pinmux-aspeed.h (31338B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* Copyright (C) 2019 IBM Corp. */ 3 4#ifndef ASPEED_PINMUX_H 5#define ASPEED_PINMUX_H 6 7#include <linux/regmap.h> 8 9/* 10 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other 11 * functions. The SoC function enabled on a pin is determined on a priority 12 * basis where a given pin can provide a number of different signal types. 13 * 14 * The signal active on a pin is described by both a priority level and 15 * compound logical expressions involving multiple operators, registers and 16 * bits. Some difficulty arises as the pin's function bit masks for each 17 * priority level are frequently not the same (i.e. cannot just flip a bit to 18 * change from a high to low priority signal), or even in the same register. 19 * Further, not all signals can be unmuxed, as some expressions depend on 20 * values in the hardware strapping register (which may be treated as 21 * read-only). 22 * 23 * SoC Multi-function Pin Expression Examples 24 * ------------------------------------------ 25 * 26 * Here are some sample mux configurations from the AST2400 and AST2500 27 * datasheets to illustrate the corner cases, roughly in order of least to most 28 * corner. The signal priorities are in decending order from P0 (highest). 29 * 30 * D6 is a pin with a single function (beside GPIO); a high priority signal 31 * that participates in one function: 32 * 33 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 34 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 35 * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0 36 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 37 * 38 * C5 is a multi-signal pin (high and low priority signals). Here we touch 39 * different registers for the different functions that enable each signal: 40 * 41 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 42 * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4 43 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 44 * 45 * E19 is a single-signal pin with two functions that influence the active 46 * signal. In this case both bits have the same meaning - enable a dedicated 47 * LPC reset pin. However it's not always the case that the bits in the 48 * OR-relationship have the same meaning. 49 * 50 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 51 * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4 52 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 53 * 54 * For example, pin B19 has a low-priority signal that's enabled by two 55 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI 56 * bit in the STRAP register. The ACPI bit configures signals on pins in 57 * addition to B19. Both of the low priority functions as well as the high 58 * priority function must be disabled for GPIOF1 to be used. 59 * 60 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 61 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 62 * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1 63 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 64 * 65 * For pin E18, the SoC ANDs the expected state of three bits to determine the 66 * pin's active signal: 67 * 68 * * SCU3C[3]: Enable external SOC reset function 69 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin 70 * * SCU90[31]: Select SPI interface CS# output 71 * 72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 73 * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7 74 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 75 * 76 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for 77 * selecting the signals on pin E18) 78 * 79 * Pin T5 is a multi-signal pin with a more complex configuration: 80 * 81 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 82 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 83 * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1 84 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 85 * 86 * The high priority signal configuration is best thought of in terms of its 87 * exploded form, with reference to the SCU90[5:4] bits: 88 * 89 * * SCU90[5:4]=00: disable 90 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode. 91 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode. 92 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode. 93 * 94 * Re-writing: 95 * 96 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 97 * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1 98 * | (SCU90[5:4]=2 & SCU84[17]=1) 99 * | (SCU90[5:4]=3 & SCU84[17]=1) 100 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 101 * 102 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE 103 * function pin", where the signal itself is determined by whether SCU94[5:4] 104 * is disabled or in one of the 18, 24 or 30bit video modes. 105 * 106 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g. 107 * W1 and U5: 108 * 109 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 110 * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6 111 * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7 112 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 113 * 114 * The examples of T5 and W1 are particularly fertile, as they also demonstrate 115 * that despite operating as part of the video input bus each signal needs to 116 * be enabled individually via it's own SCU84 (in the cases of T5 and W1) 117 * register bit. This is a little crazy if the bus doesn't have optional 118 * signals, but is used to decent effect with some of the UARTs where not all 119 * signals are required. However, this isn't done consistently - UART1 is 120 * enabled on a per-pin basis, and by contrast, all signals for UART6 are 121 * enabled by a single bit. 122 * 123 * Further, the high and low priority signals listed in the table above share 124 * a configuration bit. The VPI signals should operate in concert in a single 125 * function, but the UART signals should retain the ability to be configured 126 * independently. This pushes the implementation down the path of tagging a 127 * signal's expressions with the function they participate in, rather than 128 * defining masks affecting multiple signals per function. The latter approach 129 * fails in this instance where applying the configuration for the UART pin of 130 * interest will stomp on the state of other UART signals when disabling the 131 * VPI functions on the current pin. 132 * 133 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 134 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 135 * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK 136 * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL 137 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 138 * 139 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case 140 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO 141 * should be treated like any other signal type with full function expression 142 * requirements, and not assumed to be the default case. Separately, GPIOT0 and 143 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all 144 * pins in the function's group to disable the higher-priority signals such 145 * that the signal for the function of interest is correctly enabled. 146 * 147 * Finally, three priority levels aren't always enough; the AST2500 brings with 148 * it 18 pins of five priority levels, however the 18 pins only use three of 149 * the five priority levels. 150 * 151 * Ultimately the requirement to control pins in the examples above drive the 152 * design: 153 * 154 * * Pins provide signals according to functions activated in the mux 155 * configuration 156 * 157 * * Pins provide up to five signal types in a priority order 158 * 159 * * For priorities levels defined on a pin, each priority provides one signal 160 * 161 * * Enabling lower priority signals requires higher priority signals be 162 * disabled 163 * 164 * * A function represents a set of signals; functions are distinct if they 165 * do not share a subset of signals (and may be distinct if they are a 166 * strict subset). 167 * 168 * * Signals participate in one or more functions or groups 169 * 170 * * A function is described by an expression of one or more signal 171 * descriptors, which compare bit values in a register 172 * 173 * * A signal expression is the smallest set of signal descriptors whose 174 * comparisons must evaluate 'true' for a signal to be enabled on a pin. 175 * 176 * * A signal participating in a function is active on a pin if evaluating all 177 * signal descriptors in the pin's signal expression for the function yields 178 * a 'true' result 179 * 180 * * A signal at a given priority on a given pin is active if any of the 181 * functions in which the signal participates are active, and no higher 182 * priority signal on the pin is active 183 * 184 * * GPIO is configured per-pin 185 * 186 * And so: 187 * 188 * * To disable a signal, any function(s) activating the signal must be 189 * disabled 190 * 191 * * Each pin must know the signal expressions of functions in which it 192 * participates, for the purpose of enabling the Other function. This is done 193 * by deactivating all functions that activate higher priority signals on the 194 * pin. 195 * 196 * As a concrete example: 197 * 198 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO 199 * 200 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30 201 * 202 * * The NDCD1 signal participates in just its own NDCD1 function 203 * 204 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least 205 * prioritised 206 * 207 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24 208 * and VPI30 functions all be disabled 209 * 210 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled 211 * to provide GPIOL6 212 * 213 * Considerations 214 * -------------- 215 * 216 * If pinctrl allows us to allocate a pin we can configure a function without 217 * concern for the function of already allocated pins, if pin groups are 218 * created with respect to the SoC functions in which they participate. This is 219 * intuitive, but it did not feel obvious from the bit/pin relationships. 220 * 221 * Conversely, failing to allocate all pins in a group indicates some bits (as 222 * well as pins) required for the group's configuration will already be in use, 223 * likely in a way that's inconsistent with the requirements of the failed 224 * group. 225 * 226 * Implementation 227 * -------------- 228 * 229 * Beyond the documentation below the various structures and helper macros that 230 * allow the implementation to hang together are defined. The macros are fairly 231 * dense, so below we walk through some raw examples of the configuration 232 * tables in an effort to clarify the concepts. 233 * 234 * The complexity of configuring the mux combined with the scale of the pins 235 * and functions was a concern, so the table design along with the macro jungle 236 * is an attempt to address it. The rough principles of the approach are: 237 * 238 * 1. Use a data-driven solution rather than embedding state into code 239 * 2. Minimise editing to the specifics of the given mux configuration 240 * 3. Detect as many errors as possible at compile time 241 * 242 * Addressing point 3 leads to naming of symbols in terms of the four 243 * properties associated with a given mux configuration: The pin, the signal, 244 * the group and the function. In this way copy/paste errors cause duplicate 245 * symbols to be defined, which prevents successful compilation. Failing to 246 * properly parent the tables leads to unused symbol warnings, and use of 247 * designated initialisers and additional warnings ensures that there are 248 * no override errors in the pin, group and function arrays. 249 * 250 * Addressing point 2 drives the development of the macro jungle, as it 251 * centralises the definition noise at the cost of taking some time to 252 * understand. 253 * 254 * Here's a complete, concrete "pre-processed" example of the table structures 255 * used to describe the D6 ball from the examples above: 256 * 257 * ``` 258 * static const struct aspeed_sig_desc sig_descs_MAC1LINK_MAC1LINK[] = { 259 * { 260 * .ip = ASPEED_IP_SCU, 261 * .reg = 0x80, 262 * .mask = BIT(0), 263 * .enable = 1, 264 * .disable = 0 265 * }, 266 * }; 267 * 268 * static const struct aspeed_sig_expr sig_expr_MAC1LINK_MAC1LINK = { 269 * .signal = "MAC1LINK", 270 * .function = "MAC1LINK", 271 * .ndescs = ARRAY_SIZE(sig_descs_MAC1LINK_MAC1LINK), 272 * .descs = &(sig_descs_MAC1LINK_MAC1LINK)[0], 273 * }; 274 * 275 * static const struct aspeed_sig_expr *sig_exprs_MAC1LINK_MAC1LINK[] = { 276 * &sig_expr_MAC1LINK_MAC1LINK, 277 * NULL, 278 * }; 279 * 280 * static const struct aspeed_sig_desc sig_descs_GPIOA0_GPIOA0[] = { }; 281 * 282 * static const struct aspeed_sig_expr sig_expr_GPIOA0_GPIOA0 = { 283 * .signal = "GPIOA0", 284 * .function = "GPIOA0", 285 * .ndescs = ARRAY_SIZE(sig_descs_GPIOA0_GPIOA0), 286 * .descs = &(sig_descs_GPIOA0_GPIOA0)[0], 287 * }; 288 * 289 * static const struct aspeed_sig_expr *sig_exprs_GPIOA0_GPIOA0[] = { 290 * &sig_expr_GPIOA0_GPIOA0, 291 * NULL 292 * }; 293 * 294 * static const struct aspeed_sig_expr **pin_exprs_0[] = { 295 * sig_exprs_MAC1LINK_MAC1LINK, 296 * sig_exprs_GPIOA0_GPIOA0, 297 * NULL 298 * }; 299 * 300 * static const struct aspeed_pin_desc pin_0 = { "0", (&pin_exprs_0[0]) }; 301 * static const int group_pins_MAC1LINK[] = { 0 }; 302 * static const char *func_groups_MAC1LINK[] = { "MAC1LINK" }; 303 * 304 * static struct pinctrl_pin_desc aspeed_g4_pins[] = { 305 * [0] = { .number = 0, .name = "D6", .drv_data = &pin_0 }, 306 * }; 307 * 308 * static const struct aspeed_pin_group aspeed_g4_groups[] = { 309 * { 310 * .name = "MAC1LINK", 311 * .pins = &(group_pins_MAC1LINK)[0], 312 * .npins = ARRAY_SIZE(group_pins_MAC1LINK), 313 * }, 314 * }; 315 * 316 * static const struct aspeed_pin_function aspeed_g4_functions[] = { 317 * { 318 * .name = "MAC1LINK", 319 * .groups = &func_groups_MAC1LINK[0], 320 * .ngroups = ARRAY_SIZE(func_groups_MAC1LINK), 321 * }, 322 * }; 323 * ``` 324 * 325 * At the end of the day much of the above code is compressed into the 326 * following two lines: 327 * 328 * ``` 329 * #define D6 0 330 * SSSF_PIN_DECL(D6, GPIOA0, MAC1LINK, SIG_DESC_SET(SCU80, 0)); 331 * ``` 332 * 333 * The two examples below show just the differences from the example above. 334 * 335 * Ball E18 demonstrates a function, EXTRST, that requires multiple descriptors 336 * be set for it to be muxed: 337 * 338 * ``` 339 * static const struct aspeed_sig_desc sig_descs_EXTRST_EXTRST[] = { 340 * { 341 * .ip = ASPEED_IP_SCU, 342 * .reg = 0x3C, 343 * .mask = BIT(3), 344 * .enable = 1, 345 * .disable = 0 346 * }, 347 * { 348 * .ip = ASPEED_IP_SCU, 349 * .reg = 0x80, 350 * .mask = BIT(15), 351 * .enable = 1, 352 * .disable = 0 353 * }, 354 * { 355 * .ip = ASPEED_IP_SCU, 356 * .reg = 0x90, 357 * .mask = BIT(31), 358 * .enable = 0, 359 * .disable = 1 360 * }, 361 * }; 362 * 363 * static const struct aspeed_sig_expr sig_expr_EXTRST_EXTRST = { 364 * .signal = "EXTRST", 365 * .function = "EXTRST", 366 * .ndescs = ARRAY_SIZE(sig_descs_EXTRST_EXTRST), 367 * .descs = &(sig_descs_EXTRST_EXTRST)[0], 368 * }; 369 * ... 370 * ``` 371 * 372 * For ball E19, we have multiple functions enabling a single signal, LPCRST#. 373 * The data structures look like: 374 * 375 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRST[] = { 376 * { 377 * .ip = ASPEED_IP_SCU, 378 * .reg = 0x80, 379 * .mask = BIT(12), 380 * .enable = 1, 381 * .disable = 0 382 * }, 383 * }; 384 * 385 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRST = { 386 * .signal = "LPCRST", 387 * .function = "LPCRST", 388 * .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRST), 389 * .descs = &(sig_descs_LPCRST_LPCRST)[0], 390 * }; 391 * 392 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRSTS[] = { 393 * { 394 * .ip = ASPEED_IP_SCU, 395 * .reg = 0x70, 396 * .mask = BIT(14), 397 * .enable = 1, 398 * .disable = 0 399 * }, 400 * }; 401 * 402 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRSTS = { 403 * .signal = "LPCRST", 404 * .function = "LPCRSTS", 405 * .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRSTS), 406 * .descs = &(sig_descs_LPCRST_LPCRSTS)[0], 407 * }; 408 * 409 * static const struct aspeed_sig_expr *sig_exprs_LPCRST_LPCRST[] = { 410 * &sig_expr_LPCRST_LPCRST, 411 * &sig_expr_LPCRST_LPCRSTS, 412 * NULL, 413 * }; 414 * ... 415 * ``` 416 * 417 * Both expressions listed in the sig_exprs_LPCRST_LPCRST array need to be set 418 * to disabled for the associated GPIO to be muxed. 419 * 420 */ 421 422#define ASPEED_IP_SCU 0 423#define ASPEED_IP_GFX 1 424#define ASPEED_IP_LPC 2 425#define ASPEED_NR_PINMUX_IPS 3 426 427 /** 428 * A signal descriptor, which describes the register, bits and the 429 * enable/disable values that should be compared or written. 430 * 431 * @ip: The IP block identifier, used as an index into the regmap array in 432 * struct aspeed_pinctrl_data 433 * @reg: The register offset with respect to the base address of the IP block 434 * @mask: The mask to apply to the register. The lowest set bit of the mask is 435 * used to derive the shift value. 436 * @enable: The value that enables the function. Value should be in the LSBs, 437 * not at the position of the mask. 438 * @disable: The value that disables the function. Value should be in the 439 * LSBs, not at the position of the mask. 440 */ 441struct aspeed_sig_desc { 442 unsigned int ip; 443 unsigned int reg; 444 u32 mask; 445 u32 enable; 446 u32 disable; 447}; 448 449/** 450 * Describes a signal expression. The expression is evaluated by ANDing the 451 * evaluation of the descriptors. 452 * 453 * @signal: The signal name for the priority level on the pin. If the signal 454 * type is GPIO, then the signal name must begin with the 455 * prefix "GPI", e.g. GPIOA0, GPIT0 etc. 456 * @function: The name of the function the signal participates in for the 457 * associated expression. For pin-specific GPIO, the function 458 * name must match the signal name. 459 * @ndescs: The number of signal descriptors in the expression 460 * @descs: Pointer to an array of signal descriptors that comprise the 461 * function expression 462 */ 463struct aspeed_sig_expr { 464 const char *signal; 465 const char *function; 466 int ndescs; 467 const struct aspeed_sig_desc *descs; 468}; 469 470/** 471 * A struct capturing the list of expressions enabling signals at each priority 472 * for a given pin. The signal configuration for a priority level is evaluated 473 * by ORing the evaluation of the signal expressions in the respective 474 * priority's list. 475 * 476 * @name: A name for the pin 477 * @prios: A pointer to an array of expression list pointers 478 * 479 */ 480struct aspeed_pin_desc { 481 const char *name; 482 const struct aspeed_sig_expr ***prios; 483}; 484 485/* Macro hell */ 486 487#define SIG_DESC_IP_BIT(ip, reg, idx, val) \ 488 { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) } 489 490/** 491 * Short-hand macro for describing an SCU descriptor enabled by the state of 492 * one bit. The disable value is derived. 493 * 494 * @reg: The signal's associated register, offset from base 495 * @idx: The signal's bit index in the register 496 * @val: The value (0 or 1) that enables the function 497 */ 498#define SIG_DESC_BIT(reg, idx, val) \ 499 SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val) 500 501#define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1) 502 503/** 504 * A further short-hand macro expanding to an SCU descriptor enabled by a set 505 * bit. 506 * 507 * @reg: The register, offset from base 508 * @idx: The bit index in the register 509 */ 510#define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1) 511#define SIG_DESC_CLEAR(reg, idx) { ASPEED_IP_SCU, reg, BIT_MASK(idx), 0, 0 } 512 513#define SIG_DESC_LIST_SYM(sig, group) sig_descs_ ## sig ## _ ## group 514#define SIG_DESC_LIST_DECL(sig, group, ...) \ 515 static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, group)[] = \ 516 { __VA_ARGS__ } 517 518#define SIG_EXPR_SYM(sig, group) sig_expr_ ## sig ## _ ## group 519#define SIG_EXPR_DECL_(sig, group, func) \ 520 static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, group) = \ 521 { \ 522 .signal = #sig, \ 523 .function = #func, \ 524 .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, group)), \ 525 .descs = &(SIG_DESC_LIST_SYM(sig, group))[0], \ 526 } 527 528/** 529 * Declare a signal expression. 530 * 531 * @sig: A macro symbol name for the signal (is subjected to stringification 532 * and token pasting) 533 * @func: The function in which the signal is participating 534 * @...: Signal descriptors that define the signal expression 535 * 536 * For example, the following declares the ROMD8 signal for the ROM16 function: 537 * 538 * SIG_EXPR_DECL(ROMD8, ROM16, ROM16, SIG_DESC_SET(SCU90, 6)); 539 * 540 * And with multiple signal descriptors: 541 * 542 * SIG_EXPR_DECL(ROMD8, ROM16S, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 543 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 544 */ 545#define SIG_EXPR_DECL(sig, group, func, ...) \ 546 SIG_DESC_LIST_DECL(sig, group, __VA_ARGS__); \ 547 SIG_EXPR_DECL_(sig, group, func) 548 549/** 550 * Declare a pointer to a signal expression 551 * 552 * @sig: The macro symbol name for the signal (subjected to token pasting) 553 * @func: The macro symbol name for the function (subjected to token pasting) 554 */ 555#define SIG_EXPR_PTR(sig, group) (&SIG_EXPR_SYM(sig, group)) 556 557#define SIG_EXPR_LIST_SYM(sig, group) sig_exprs_ ## sig ## _ ## group 558 559/** 560 * Declare a signal expression list for reference in a struct aspeed_pin_prio. 561 * 562 * @sig: A macro symbol name for the signal (is subjected to token pasting) 563 * @...: Signal expression structure pointers (use SIG_EXPR_PTR()) 564 * 565 * For example, the 16-bit ROM bus can be enabled by one of two possible signal 566 * expressions: 567 * 568 * SIG_EXPR_DECL(ROMD8, ROM16, ROM16, SIG_DESC_SET(SCU90, 6)); 569 * SIG_EXPR_DECL(ROMD8, ROM16S, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 570 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 571 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 572 * SIG_EXPR_PTR(ROMD8, ROM16S)); 573 */ 574#define SIG_EXPR_LIST_DECL(sig, group, ...) \ 575 static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig, group)[] =\ 576 { __VA_ARGS__, NULL } 577 578#define stringify(x) #x 579#define istringify(x) stringify(x) 580 581/** 582 * Create an expression symbol alias from (signal, group) to (pin, signal). 583 * 584 * @pin: The pin number 585 * @sig: The signal name 586 * @group: The name of the group of which the pin is a member that is 587 * associated with the function's signal 588 * 589 * Using an alias in this way enables detection of copy/paste errors (defining 590 * the signal for a group multiple times) whilst enabling multiple pin groups 591 * to exist for a signal without intrusive side-effects on defining the list of 592 * signals available on a pin. 593 */ 594#define SIG_EXPR_LIST_ALIAS(pin, sig, group) \ 595 static const struct aspeed_sig_expr *\ 596 SIG_EXPR_LIST_SYM(pin, sig)[ARRAY_SIZE(SIG_EXPR_LIST_SYM(sig, group))] \ 597 __attribute__((alias(istringify(SIG_EXPR_LIST_SYM(sig, group))))) 598 599/** 600 * A short-hand macro for declaring a function expression and an expression 601 * list with a single expression (SE) and a single group (SG) of pins. 602 * 603 * @pin: The pin the signal will be routed to 604 * @sig: The signal that will be routed to the pin for the function 605 * @func: A macro symbol name for the function 606 * @...: Function descriptors that define the function expression 607 * 608 * For example, signal NCTS6 participates in its own function with one group: 609 * 610 * SIG_EXPR_LIST_DECL_SINGLE(A18, NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 611 */ 612#define SIG_EXPR_LIST_DECL_SESG(pin, sig, func, ...) \ 613 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ 614 SIG_EXPR_DECL_(sig, func, func); \ 615 SIG_EXPR_LIST_DECL(sig, func, SIG_EXPR_PTR(sig, func)); \ 616 SIG_EXPR_LIST_ALIAS(pin, sig, func) 617 618/** 619 * Similar to the above, but for pins with a single expression (SE) and 620 * multiple groups (MG) of pins. 621 * 622 * @pin: The pin the signal will be routed to 623 * @sig: The signal that will be routed to the pin for the function 624 * @group: The name of the function's pin group in which the pin participates 625 * @func: A macro symbol name for the function 626 * @...: Function descriptors that define the function expression 627 */ 628#define SIG_EXPR_LIST_DECL_SEMG(pin, sig, group, func, ...) \ 629 SIG_DESC_LIST_DECL(sig, group, __VA_ARGS__); \ 630 SIG_EXPR_DECL_(sig, group, func); \ 631 SIG_EXPR_LIST_DECL(sig, group, SIG_EXPR_PTR(sig, group)); \ 632 SIG_EXPR_LIST_ALIAS(pin, sig, group) 633 634/** 635 * Similar to the above, but for pins with a dual expressions (DE) and 636 * and a single group (SG) of pins. 637 * 638 * @pin: The pin the signal will be routed to 639 * @sig: The signal that will be routed to the pin for the function 640 * @group: The name of the function's pin group in which the pin participates 641 * @func: A macro symbol name for the function 642 * @...: Function descriptors that define the function expression 643 */ 644#define SIG_EXPR_LIST_DECL_DESG(pin, sig, f0, f1) \ 645 SIG_EXPR_LIST_DECL(sig, f0, \ 646 SIG_EXPR_PTR(sig, f0), \ 647 SIG_EXPR_PTR(sig, f1)); \ 648 SIG_EXPR_LIST_ALIAS(pin, sig, f0) 649 650#define SIG_EXPR_LIST_PTR(sig, group) SIG_EXPR_LIST_SYM(sig, group) 651 652#define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin 653#define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0]) 654#define PIN_SYM(pin) pin_ ## pin 655 656#define PIN_DECL_(pin, ...) \ 657 static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \ 658 { __VA_ARGS__, NULL }; \ 659 static const struct aspeed_pin_desc PIN_SYM(pin) = \ 660 { #pin, PIN_EXPRS_PTR(pin) } 661 662/** 663 * Declare a single signal pin 664 * 665 * @pin: The pin number 666 * @other: Macro name for "other" functionality (subjected to stringification) 667 * @sig: Macro name for the signal (subjected to stringification) 668 * 669 * For example: 670 * 671 * #define E3 80 672 * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC); 673 * PIN_DECL_1(E3, GPIOK0, SCL5); 674 */ 675#define PIN_DECL_1(pin, other, sig) \ 676 SIG_EXPR_LIST_DECL_SESG(pin, other, other); \ 677 PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, sig), \ 678 SIG_EXPR_LIST_PTR(pin, other)) 679 680/** 681 * Single signal, single function pin declaration 682 * 683 * @pin: The pin number 684 * @other: Macro name for "other" functionality (subjected to stringification) 685 * @sig: Macro name for the signal (subjected to stringification) 686 * @...: Signal descriptors that define the function expression 687 * 688 * For example: 689 * 690 * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2)); 691 */ 692#define SSSF_PIN_DECL(pin, other, sig, ...) \ 693 SIG_EXPR_LIST_DECL_SESG(pin, sig, sig, __VA_ARGS__); \ 694 SIG_EXPR_LIST_DECL_SESG(pin, other, other); \ 695 PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, sig), \ 696 SIG_EXPR_LIST_PTR(pin, other)); \ 697 FUNC_GROUP_DECL(sig, pin) 698/** 699 * Declare a two-signal pin 700 * 701 * @pin: The pin number 702 * @other: Macro name for "other" functionality (subjected to stringification) 703 * @high: Macro name for the highest priority signal functions 704 * @low: Macro name for the low signal functions 705 * 706 * For example: 707 * 708 * #define A8 56 709 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 710 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 711 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 712 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 713 * SIG_EXPR_PTR(ROMD8, ROM16S)); 714 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 715 * PIN_DECL_2(A8, GPIOH0, ROMD8, NCTS6); 716 */ 717#define PIN_DECL_2(pin, other, high, low) \ 718 SIG_EXPR_LIST_DECL_SESG(pin, other, other); \ 719 PIN_DECL_(pin, \ 720 SIG_EXPR_LIST_PTR(pin, high), \ 721 SIG_EXPR_LIST_PTR(pin, low), \ 722 SIG_EXPR_LIST_PTR(pin, other)) 723 724#define PIN_DECL_3(pin, other, high, medium, low) \ 725 SIG_EXPR_LIST_DECL_SESG(pin, other, other); \ 726 PIN_DECL_(pin, \ 727 SIG_EXPR_LIST_PTR(pin, high), \ 728 SIG_EXPR_LIST_PTR(pin, medium), \ 729 SIG_EXPR_LIST_PTR(pin, low), \ 730 SIG_EXPR_LIST_PTR(pin, other)) 731 732#define PIN_DECL_4(pin, other, prio1, prio2, prio3, prio4) \ 733 SIG_EXPR_LIST_DECL_SESG(pin, other, other); \ 734 PIN_DECL_(pin, \ 735 SIG_EXPR_LIST_PTR(pin, prio1), \ 736 SIG_EXPR_LIST_PTR(pin, prio2), \ 737 SIG_EXPR_LIST_PTR(pin, prio3), \ 738 SIG_EXPR_LIST_PTR(pin, prio4), \ 739 SIG_EXPR_LIST_PTR(pin, other)) 740 741#define GROUP_SYM(group) group_pins_ ## group 742#define GROUP_DECL(group, ...) \ 743 static const int GROUP_SYM(group)[] = { __VA_ARGS__ } 744 745#define FUNC_SYM(func) func_groups_ ## func 746#define FUNC_DECL_(func, ...) \ 747 static const char *FUNC_SYM(func)[] = { __VA_ARGS__ } 748 749#define FUNC_DECL_1(func, group) FUNC_DECL_(func, #group) 750#define FUNC_DECL_2(func, one, two) FUNC_DECL_(func, #one, #two) 751#define FUNC_DECL_3(func, one, two, three) FUNC_DECL_(func, #one, #two, #three) 752 753#define FUNC_GROUP_DECL(func, ...) \ 754 GROUP_DECL(func, __VA_ARGS__); \ 755 FUNC_DECL_(func, #func) 756 757 758#define GPIO_PIN_DECL(pin, gpio) \ 759 SIG_EXPR_LIST_DECL_SESG(pin, gpio, gpio); \ 760 PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, gpio)) 761 762struct aspeed_pin_group { 763 const char *name; 764 const unsigned int *pins; 765 const unsigned int npins; 766}; 767 768#define ASPEED_PINCTRL_GROUP(name_) { \ 769 .name = #name_, \ 770 .pins = &(GROUP_SYM(name_))[0], \ 771 .npins = ARRAY_SIZE(GROUP_SYM(name_)), \ 772} 773 774struct aspeed_pin_function { 775 const char *name; 776 const char *const *groups; 777 unsigned int ngroups; 778}; 779 780#define ASPEED_PINCTRL_FUNC(name_, ...) { \ 781 .name = #name_, \ 782 .groups = &FUNC_SYM(name_)[0], \ 783 .ngroups = ARRAY_SIZE(FUNC_SYM(name_)), \ 784} 785 786struct aspeed_pinmux_data; 787 788struct aspeed_pinmux_ops { 789 int (*eval)(struct aspeed_pinmux_data *ctx, 790 const struct aspeed_sig_expr *expr, bool enabled); 791 int (*set)(struct aspeed_pinmux_data *ctx, 792 const struct aspeed_sig_expr *expr, bool enabled); 793}; 794 795struct aspeed_pinmux_data { 796 struct device *dev; 797 struct regmap *maps[ASPEED_NR_PINMUX_IPS]; 798 799 const struct aspeed_pinmux_ops *ops; 800 801 const struct aspeed_pin_group *groups; 802 const unsigned int ngroups; 803 804 const struct aspeed_pin_function *functions; 805 const unsigned int nfunctions; 806}; 807 808int aspeed_sig_desc_eval(const struct aspeed_sig_desc *desc, bool enabled, 809 struct regmap *map); 810 811int aspeed_sig_expr_eval(struct aspeed_pinmux_data *ctx, 812 const struct aspeed_sig_expr *expr, bool enabled); 813 814static inline int aspeed_sig_expr_set(struct aspeed_pinmux_data *ctx, 815 const struct aspeed_sig_expr *expr, 816 bool enabled) 817{ 818 return ctx->ops->set(ctx, expr, enabled); 819} 820 821#endif /* ASPEED_PINMUX_H */