device *dev,
   1613				   struct of_phandle_args *args)
   1614{
   1615	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
   1616
   1617	if (args->args_count <= 0)
   1618		return ERR_PTR(-EINVAL);
   1619	if (args->args[0] >= MODE_MAX)
   1620		return ERR_PTR(-EINVAL);
   1621
   1622	ctx->mode = args->args[0];
   1623	return ctx->phy;
   1624}
   1625
   1626static void xgene_phy_get_param(struct platform_device *pdev,
   1627				const char *name, u32 *buffer,
   1628				int count, u32 *default_val,
   1629				u32 conv_factor)
   1630{
   1631	int i;
   1632
   1633	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
   1634					count)) {
   1635		for (i = 0; i < count; i++)
   1636			buffer[i] /= conv_factor;
   1637		return;
   1638	}
   1639	/* Does not exist, load default */
   1640	for (i = 0; i < count; i++)
   1641		buffer[i] = default_val[i % 3];
   1642}
   1643
   1644static int xgene_phy_probe(struct platform_device *pdev)
   1645{
   1646	struct phy_provider *phy_provider;
   1647	struct xgene_phy_ctx *ctx;
   1648	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
   1649	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
   1650	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
   1651	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
   1652	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
   1653	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
   1654	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
   1655	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
   1656	int i;
   1657
   1658	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
   1659	if (!ctx)
   1660		return -ENOMEM;
   1661
   1662	ctx->dev = &pdev->dev;
   1663
   1664	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
   1665	if (IS_ERR(ctx->sds_base))
   1666		return PTR_ERR(ctx->sds_base);
   1667
   1668	/* Retrieve optional clock */
   1669	ctx->clk = clk_get(&pdev->dev, NULL);
   1670
   1671	/* Load override paramaters */
   1672	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
   1673		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
   1674	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
   1675		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
   1676	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
   1677		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
   1678	xgene_phy_get_param(pdev, "apm,tx-amplitude",
   1679		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
   1680	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
   1681		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
   1682	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
   1683		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
   1684	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
   1685		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
   1686	xgene_phy_get_param(pdev, "apm,tx-speed",
   1687		ctx->sata_param.txspeed, 3, default_spd, 1);
   1688	for (i = 0; i < MAX_LANE; i++)
   1689		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
   1690
   1691	platform_set_drvdata(pdev, ctx);
   1692
   1693	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
   1694	if (IS_ERR(ctx->phy)) {
   1695		dev_dbg(&pdev->dev, "Failed to create PHY\n");
   1696		return PTR_ERR(ctx->phy);
   1697	}
   1698	phy_set_drvdata(ctx->phy, ctx);
   1699
   1700	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
   1701	return PTR_ERR_OR_ZERO(phy_provider);
   1702}
   1703
   1704static const struct of_device_id xgene_phy_of_match[] = {
   1705	{.compatible = "apm,xgene-phy",},
   1706	{},
   1707};
   1708MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
   1709
   1710static struct platform_driver xgene_phy_driver = {
   1711	.probe = xgene_phy_probe,
   1712	.driver = {
   1713		   .name = "xgene-phy",
   1714		   .of_match_table = xgene_phy_of_match,
   1715	},
   1716};
   1717module_platform_driver(xgene_phy_driver);
   1718
   1719MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
   1720MODULE_AUTHOR("Loc Ho <lho@apm.com>");
   1721MODULE_LICENSE("GPL v2");
   1722MODULE_VERSION("0.1");