cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

phy-rockchip-inno-dsidphy.c (20488B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
      4 *
      5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
      6 */
      7
      8#include <linux/bits.h>
      9#include <linux/kernel.h>
     10#include <linux/clk.h>
     11#include <linux/iopoll.h>
     12#include <linux/clk-provider.h>
     13#include <linux/delay.h>
     14#include <linux/init.h>
     15#include <linux/mfd/syscon.h>
     16#include <linux/module.h>
     17#include <linux/of_device.h>
     18#include <linux/platform_device.h>
     19#include <linux/pm_runtime.h>
     20#include <linux/reset.h>
     21#include <linux/time64.h>
     22
     23#include <linux/phy/phy.h>
     24#include <linux/phy/phy-mipi-dphy.h>
     25
     26#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
     27
     28/*
     29 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
     30 * is the first address, the other from the bit4 to bit0 is the second address.
     31 * when you configure the registers, you must set both of them. The Clock Lane
     32 * and Data Lane use the same registers with the same second address, but the
     33 * first address is different.
     34 */
     35#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
     36#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
     37#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
     38					 SECOND_ADDRESS(second))
     39
     40/* Analog Register Part: reg00 */
     41#define BANDGAP_POWER_MASK			BIT(7)
     42#define BANDGAP_POWER_DOWN			BIT(7)
     43#define BANDGAP_POWER_ON			0
     44#define LANE_EN_MASK				GENMASK(6, 2)
     45#define LANE_EN_CK				BIT(6)
     46#define LANE_EN_3				BIT(5)
     47#define LANE_EN_2				BIT(4)
     48#define LANE_EN_1				BIT(3)
     49#define LANE_EN_0				BIT(2)
     50#define POWER_WORK_MASK				GENMASK(1, 0)
     51#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
     52#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
     53/* Analog Register Part: reg01 */
     54#define REG_SYNCRST_MASK			BIT(2)
     55#define REG_SYNCRST_RESET			BIT(2)
     56#define REG_SYNCRST_NORMAL			0
     57#define REG_LDOPD_MASK				BIT(1)
     58#define REG_LDOPD_POWER_DOWN			BIT(1)
     59#define REG_LDOPD_POWER_ON			0
     60#define REG_PLLPD_MASK				BIT(0)
     61#define REG_PLLPD_POWER_DOWN			BIT(0)
     62#define REG_PLLPD_POWER_ON			0
     63/* Analog Register Part: reg03 */
     64#define REG_FBDIV_HI_MASK			BIT(5)
     65#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
     66#define REG_PREDIV_MASK				GENMASK(4, 0)
     67#define REG_PREDIV(x)				UPDATE(x, 4, 0)
     68/* Analog Register Part: reg04 */
     69#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
     70#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
     71/* Analog Register Part: reg05 */
     72#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
     73#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
     74#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
     75#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
     76/* Analog Register Part: reg06 */
     77#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
     78#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
     79#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
     80#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
     81/* Analog Register Part: reg07 */
     82#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
     83#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
     84#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
     85#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
     86/* Analog Register Part: reg08 */
     87#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
     88#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
     89#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
     90/* Digital Register Part: reg00 */
     91#define REG_DIG_RSTN_MASK			BIT(0)
     92#define REG_DIG_RSTN_NORMAL			BIT(0)
     93#define REG_DIG_RSTN_RESET			0
     94/* Digital Register Part: reg01 */
     95#define INVERT_TXCLKESC_MASK			BIT(1)
     96#define INVERT_TXCLKESC_ENABLE			BIT(1)
     97#define INVERT_TXCLKESC_DISABLE			0
     98#define INVERT_TXBYTECLKHS_MASK			BIT(0)
     99#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
    100#define INVERT_TXBYTECLKHS_DISABLE		0
    101/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
    102#define T_LPX_CNT_MASK				GENMASK(5, 0)
    103#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
    104/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
    105#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
    106#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
    107/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
    108#define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
    109#define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
    110/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
    111#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
    112#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
    113/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
    114#define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
    115#define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
    116/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
    117#define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
    118#define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
    119/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
    120#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
    121#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
    122#define LPDT_TX_PPI_SYNC_DISABLE		0
    123#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
    124#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
    125/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
    126#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
    127#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
    128/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
    129#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
    130#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
    131/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
    132#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
    133#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
    134/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
    135#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
    136#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
    137/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
    138#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
    139#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
    140/* LVDS Register Part: reg00 */
    141#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
    142#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
    143#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
    144/* LVDS Register Part: reg01 */
    145#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
    146#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
    147#define LVDS_DIGITAL_INTERNAL_DISABLE		0
    148/* LVDS Register Part: reg03 */
    149#define MODE_ENABLE_MASK			GENMASK(2, 0)
    150#define TTL_MODE_ENABLE				BIT(2)
    151#define LVDS_MODE_ENABLE			BIT(1)
    152#define MIPI_MODE_ENABLE			BIT(0)
    153/* LVDS Register Part: reg0b */
    154#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
    155#define LVDS_DATA_LANE0_EN			BIT(7)
    156#define LVDS_DATA_LANE1_EN			BIT(6)
    157#define LVDS_DATA_LANE2_EN			BIT(5)
    158#define LVDS_DATA_LANE3_EN			BIT(4)
    159#define LVDS_CLK_LANE_EN			BIT(3)
    160#define LVDS_PLL_POWER_MASK			BIT(2)
    161#define LVDS_PLL_POWER_OFF			BIT(2)
    162#define LVDS_PLL_POWER_ON			0
    163#define LVDS_BANDGAP_POWER_MASK			BIT(0)
    164#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
    165#define LVDS_BANDGAP_POWER_ON			0
    166
    167#define DSI_PHY_RSTZ		0xa0
    168#define PHY_ENABLECLK		BIT(2)
    169#define DSI_PHY_STATUS		0xb0
    170#define PHY_LOCK		BIT(0)
    171
    172struct inno_dsidphy {
    173	struct device *dev;
    174	struct clk *ref_clk;
    175	struct clk *pclk_phy;
    176	struct clk *pclk_host;
    177	void __iomem *phy_base;
    178	void __iomem *host_base;
    179	struct reset_control *rst;
    180	enum phy_mode mode;
    181	struct phy_configure_opts_mipi_dphy dphy_cfg;
    182
    183	struct clk *pll_clk;
    184	struct {
    185		struct clk_hw hw;
    186		u8 prediv;
    187		u16 fbdiv;
    188		unsigned long rate;
    189	} pll;
    190};
    191
    192enum {
    193	REGISTER_PART_ANALOG,
    194	REGISTER_PART_DIGITAL,
    195	REGISTER_PART_CLOCK_LANE,
    196	REGISTER_PART_DATA0_LANE,
    197	REGISTER_PART_DATA1_LANE,
    198	REGISTER_PART_DATA2_LANE,
    199	REGISTER_PART_DATA3_LANE,
    200	REGISTER_PART_LVDS,
    201};
    202
    203static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
    204{
    205	return container_of(hw, struct inno_dsidphy, pll.hw);
    206}
    207
    208static void phy_update_bits(struct inno_dsidphy *inno,
    209			    u8 first, u8 second, u8 mask, u8 val)
    210{
    211	u32 reg = PHY_REG(first, second) << 2;
    212	unsigned int tmp, orig;
    213
    214	orig = readl(inno->phy_base + reg);
    215	tmp = orig & ~mask;
    216	tmp |= val & mask;
    217	writel(tmp, inno->phy_base + reg);
    218}
    219
    220static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
    221						unsigned long rate)
    222{
    223	unsigned long prate = clk_get_rate(inno->ref_clk);
    224	unsigned long best_freq = 0;
    225	unsigned long fref, fout;
    226	u8 min_prediv, max_prediv;
    227	u8 _prediv, best_prediv = 1;
    228	u16 _fbdiv, best_fbdiv = 1;
    229	u32 min_delta = UINT_MAX;
    230
    231	/*
    232	 * The PLL output frequency can be calculated using a simple formula:
    233	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
    234	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
    235	 */
    236	fref = prate / 2;
    237	if (rate > 1000000000UL)
    238		fout = 1000000000UL;
    239	else
    240		fout = rate;
    241
    242	/* 5Mhz < Fref / prediv < 40MHz */
    243	min_prediv = DIV_ROUND_UP(fref, 40000000);
    244	max_prediv = fref / 5000000;
    245
    246	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
    247		u64 tmp;
    248		u32 delta;
    249
    250		tmp = (u64)fout * _prediv;
    251		do_div(tmp, fref);
    252		_fbdiv = tmp;
    253
    254		/*
    255		 * The possible settings of feedback divider are
    256		 * 12, 13, 14, 16, ~ 511
    257		 */
    258		if (_fbdiv == 15)
    259			continue;
    260
    261		if (_fbdiv < 12 || _fbdiv > 511)
    262			continue;
    263
    264		tmp = (u64)_fbdiv * fref;
    265		do_div(tmp, _prediv);
    266
    267		delta = abs(fout - tmp);
    268		if (!delta) {
    269			best_prediv = _prediv;
    270			best_fbdiv = _fbdiv;
    271			best_freq = tmp;
    272			break;
    273		} else if (delta < min_delta) {
    274			best_prediv = _prediv;
    275			best_fbdiv = _fbdiv;
    276			best_freq = tmp;
    277			min_delta = delta;
    278		}
    279	}
    280
    281	if (best_freq) {
    282		inno->pll.prediv = best_prediv;
    283		inno->pll.fbdiv = best_fbdiv;
    284		inno->pll.rate = best_freq;
    285	}
    286
    287	return best_freq;
    288}
    289
    290static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
    291{
    292	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
    293	const struct {
    294		unsigned long rate;
    295		u8 hs_prepare;
    296		u8 clk_lane_hs_zero;
    297		u8 data_lane_hs_zero;
    298		u8 hs_trail;
    299	} timings[] = {
    300		{ 110000000, 0x20, 0x16, 0x02, 0x22},
    301		{ 150000000, 0x06, 0x16, 0x03, 0x45},
    302		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
    303		{ 250000000, 0x05, 0x17, 0x05, 0x16},
    304		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
    305		{ 400000000, 0x64, 0x19, 0x07, 0x33},
    306		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
    307		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
    308		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
    309		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
    310		{1000000000, 0x09, 0x20, 0x09, 0x27},
    311	};
    312	u32 t_txbyteclkhs, t_txclkesc;
    313	u32 txbyteclkhs, txclkesc, esc_clk_div;
    314	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
    315	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
    316	unsigned int i;
    317
    318	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
    319
    320	/* Select MIPI mode */
    321	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
    322			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
    323	/* Configure PLL */
    324	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
    325			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
    326	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
    327			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
    328	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
    329			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
    330	/* Enable PLL and LDO */
    331	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
    332			REG_LDOPD_MASK | REG_PLLPD_MASK,
    333			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
    334	/* Reset analog */
    335	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
    336			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
    337	udelay(1);
    338	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
    339			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
    340	/* Reset digital */
    341	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
    342			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
    343	udelay(1);
    344	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
    345			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
    346
    347	txbyteclkhs = inno->pll.rate / 8;
    348	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
    349
    350	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
    351	txclkesc = txbyteclkhs / esc_clk_div;
    352	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
    353
    354	/*
    355	 * The value of counter for HS Ths-exit
    356	 * Ths-exit = Tpin_txbyteclkhs * value
    357	 */
    358	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
    359	/*
    360	 * The value of counter for HS Tclk-post
    361	 * Tclk-post = Tpin_txbyteclkhs * value
    362	 */
    363	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
    364	/*
    365	 * The value of counter for HS Tclk-pre
    366	 * Tclk-pre = Tpin_txbyteclkhs * value
    367	 */
    368	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
    369
    370	/*
    371	 * The value of counter for HS Tlpx Time
    372	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
    373	 */
    374	lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
    375	if (lpx >= 2)
    376		lpx -= 2;
    377
    378	/*
    379	 * The value of counter for HS Tta-go
    380	 * Tta-go for turnaround
    381	 * Tta-go = Ttxclkesc * value
    382	 */
    383	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
    384	/*
    385	 * The value of counter for HS Tta-sure
    386	 * Tta-sure for turnaround
    387	 * Tta-sure = Ttxclkesc * value
    388	 */
    389	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
    390	/*
    391	 * The value of counter for HS Tta-wait
    392	 * Tta-wait for turnaround
    393	 * Tta-wait = Ttxclkesc * value
    394	 */
    395	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
    396
    397	for (i = 0; i < ARRAY_SIZE(timings); i++)
    398		if (inno->pll.rate <= timings[i].rate)
    399			break;
    400
    401	if (i == ARRAY_SIZE(timings))
    402		--i;
    403
    404	hs_prepare = timings[i].hs_prepare;
    405	hs_trail = timings[i].hs_trail;
    406	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
    407	data_lane_hs_zero = timings[i].data_lane_hs_zero;
    408	wakeup = 0x3ff;
    409
    410	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
    411		if (i == REGISTER_PART_CLOCK_LANE)
    412			hs_zero = clk_lane_hs_zero;
    413		else
    414			hs_zero = data_lane_hs_zero;
    415
    416		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
    417				T_LPX_CNT(lpx));
    418		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
    419				T_HS_PREPARE_CNT(hs_prepare));
    420		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
    421				T_HS_ZERO_CNT(hs_zero));
    422		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
    423				T_HS_TRAIL_CNT(hs_trail));
    424		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
    425				T_HS_EXIT_CNT(hs_exit));
    426		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
    427				T_CLK_POST_CNT(clk_post));
    428		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
    429				T_CLK_PRE_CNT(clk_pre));
    430		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
    431				T_WAKEUP_CNT_HI(wakeup >> 8));
    432		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
    433				T_WAKEUP_CNT_LO(wakeup));
    434		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
    435				T_TA_GO_CNT(ta_go));
    436		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
    437				T_TA_SURE_CNT(ta_sure));
    438		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
    439				T_TA_WAIT_CNT(ta_wait));
    440	}
    441
    442	/* Enable all lanes on analog part */
    443	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
    444			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
    445			LANE_EN_1 | LANE_EN_0);
    446}
    447
    448static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
    449{
    450	u8 prediv = 2;
    451	u16 fbdiv = 28;
    452
    453	/* Sample clock reverse direction */
    454	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
    455			SAMPLE_CLOCK_DIRECTION_MASK,
    456			SAMPLE_CLOCK_DIRECTION_REVERSE);
    457
    458	/* Select LVDS mode */
    459	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
    460			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
    461	/* Configure PLL */
    462	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
    463			REG_PREDIV_MASK, REG_PREDIV(prediv));
    464	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
    465			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
    466	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
    467			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
    468	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
    469	/* Enable PLL and Bandgap */
    470	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
    471			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
    472			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
    473
    474	msleep(20);
    475
    476	/* Reset LVDS digital logic */
    477	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
    478			LVDS_DIGITAL_INTERNAL_RESET_MASK,
    479			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
    480	udelay(1);
    481	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
    482			LVDS_DIGITAL_INTERNAL_RESET_MASK,
    483			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
    484	/* Enable LVDS digital logic */
    485	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
    486			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
    487			LVDS_DIGITAL_INTERNAL_ENABLE);
    488	/* Enable LVDS analog driver */
    489	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
    490			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
    491			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
    492			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
    493}
    494
    495static int inno_dsidphy_power_on(struct phy *phy)
    496{
    497	struct inno_dsidphy *inno = phy_get_drvdata(phy);
    498
    499	clk_prepare_enable(inno->pclk_phy);
    500	clk_prepare_enable(inno->ref_clk);
    501	pm_runtime_get_sync(inno->dev);
    502
    503	/* Bandgap power on */
    504	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
    505			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
    506	/* Enable power work */
    507	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
    508			POWER_WORK_MASK, POWER_WORK_ENABLE);
    509
    510	switch (inno->mode) {
    511	case PHY_MODE_MIPI_DPHY:
    512		inno_dsidphy_mipi_mode_enable(inno);
    513		break;
    514	case PHY_MODE_LVDS:
    515		inno_dsidphy_lvds_mode_enable(inno);
    516		break;
    517	default:
    518		return -EINVAL;
    519	}
    520
    521	return 0;
    522}
    523
    524static int inno_dsidphy_power_off(struct phy *phy)
    525{
    526	struct inno_dsidphy *inno = phy_get_drvdata(phy);
    527
    528	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
    529	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
    530			REG_LDOPD_MASK | REG_PLLPD_MASK,
    531			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
    532	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
    533			POWER_WORK_MASK, POWER_WORK_DISABLE);
    534	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
    535			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
    536
    537	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
    538	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
    539			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
    540			LVDS_DIGITAL_INTERNAL_DISABLE);
    541	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
    542			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
    543			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
    544
    545	pm_runtime_put(inno->dev);
    546	clk_disable_unprepare(inno->ref_clk);
    547	clk_disable_unprepare(inno->pclk_phy);
    548
    549	return 0;
    550}
    551
    552static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
    553				   int submode)
    554{
    555	struct inno_dsidphy *inno = phy_get_drvdata(phy);
    556
    557	switch (mode) {
    558	case PHY_MODE_MIPI_DPHY:
    559	case PHY_MODE_LVDS:
    560		inno->mode = mode;
    561		break;
    562	default:
    563		return -EINVAL;
    564	}
    565
    566	return 0;
    567}
    568
    569static int inno_dsidphy_configure(struct phy *phy,
    570				  union phy_configure_opts *opts)
    571{
    572	struct inno_dsidphy *inno = phy_get_drvdata(phy);
    573	int ret;
    574
    575	if (inno->mode != PHY_MODE_MIPI_DPHY)
    576		return -EINVAL;
    577
    578	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
    579	if (ret)
    580		return ret;
    581
    582	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
    583
    584	return 0;
    585}
    586
    587static const struct phy_ops inno_dsidphy_ops = {
    588	.configure = inno_dsidphy_configure,
    589	.set_mode = inno_dsidphy_set_mode,
    590	.power_on = inno_dsidphy_power_on,
    591	.power_off = inno_dsidphy_power_off,
    592	.owner = THIS_MODULE,
    593};
    594
    595static int inno_dsidphy_probe(struct platform_device *pdev)
    596{
    597	struct device *dev = &pdev->dev;
    598	struct inno_dsidphy *inno;
    599	struct phy_provider *phy_provider;
    600	struct phy *phy;
    601	int ret;
    602
    603	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
    604	if (!inno)
    605		return -ENOMEM;
    606
    607	inno->dev = dev;
    608	platform_set_drvdata(pdev, inno);
    609
    610	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
    611	if (IS_ERR(inno->phy_base))
    612		return PTR_ERR(inno->phy_base);
    613
    614	inno->ref_clk = devm_clk_get(dev, "ref");
    615	if (IS_ERR(inno->ref_clk)) {
    616		ret = PTR_ERR(inno->ref_clk);
    617		dev_err(dev, "failed to get ref clock: %d\n", ret);
    618		return ret;
    619	}
    620
    621	inno->pclk_phy = devm_clk_get(dev, "pclk");
    622	if (IS_ERR(inno->pclk_phy)) {
    623		ret = PTR_ERR(inno->pclk_phy);
    624		dev_err(dev, "failed to get phy pclk: %d\n", ret);
    625		return ret;
    626	}
    627
    628	inno->rst = devm_reset_control_get(dev, "apb");
    629	if (IS_ERR(inno->rst)) {
    630		ret = PTR_ERR(inno->rst);
    631		dev_err(dev, "failed to get system reset control: %d\n", ret);
    632		return ret;
    633	}
    634
    635	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
    636	if (IS_ERR(phy)) {
    637		ret = PTR_ERR(phy);
    638		dev_err(dev, "failed to create phy: %d\n", ret);
    639		return ret;
    640	}
    641
    642	phy_set_drvdata(phy, inno);
    643
    644	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
    645	if (IS_ERR(phy_provider)) {
    646		ret = PTR_ERR(phy_provider);
    647		dev_err(dev, "failed to register phy provider: %d\n", ret);
    648		return ret;
    649	}
    650
    651	pm_runtime_enable(dev);
    652
    653	return 0;
    654}
    655
    656static int inno_dsidphy_remove(struct platform_device *pdev)
    657{
    658	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
    659
    660	pm_runtime_disable(inno->dev);
    661
    662	return 0;
    663}
    664
    665static const struct of_device_id inno_dsidphy_of_match[] = {
    666	{ .compatible = "rockchip,px30-dsi-dphy", },
    667	{ .compatible = "rockchip,rk3128-dsi-dphy", },
    668	{ .compatible = "rockchip,rk3368-dsi-dphy", },
    669	{}
    670};
    671MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
    672
    673static struct platform_driver inno_dsidphy_driver = {
    674	.driver = {
    675		.name = "inno-dsidphy",
    676		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
    677	},
    678	.probe = inno_dsidphy_probe,
    679	.remove = inno_dsidphy_remove,
    680};
    681module_platform_driver(inno_dsidphy_driver);
    682
    683MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
    684MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
    685MODULE_LICENSE("GPL v2");