phy-xgene.c (60570B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * AppliedMicro X-Gene Multi-purpose PHY driver 4 * 5 * Copyright (c) 2014, Applied Micro Circuits Corporation 6 * Author: Loc Ho <lho@apm.com> 7 * Tuan Phan <tphan@apm.com> 8 * Suman Tripathi <stripathi@apm.com> 9 * 10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes. 11 * The first PLL clock macro is used for internal reference clock. The second 12 * PLL clock macro is used to generate the clock for the PHY. This driver 13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to 14 * operate according to the mode of operation. The first PLL CMU is only 15 * required if internal clock is enabled. 16 * 17 * Logical Layer Out Of HW module units: 18 * 19 * ----------------- 20 * | Internal | |------| 21 * | Ref PLL CMU |----| | ------------- --------- 22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes| 23 * | | | | --------- 24 * External Clock ------| | ------------- 25 * |------| 26 * 27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed 28 * indirectly from the SDS offset at 0x2000. It is only required for 29 * internal reference clock. 30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000. 31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400. 32 * 33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP 34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP, 35 * it is located outside the PHY IP. This is the case for the PHY located 36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required 37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled. 38 * 39 * Currently, this driver only supports Gen3 SATA mode with external clock. 40 */ 41#include <linux/module.h> 42#include <linux/platform_device.h> 43#include <linux/io.h> 44#include <linux/delay.h> 45#include <linux/phy/phy.h> 46#include <linux/clk.h> 47 48/* Max 2 lanes per a PHY unit */ 49#define MAX_LANE 2 50 51/* Register offset inside the PHY */ 52#define SERDES_PLL_INDIRECT_OFFSET 0x0000 53#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000 54#define SERDES_INDIRECT_OFFSET 0x0400 55#define SERDES_LANE_STRIDE 0x0200 56 57/* Some default Serdes parameters */ 58#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e } 59#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 } 60#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa } 61#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 } 62#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 } 63#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 } 64#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 } 65#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa } 66 67#define SATA_SPD_SEL_GEN3 0x7 68#define SATA_SPD_SEL_GEN2 0x3 69#define SATA_SPD_SEL_GEN1 0x1 70 71#define SSC_DISABLE 0 72#define SSC_ENABLE 1 73 74#define FBDIV_VAL_50M 0x77 75#define REFDIV_VAL_50M 0x1 76#define FBDIV_VAL_100M 0x3B 77#define REFDIV_VAL_100M 0x0 78 79/* SATA Clock/Reset CSR */ 80#define SATACLKENREG 0x00000000 81#define SATA0_CORE_CLKEN 0x00000002 82#define SATA1_CORE_CLKEN 0x00000004 83#define SATASRESETREG 0x00000004 84#define SATA_MEM_RESET_MASK 0x00000020 85#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5) 86#define SATA_SDS_RESET_MASK 0x00000004 87#define SATA_CSR_RESET_MASK 0x00000001 88#define SATA_CORE_RESET_MASK 0x00000002 89#define SATA_PMCLK_RESET_MASK 0x00000010 90#define SATA_PCLK_RESET_MASK 0x00000008 91 92/* SDS CSR used for PHY Indirect access */ 93#define SATA_ENET_SDS_PCS_CTL0 0x00000000 94#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \ 95 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000)) 96#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \ 97 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000)) 98#define SATA_ENET_SDS_CTL0 0x0000000c 99#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \ 100 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff)) 101#define SATA_ENET_SDS_CTL1 0x00000010 102#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \ 103 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f)) 104#define SATA_ENET_SDS_RST_CTL 0x00000024 105#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c 106#define CFG_IND_WR_CMD_MASK 0x00000001 107#define CFG_IND_RD_CMD_MASK 0x00000002 108#define CFG_IND_CMD_DONE_MASK 0x00000004 109#define CFG_IND_ADDR_SET(dst, src) \ 110 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0)) 111#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040 112#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044 113#define SATA_ENET_CLK_MACRO_REG 0x0000004c 114#define I_RESET_B_SET(dst, src) \ 115 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001)) 116#define I_PLL_FBDIV_SET(dst, src) \ 117 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000)) 118#define I_CUSTOMEROV_SET(dst, src) \ 119 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) 120#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30) 121#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31) 122 123/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */ 124#define CMU_REG0 0x00000 125#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000 126#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \ 127 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) 128#define CMU_REG0_PDOWN_MASK 0x00004000 129#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \ 130 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) 131#define CMU_REG1 0x00002 132#define CMU_REG1_PLL_CP_SET(dst, src) \ 133 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) 134#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \ 135 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 136#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \ 137 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0)) 138#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001 139#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \ 140 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 141#define CMU_REG2 0x00004 142#define CMU_REG2_PLL_REFDIV_SET(dst, src) \ 143 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 144#define CMU_REG2_PLL_LFRES_SET(dst, src) \ 145 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e)) 146#define CMU_REG2_PLL_FBDIV_SET(dst, src) \ 147 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0)) 148#define CMU_REG3 0x00006 149#define CMU_REG3_VCOVARSEL_SET(dst, src) \ 150 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) 151#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \ 152 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 153#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \ 154 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 155#define CMU_REG4 0x00008 156#define CMU_REG5 0x0000a 157#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \ 158 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 159#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \ 160 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e)) 161#define CMU_REG5_PLL_LFCAP_SET(dst, src) \ 162 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000)) 163#define CMU_REG5_PLL_RESETB_MASK 0x00000001 164#define CMU_REG6 0x0000c 165#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \ 166 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600)) 167#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \ 168 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 169#define CMU_REG7 0x0000e 170#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14) 171#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10) 172#define CMU_REG8 0x00010 173#define CMU_REG9 0x00012 174#define CMU_REG9_WORD_LEN_8BIT 0x000 175#define CMU_REG9_WORD_LEN_10BIT 0x001 176#define CMU_REG9_WORD_LEN_16BIT 0x002 177#define CMU_REG9_WORD_LEN_20BIT 0x003 178#define CMU_REG9_WORD_LEN_32BIT 0x004 179#define CMU_REG9_WORD_LEN_40BIT 0x005 180#define CMU_REG9_WORD_LEN_64BIT 0x006 181#define CMU_REG9_WORD_LEN_66BIT 0x007 182#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \ 183 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380)) 184#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \ 185 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070)) 186#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \ 187 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 188#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \ 189 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 190#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \ 191 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 192#define CMU_REG10 0x00014 193#define CMU_REG10_VREG_REFSEL_SET(dst, src) \ 194 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 195#define CMU_REG11 0x00016 196#define CMU_REG12 0x00018 197#define CMU_REG12_STATE_DELAY9_SET(dst, src) \ 198 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 199#define CMU_REG13 0x0001a 200#define CMU_REG14 0x0001c 201#define CMU_REG15 0x0001e 202#define CMU_REG16 0x00020 203#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001 204#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002 205#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \ 206 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c)) 207#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \ 208 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 209#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \ 210 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 211#define CMU_REG17 0x00022 212#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \ 213 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00)) 214#define CMU_REG17_RESERVED_7_SET(dst, src) \ 215 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) 216#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000 217#define CMU_REG18 0x00024 218#define CMU_REG19 0x00026 219#define CMU_REG20 0x00028 220#define CMU_REG21 0x0002a 221#define CMU_REG22 0x0002c 222#define CMU_REG23 0x0002e 223#define CMU_REG24 0x00030 224#define CMU_REG25 0x00032 225#define CMU_REG26 0x00034 226#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \ 227 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 228#define CMU_REG27 0x00036 229#define CMU_REG28 0x00038 230#define CMU_REG29 0x0003a 231#define CMU_REG30 0x0003c 232#define CMU_REG30_LOCK_COUNT_SET(dst, src) \ 233 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 234#define CMU_REG30_PCIE_MODE_SET(dst, src) \ 235 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 236#define CMU_REG31 0x0003e 237#define CMU_REG32 0x00040 238#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000 239#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \ 240 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 241#define CMU_REG32_IREF_ADJ_SET(dst, src) \ 242 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180)) 243#define CMU_REG33 0x00042 244#define CMU_REG34 0x00044 245#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \ 246 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) 247#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \ 248 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00)) 249#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \ 250 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 251#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \ 252 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) 253#define CMU_REG35 0x00046 254#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \ 255 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) 256#define CMU_REG36 0x00048 257#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \ 258 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) 259#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \ 260 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0)) 261#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \ 262 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 263#define CMU_REG37 0x0004a 264#define CMU_REG38 0x0004c 265#define CMU_REG39 0x0004e 266 267/* PHY lane CSR accessing from SDS indirectly */ 268#define RXTX_REG0 0x000 269#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \ 270 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 271#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \ 272 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 273#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \ 274 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 275#define RXTX_REG1 0x002 276#define RXTX_REG1_RXACVCM_SET(dst, src) \ 277 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) 278#define RXTX_REG1_CTLE_EQ_SET(dst, src) \ 279 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) 280#define RXTX_REG1_RXVREG1_SET(dst, src) \ 281 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) 282#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \ 283 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) 284#define RXTX_REG2 0x004 285#define RXTX_REG2_VTT_ENA_SET(dst, src) \ 286 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 287#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \ 288 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) 289#define RXTX_REG2_VTT_SEL_SET(dst, src) \ 290 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) 291#define RXTX_REG4 0x008 292#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040 293#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \ 294 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 295#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \ 296 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 297#define RXTX_REG5 0x00a 298#define RXTX_REG5_TX_CN1_SET(dst, src) \ 299 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 300#define RXTX_REG5_TX_CP1_SET(dst, src) \ 301 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0)) 302#define RXTX_REG5_TX_CN2_SET(dst, src) \ 303 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f)) 304#define RXTX_REG6 0x00c 305#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \ 306 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780)) 307#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \ 308 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 309#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \ 310 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 311#define RXTX_REG6_TX_IDLE_SET(dst, src) \ 312 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 313#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \ 314 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 315#define RXTX_REG7 0x00e 316#define RXTX_REG7_RESETB_RXD_MASK 0x00000100 317#define RXTX_REG7_RESETB_RXA_MASK 0x00000080 318#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \ 319 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 320#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \ 321 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 322#define RXTX_REG8 0x010 323#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \ 324 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) 325#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \ 326 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800)) 327#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \ 328 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200)) 329#define RXTX_REG8_SD_VREF_SET(dst, src) \ 330 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) 331#define RXTX_REG8_SD_DISABLE_SET(dst, src) \ 332 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 333#define RXTX_REG7 0x00e 334#define RXTX_REG7_RESETB_RXD_SET(dst, src) \ 335 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 336#define RXTX_REG7_RESETB_RXA_SET(dst, src) \ 337 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) 338#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000 339#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \ 340 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) 341#define RXTX_REG11 0x016 342#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \ 343 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 344#define RXTX_REG12 0x018 345#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \ 346 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) 347#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \ 348 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 349#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002 350#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \ 351 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 352#define RXTX_REG13 0x01a 353#define RXTX_REG14 0x01c 354#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \ 355 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f)) 356#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \ 357 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) 358#define RXTX_REG26 0x034 359#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \ 360 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 361#define RXTX_REG26_BLWC_ENA_SET(dst, src) \ 362 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 363#define RXTX_REG21 0x02a 364#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 365#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 366#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src))) 367#define RXTX_REG22 0x02c 368#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 369#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 370#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src))) 371#define RXTX_REG23 0x02e 372#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 373#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 374#define RXTX_REG24 0x030 375#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) 376#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) 377#define RXTX_REG27 0x036 378#define RXTX_REG28 0x038 379#define RXTX_REG31 0x03e 380#define RXTX_REG38 0x04c 381#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \ 382 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe)) 383#define RXTX_REG39 0x04e 384#define RXTX_REG40 0x050 385#define RXTX_REG41 0x052 386#define RXTX_REG42 0x054 387#define RXTX_REG43 0x056 388#define RXTX_REG44 0x058 389#define RXTX_REG45 0x05a 390#define RXTX_REG46 0x05c 391#define RXTX_REG47 0x05e 392#define RXTX_REG48 0x060 393#define RXTX_REG49 0x062 394#define RXTX_REG50 0x064 395#define RXTX_REG51 0x066 396#define RXTX_REG52 0x068 397#define RXTX_REG53 0x06a 398#define RXTX_REG54 0x06c 399#define RXTX_REG55 0x06e 400#define RXTX_REG61 0x07a 401#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \ 402 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) 403#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \ 404 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 405#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \ 406 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) 407#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \ 408 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) 409#define RXTX_REG62 0x07c 410#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \ 411 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) 412#define RXTX_REG81 0x0a2 413#define RXTX_REG89_MU_TH7_SET(dst, src) \ 414 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 415#define RXTX_REG89_MU_TH8_SET(dst, src) \ 416 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 417#define RXTX_REG89_MU_TH9_SET(dst, src) \ 418 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 419#define RXTX_REG96 0x0c0 420#define RXTX_REG96_MU_FREQ1_SET(dst, src) \ 421 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 422#define RXTX_REG96_MU_FREQ2_SET(dst, src) \ 423 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 424#define RXTX_REG96_MU_FREQ3_SET(dst, src) \ 425 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 426#define RXTX_REG99 0x0c6 427#define RXTX_REG99_MU_PHASE1_SET(dst, src) \ 428 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) 429#define RXTX_REG99_MU_PHASE2_SET(dst, src) \ 430 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) 431#define RXTX_REG99_MU_PHASE3_SET(dst, src) \ 432 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) 433#define RXTX_REG102 0x0cc 434#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \ 435 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) 436#define RXTX_REG114 0x0e4 437#define RXTX_REG121 0x0f2 438#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1) 439#define RXTX_REG125 0x0fa 440#define RXTX_REG125_PQ_REG_SET(dst, src) \ 441 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) 442#define RXTX_REG125_SIGN_PQ_SET(dst, src) \ 443 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) 444#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \ 445 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) 446#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \ 447 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c)) 448#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \ 449 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 450#define RXTX_REG127 0x0fe 451#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002 452#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004 453#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \ 454 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 455#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \ 456 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 457#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \ 458 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) 459#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \ 460 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 461#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \ 462 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 463#define RXTX_REG128 0x100 464#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \ 465 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c)) 466#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \ 467 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 468#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \ 469 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 470#define RXTX_REG129 0x102 471#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \ 472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 473#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \ 474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 475#define RXTX_REG130 0x104 476#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \ 477 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) 478#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \ 479 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) 480#define RXTX_REG145 0x122 481#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \ 482 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) 483#define RXTX_REG145_RXES_ENA_SET(dst, src) \ 484 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) 485#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \ 486 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) 487#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \ 488 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) 489#define RXTX_REG147 0x126 490#define RXTX_REG148 0x128 491 492/* Clock macro type */ 493enum cmu_type_t { 494 REF_CMU = 0, /* Clock macro is the internal reference clock */ 495 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */ 496}; 497 498enum mux_type_t { 499 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */ 500 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */ 501}; 502 503enum clk_type_t { 504 CLK_EXT_DIFF = 0, /* External differential */ 505 CLK_INT_DIFF = 1, /* Internal differential */ 506 CLK_INT_SING = 2, /* Internal single ended */ 507}; 508 509enum xgene_phy_mode { 510 MODE_SATA = 0, /* List them for simple reference */ 511 MODE_SGMII = 1, 512 MODE_PCIE = 2, 513 MODE_USB = 3, 514 MODE_XFI = 4, 515 MODE_MAX 516}; 517 518struct xgene_sata_override_param { 519 u32 speed[MAX_LANE]; /* Index for override parameter per lane */ 520 u32 txspeed[3]; /* Tx speed */ 521 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */ 522 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */ 523 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */ 524 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */ 525 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */ 526 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */ 527 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */ 528}; 529 530struct xgene_phy_ctx { 531 struct device *dev; 532 struct phy *phy; 533 enum xgene_phy_mode mode; /* Mode of operation */ 534 enum clk_type_t clk_type; /* Input clock selection */ 535 void __iomem *sds_base; /* PHY CSR base addr */ 536 struct clk *clk; /* Optional clock */ 537 538 /* Override Serdes parameters */ 539 struct xgene_sata_override_param sata_param; 540}; 541 542/* 543 * For chip earlier than A3 version, enable this flag. 544 * To enable, pass boot argument phy_xgene.preA3Chip=1 545 */ 546static int preA3Chip; 547MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)"); 548module_param_named(preA3Chip, preA3Chip, int, 0444); 549 550static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, 551 u32 indirect_data_reg, u32 addr, u32 data) 552{ 553 unsigned long deadline = jiffies + HZ; 554 u32 val; 555 u32 cmd; 556 557 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; 558 cmd = CFG_IND_ADDR_SET(cmd, addr); 559 writel(data, csr_base + indirect_data_reg); 560 readl(csr_base + indirect_data_reg); /* Force a barrier */ 561 writel(cmd, csr_base + indirect_cmd_reg); 562 readl(csr_base + indirect_cmd_reg); /* Force a barrier */ 563 do { 564 val = readl(csr_base + indirect_cmd_reg); 565 } while (!(val & CFG_IND_CMD_DONE_MASK) && 566 time_before(jiffies, deadline)); 567 if (!(val & CFG_IND_CMD_DONE_MASK)) 568 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", 569 csr_base + indirect_cmd_reg, addr, data); 570} 571 572static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, 573 u32 indirect_data_reg, u32 addr, u32 *data) 574{ 575 unsigned long deadline = jiffies + HZ; 576 u32 val; 577 u32 cmd; 578 579 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; 580 cmd = CFG_IND_ADDR_SET(cmd, addr); 581 writel(cmd, csr_base + indirect_cmd_reg); 582 readl(csr_base + indirect_cmd_reg); /* Force a barrier */ 583 do { 584 val = readl(csr_base + indirect_cmd_reg); 585 } while (!(val & CFG_IND_CMD_DONE_MASK) && 586 time_before(jiffies, deadline)); 587 *data = readl(csr_base + indirect_data_reg); 588 if (!(val & CFG_IND_CMD_DONE_MASK)) 589 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", 590 csr_base + indirect_cmd_reg, addr, *data); 591} 592 593static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 594 u32 reg, u32 data) 595{ 596 void __iomem *sds_base = ctx->sds_base; 597 u32 val; 598 599 if (cmu_type == REF_CMU) 600 reg += SERDES_PLL_REF_INDIRECT_OFFSET; 601 else 602 reg += SERDES_PLL_INDIRECT_OFFSET; 603 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, 604 SATA_ENET_SDS_IND_WDATA_REG, reg, data); 605 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 606 SATA_ENET_SDS_IND_RDATA_REG, reg, &val); 607 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); 608} 609 610static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 611 u32 reg, u32 *data) 612{ 613 void __iomem *sds_base = ctx->sds_base; 614 615 if (cmu_type == REF_CMU) 616 reg += SERDES_PLL_REF_INDIRECT_OFFSET; 617 else 618 reg += SERDES_PLL_INDIRECT_OFFSET; 619 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 620 SATA_ENET_SDS_IND_RDATA_REG, reg, data); 621 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data); 622} 623 624static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 625 u32 reg, u32 bits) 626{ 627 u32 val; 628 629 cmu_rd(ctx, cmu_type, reg, &val); 630 val |= bits; 631 cmu_wr(ctx, cmu_type, reg, val); 632 cmu_rd(ctx, cmu_type, reg, &val); 633 val &= ~bits; 634 cmu_wr(ctx, cmu_type, reg, val); 635} 636 637static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 638 u32 reg, u32 bits) 639{ 640 u32 val; 641 642 cmu_rd(ctx, cmu_type, reg, &val); 643 val &= ~bits; 644 cmu_wr(ctx, cmu_type, reg, val); 645} 646 647static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, 648 u32 reg, u32 bits) 649{ 650 u32 val; 651 652 cmu_rd(ctx, cmu_type, reg, &val); 653 val |= bits; 654 cmu_wr(ctx, cmu_type, reg, val); 655} 656 657static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) 658{ 659 void __iomem *sds_base = ctx->sds_base; 660 u32 val; 661 662 reg += SERDES_INDIRECT_OFFSET; 663 reg += lane * SERDES_LANE_STRIDE; 664 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, 665 SATA_ENET_SDS_IND_WDATA_REG, reg, data); 666 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 667 SATA_ENET_SDS_IND_RDATA_REG, reg, &val); 668 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, 669 val); 670} 671 672static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) 673{ 674 void __iomem *sds_base = ctx->sds_base; 675 676 reg += SERDES_INDIRECT_OFFSET; 677 reg += lane * SERDES_LANE_STRIDE; 678 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, 679 SATA_ENET_SDS_IND_RDATA_REG, reg, data); 680 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data); 681} 682 683static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, 684 u32 bits) 685{ 686 u32 val; 687 688 serdes_rd(ctx, lane, reg, &val); 689 val &= ~bits; 690 serdes_wr(ctx, lane, reg, val); 691} 692 693static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, 694 u32 bits) 695{ 696 u32 val; 697 698 serdes_rd(ctx, lane, reg, &val); 699 val |= bits; 700 serdes_wr(ctx, lane, reg, val); 701} 702 703static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, 704 enum cmu_type_t cmu_type, 705 enum clk_type_t clk_type) 706{ 707 u32 val; 708 709 /* Set the reset sequence delay for TX ready assertion */ 710 cmu_rd(ctx, cmu_type, CMU_REG12, &val); 711 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); 712 cmu_wr(ctx, cmu_type, CMU_REG12, val); 713 /* Set the programmable stage delays between various enable stages */ 714 cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222); 715 cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225); 716 717 /* Configure clock type */ 718 if (clk_type == CLK_EXT_DIFF) { 719 /* Select external clock mux */ 720 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 721 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); 722 cmu_wr(ctx, cmu_type, CMU_REG0, val); 723 /* Select CMOS as reference clock */ 724 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 725 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); 726 cmu_wr(ctx, cmu_type, CMU_REG1, val); 727 dev_dbg(ctx->dev, "Set external reference clock\n"); 728 } else if (clk_type == CLK_INT_DIFF) { 729 /* Select internal clock mux */ 730 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 731 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); 732 cmu_wr(ctx, cmu_type, CMU_REG0, val); 733 /* Select CMOS as reference clock */ 734 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 735 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); 736 cmu_wr(ctx, cmu_type, CMU_REG1, val); 737 dev_dbg(ctx->dev, "Set internal reference clock\n"); 738 } else if (clk_type == CLK_INT_SING) { 739 /* 740 * NOTE: This clock type is NOT support for controller 741 * whose internal clock shared in the PCIe controller 742 * 743 * Select internal clock mux 744 */ 745 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 746 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); 747 cmu_wr(ctx, cmu_type, CMU_REG1, val); 748 /* Select CML as reference clock */ 749 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 750 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); 751 cmu_wr(ctx, cmu_type, CMU_REG1, val); 752 dev_dbg(ctx->dev, 753 "Set internal single ended reference clock\n"); 754 } 755} 756 757static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, 758 enum cmu_type_t cmu_type, 759 enum clk_type_t clk_type) 760{ 761 u32 val; 762 int ref_100MHz; 763 764 if (cmu_type == REF_CMU) { 765 /* Set VCO calibration voltage threshold */ 766 cmu_rd(ctx, cmu_type, CMU_REG34, &val); 767 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); 768 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); 769 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); 770 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); 771 cmu_wr(ctx, cmu_type, CMU_REG34, val); 772 } 773 774 /* Set the VCO calibration counter */ 775 cmu_rd(ctx, cmu_type, CMU_REG0, &val); 776 if (cmu_type == REF_CMU || preA3Chip) 777 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); 778 else 779 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); 780 cmu_wr(ctx, cmu_type, CMU_REG0, val); 781 782 /* Configure PLL for calibration */ 783 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 784 val = CMU_REG1_PLL_CP_SET(val, 0x1); 785 if (cmu_type == REF_CMU || preA3Chip) 786 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); 787 else 788 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); 789 if (cmu_type == REF_CMU) 790 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); 791 else 792 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); 793 cmu_wr(ctx, cmu_type, CMU_REG1, val); 794 795 if (cmu_type != REF_CMU) 796 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 797 798 /* Configure the PLL for either 100MHz or 50MHz */ 799 cmu_rd(ctx, cmu_type, CMU_REG2, &val); 800 if (cmu_type == REF_CMU) { 801 val = CMU_REG2_PLL_LFRES_SET(val, 0xa); 802 ref_100MHz = 1; 803 } else { 804 val = CMU_REG2_PLL_LFRES_SET(val, 0x3); 805 if (clk_type == CLK_EXT_DIFF) 806 ref_100MHz = 0; 807 else 808 ref_100MHz = 1; 809 } 810 if (ref_100MHz) { 811 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); 812 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); 813 } else { 814 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); 815 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); 816 } 817 cmu_wr(ctx, cmu_type, CMU_REG2, val); 818 819 /* Configure the VCO */ 820 cmu_rd(ctx, cmu_type, CMU_REG3, &val); 821 if (cmu_type == REF_CMU) { 822 val = CMU_REG3_VCOVARSEL_SET(val, 0x3); 823 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); 824 } else { 825 val = CMU_REG3_VCOVARSEL_SET(val, 0xF); 826 if (preA3Chip) 827 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); 828 else 829 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); 830 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); 831 } 832 cmu_wr(ctx, cmu_type, CMU_REG3, val); 833 834 /* Disable force PLL lock */ 835 cmu_rd(ctx, cmu_type, CMU_REG26, &val); 836 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); 837 cmu_wr(ctx, cmu_type, CMU_REG26, val); 838 839 /* Setup PLL loop filter */ 840 cmu_rd(ctx, cmu_type, CMU_REG5, &val); 841 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); 842 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); 843 if (cmu_type == REF_CMU || !preA3Chip) 844 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); 845 else 846 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); 847 cmu_wr(ctx, cmu_type, CMU_REG5, val); 848 849 /* Enable or disable manual calibration */ 850 cmu_rd(ctx, cmu_type, CMU_REG6, &val); 851 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); 852 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); 853 cmu_wr(ctx, cmu_type, CMU_REG6, val); 854 855 /* Configure lane for 20-bits */ 856 if (cmu_type == PHY_CMU) { 857 cmu_rd(ctx, cmu_type, CMU_REG9, &val); 858 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, 859 CMU_REG9_WORD_LEN_20BIT); 860 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, 861 CMU_REG9_WORD_LEN_20BIT); 862 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); 863 if (!preA3Chip) { 864 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); 865 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); 866 } 867 cmu_wr(ctx, cmu_type, CMU_REG9, val); 868 869 if (!preA3Chip) { 870 cmu_rd(ctx, cmu_type, CMU_REG10, &val); 871 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); 872 cmu_wr(ctx, cmu_type, CMU_REG10, val); 873 } 874 } 875 876 cmu_rd(ctx, cmu_type, CMU_REG16, &val); 877 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); 878 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); 879 if (cmu_type == REF_CMU || preA3Chip) 880 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); 881 else 882 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); 883 cmu_wr(ctx, cmu_type, CMU_REG16, val); 884 885 /* Configure for SATA */ 886 cmu_rd(ctx, cmu_type, CMU_REG30, &val); 887 val = CMU_REG30_PCIE_MODE_SET(val, 0x0); 888 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); 889 cmu_wr(ctx, cmu_type, CMU_REG30, val); 890 891 /* Disable state machine bypass */ 892 cmu_wr(ctx, cmu_type, CMU_REG31, 0xF); 893 894 cmu_rd(ctx, cmu_type, CMU_REG32, &val); 895 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); 896 if (cmu_type == REF_CMU || preA3Chip) 897 val = CMU_REG32_IREF_ADJ_SET(val, 0x3); 898 else 899 val = CMU_REG32_IREF_ADJ_SET(val, 0x1); 900 cmu_wr(ctx, cmu_type, CMU_REG32, val); 901 902 /* Set VCO calibration threshold */ 903 if (cmu_type != REF_CMU && preA3Chip) 904 cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27); 905 else 906 cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c); 907 908 /* Set CTLE Override and override waiting from state machine */ 909 cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F); 910} 911 912static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, 913 enum cmu_type_t cmu_type) 914{ 915 u32 val; 916 917 /* Set SSC modulation value */ 918 cmu_rd(ctx, cmu_type, CMU_REG35, &val); 919 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); 920 cmu_wr(ctx, cmu_type, CMU_REG35, val); 921 922 /* Enable SSC, set vertical step and DSM value */ 923 cmu_rd(ctx, cmu_type, CMU_REG36, &val); 924 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); 925 val = CMU_REG36_PLL_SSC_EN_SET(val, 1); 926 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); 927 cmu_wr(ctx, cmu_type, CMU_REG36, val); 928 929 /* Reset the PLL */ 930 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 931 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 932 933 /* Force VCO calibration to restart */ 934 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 935 CMU_REG32_FORCE_VCOCAL_START_MASK); 936} 937 938static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) 939{ 940 u32 val; 941 u32 reg; 942 int i; 943 int lane; 944 945 for (lane = 0; lane < MAX_LANE; lane++) { 946 serdes_wr(ctx, lane, RXTX_REG147, 0x6); 947 948 /* Set boost control for quarter, half, and full rate */ 949 serdes_rd(ctx, lane, RXTX_REG0, &val); 950 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); 951 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); 952 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); 953 serdes_wr(ctx, lane, RXTX_REG0, val); 954 955 /* Set boost control value */ 956 serdes_rd(ctx, lane, RXTX_REG1, &val); 957 val = RXTX_REG1_RXACVCM_SET(val, 0x7); 958 val = RXTX_REG1_CTLE_EQ_SET(val, 959 ctx->sata_param.txboostgain[lane * 3 + 960 ctx->sata_param.speed[lane]]); 961 serdes_wr(ctx, lane, RXTX_REG1, val); 962 963 /* Latch VTT value based on the termination to ground and 964 * enable TX FIFO 965 */ 966 serdes_rd(ctx, lane, RXTX_REG2, &val); 967 val = RXTX_REG2_VTT_ENA_SET(val, 0x1); 968 val = RXTX_REG2_VTT_SEL_SET(val, 0x1); 969 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); 970 serdes_wr(ctx, lane, RXTX_REG2, val); 971 972 /* Configure Tx for 20-bits */ 973 serdes_rd(ctx, lane, RXTX_REG4, &val); 974 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); 975 serdes_wr(ctx, lane, RXTX_REG4, val); 976 977 if (!preA3Chip) { 978 serdes_rd(ctx, lane, RXTX_REG1, &val); 979 val = RXTX_REG1_RXVREG1_SET(val, 0x2); 980 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); 981 serdes_wr(ctx, lane, RXTX_REG1, val); 982 } 983 984 /* Set pre-emphasis first 1 and 2, and post-emphasis values */ 985 serdes_rd(ctx, lane, RXTX_REG5, &val); 986 val = RXTX_REG5_TX_CN1_SET(val, 987 ctx->sata_param.txprecursor_cn1[lane * 3 + 988 ctx->sata_param.speed[lane]]); 989 val = RXTX_REG5_TX_CP1_SET(val, 990 ctx->sata_param.txpostcursor_cp1[lane * 3 + 991 ctx->sata_param.speed[lane]]); 992 val = RXTX_REG5_TX_CN2_SET(val, 993 ctx->sata_param.txprecursor_cn2[lane * 3 + 994 ctx->sata_param.speed[lane]]); 995 serdes_wr(ctx, lane, RXTX_REG5, val); 996 997 /* Set TX amplitude value */ 998 serdes_rd(ctx, lane, RXTX_REG6, &val); 999 val = RXTX_REG6_TXAMP_CNTL_SET(val, 1000 ctx->sata_param.txamplitude[lane * 3 + 1001 ctx->sata_param.speed[lane]]); 1002 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); 1003 val = RXTX_REG6_TX_IDLE_SET(val, 0x0); 1004 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); 1005 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); 1006 serdes_wr(ctx, lane, RXTX_REG6, val); 1007 1008 /* Configure Rx for 20-bits */ 1009 serdes_rd(ctx, lane, RXTX_REG7, &val); 1010 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); 1011 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); 1012 serdes_wr(ctx, lane, RXTX_REG7, val); 1013 1014 /* Set CDR and LOS values and enable Rx SSC */ 1015 serdes_rd(ctx, lane, RXTX_REG8, &val); 1016 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); 1017 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); 1018 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); 1019 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); 1020 val = RXTX_REG8_SD_VREF_SET(val, 0x4); 1021 serdes_wr(ctx, lane, RXTX_REG8, val); 1022 1023 /* Set phase adjust upper/lower limits */ 1024 serdes_rd(ctx, lane, RXTX_REG11, &val); 1025 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); 1026 serdes_wr(ctx, lane, RXTX_REG11, val); 1027 1028 /* Enable Latch Off; disable SUMOS and Tx termination */ 1029 serdes_rd(ctx, lane, RXTX_REG12, &val); 1030 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); 1031 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); 1032 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); 1033 serdes_wr(ctx, lane, RXTX_REG12, val); 1034 1035 /* Set period error latch to 512T and enable BWL */ 1036 serdes_rd(ctx, lane, RXTX_REG26, &val); 1037 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); 1038 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); 1039 serdes_wr(ctx, lane, RXTX_REG26, val); 1040 1041 serdes_wr(ctx, lane, RXTX_REG28, 0x0); 1042 1043 /* Set DFE loop preset value */ 1044 serdes_wr(ctx, lane, RXTX_REG31, 0x0); 1045 1046 /* Set Eye Monitor counter width to 12-bit */ 1047 serdes_rd(ctx, lane, RXTX_REG61, &val); 1048 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); 1049 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); 1050 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); 1051 serdes_wr(ctx, lane, RXTX_REG61, val); 1052 1053 serdes_rd(ctx, lane, RXTX_REG62, &val); 1054 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); 1055 serdes_wr(ctx, lane, RXTX_REG62, val); 1056 1057 /* Set BW select tap X for DFE loop */ 1058 for (i = 0; i < 9; i++) { 1059 reg = RXTX_REG81 + i * 2; 1060 serdes_rd(ctx, lane, reg, &val); 1061 val = RXTX_REG89_MU_TH7_SET(val, 0xe); 1062 val = RXTX_REG89_MU_TH8_SET(val, 0xe); 1063 val = RXTX_REG89_MU_TH9_SET(val, 0xe); 1064 serdes_wr(ctx, lane, reg, val); 1065 } 1066 1067 /* Set BW select tap X for frequency adjust loop */ 1068 for (i = 0; i < 3; i++) { 1069 reg = RXTX_REG96 + i * 2; 1070 serdes_rd(ctx, lane, reg, &val); 1071 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); 1072 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); 1073 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); 1074 serdes_wr(ctx, lane, reg, val); 1075 } 1076 1077 /* Set BW select tap X for phase adjust loop */ 1078 for (i = 0; i < 3; i++) { 1079 reg = RXTX_REG99 + i * 2; 1080 serdes_rd(ctx, lane, reg, &val); 1081 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); 1082 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); 1083 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); 1084 serdes_wr(ctx, lane, reg, val); 1085 } 1086 1087 serdes_rd(ctx, lane, RXTX_REG102, &val); 1088 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); 1089 serdes_wr(ctx, lane, RXTX_REG102, val); 1090 1091 serdes_wr(ctx, lane, RXTX_REG114, 0xffe0); 1092 1093 serdes_rd(ctx, lane, RXTX_REG125, &val); 1094 val = RXTX_REG125_SIGN_PQ_SET(val, 1095 ctx->sata_param.txeyedirection[lane * 3 + 1096 ctx->sata_param.speed[lane]]); 1097 val = RXTX_REG125_PQ_REG_SET(val, 1098 ctx->sata_param.txeyetuning[lane * 3 + 1099 ctx->sata_param.speed[lane]]); 1100 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); 1101 serdes_wr(ctx, lane, RXTX_REG125, val); 1102 1103 serdes_rd(ctx, lane, RXTX_REG127, &val); 1104 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); 1105 serdes_wr(ctx, lane, RXTX_REG127, val); 1106 1107 serdes_rd(ctx, lane, RXTX_REG128, &val); 1108 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); 1109 serdes_wr(ctx, lane, RXTX_REG128, val); 1110 1111 serdes_rd(ctx, lane, RXTX_REG145, &val); 1112 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); 1113 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); 1114 if (preA3Chip) { 1115 val = RXTX_REG145_RXES_ENA_SET(val, 0x1); 1116 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); 1117 } else { 1118 val = RXTX_REG145_RXES_ENA_SET(val, 0x0); 1119 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); 1120 } 1121 serdes_wr(ctx, lane, RXTX_REG145, val); 1122 1123 /* 1124 * Set Rx LOS filter clock rate, sample rate, and threshold 1125 * windows 1126 */ 1127 for (i = 0; i < 4; i++) { 1128 reg = RXTX_REG148 + i * 2; 1129 serdes_wr(ctx, lane, reg, 0xFFFF); 1130 } 1131 } 1132} 1133 1134static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, 1135 enum cmu_type_t cmu_type, 1136 enum clk_type_t clk_type) 1137{ 1138 void __iomem *csr_serdes = ctx->sds_base; 1139 int loop; 1140 u32 val; 1141 1142 /* Release PHY main reset */ 1143 writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL); 1144 readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1145 1146 if (cmu_type != REF_CMU) { 1147 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); 1148 /* 1149 * As per PHY design spec, the PLL reset requires a minimum 1150 * of 800us. 1151 */ 1152 usleep_range(800, 1000); 1153 1154 cmu_rd(ctx, cmu_type, CMU_REG1, &val); 1155 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); 1156 cmu_wr(ctx, cmu_type, CMU_REG1, val); 1157 /* 1158 * As per PHY design spec, the PLL auto calibration requires 1159 * a minimum of 800us. 1160 */ 1161 usleep_range(800, 1000); 1162 1163 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 1164 CMU_REG32_FORCE_VCOCAL_START_MASK); 1165 /* 1166 * As per PHY design spec, the PLL requires a minimum of 1167 * 800us to settle. 1168 */ 1169 usleep_range(800, 1000); 1170 } 1171 1172 if (!preA3Chip) 1173 goto skip_manual_cal; 1174 1175 /* 1176 * Configure the termination resister calibration 1177 * The serial receive pins, RXP/RXN, have TERMination resistor 1178 * that is required to be calibrated. 1179 */ 1180 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1181 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); 1182 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1183 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1184 cmu_toggle1to0(ctx, cmu_type, CMU_REG17, 1185 CMU_REG17_PVT_TERM_MAN_ENA_MASK); 1186 /* 1187 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN 1188 * resistors that are required to the calibrated. 1189 * Configure the pull DOWN calibration 1190 */ 1191 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1192 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); 1193 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1194 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1195 cmu_toggle1to0(ctx, cmu_type, CMU_REG16, 1196 CMU_REG16_PVT_DN_MAN_ENA_MASK); 1197 /* Configure the pull UP calibration */ 1198 cmu_rd(ctx, cmu_type, CMU_REG17, &val); 1199 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); 1200 val = CMU_REG17_RESERVED_7_SET(val, 0x0); 1201 cmu_wr(ctx, cmu_type, CMU_REG17, val); 1202 cmu_toggle1to0(ctx, cmu_type, CMU_REG16, 1203 CMU_REG16_PVT_UP_MAN_ENA_MASK); 1204 1205skip_manual_cal: 1206 /* Poll the PLL calibration completion status for at least 1 ms */ 1207 loop = 100; 1208 do { 1209 cmu_rd(ctx, cmu_type, CMU_REG7, &val); 1210 if (CMU_REG7_PLL_CALIB_DONE_RD(val)) 1211 break; 1212 /* 1213 * As per PHY design spec, PLL calibration status requires 1214 * a minimum of 10us to be updated. 1215 */ 1216 usleep_range(10, 100); 1217 } while (--loop > 0); 1218 1219 cmu_rd(ctx, cmu_type, CMU_REG7, &val); 1220 dev_dbg(ctx->dev, "PLL calibration %s\n", 1221 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed"); 1222 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { 1223 dev_err(ctx->dev, 1224 "PLL calibration failed due to VCO failure\n"); 1225 return -1; 1226 } 1227 dev_dbg(ctx->dev, "PLL calibration successful\n"); 1228 1229 cmu_rd(ctx, cmu_type, CMU_REG15, &val); 1230 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not "); 1231 return 0; 1232} 1233 1234static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, 1235 enum cmu_type_t cmu_type, 1236 enum clk_type_t clk_type) 1237{ 1238 u32 val; 1239 1240 dev_dbg(ctx->dev, "Reset VCO and re-start again\n"); 1241 if (cmu_type == PHY_CMU) { 1242 cmu_rd(ctx, cmu_type, CMU_REG16, &val); 1243 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); 1244 cmu_wr(ctx, cmu_type, CMU_REG16, val); 1245 } 1246 1247 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); 1248 cmu_toggle1to0(ctx, cmu_type, CMU_REG32, 1249 CMU_REG32_FORCE_VCOCAL_START_MASK); 1250} 1251 1252static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, 1253 enum clk_type_t clk_type, int ssc_enable) 1254{ 1255 void __iomem *sds_base = ctx->sds_base; 1256 u32 val; 1257 int i; 1258 1259 /* Configure the PHY for operation */ 1260 dev_dbg(ctx->dev, "Reset PHY\n"); 1261 /* Place PHY into reset */ 1262 writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL); 1263 val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1264 /* Release PHY lane from reset (active high) */ 1265 writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL); 1266 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1267 /* Release all PHY module out of reset except PHY main reset */ 1268 writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL); 1269 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ 1270 1271 /* Set the operation speed */ 1272 val = readl(sds_base + SATA_ENET_SDS_CTL1); 1273 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, 1274 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); 1275 writel(val, sds_base + SATA_ENET_SDS_CTL1); 1276 1277 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n"); 1278 val = readl(sds_base + SATA_ENET_SDS_CTL0); 1279 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); 1280 writel(val, sds_base + SATA_ENET_SDS_CTL0); 1281 1282 /* Configure the clock macro unit (CMU) clock type */ 1283 xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type); 1284 1285 /* Configure the clock macro */ 1286 xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type); 1287 1288 /* Enable SSC if enabled */ 1289 if (ssc_enable) 1290 xgene_phy_ssc_enable(ctx, PHY_CMU); 1291 1292 /* Configure PHY lanes */ 1293 xgene_phy_sata_cfg_lanes(ctx); 1294 1295 /* Set Rx/Tx 20-bit */ 1296 val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0); 1297 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); 1298 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); 1299 writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0); 1300 1301 /* Start PLL calibration and try for three times */ 1302 i = 10; 1303 do { 1304 if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type)) 1305 break; 1306 /* If failed, toggle the VCO power signal and start again */ 1307 xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type); 1308 } while (--i > 0); 1309 /* Even on failure, allow to continue any way */ 1310 if (i <= 0) 1311 dev_err(ctx->dev, "PLL calibration failed\n"); 1312 1313 return 0; 1314} 1315 1316static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, 1317 enum clk_type_t clk_type, 1318 int ssc_enable) 1319{ 1320 int rc; 1321 1322 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type); 1323 1324 if (ctx->mode == MODE_SATA) { 1325 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); 1326 if (rc) 1327 return rc; 1328 } else { 1329 dev_err(ctx->dev, "Un-supported customer pin mode %d\n", 1330 ctx->mode); 1331 return -ENODEV; 1332 } 1333 1334 return 0; 1335} 1336 1337/* 1338 * Receiver Offset Calibration: 1339 * 1340 * Calibrate the receiver signal path offset in two steps - summar and 1341 * latch calibrations 1342 */ 1343static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) 1344{ 1345 int i; 1346 static const struct { 1347 u32 reg; 1348 u32 val; 1349 } serdes_reg[] = { 1350 {RXTX_REG38, 0x0}, 1351 {RXTX_REG39, 0xff00}, 1352 {RXTX_REG40, 0xffff}, 1353 {RXTX_REG41, 0xffff}, 1354 {RXTX_REG42, 0xffff}, 1355 {RXTX_REG43, 0xffff}, 1356 {RXTX_REG44, 0xffff}, 1357 {RXTX_REG45, 0xffff}, 1358 {RXTX_REG46, 0xffff}, 1359 {RXTX_REG47, 0xfffc}, 1360 {RXTX_REG48, 0x0}, 1361 {RXTX_REG49, 0x0}, 1362 {RXTX_REG50, 0x0}, 1363 {RXTX_REG51, 0x0}, 1364 {RXTX_REG52, 0x0}, 1365 {RXTX_REG53, 0x0}, 1366 {RXTX_REG54, 0x0}, 1367 {RXTX_REG55, 0x0}, 1368 }; 1369 1370 /* Start SUMMER calibration */ 1371 serdes_setbits(ctx, lane, RXTX_REG127, 1372 RXTX_REG127_FORCE_SUM_CAL_START_MASK); 1373 /* 1374 * As per PHY design spec, the Summer calibration requires a minimum 1375 * of 100us to complete. 1376 */ 1377 usleep_range(100, 500); 1378 serdes_clrbits(ctx, lane, RXTX_REG127, 1379 RXTX_REG127_FORCE_SUM_CAL_START_MASK); 1380 /* 1381 * As per PHY design spec, the auto calibration requires a minimum 1382 * of 100us to complete. 1383 */ 1384 usleep_range(100, 500); 1385 1386 /* Start latch calibration */ 1387 serdes_setbits(ctx, lane, RXTX_REG127, 1388 RXTX_REG127_FORCE_LAT_CAL_START_MASK); 1389 /* 1390 * As per PHY design spec, the latch calibration requires a minimum 1391 * of 100us to complete. 1392 */ 1393 usleep_range(100, 500); 1394 serdes_clrbits(ctx, lane, RXTX_REG127, 1395 RXTX_REG127_FORCE_LAT_CAL_START_MASK); 1396 1397 /* Configure the PHY lane for calibration */ 1398 serdes_wr(ctx, lane, RXTX_REG28, 0x7); 1399 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); 1400 serdes_clrbits(ctx, lane, RXTX_REG4, 1401 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); 1402 serdes_clrbits(ctx, lane, RXTX_REG7, 1403 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); 1404 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) 1405 serdes_wr(ctx, lane, serdes_reg[i].reg, 1406 serdes_reg[i].val); 1407} 1408 1409static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) 1410{ 1411 /* Reset digital Rx */ 1412 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); 1413 /* As per PHY design spec, the reset requires a minimum of 100us. */ 1414 usleep_range(100, 150); 1415 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); 1416} 1417 1418static int xgene_phy_get_avg(int accum, int samples) 1419{ 1420 return (accum + (samples / 2)) / samples; 1421} 1422 1423static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) 1424{ 1425 int max_loop = 10; 1426 int avg_loop = 0; 1427 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; 1428 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; 1429 int sum_cal = 0; 1430 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; 1431 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; 1432 int sum_cal_itr; 1433 int fail_even; 1434 int fail_odd; 1435 u32 val; 1436 1437 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n", 1438 lane); 1439 1440 /* Enable RX Hi-Z termination */ 1441 serdes_setbits(ctx, lane, RXTX_REG12, 1442 RXTX_REG12_RX_DET_TERM_ENABLE_MASK); 1443 /* Turn off DFE */ 1444 serdes_wr(ctx, lane, RXTX_REG28, 0x0000); 1445 /* DFE Presets to zero */ 1446 serdes_wr(ctx, lane, RXTX_REG31, 0x0000); 1447 1448 /* 1449 * Receiver Offset Calibration: 1450 * Calibrate the receiver signal path offset in two steps - summar 1451 * and latch calibration. 1452 * Runs the "Receiver Offset Calibration multiple times to determine 1453 * the average value to use. 1454 */ 1455 while (avg_loop < max_loop) { 1456 /* Start the calibration */ 1457 xgene_phy_force_lat_summer_cal(ctx, lane); 1458 1459 serdes_rd(ctx, lane, RXTX_REG21, &val); 1460 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); 1461 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); 1462 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); 1463 1464 serdes_rd(ctx, lane, RXTX_REG22, &val); 1465 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); 1466 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); 1467 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); 1468 1469 serdes_rd(ctx, lane, RXTX_REG23, &val); 1470 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); 1471 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); 1472 1473 serdes_rd(ctx, lane, RXTX_REG24, &val); 1474 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); 1475 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); 1476 1477 serdes_rd(ctx, lane, RXTX_REG121, &val); 1478 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); 1479 1480 /* Check for failure. If passed, sum them for averaging */ 1481 if ((fail_even == 0 || fail_even == 1) && 1482 (fail_odd == 0 || fail_odd == 1)) { 1483 lat_do += lat_do_itr; 1484 lat_xo += lat_xo_itr; 1485 lat_eo += lat_eo_itr; 1486 lat_so += lat_so_itr; 1487 lat_de += lat_de_itr; 1488 lat_xe += lat_xe_itr; 1489 lat_ee += lat_ee_itr; 1490 lat_se += lat_se_itr; 1491 sum_cal += sum_cal_itr; 1492 1493 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop); 1494 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", 1495 lat_do_itr, lat_xo_itr, lat_eo_itr, 1496 lat_so_itr); 1497 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", 1498 lat_de_itr, lat_xe_itr, lat_ee_itr, 1499 lat_se_itr); 1500 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr); 1501 ++avg_loop; 1502 } else { 1503 dev_err(ctx->dev, 1504 "Receiver calibration failed at %d loop\n", 1505 avg_loop); 1506 } 1507 xgene_phy_reset_rxd(ctx, lane); 1508 } 1509 1510 /* Update latch manual calibration with average value */ 1511 serdes_rd(ctx, lane, RXTX_REG127, &val); 1512 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, 1513 xgene_phy_get_avg(lat_do, max_loop)); 1514 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, 1515 xgene_phy_get_avg(lat_xo, max_loop)); 1516 serdes_wr(ctx, lane, RXTX_REG127, val); 1517 1518 serdes_rd(ctx, lane, RXTX_REG128, &val); 1519 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, 1520 xgene_phy_get_avg(lat_eo, max_loop)); 1521 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, 1522 xgene_phy_get_avg(lat_so, max_loop)); 1523 serdes_wr(ctx, lane, RXTX_REG128, val); 1524 1525 serdes_rd(ctx, lane, RXTX_REG129, &val); 1526 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, 1527 xgene_phy_get_avg(lat_de, max_loop)); 1528 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, 1529 xgene_phy_get_avg(lat_xe, max_loop)); 1530 serdes_wr(ctx, lane, RXTX_REG129, val); 1531 1532 serdes_rd(ctx, lane, RXTX_REG130, &val); 1533 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, 1534 xgene_phy_get_avg(lat_ee, max_loop)); 1535 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, 1536 xgene_phy_get_avg(lat_se, max_loop)); 1537 serdes_wr(ctx, lane, RXTX_REG130, val); 1538 1539 /* Update SUMMER calibration with average value */ 1540 serdes_rd(ctx, lane, RXTX_REG14, &val); 1541 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, 1542 xgene_phy_get_avg(sum_cal, max_loop)); 1543 serdes_wr(ctx, lane, RXTX_REG14, val); 1544 1545 dev_dbg(ctx->dev, "Average Value:\n"); 1546 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", 1547 xgene_phy_get_avg(lat_do, max_loop), 1548 xgene_phy_get_avg(lat_xo, max_loop), 1549 xgene_phy_get_avg(lat_eo, max_loop), 1550 xgene_phy_get_avg(lat_so, max_loop)); 1551 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", 1552 xgene_phy_get_avg(lat_de, max_loop), 1553 xgene_phy_get_avg(lat_xe, max_loop), 1554 xgene_phy_get_avg(lat_ee, max_loop), 1555 xgene_phy_get_avg(lat_se, max_loop)); 1556 dev_dbg(ctx->dev, "SUM 0x%x\n", 1557 xgene_phy_get_avg(sum_cal, max_loop)); 1558 1559 serdes_rd(ctx, lane, RXTX_REG14, &val); 1560 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); 1561 serdes_wr(ctx, lane, RXTX_REG14, val); 1562 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n"); 1563 1564 serdes_rd(ctx, lane, RXTX_REG127, &val); 1565 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); 1566 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n"); 1567 serdes_wr(ctx, lane, RXTX_REG127, val); 1568 1569 /* Disable RX Hi-Z termination */ 1570 serdes_rd(ctx, lane, RXTX_REG12, &val); 1571 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); 1572 serdes_wr(ctx, lane, RXTX_REG12, val); 1573 /* Turn on DFE */ 1574 serdes_wr(ctx, lane, RXTX_REG28, 0x0007); 1575 /* Set DFE preset */ 1576 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); 1577} 1578 1579static int xgene_phy_hw_init(struct phy *phy) 1580{ 1581 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); 1582 int rc; 1583 int i; 1584 1585 rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE); 1586 if (rc) { 1587 dev_err(ctx->dev, "PHY initialize failed %d\n", rc); 1588 return rc; 1589 } 1590 1591 /* Setup clock properly after PHY configuration */ 1592 if (!IS_ERR(ctx->clk)) { 1593 /* HW requires an toggle of the clock */ 1594 clk_prepare_enable(ctx->clk); 1595 clk_disable_unprepare(ctx->clk); 1596 clk_prepare_enable(ctx->clk); 1597 } 1598 1599 /* Compute average value */ 1600 for (i = 0; i < MAX_LANE; i++) 1601 xgene_phy_gen_avg_val(ctx, i); 1602 1603 dev_dbg(ctx->dev, "PHY initialized\n"); 1604 return 0; 1605} 1606 1607static const struct phy_ops xgene_phy_ops = { 1608 .init = xgene_phy_hw_init, 1609 .owner = THIS_MODULE, 1610}; 1611 1612static struct phy *xgene_phy_xlate(struct device *dev, 1613 struct of_phandle_args *args) 1614{ 1615 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); 1616 1617 if (args->args_count <= 0) 1618 return ERR_PTR(-EINVAL); 1619 if (args->args[0] >= MODE_MAX) 1620 return ERR_PTR(-EINVAL); 1621 1622 ctx->mode = args->args[0]; 1623 return ctx->phy; 1624} 1625 1626static void xgene_phy_get_param(struct platform_device *pdev, 1627 const char *name, u32 *buffer, 1628 int count, u32 *default_val, 1629 u32 conv_factor) 1630{ 1631 int i; 1632 1633 if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer, 1634 count)) { 1635 for (i = 0; i < count; i++) 1636 buffer[i] /= conv_factor; 1637 return; 1638 } 1639 /* Does not exist, load default */ 1640 for (i = 0; i < count; i++) 1641 buffer[i] = default_val[i % 3]; 1642} 1643 1644static int xgene_phy_probe(struct platform_device *pdev) 1645{ 1646 struct phy_provider *phy_provider; 1647 struct xgene_phy_ctx *ctx; 1648 u32 default_spd[] = DEFAULT_SATA_SPD_SEL; 1649 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; 1650 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; 1651 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; 1652 u32 default_txamp[] = DEFAULT_SATA_TXAMP; 1653 u32 default_txcn1[] = DEFAULT_SATA_TXCN1; 1654 u32 default_txcn2[] = DEFAULT_SATA_TXCN2; 1655 u32 default_txcp1[] = DEFAULT_SATA_TXCP1; 1656 int i; 1657 1658 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); 1659 if (!ctx) 1660 return -ENOMEM; 1661 1662 ctx->dev = &pdev->dev; 1663 1664 ctx->sds_base = devm_platform_ioremap_resource(pdev, 0); 1665 if (IS_ERR(ctx->sds_base)) 1666 return PTR_ERR(ctx->sds_base); 1667 1668 /* Retrieve optional clock */ 1669 ctx->clk = clk_get(&pdev->dev, NULL); 1670 1671 /* Load override paramaters */ 1672 xgene_phy_get_param(pdev, "apm,tx-eye-tuning", 1673 ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1); 1674 xgene_phy_get_param(pdev, "apm,tx-eye-direction", 1675 ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1); 1676 xgene_phy_get_param(pdev, "apm,tx-boost-gain", 1677 ctx->sata_param.txboostgain, 6, default_txboost_gain, 1); 1678 xgene_phy_get_param(pdev, "apm,tx-amplitude", 1679 ctx->sata_param.txamplitude, 6, default_txamp, 13300); 1680 xgene_phy_get_param(pdev, "apm,tx-pre-cursor1", 1681 ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200); 1682 xgene_phy_get_param(pdev, "apm,tx-pre-cursor2", 1683 ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200); 1684 xgene_phy_get_param(pdev, "apm,tx-post-cursor", 1685 ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200); 1686 xgene_phy_get_param(pdev, "apm,tx-speed", 1687 ctx->sata_param.txspeed, 3, default_spd, 1); 1688 for (i = 0; i < MAX_LANE; i++) 1689 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ 1690 1691 platform_set_drvdata(pdev, ctx); 1692 1693 ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops); 1694 if (IS_ERR(ctx->phy)) { 1695 dev_dbg(&pdev->dev, "Failed to create PHY\n"); 1696 return PTR_ERR(ctx->phy); 1697 } 1698 phy_set_drvdata(ctx->phy, ctx); 1699 1700 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); 1701 return PTR_ERR_OR_ZERO(phy_provider); 1702} 1703 1704static const struct of_device_id xgene_phy_of_match[] = { 1705 {.compatible = "apm,xgene-phy",}, 1706 {}, 1707}; 1708MODULE_DEVICE_TABLE(of, xgene_phy_of_match); 1709 1710static struct platform_driver xgene_phy_driver = { 1711 .probe = xgene_phy_probe, 1712 .driver = { 1713 .name = "xgene-phy", 1714 .of_match_table = xgene_phy_of_match, 1715 }, 1716}; 1717module_platform_driver(xgene_phy_driver); 1718 1719MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver"); 1720MODULE_AUTHOR("Loc Ho <lho@apm.com>"); 1721MODULE_LICENSE("GPL v2"); 1722MODULE_VERSION("0.1");