cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core.c (59045B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Core driver for the pin control subsystem
      4 *
      5 * Copyright (C) 2011-2012 ST-Ericsson SA
      6 * Written on behalf of Linaro for ST-Ericsson
      7 * Based on bits of regulator core, gpio core and clk core
      8 *
      9 * Author: Linus Walleij <linus.walleij@linaro.org>
     10 *
     11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
     12 */
     13#define pr_fmt(fmt) "pinctrl core: " fmt
     14
     15#include <linux/kernel.h>
     16#include <linux/kref.h>
     17#include <linux/export.h>
     18#include <linux/init.h>
     19#include <linux/device.h>
     20#include <linux/slab.h>
     21#include <linux/err.h>
     22#include <linux/list.h>
     23#include <linux/debugfs.h>
     24#include <linux/seq_file.h>
     25#include <linux/pinctrl/consumer.h>
     26#include <linux/pinctrl/pinctrl.h>
     27#include <linux/pinctrl/machine.h>
     28
     29#ifdef CONFIG_GPIOLIB
     30#include "../gpio/gpiolib.h"
     31#include <asm-generic/gpio.h>
     32#endif
     33
     34#include "core.h"
     35#include "devicetree.h"
     36#include "pinmux.h"
     37#include "pinconf.h"
     38
     39
     40static bool pinctrl_dummy_state;
     41
     42/* Mutex taken to protect pinctrl_list */
     43static DEFINE_MUTEX(pinctrl_list_mutex);
     44
     45/* Mutex taken to protect pinctrl_maps */
     46DEFINE_MUTEX(pinctrl_maps_mutex);
     47
     48/* Mutex taken to protect pinctrldev_list */
     49static DEFINE_MUTEX(pinctrldev_list_mutex);
     50
     51/* Global list of pin control devices (struct pinctrl_dev) */
     52static LIST_HEAD(pinctrldev_list);
     53
     54/* List of pin controller handles (struct pinctrl) */
     55static LIST_HEAD(pinctrl_list);
     56
     57/* List of pinctrl maps (struct pinctrl_maps) */
     58LIST_HEAD(pinctrl_maps);
     59
     60
     61/**
     62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
     63 *
     64 * Usually this function is called by platforms without pinctrl driver support
     65 * but run with some shared drivers using pinctrl APIs.
     66 * After calling this function, the pinctrl core will return successfully
     67 * with creating a dummy state for the driver to keep going smoothly.
     68 */
     69void pinctrl_provide_dummies(void)
     70{
     71	pinctrl_dummy_state = true;
     72}
     73
     74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
     75{
     76	/* We're not allowed to register devices without name */
     77	return pctldev->desc->name;
     78}
     79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
     80
     81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
     82{
     83	return dev_name(pctldev->dev);
     84}
     85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
     86
     87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
     88{
     89	return pctldev->driver_data;
     90}
     91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
     92
     93/**
     94 * get_pinctrl_dev_from_devname() - look up pin controller device
     95 * @devname: the name of a device instance, as returned by dev_name()
     96 *
     97 * Looks up a pin control device matching a certain device name or pure device
     98 * pointer, the pure device pointer will take precedence.
     99 */
    100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
    101{
    102	struct pinctrl_dev *pctldev;
    103
    104	if (!devname)
    105		return NULL;
    106
    107	mutex_lock(&pinctrldev_list_mutex);
    108
    109	list_for_each_entry(pctldev, &pinctrldev_list, node) {
    110		if (!strcmp(dev_name(pctldev->dev), devname)) {
    111			/* Matched on device name */
    112			mutex_unlock(&pinctrldev_list_mutex);
    113			return pctldev;
    114		}
    115	}
    116
    117	mutex_unlock(&pinctrldev_list_mutex);
    118
    119	return NULL;
    120}
    121
    122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
    123{
    124	struct pinctrl_dev *pctldev;
    125
    126	mutex_lock(&pinctrldev_list_mutex);
    127
    128	list_for_each_entry(pctldev, &pinctrldev_list, node)
    129		if (pctldev->dev->of_node == np) {
    130			mutex_unlock(&pinctrldev_list_mutex);
    131			return pctldev;
    132		}
    133
    134	mutex_unlock(&pinctrldev_list_mutex);
    135
    136	return NULL;
    137}
    138
    139/**
    140 * pin_get_from_name() - look up a pin number from a name
    141 * @pctldev: the pin control device to lookup the pin on
    142 * @name: the name of the pin to look up
    143 */
    144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
    145{
    146	unsigned i, pin;
    147
    148	/* The pin number can be retrived from the pin controller descriptor */
    149	for (i = 0; i < pctldev->desc->npins; i++) {
    150		struct pin_desc *desc;
    151
    152		pin = pctldev->desc->pins[i].number;
    153		desc = pin_desc_get(pctldev, pin);
    154		/* Pin space may be sparse */
    155		if (desc && !strcmp(name, desc->name))
    156			return pin;
    157	}
    158
    159	return -EINVAL;
    160}
    161
    162/**
    163 * pin_get_name() - look up a pin name from a pin id
    164 * @pctldev: the pin control device to lookup the pin on
    165 * @pin: pin number/id to look up
    166 */
    167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
    168{
    169	const struct pin_desc *desc;
    170
    171	desc = pin_desc_get(pctldev, pin);
    172	if (!desc) {
    173		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
    174			pin);
    175		return NULL;
    176	}
    177
    178	return desc->name;
    179}
    180EXPORT_SYMBOL_GPL(pin_get_name);
    181
    182/* Deletes a range of pin descriptors */
    183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
    184				  const struct pinctrl_pin_desc *pins,
    185				  unsigned num_pins)
    186{
    187	int i;
    188
    189	for (i = 0; i < num_pins; i++) {
    190		struct pin_desc *pindesc;
    191
    192		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
    193					    pins[i].number);
    194		if (pindesc) {
    195			radix_tree_delete(&pctldev->pin_desc_tree,
    196					  pins[i].number);
    197			if (pindesc->dynamic_name)
    198				kfree(pindesc->name);
    199		}
    200		kfree(pindesc);
    201	}
    202}
    203
    204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
    205				    const struct pinctrl_pin_desc *pin)
    206{
    207	struct pin_desc *pindesc;
    208
    209	pindesc = pin_desc_get(pctldev, pin->number);
    210	if (pindesc) {
    211		dev_err(pctldev->dev, "pin %d already registered\n",
    212			pin->number);
    213		return -EINVAL;
    214	}
    215
    216	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
    217	if (!pindesc)
    218		return -ENOMEM;
    219
    220	/* Set owner */
    221	pindesc->pctldev = pctldev;
    222
    223	/* Copy basic pin info */
    224	if (pin->name) {
    225		pindesc->name = pin->name;
    226	} else {
    227		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
    228		if (!pindesc->name) {
    229			kfree(pindesc);
    230			return -ENOMEM;
    231		}
    232		pindesc->dynamic_name = true;
    233	}
    234
    235	pindesc->drv_data = pin->drv_data;
    236
    237	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
    238	pr_debug("registered pin %d (%s) on %s\n",
    239		 pin->number, pindesc->name, pctldev->desc->name);
    240	return 0;
    241}
    242
    243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
    244				 const struct pinctrl_pin_desc *pins,
    245				 unsigned num_descs)
    246{
    247	unsigned i;
    248	int ret = 0;
    249
    250	for (i = 0; i < num_descs; i++) {
    251		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
    252		if (ret)
    253			return ret;
    254	}
    255
    256	return 0;
    257}
    258
    259/**
    260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
    261 * @range: GPIO range used for the translation
    262 * @gpio: gpio pin to translate to a pin number
    263 *
    264 * Finds the pin number for a given GPIO using the specified GPIO range
    265 * as a base for translation. The distinction between linear GPIO ranges
    266 * and pin list based GPIO ranges is managed correctly by this function.
    267 *
    268 * This function assumes the gpio is part of the specified GPIO range, use
    269 * only after making sure this is the case (e.g. by calling it on the
    270 * result of successful pinctrl_get_device_gpio_range calls)!
    271 */
    272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
    273				unsigned int gpio)
    274{
    275	unsigned int offset = gpio - range->base;
    276	if (range->pins)
    277		return range->pins[offset];
    278	else
    279		return range->pin_base + offset;
    280}
    281
    282/**
    283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
    284 * @pctldev: pin controller device to check
    285 * @gpio: gpio pin to check taken from the global GPIO pin space
    286 *
    287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
    288 * controller, return the range or NULL
    289 */
    290static struct pinctrl_gpio_range *
    291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
    292{
    293	struct pinctrl_gpio_range *range;
    294
    295	mutex_lock(&pctldev->mutex);
    296	/* Loop over the ranges */
    297	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
    298		/* Check if we're in the valid range */
    299		if (gpio >= range->base &&
    300		    gpio < range->base + range->npins) {
    301			mutex_unlock(&pctldev->mutex);
    302			return range;
    303		}
    304	}
    305	mutex_unlock(&pctldev->mutex);
    306	return NULL;
    307}
    308
    309/**
    310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
    311 * the same GPIO chip are in range
    312 * @gpio: gpio pin to check taken from the global GPIO pin space
    313 *
    314 * This function is complement of pinctrl_match_gpio_range(). If the return
    315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
    316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
    317 * of the same GPIO chip don't have back-end pinctrl interface.
    318 * If the return value is true, it means that pinctrl device is ready & the
    319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
    320 * is false, it means that pinctrl device may not be ready.
    321 */
    322#ifdef CONFIG_GPIOLIB
    323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
    324{
    325	struct pinctrl_dev *pctldev;
    326	struct pinctrl_gpio_range *range = NULL;
    327	struct gpio_chip *chip = gpio_to_chip(gpio);
    328
    329	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
    330		return false;
    331
    332	mutex_lock(&pinctrldev_list_mutex);
    333
    334	/* Loop over the pin controllers */
    335	list_for_each_entry(pctldev, &pinctrldev_list, node) {
    336		/* Loop over the ranges */
    337		mutex_lock(&pctldev->mutex);
    338		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
    339			/* Check if any gpio range overlapped with gpio chip */
    340			if (range->base + range->npins - 1 < chip->base ||
    341			    range->base > chip->base + chip->ngpio - 1)
    342				continue;
    343			mutex_unlock(&pctldev->mutex);
    344			mutex_unlock(&pinctrldev_list_mutex);
    345			return true;
    346		}
    347		mutex_unlock(&pctldev->mutex);
    348	}
    349
    350	mutex_unlock(&pinctrldev_list_mutex);
    351
    352	return false;
    353}
    354#else
    355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
    356#endif
    357
    358/**
    359 * pinctrl_get_device_gpio_range() - find device for GPIO range
    360 * @gpio: the pin to locate the pin controller for
    361 * @outdev: the pin control device if found
    362 * @outrange: the GPIO range if found
    363 *
    364 * Find the pin controller handling a certain GPIO pin from the pinspace of
    365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
    366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
    367 * may still have not been registered.
    368 */
    369static int pinctrl_get_device_gpio_range(unsigned gpio,
    370					 struct pinctrl_dev **outdev,
    371					 struct pinctrl_gpio_range **outrange)
    372{
    373	struct pinctrl_dev *pctldev;
    374
    375	mutex_lock(&pinctrldev_list_mutex);
    376
    377	/* Loop over the pin controllers */
    378	list_for_each_entry(pctldev, &pinctrldev_list, node) {
    379		struct pinctrl_gpio_range *range;
    380
    381		range = pinctrl_match_gpio_range(pctldev, gpio);
    382		if (range) {
    383			*outdev = pctldev;
    384			*outrange = range;
    385			mutex_unlock(&pinctrldev_list_mutex);
    386			return 0;
    387		}
    388	}
    389
    390	mutex_unlock(&pinctrldev_list_mutex);
    391
    392	return -EPROBE_DEFER;
    393}
    394
    395/**
    396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
    397 * @pctldev: pin controller device to add the range to
    398 * @range: the GPIO range to add
    399 *
    400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
    401 * this to register handled ranges after registering your pin controller.
    402 */
    403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
    404			    struct pinctrl_gpio_range *range)
    405{
    406	mutex_lock(&pctldev->mutex);
    407	list_add_tail(&range->node, &pctldev->gpio_ranges);
    408	mutex_unlock(&pctldev->mutex);
    409}
    410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
    411
    412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
    413			     struct pinctrl_gpio_range *ranges,
    414			     unsigned nranges)
    415{
    416	int i;
    417
    418	for (i = 0; i < nranges; i++)
    419		pinctrl_add_gpio_range(pctldev, &ranges[i]);
    420}
    421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
    422
    423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
    424		struct pinctrl_gpio_range *range)
    425{
    426	struct pinctrl_dev *pctldev;
    427
    428	pctldev = get_pinctrl_dev_from_devname(devname);
    429
    430	/*
    431	 * If we can't find this device, let's assume that is because
    432	 * it has not probed yet, so the driver trying to register this
    433	 * range need to defer probing.
    434	 */
    435	if (!pctldev) {
    436		return ERR_PTR(-EPROBE_DEFER);
    437	}
    438	pinctrl_add_gpio_range(pctldev, range);
    439
    440	return pctldev;
    441}
    442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
    443
    444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
    445				const unsigned **pins, unsigned *num_pins)
    446{
    447	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
    448	int gs;
    449
    450	if (!pctlops->get_group_pins)
    451		return -EINVAL;
    452
    453	gs = pinctrl_get_group_selector(pctldev, pin_group);
    454	if (gs < 0)
    455		return gs;
    456
    457	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
    458}
    459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
    460
    461struct pinctrl_gpio_range *
    462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
    463					unsigned int pin)
    464{
    465	struct pinctrl_gpio_range *range;
    466
    467	/* Loop over the ranges */
    468	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
    469		/* Check if we're in the valid range */
    470		if (range->pins) {
    471			int a;
    472			for (a = 0; a < range->npins; a++) {
    473				if (range->pins[a] == pin)
    474					return range;
    475			}
    476		} else if (pin >= range->pin_base &&
    477			   pin < range->pin_base + range->npins)
    478			return range;
    479	}
    480
    481	return NULL;
    482}
    483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
    484
    485/**
    486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
    487 * @pctldev: the pin controller device to look in
    488 * @pin: a controller-local number to find the range for
    489 */
    490struct pinctrl_gpio_range *
    491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
    492				 unsigned int pin)
    493{
    494	struct pinctrl_gpio_range *range;
    495
    496	mutex_lock(&pctldev->mutex);
    497	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
    498	mutex_unlock(&pctldev->mutex);
    499
    500	return range;
    501}
    502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
    503
    504/**
    505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
    506 * @pctldev: pin controller device to remove the range from
    507 * @range: the GPIO range to remove
    508 */
    509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
    510			       struct pinctrl_gpio_range *range)
    511{
    512	mutex_lock(&pctldev->mutex);
    513	list_del(&range->node);
    514	mutex_unlock(&pctldev->mutex);
    515}
    516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
    517
    518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
    519
    520/**
    521 * pinctrl_generic_get_group_count() - returns the number of pin groups
    522 * @pctldev: pin controller device
    523 */
    524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
    525{
    526	return pctldev->num_groups;
    527}
    528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
    529
    530/**
    531 * pinctrl_generic_get_group_name() - returns the name of a pin group
    532 * @pctldev: pin controller device
    533 * @selector: group number
    534 */
    535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
    536					   unsigned int selector)
    537{
    538	struct group_desc *group;
    539
    540	group = radix_tree_lookup(&pctldev->pin_group_tree,
    541				  selector);
    542	if (!group)
    543		return NULL;
    544
    545	return group->name;
    546}
    547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
    548
    549/**
    550 * pinctrl_generic_get_group_pins() - gets the pin group pins
    551 * @pctldev: pin controller device
    552 * @selector: group number
    553 * @pins: pins in the group
    554 * @num_pins: number of pins in the group
    555 */
    556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
    557				   unsigned int selector,
    558				   const unsigned int **pins,
    559				   unsigned int *num_pins)
    560{
    561	struct group_desc *group;
    562
    563	group = radix_tree_lookup(&pctldev->pin_group_tree,
    564				  selector);
    565	if (!group) {
    566		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
    567			__func__, selector);
    568		return -EINVAL;
    569	}
    570
    571	*pins = group->pins;
    572	*num_pins = group->num_pins;
    573
    574	return 0;
    575}
    576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
    577
    578/**
    579 * pinctrl_generic_get_group() - returns a pin group based on the number
    580 * @pctldev: pin controller device
    581 * @selector: group number
    582 */
    583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
    584					     unsigned int selector)
    585{
    586	struct group_desc *group;
    587
    588	group = radix_tree_lookup(&pctldev->pin_group_tree,
    589				  selector);
    590	if (!group)
    591		return NULL;
    592
    593	return group;
    594}
    595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
    596
    597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
    598						  const char *function)
    599{
    600	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
    601	int ngroups = ops->get_groups_count(pctldev);
    602	int selector = 0;
    603
    604	/* See if this pctldev has this group */
    605	while (selector < ngroups) {
    606		const char *gname = ops->get_group_name(pctldev, selector);
    607
    608		if (gname && !strcmp(function, gname))
    609			return selector;
    610
    611		selector++;
    612	}
    613
    614	return -EINVAL;
    615}
    616
    617/**
    618 * pinctrl_generic_add_group() - adds a new pin group
    619 * @pctldev: pin controller device
    620 * @name: name of the pin group
    621 * @pins: pins in the pin group
    622 * @num_pins: number of pins in the pin group
    623 * @data: pin controller driver specific data
    624 *
    625 * Note that the caller must take care of locking.
    626 */
    627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
    628			      int *pins, int num_pins, void *data)
    629{
    630	struct group_desc *group;
    631	int selector;
    632
    633	if (!name)
    634		return -EINVAL;
    635
    636	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
    637	if (selector >= 0)
    638		return selector;
    639
    640	selector = pctldev->num_groups;
    641
    642	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
    643	if (!group)
    644		return -ENOMEM;
    645
    646	group->name = name;
    647	group->pins = pins;
    648	group->num_pins = num_pins;
    649	group->data = data;
    650
    651	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
    652
    653	pctldev->num_groups++;
    654
    655	return selector;
    656}
    657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
    658
    659/**
    660 * pinctrl_generic_remove_group() - removes a numbered pin group
    661 * @pctldev: pin controller device
    662 * @selector: group number
    663 *
    664 * Note that the caller must take care of locking.
    665 */
    666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
    667				 unsigned int selector)
    668{
    669	struct group_desc *group;
    670
    671	group = radix_tree_lookup(&pctldev->pin_group_tree,
    672				  selector);
    673	if (!group)
    674		return -ENOENT;
    675
    676	radix_tree_delete(&pctldev->pin_group_tree, selector);
    677	devm_kfree(pctldev->dev, group);
    678
    679	pctldev->num_groups--;
    680
    681	return 0;
    682}
    683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
    684
    685/**
    686 * pinctrl_generic_free_groups() - removes all pin groups
    687 * @pctldev: pin controller device
    688 *
    689 * Note that the caller must take care of locking. The pinctrl groups
    690 * are allocated with devm_kzalloc() so no need to free them here.
    691 */
    692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
    693{
    694	struct radix_tree_iter iter;
    695	void __rcu **slot;
    696
    697	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
    698		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
    699
    700	pctldev->num_groups = 0;
    701}
    702
    703#else
    704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
    705{
    706}
    707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
    708
    709/**
    710 * pinctrl_get_group_selector() - returns the group selector for a group
    711 * @pctldev: the pin controller handling the group
    712 * @pin_group: the pin group to look up
    713 */
    714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
    715			       const char *pin_group)
    716{
    717	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
    718	unsigned ngroups = pctlops->get_groups_count(pctldev);
    719	unsigned group_selector = 0;
    720
    721	while (group_selector < ngroups) {
    722		const char *gname = pctlops->get_group_name(pctldev,
    723							    group_selector);
    724		if (gname && !strcmp(gname, pin_group)) {
    725			dev_dbg(pctldev->dev,
    726				"found group selector %u for %s\n",
    727				group_selector,
    728				pin_group);
    729			return group_selector;
    730		}
    731
    732		group_selector++;
    733	}
    734
    735	dev_err(pctldev->dev, "does not have pin group %s\n",
    736		pin_group);
    737
    738	return -EINVAL;
    739}
    740
    741bool pinctrl_gpio_can_use_line(unsigned gpio)
    742{
    743	struct pinctrl_dev *pctldev;
    744	struct pinctrl_gpio_range *range;
    745	bool result;
    746	int pin;
    747
    748	/*
    749	 * Try to obtain GPIO range, if it fails
    750	 * we're probably dealing with GPIO driver
    751	 * without a backing pin controller - bail out.
    752	 */
    753	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
    754		return true;
    755
    756	mutex_lock(&pctldev->mutex);
    757
    758	/* Convert to the pin controllers number space */
    759	pin = gpio_to_pin(range, gpio);
    760
    761	result = pinmux_can_be_used_for_gpio(pctldev, pin);
    762
    763	mutex_unlock(&pctldev->mutex);
    764
    765	return result;
    766}
    767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
    768
    769/**
    770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
    771 * @gpio: the GPIO pin number from the GPIO subsystem number space
    772 *
    773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
    774 * as part of their gpio_request() semantics, platforms and individual drivers
    775 * shall *NOT* request GPIO pins to be muxed in.
    776 */
    777int pinctrl_gpio_request(unsigned gpio)
    778{
    779	struct pinctrl_dev *pctldev;
    780	struct pinctrl_gpio_range *range;
    781	int ret;
    782	int pin;
    783
    784	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
    785	if (ret) {
    786		if (pinctrl_ready_for_gpio_range(gpio))
    787			ret = 0;
    788		return ret;
    789	}
    790
    791	mutex_lock(&pctldev->mutex);
    792
    793	/* Convert to the pin controllers number space */
    794	pin = gpio_to_pin(range, gpio);
    795
    796	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
    797
    798	mutex_unlock(&pctldev->mutex);
    799
    800	return ret;
    801}
    802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
    803
    804/**
    805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
    806 * @gpio: the GPIO pin number from the GPIO subsystem number space
    807 *
    808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
    809 * as part of their gpio_free() semantics, platforms and individual drivers
    810 * shall *NOT* request GPIO pins to be muxed out.
    811 */
    812void pinctrl_gpio_free(unsigned gpio)
    813{
    814	struct pinctrl_dev *pctldev;
    815	struct pinctrl_gpio_range *range;
    816	int ret;
    817	int pin;
    818
    819	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
    820	if (ret) {
    821		return;
    822	}
    823	mutex_lock(&pctldev->mutex);
    824
    825	/* Convert to the pin controllers number space */
    826	pin = gpio_to_pin(range, gpio);
    827
    828	pinmux_free_gpio(pctldev, pin, range);
    829
    830	mutex_unlock(&pctldev->mutex);
    831}
    832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
    833
    834static int pinctrl_gpio_direction(unsigned gpio, bool input)
    835{
    836	struct pinctrl_dev *pctldev;
    837	struct pinctrl_gpio_range *range;
    838	int ret;
    839	int pin;
    840
    841	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
    842	if (ret) {
    843		return ret;
    844	}
    845
    846	mutex_lock(&pctldev->mutex);
    847
    848	/* Convert to the pin controllers number space */
    849	pin = gpio_to_pin(range, gpio);
    850	ret = pinmux_gpio_direction(pctldev, range, pin, input);
    851
    852	mutex_unlock(&pctldev->mutex);
    853
    854	return ret;
    855}
    856
    857/**
    858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
    859 * @gpio: the GPIO pin number from the GPIO subsystem number space
    860 *
    861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
    862 * as part of their gpio_direction_input() semantics, platforms and individual
    863 * drivers shall *NOT* touch pin control GPIO calls.
    864 */
    865int pinctrl_gpio_direction_input(unsigned gpio)
    866{
    867	return pinctrl_gpio_direction(gpio, true);
    868}
    869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
    870
    871/**
    872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
    873 * @gpio: the GPIO pin number from the GPIO subsystem number space
    874 *
    875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
    876 * as part of their gpio_direction_output() semantics, platforms and individual
    877 * drivers shall *NOT* touch pin control GPIO calls.
    878 */
    879int pinctrl_gpio_direction_output(unsigned gpio)
    880{
    881	return pinctrl_gpio_direction(gpio, false);
    882}
    883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
    884
    885/**
    886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
    887 * @gpio: the GPIO pin number from the GPIO subsystem number space
    888 * @config: the configuration to apply to the GPIO
    889 *
    890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
    891 * they need to call the underlying pin controller to change GPIO config
    892 * (for example set debounce time).
    893 */
    894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
    895{
    896	unsigned long configs[] = { config };
    897	struct pinctrl_gpio_range *range;
    898	struct pinctrl_dev *pctldev;
    899	int ret, pin;
    900
    901	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
    902	if (ret)
    903		return ret;
    904
    905	mutex_lock(&pctldev->mutex);
    906	pin = gpio_to_pin(range, gpio);
    907	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
    908	mutex_unlock(&pctldev->mutex);
    909
    910	return ret;
    911}
    912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
    913
    914static struct pinctrl_state *find_state(struct pinctrl *p,
    915					const char *name)
    916{
    917	struct pinctrl_state *state;
    918
    919	list_for_each_entry(state, &p->states, node)
    920		if (!strcmp(state->name, name))
    921			return state;
    922
    923	return NULL;
    924}
    925
    926static struct pinctrl_state *create_state(struct pinctrl *p,
    927					  const char *name)
    928{
    929	struct pinctrl_state *state;
    930
    931	state = kzalloc(sizeof(*state), GFP_KERNEL);
    932	if (!state)
    933		return ERR_PTR(-ENOMEM);
    934
    935	state->name = name;
    936	INIT_LIST_HEAD(&state->settings);
    937
    938	list_add_tail(&state->node, &p->states);
    939
    940	return state;
    941}
    942
    943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
    944		       const struct pinctrl_map *map)
    945{
    946	struct pinctrl_state *state;
    947	struct pinctrl_setting *setting;
    948	int ret;
    949
    950	state = find_state(p, map->name);
    951	if (!state)
    952		state = create_state(p, map->name);
    953	if (IS_ERR(state))
    954		return PTR_ERR(state);
    955
    956	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
    957		return 0;
    958
    959	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
    960	if (!setting)
    961		return -ENOMEM;
    962
    963	setting->type = map->type;
    964
    965	if (pctldev)
    966		setting->pctldev = pctldev;
    967	else
    968		setting->pctldev =
    969			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
    970	if (!setting->pctldev) {
    971		kfree(setting);
    972		/* Do not defer probing of hogs (circular loop) */
    973		if (!strcmp(map->ctrl_dev_name, map->dev_name))
    974			return -ENODEV;
    975		/*
    976		 * OK let us guess that the driver is not there yet, and
    977		 * let's defer obtaining this pinctrl handle to later...
    978		 */
    979		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
    980			map->ctrl_dev_name);
    981		return -EPROBE_DEFER;
    982	}
    983
    984	setting->dev_name = map->dev_name;
    985
    986	switch (map->type) {
    987	case PIN_MAP_TYPE_MUX_GROUP:
    988		ret = pinmux_map_to_setting(map, setting);
    989		break;
    990	case PIN_MAP_TYPE_CONFIGS_PIN:
    991	case PIN_MAP_TYPE_CONFIGS_GROUP:
    992		ret = pinconf_map_to_setting(map, setting);
    993		break;
    994	default:
    995		ret = -EINVAL;
    996		break;
    997	}
    998	if (ret < 0) {
    999		kfree(setting);
   1000		return ret;
   1001	}
   1002
   1003	list_add_tail(&setting->node, &state->settings);
   1004
   1005	return 0;
   1006}
   1007
   1008static struct pinctrl *find_pinctrl(struct device *dev)
   1009{
   1010	struct pinctrl *p;
   1011
   1012	mutex_lock(&pinctrl_list_mutex);
   1013	list_for_each_entry(p, &pinctrl_list, node)
   1014		if (p->dev == dev) {
   1015			mutex_unlock(&pinctrl_list_mutex);
   1016			return p;
   1017		}
   1018
   1019	mutex_unlock(&pinctrl_list_mutex);
   1020	return NULL;
   1021}
   1022
   1023static void pinctrl_free(struct pinctrl *p, bool inlist);
   1024
   1025static struct pinctrl *create_pinctrl(struct device *dev,
   1026				      struct pinctrl_dev *pctldev)
   1027{
   1028	struct pinctrl *p;
   1029	const char *devname;
   1030	struct pinctrl_maps *maps_node;
   1031	int i;
   1032	const struct pinctrl_map *map;
   1033	int ret;
   1034
   1035	/*
   1036	 * create the state cookie holder struct pinctrl for each
   1037	 * mapping, this is what consumers will get when requesting
   1038	 * a pin control handle with pinctrl_get()
   1039	 */
   1040	p = kzalloc(sizeof(*p), GFP_KERNEL);
   1041	if (!p)
   1042		return ERR_PTR(-ENOMEM);
   1043	p->dev = dev;
   1044	INIT_LIST_HEAD(&p->states);
   1045	INIT_LIST_HEAD(&p->dt_maps);
   1046
   1047	ret = pinctrl_dt_to_map(p, pctldev);
   1048	if (ret < 0) {
   1049		kfree(p);
   1050		return ERR_PTR(ret);
   1051	}
   1052
   1053	devname = dev_name(dev);
   1054
   1055	mutex_lock(&pinctrl_maps_mutex);
   1056	/* Iterate over the pin control maps to locate the right ones */
   1057	for_each_maps(maps_node, i, map) {
   1058		/* Map must be for this device */
   1059		if (strcmp(map->dev_name, devname))
   1060			continue;
   1061		/*
   1062		 * If pctldev is not null, we are claiming hog for it,
   1063		 * that means, setting that is served by pctldev by itself.
   1064		 *
   1065		 * Thus we must skip map that is for this device but is served
   1066		 * by other device.
   1067		 */
   1068		if (pctldev &&
   1069		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
   1070			continue;
   1071
   1072		ret = add_setting(p, pctldev, map);
   1073		/*
   1074		 * At this point the adding of a setting may:
   1075		 *
   1076		 * - Defer, if the pinctrl device is not yet available
   1077		 * - Fail, if the pinctrl device is not yet available,
   1078		 *   AND the setting is a hog. We cannot defer that, since
   1079		 *   the hog will kick in immediately after the device
   1080		 *   is registered.
   1081		 *
   1082		 * If the error returned was not -EPROBE_DEFER then we
   1083		 * accumulate the errors to see if we end up with
   1084		 * an -EPROBE_DEFER later, as that is the worst case.
   1085		 */
   1086		if (ret == -EPROBE_DEFER) {
   1087			pinctrl_free(p, false);
   1088			mutex_unlock(&pinctrl_maps_mutex);
   1089			return ERR_PTR(ret);
   1090		}
   1091	}
   1092	mutex_unlock(&pinctrl_maps_mutex);
   1093
   1094	if (ret < 0) {
   1095		/* If some other error than deferral occurred, return here */
   1096		pinctrl_free(p, false);
   1097		return ERR_PTR(ret);
   1098	}
   1099
   1100	kref_init(&p->users);
   1101
   1102	/* Add the pinctrl handle to the global list */
   1103	mutex_lock(&pinctrl_list_mutex);
   1104	list_add_tail(&p->node, &pinctrl_list);
   1105	mutex_unlock(&pinctrl_list_mutex);
   1106
   1107	return p;
   1108}
   1109
   1110/**
   1111 * pinctrl_get() - retrieves the pinctrl handle for a device
   1112 * @dev: the device to obtain the handle for
   1113 */
   1114struct pinctrl *pinctrl_get(struct device *dev)
   1115{
   1116	struct pinctrl *p;
   1117
   1118	if (WARN_ON(!dev))
   1119		return ERR_PTR(-EINVAL);
   1120
   1121	/*
   1122	 * See if somebody else (such as the device core) has already
   1123	 * obtained a handle to the pinctrl for this device. In that case,
   1124	 * return another pointer to it.
   1125	 */
   1126	p = find_pinctrl(dev);
   1127	if (p) {
   1128		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
   1129		kref_get(&p->users);
   1130		return p;
   1131	}
   1132
   1133	return create_pinctrl(dev, NULL);
   1134}
   1135EXPORT_SYMBOL_GPL(pinctrl_get);
   1136
   1137static void pinctrl_free_setting(bool disable_setting,
   1138				 struct pinctrl_setting *setting)
   1139{
   1140	switch (setting->type) {
   1141	case PIN_MAP_TYPE_MUX_GROUP:
   1142		if (disable_setting)
   1143			pinmux_disable_setting(setting);
   1144		pinmux_free_setting(setting);
   1145		break;
   1146	case PIN_MAP_TYPE_CONFIGS_PIN:
   1147	case PIN_MAP_TYPE_CONFIGS_GROUP:
   1148		pinconf_free_setting(setting);
   1149		break;
   1150	default:
   1151		break;
   1152	}
   1153}
   1154
   1155static void pinctrl_free(struct pinctrl *p, bool inlist)
   1156{
   1157	struct pinctrl_state *state, *n1;
   1158	struct pinctrl_setting *setting, *n2;
   1159
   1160	mutex_lock(&pinctrl_list_mutex);
   1161	list_for_each_entry_safe(state, n1, &p->states, node) {
   1162		list_for_each_entry_safe(setting, n2, &state->settings, node) {
   1163			pinctrl_free_setting(state == p->state, setting);
   1164			list_del(&setting->node);
   1165			kfree(setting);
   1166		}
   1167		list_del(&state->node);
   1168		kfree(state);
   1169	}
   1170
   1171	pinctrl_dt_free_maps(p);
   1172
   1173	if (inlist)
   1174		list_del(&p->node);
   1175	kfree(p);
   1176	mutex_unlock(&pinctrl_list_mutex);
   1177}
   1178
   1179/**
   1180 * pinctrl_release() - release the pinctrl handle
   1181 * @kref: the kref in the pinctrl being released
   1182 */
   1183static void pinctrl_release(struct kref *kref)
   1184{
   1185	struct pinctrl *p = container_of(kref, struct pinctrl, users);
   1186
   1187	pinctrl_free(p, true);
   1188}
   1189
   1190/**
   1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
   1192 * @p: the pinctrl handle to release
   1193 */
   1194void pinctrl_put(struct pinctrl *p)
   1195{
   1196	kref_put(&p->users, pinctrl_release);
   1197}
   1198EXPORT_SYMBOL_GPL(pinctrl_put);
   1199
   1200/**
   1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
   1202 * @p: the pinctrl handle to retrieve the state from
   1203 * @name: the state name to retrieve
   1204 */
   1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
   1206						 const char *name)
   1207{
   1208	struct pinctrl_state *state;
   1209
   1210	state = find_state(p, name);
   1211	if (!state) {
   1212		if (pinctrl_dummy_state) {
   1213			/* create dummy state */
   1214			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
   1215				name);
   1216			state = create_state(p, name);
   1217		} else
   1218			state = ERR_PTR(-ENODEV);
   1219	}
   1220
   1221	return state;
   1222}
   1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
   1224
   1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
   1226			     struct device *consumer)
   1227{
   1228	if (pctldev->desc->link_consumers)
   1229		device_link_add(consumer, pctldev->dev,
   1230				DL_FLAG_PM_RUNTIME |
   1231				DL_FLAG_AUTOREMOVE_CONSUMER);
   1232}
   1233
   1234/**
   1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
   1236 * @p: the pinctrl handle for the device that requests configuration
   1237 * @state: the state handle to select/activate/program
   1238 */
   1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
   1240{
   1241	struct pinctrl_setting *setting, *setting2;
   1242	struct pinctrl_state *old_state = p->state;
   1243	int ret;
   1244
   1245	if (p->state) {
   1246		/*
   1247		 * For each pinmux setting in the old state, forget SW's record
   1248		 * of mux owner for that pingroup. Any pingroups which are
   1249		 * still owned by the new state will be re-acquired by the call
   1250		 * to pinmux_enable_setting() in the loop below.
   1251		 */
   1252		list_for_each_entry(setting, &p->state->settings, node) {
   1253			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
   1254				continue;
   1255			pinmux_disable_setting(setting);
   1256		}
   1257	}
   1258
   1259	p->state = NULL;
   1260
   1261	/* Apply all the settings for the new state - pinmux first */
   1262	list_for_each_entry(setting, &state->settings, node) {
   1263		switch (setting->type) {
   1264		case PIN_MAP_TYPE_MUX_GROUP:
   1265			ret = pinmux_enable_setting(setting);
   1266			break;
   1267		case PIN_MAP_TYPE_CONFIGS_PIN:
   1268		case PIN_MAP_TYPE_CONFIGS_GROUP:
   1269			ret = 0;
   1270			break;
   1271		default:
   1272			ret = -EINVAL;
   1273			break;
   1274		}
   1275
   1276		if (ret < 0)
   1277			goto unapply_new_state;
   1278
   1279		/* Do not link hogs (circular dependency) */
   1280		if (p != setting->pctldev->p)
   1281			pinctrl_link_add(setting->pctldev, p->dev);
   1282	}
   1283
   1284	/* Apply all the settings for the new state - pinconf after */
   1285	list_for_each_entry(setting, &state->settings, node) {
   1286		switch (setting->type) {
   1287		case PIN_MAP_TYPE_MUX_GROUP:
   1288			ret = 0;
   1289			break;
   1290		case PIN_MAP_TYPE_CONFIGS_PIN:
   1291		case PIN_MAP_TYPE_CONFIGS_GROUP:
   1292			ret = pinconf_apply_setting(setting);
   1293			break;
   1294		default:
   1295			ret = -EINVAL;
   1296			break;
   1297		}
   1298
   1299		if (ret < 0) {
   1300			goto unapply_new_state;
   1301		}
   1302
   1303		/* Do not link hogs (circular dependency) */
   1304		if (p != setting->pctldev->p)
   1305			pinctrl_link_add(setting->pctldev, p->dev);
   1306	}
   1307
   1308	p->state = state;
   1309
   1310	return 0;
   1311
   1312unapply_new_state:
   1313	dev_err(p->dev, "Error applying setting, reverse things back\n");
   1314
   1315	list_for_each_entry(setting2, &state->settings, node) {
   1316		if (&setting2->node == &setting->node)
   1317			break;
   1318		/*
   1319		 * All we can do here is pinmux_disable_setting.
   1320		 * That means that some pins are muxed differently now
   1321		 * than they were before applying the setting (We can't
   1322		 * "unmux a pin"!), but it's not a big deal since the pins
   1323		 * are free to be muxed by another apply_setting.
   1324		 */
   1325		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
   1326			pinmux_disable_setting(setting2);
   1327	}
   1328
   1329	/* There's no infinite recursive loop here because p->state is NULL */
   1330	if (old_state)
   1331		pinctrl_select_state(p, old_state);
   1332
   1333	return ret;
   1334}
   1335
   1336/**
   1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
   1338 * @p: the pinctrl handle for the device that requests configuration
   1339 * @state: the state handle to select/activate/program
   1340 */
   1341int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
   1342{
   1343	if (p->state == state)
   1344		return 0;
   1345
   1346	return pinctrl_commit_state(p, state);
   1347}
   1348EXPORT_SYMBOL_GPL(pinctrl_select_state);
   1349
   1350static void devm_pinctrl_release(struct device *dev, void *res)
   1351{
   1352	pinctrl_put(*(struct pinctrl **)res);
   1353}
   1354
   1355/**
   1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
   1357 * @dev: the device to obtain the handle for
   1358 *
   1359 * If there is a need to explicitly destroy the returned struct pinctrl,
   1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
   1361 */
   1362struct pinctrl *devm_pinctrl_get(struct device *dev)
   1363{
   1364	struct pinctrl **ptr, *p;
   1365
   1366	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
   1367	if (!ptr)
   1368		return ERR_PTR(-ENOMEM);
   1369
   1370	p = pinctrl_get(dev);
   1371	if (!IS_ERR(p)) {
   1372		*ptr = p;
   1373		devres_add(dev, ptr);
   1374	} else {
   1375		devres_free(ptr);
   1376	}
   1377
   1378	return p;
   1379}
   1380EXPORT_SYMBOL_GPL(devm_pinctrl_get);
   1381
   1382static int devm_pinctrl_match(struct device *dev, void *res, void *data)
   1383{
   1384	struct pinctrl **p = res;
   1385
   1386	return *p == data;
   1387}
   1388
   1389/**
   1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
   1391 * @p: the pinctrl handle to release
   1392 *
   1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
   1394 * this function will not need to be called and the resource management
   1395 * code will ensure that the resource is freed.
   1396 */
   1397void devm_pinctrl_put(struct pinctrl *p)
   1398{
   1399	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
   1400			       devm_pinctrl_match, p));
   1401}
   1402EXPORT_SYMBOL_GPL(devm_pinctrl_put);
   1403
   1404/**
   1405 * pinctrl_register_mappings() - register a set of pin controller mappings
   1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
   1407 *	keeps a reference to the passed in maps, so they should _not_ be
   1408 *	marked with __initdata.
   1409 * @num_maps: the number of maps in the mapping table
   1410 */
   1411int pinctrl_register_mappings(const struct pinctrl_map *maps,
   1412			      unsigned num_maps)
   1413{
   1414	int i, ret;
   1415	struct pinctrl_maps *maps_node;
   1416
   1417	pr_debug("add %u pinctrl maps\n", num_maps);
   1418
   1419	/* First sanity check the new mapping */
   1420	for (i = 0; i < num_maps; i++) {
   1421		if (!maps[i].dev_name) {
   1422			pr_err("failed to register map %s (%d): no device given\n",
   1423			       maps[i].name, i);
   1424			return -EINVAL;
   1425		}
   1426
   1427		if (!maps[i].name) {
   1428			pr_err("failed to register map %d: no map name given\n",
   1429			       i);
   1430			return -EINVAL;
   1431		}
   1432
   1433		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
   1434				!maps[i].ctrl_dev_name) {
   1435			pr_err("failed to register map %s (%d): no pin control device given\n",
   1436			       maps[i].name, i);
   1437			return -EINVAL;
   1438		}
   1439
   1440		switch (maps[i].type) {
   1441		case PIN_MAP_TYPE_DUMMY_STATE:
   1442			break;
   1443		case PIN_MAP_TYPE_MUX_GROUP:
   1444			ret = pinmux_validate_map(&maps[i], i);
   1445			if (ret < 0)
   1446				return ret;
   1447			break;
   1448		case PIN_MAP_TYPE_CONFIGS_PIN:
   1449		case PIN_MAP_TYPE_CONFIGS_GROUP:
   1450			ret = pinconf_validate_map(&maps[i], i);
   1451			if (ret < 0)
   1452				return ret;
   1453			break;
   1454		default:
   1455			pr_err("failed to register map %s (%d): invalid type given\n",
   1456			       maps[i].name, i);
   1457			return -EINVAL;
   1458		}
   1459	}
   1460
   1461	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
   1462	if (!maps_node)
   1463		return -ENOMEM;
   1464
   1465	maps_node->maps = maps;
   1466	maps_node->num_maps = num_maps;
   1467
   1468	mutex_lock(&pinctrl_maps_mutex);
   1469	list_add_tail(&maps_node->node, &pinctrl_maps);
   1470	mutex_unlock(&pinctrl_maps_mutex);
   1471
   1472	return 0;
   1473}
   1474EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
   1475
   1476/**
   1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
   1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
   1479 *	when registering the mappings.
   1480 */
   1481void pinctrl_unregister_mappings(const struct pinctrl_map *map)
   1482{
   1483	struct pinctrl_maps *maps_node;
   1484
   1485	mutex_lock(&pinctrl_maps_mutex);
   1486	list_for_each_entry(maps_node, &pinctrl_maps, node) {
   1487		if (maps_node->maps == map) {
   1488			list_del(&maps_node->node);
   1489			kfree(maps_node);
   1490			mutex_unlock(&pinctrl_maps_mutex);
   1491			return;
   1492		}
   1493	}
   1494	mutex_unlock(&pinctrl_maps_mutex);
   1495}
   1496EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
   1497
   1498/**
   1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
   1500 * @pctldev: pin controller device
   1501 */
   1502int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
   1503{
   1504	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
   1505		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
   1506	return 0;
   1507}
   1508EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
   1509
   1510/**
   1511 * pinctrl_force_default() - turn a given controller device into default state
   1512 * @pctldev: pin controller device
   1513 */
   1514int pinctrl_force_default(struct pinctrl_dev *pctldev)
   1515{
   1516	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
   1517		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
   1518	return 0;
   1519}
   1520EXPORT_SYMBOL_GPL(pinctrl_force_default);
   1521
   1522/**
   1523 * pinctrl_init_done() - tell pinctrl probe is done
   1524 *
   1525 * We'll use this time to switch the pins from "init" to "default" unless the
   1526 * driver selected some other state.
   1527 *
   1528 * @dev: device to that's done probing
   1529 */
   1530int pinctrl_init_done(struct device *dev)
   1531{
   1532	struct dev_pin_info *pins = dev->pins;
   1533	int ret;
   1534
   1535	if (!pins)
   1536		return 0;
   1537
   1538	if (IS_ERR(pins->init_state))
   1539		return 0; /* No such state */
   1540
   1541	if (pins->p->state != pins->init_state)
   1542		return 0; /* Not at init anyway */
   1543
   1544	if (IS_ERR(pins->default_state))
   1545		return 0; /* No default state */
   1546
   1547	ret = pinctrl_select_state(pins->p, pins->default_state);
   1548	if (ret)
   1549		dev_err(dev, "failed to activate default pinctrl state\n");
   1550
   1551	return ret;
   1552}
   1553
   1554static int pinctrl_select_bound_state(struct device *dev,
   1555				      struct pinctrl_state *state)
   1556{
   1557	struct dev_pin_info *pins = dev->pins;
   1558	int ret;
   1559
   1560	if (IS_ERR(state))
   1561		return 0; /* No such state */
   1562	ret = pinctrl_select_state(pins->p, state);
   1563	if (ret)
   1564		dev_err(dev, "failed to activate pinctrl state %s\n",
   1565			state->name);
   1566	return ret;
   1567}
   1568
   1569/**
   1570 * pinctrl_select_default_state() - select default pinctrl state
   1571 * @dev: device to select default state for
   1572 */
   1573int pinctrl_select_default_state(struct device *dev)
   1574{
   1575	if (!dev->pins)
   1576		return 0;
   1577
   1578	return pinctrl_select_bound_state(dev, dev->pins->default_state);
   1579}
   1580EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
   1581
   1582#ifdef CONFIG_PM
   1583
   1584/**
   1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
   1586 * @dev: device to select default state for
   1587 */
   1588int pinctrl_pm_select_default_state(struct device *dev)
   1589{
   1590	return pinctrl_select_default_state(dev);
   1591}
   1592EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
   1593
   1594/**
   1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
   1596 * @dev: device to select sleep state for
   1597 */
   1598int pinctrl_pm_select_sleep_state(struct device *dev)
   1599{
   1600	if (!dev->pins)
   1601		return 0;
   1602
   1603	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
   1604}
   1605EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
   1606
   1607/**
   1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
   1609 * @dev: device to select idle state for
   1610 */
   1611int pinctrl_pm_select_idle_state(struct device *dev)
   1612{
   1613	if (!dev->pins)
   1614		return 0;
   1615
   1616	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
   1617}
   1618EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
   1619#endif
   1620
   1621#ifdef CONFIG_DEBUG_FS
   1622
   1623static int pinctrl_pins_show(struct seq_file *s, void *what)
   1624{
   1625	struct pinctrl_dev *pctldev = s->private;
   1626	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
   1627	unsigned i, pin;
   1628#ifdef CONFIG_GPIOLIB
   1629	struct pinctrl_gpio_range *range;
   1630	struct gpio_chip *chip;
   1631	int gpio_num;
   1632#endif
   1633
   1634	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
   1635
   1636	mutex_lock(&pctldev->mutex);
   1637
   1638	/* The pin number can be retrived from the pin controller descriptor */
   1639	for (i = 0; i < pctldev->desc->npins; i++) {
   1640		struct pin_desc *desc;
   1641
   1642		pin = pctldev->desc->pins[i].number;
   1643		desc = pin_desc_get(pctldev, pin);
   1644		/* Pin space may be sparse */
   1645		if (!desc)
   1646			continue;
   1647
   1648		seq_printf(s, "pin %d (%s) ", pin, desc->name);
   1649
   1650#ifdef CONFIG_GPIOLIB
   1651		gpio_num = -1;
   1652		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
   1653			if ((pin >= range->pin_base) &&
   1654			    (pin < (range->pin_base + range->npins))) {
   1655				gpio_num = range->base + (pin - range->pin_base);
   1656				break;
   1657			}
   1658		}
   1659		if (gpio_num >= 0)
   1660			chip = gpio_to_chip(gpio_num);
   1661		else
   1662			chip = NULL;
   1663		if (chip)
   1664			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
   1665		else
   1666			seq_puts(s, "0:? ");
   1667#endif
   1668
   1669		/* Driver-specific info per pin */
   1670		if (ops->pin_dbg_show)
   1671			ops->pin_dbg_show(pctldev, s, pin);
   1672
   1673		seq_puts(s, "\n");
   1674	}
   1675
   1676	mutex_unlock(&pctldev->mutex);
   1677
   1678	return 0;
   1679}
   1680DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
   1681
   1682static int pinctrl_groups_show(struct seq_file *s, void *what)
   1683{
   1684	struct pinctrl_dev *pctldev = s->private;
   1685	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
   1686	unsigned ngroups, selector = 0;
   1687
   1688	mutex_lock(&pctldev->mutex);
   1689
   1690	ngroups = ops->get_groups_count(pctldev);
   1691
   1692	seq_puts(s, "registered pin groups:\n");
   1693	while (selector < ngroups) {
   1694		const unsigned *pins = NULL;
   1695		unsigned num_pins = 0;
   1696		const char *gname = ops->get_group_name(pctldev, selector);
   1697		const char *pname;
   1698		int ret = 0;
   1699		int i;
   1700
   1701		if (ops->get_group_pins)
   1702			ret = ops->get_group_pins(pctldev, selector,
   1703						  &pins, &num_pins);
   1704		if (ret)
   1705			seq_printf(s, "%s [ERROR GETTING PINS]\n",
   1706				   gname);
   1707		else {
   1708			seq_printf(s, "group: %s\n", gname);
   1709			for (i = 0; i < num_pins; i++) {
   1710				pname = pin_get_name(pctldev, pins[i]);
   1711				if (WARN_ON(!pname)) {
   1712					mutex_unlock(&pctldev->mutex);
   1713					return -EINVAL;
   1714				}
   1715				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
   1716			}
   1717			seq_puts(s, "\n");
   1718		}
   1719		selector++;
   1720	}
   1721
   1722	mutex_unlock(&pctldev->mutex);
   1723
   1724	return 0;
   1725}
   1726DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
   1727
   1728static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
   1729{
   1730	struct pinctrl_dev *pctldev = s->private;
   1731	struct pinctrl_gpio_range *range;
   1732
   1733	seq_puts(s, "GPIO ranges handled:\n");
   1734
   1735	mutex_lock(&pctldev->mutex);
   1736
   1737	/* Loop over the ranges */
   1738	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
   1739		if (range->pins) {
   1740			int a;
   1741			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
   1742				range->id, range->name,
   1743				range->base, (range->base + range->npins - 1));
   1744			for (a = 0; a < range->npins - 1; a++)
   1745				seq_printf(s, "%u, ", range->pins[a]);
   1746			seq_printf(s, "%u}\n", range->pins[a]);
   1747		}
   1748		else
   1749			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
   1750				range->id, range->name,
   1751				range->base, (range->base + range->npins - 1),
   1752				range->pin_base,
   1753				(range->pin_base + range->npins - 1));
   1754	}
   1755
   1756	mutex_unlock(&pctldev->mutex);
   1757
   1758	return 0;
   1759}
   1760DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
   1761
   1762static int pinctrl_devices_show(struct seq_file *s, void *what)
   1763{
   1764	struct pinctrl_dev *pctldev;
   1765
   1766	seq_puts(s, "name [pinmux] [pinconf]\n");
   1767
   1768	mutex_lock(&pinctrldev_list_mutex);
   1769
   1770	list_for_each_entry(pctldev, &pinctrldev_list, node) {
   1771		seq_printf(s, "%s ", pctldev->desc->name);
   1772		if (pctldev->desc->pmxops)
   1773			seq_puts(s, "yes ");
   1774		else
   1775			seq_puts(s, "no ");
   1776		if (pctldev->desc->confops)
   1777			seq_puts(s, "yes");
   1778		else
   1779			seq_puts(s, "no");
   1780		seq_puts(s, "\n");
   1781	}
   1782
   1783	mutex_unlock(&pinctrldev_list_mutex);
   1784
   1785	return 0;
   1786}
   1787DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
   1788
   1789static inline const char *map_type(enum pinctrl_map_type type)
   1790{
   1791	static const char * const names[] = {
   1792		"INVALID",
   1793		"DUMMY_STATE",
   1794		"MUX_GROUP",
   1795		"CONFIGS_PIN",
   1796		"CONFIGS_GROUP",
   1797	};
   1798
   1799	if (type >= ARRAY_SIZE(names))
   1800		return "UNKNOWN";
   1801
   1802	return names[type];
   1803}
   1804
   1805static int pinctrl_maps_show(struct seq_file *s, void *what)
   1806{
   1807	struct pinctrl_maps *maps_node;
   1808	int i;
   1809	const struct pinctrl_map *map;
   1810
   1811	seq_puts(s, "Pinctrl maps:\n");
   1812
   1813	mutex_lock(&pinctrl_maps_mutex);
   1814	for_each_maps(maps_node, i, map) {
   1815		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
   1816			   map->dev_name, map->name, map_type(map->type),
   1817			   map->type);
   1818
   1819		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
   1820			seq_printf(s, "controlling device %s\n",
   1821				   map->ctrl_dev_name);
   1822
   1823		switch (map->type) {
   1824		case PIN_MAP_TYPE_MUX_GROUP:
   1825			pinmux_show_map(s, map);
   1826			break;
   1827		case PIN_MAP_TYPE_CONFIGS_PIN:
   1828		case PIN_MAP_TYPE_CONFIGS_GROUP:
   1829			pinconf_show_map(s, map);
   1830			break;
   1831		default:
   1832			break;
   1833		}
   1834
   1835		seq_putc(s, '\n');
   1836	}
   1837	mutex_unlock(&pinctrl_maps_mutex);
   1838
   1839	return 0;
   1840}
   1841DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
   1842
   1843static int pinctrl_show(struct seq_file *s, void *what)
   1844{
   1845	struct pinctrl *p;
   1846	struct pinctrl_state *state;
   1847	struct pinctrl_setting *setting;
   1848
   1849	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
   1850
   1851	mutex_lock(&pinctrl_list_mutex);
   1852
   1853	list_for_each_entry(p, &pinctrl_list, node) {
   1854		seq_printf(s, "device: %s current state: %s\n",
   1855			   dev_name(p->dev),
   1856			   p->state ? p->state->name : "none");
   1857
   1858		list_for_each_entry(state, &p->states, node) {
   1859			seq_printf(s, "  state: %s\n", state->name);
   1860
   1861			list_for_each_entry(setting, &state->settings, node) {
   1862				struct pinctrl_dev *pctldev = setting->pctldev;
   1863
   1864				seq_printf(s, "    type: %s controller %s ",
   1865					   map_type(setting->type),
   1866					   pinctrl_dev_get_name(pctldev));
   1867
   1868				switch (setting->type) {
   1869				case PIN_MAP_TYPE_MUX_GROUP:
   1870					pinmux_show_setting(s, setting);
   1871					break;
   1872				case PIN_MAP_TYPE_CONFIGS_PIN:
   1873				case PIN_MAP_TYPE_CONFIGS_GROUP:
   1874					pinconf_show_setting(s, setting);
   1875					break;
   1876				default:
   1877					break;
   1878				}
   1879			}
   1880		}
   1881	}
   1882
   1883	mutex_unlock(&pinctrl_list_mutex);
   1884
   1885	return 0;
   1886}
   1887DEFINE_SHOW_ATTRIBUTE(pinctrl);
   1888
   1889static struct dentry *debugfs_root;
   1890
   1891static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
   1892{
   1893	struct dentry *device_root;
   1894	const char *debugfs_name;
   1895
   1896	if (pctldev->desc->name &&
   1897			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
   1898		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
   1899				"%s-%s", dev_name(pctldev->dev),
   1900				pctldev->desc->name);
   1901		if (!debugfs_name) {
   1902			pr_warn("failed to determine debugfs dir name for %s\n",
   1903				dev_name(pctldev->dev));
   1904			return;
   1905		}
   1906	} else {
   1907		debugfs_name = dev_name(pctldev->dev);
   1908	}
   1909
   1910	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
   1911	pctldev->device_root = device_root;
   1912
   1913	if (IS_ERR(device_root) || !device_root) {
   1914		pr_warn("failed to create debugfs directory for %s\n",
   1915			dev_name(pctldev->dev));
   1916		return;
   1917	}
   1918	debugfs_create_file("pins", 0444,
   1919			    device_root, pctldev, &pinctrl_pins_fops);
   1920	debugfs_create_file("pingroups", 0444,
   1921			    device_root, pctldev, &pinctrl_groups_fops);
   1922	debugfs_create_file("gpio-ranges", 0444,
   1923			    device_root, pctldev, &pinctrl_gpioranges_fops);
   1924	if (pctldev->desc->pmxops)
   1925		pinmux_init_device_debugfs(device_root, pctldev);
   1926	if (pctldev->desc->confops)
   1927		pinconf_init_device_debugfs(device_root, pctldev);
   1928}
   1929
   1930static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
   1931{
   1932	debugfs_remove_recursive(pctldev->device_root);
   1933}
   1934
   1935static void pinctrl_init_debugfs(void)
   1936{
   1937	debugfs_root = debugfs_create_dir("pinctrl", NULL);
   1938	if (IS_ERR(debugfs_root) || !debugfs_root) {
   1939		pr_warn("failed to create debugfs directory\n");
   1940		debugfs_root = NULL;
   1941		return;
   1942	}
   1943
   1944	debugfs_create_file("pinctrl-devices", 0444,
   1945			    debugfs_root, NULL, &pinctrl_devices_fops);
   1946	debugfs_create_file("pinctrl-maps", 0444,
   1947			    debugfs_root, NULL, &pinctrl_maps_fops);
   1948	debugfs_create_file("pinctrl-handles", 0444,
   1949			    debugfs_root, NULL, &pinctrl_fops);
   1950}
   1951
   1952#else /* CONFIG_DEBUG_FS */
   1953
   1954static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
   1955{
   1956}
   1957
   1958static void pinctrl_init_debugfs(void)
   1959{
   1960}
   1961
   1962static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
   1963{
   1964}
   1965
   1966#endif
   1967
   1968static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
   1969{
   1970	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
   1971
   1972	if (!ops ||
   1973	    !ops->get_groups_count ||
   1974	    !ops->get_group_name)
   1975		return -EINVAL;
   1976
   1977	return 0;
   1978}
   1979
   1980/**
   1981 * pinctrl_init_controller() - init a pin controller device
   1982 * @pctldesc: descriptor for this pin controller
   1983 * @dev: parent device for this pin controller
   1984 * @driver_data: private pin controller data for this pin controller
   1985 */
   1986static struct pinctrl_dev *
   1987pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
   1988			void *driver_data)
   1989{
   1990	struct pinctrl_dev *pctldev;
   1991	int ret;
   1992
   1993	if (!pctldesc)
   1994		return ERR_PTR(-EINVAL);
   1995	if (!pctldesc->name)
   1996		return ERR_PTR(-EINVAL);
   1997
   1998	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
   1999	if (!pctldev)
   2000		return ERR_PTR(-ENOMEM);
   2001
   2002	/* Initialize pin control device struct */
   2003	pctldev->owner = pctldesc->owner;
   2004	pctldev->desc = pctldesc;
   2005	pctldev->driver_data = driver_data;
   2006	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
   2007#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
   2008	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
   2009#endif
   2010#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
   2011	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
   2012#endif
   2013	INIT_LIST_HEAD(&pctldev->gpio_ranges);
   2014	INIT_LIST_HEAD(&pctldev->node);
   2015	pctldev->dev = dev;
   2016	mutex_init(&pctldev->mutex);
   2017
   2018	/* check core ops for sanity */
   2019	ret = pinctrl_check_ops(pctldev);
   2020	if (ret) {
   2021		dev_err(dev, "pinctrl ops lacks necessary functions\n");
   2022		goto out_err;
   2023	}
   2024
   2025	/* If we're implementing pinmuxing, check the ops for sanity */
   2026	if (pctldesc->pmxops) {
   2027		ret = pinmux_check_ops(pctldev);
   2028		if (ret)
   2029			goto out_err;
   2030	}
   2031
   2032	/* If we're implementing pinconfig, check the ops for sanity */
   2033	if (pctldesc->confops) {
   2034		ret = pinconf_check_ops(pctldev);
   2035		if (ret)
   2036			goto out_err;
   2037	}
   2038
   2039	/* Register all the pins */
   2040	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
   2041	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
   2042	if (ret) {
   2043		dev_err(dev, "error during pin registration\n");
   2044		pinctrl_free_pindescs(pctldev, pctldesc->pins,
   2045				      pctldesc->npins);
   2046		goto out_err;
   2047	}
   2048
   2049	return pctldev;
   2050
   2051out_err:
   2052	mutex_destroy(&pctldev->mutex);
   2053	kfree(pctldev);
   2054	return ERR_PTR(ret);
   2055}
   2056
   2057static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
   2058{
   2059	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
   2060	if (PTR_ERR(pctldev->p) == -ENODEV) {
   2061		dev_dbg(pctldev->dev, "no hogs found\n");
   2062
   2063		return 0;
   2064	}
   2065
   2066	if (IS_ERR(pctldev->p)) {
   2067		dev_err(pctldev->dev, "error claiming hogs: %li\n",
   2068			PTR_ERR(pctldev->p));
   2069
   2070		return PTR_ERR(pctldev->p);
   2071	}
   2072
   2073	pctldev->hog_default =
   2074		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
   2075	if (IS_ERR(pctldev->hog_default)) {
   2076		dev_dbg(pctldev->dev,
   2077			"failed to lookup the default state\n");
   2078	} else {
   2079		if (pinctrl_select_state(pctldev->p,
   2080					 pctldev->hog_default))
   2081			dev_err(pctldev->dev,
   2082				"failed to select default state\n");
   2083	}
   2084
   2085	pctldev->hog_sleep =
   2086		pinctrl_lookup_state(pctldev->p,
   2087				     PINCTRL_STATE_SLEEP);
   2088	if (IS_ERR(pctldev->hog_sleep))
   2089		dev_dbg(pctldev->dev,
   2090			"failed to lookup the sleep state\n");
   2091
   2092	return 0;
   2093}
   2094
   2095int pinctrl_enable(struct pinctrl_dev *pctldev)
   2096{
   2097	int error;
   2098
   2099	error = pinctrl_claim_hogs(pctldev);
   2100	if (error) {
   2101		dev_err(pctldev->dev, "could not claim hogs: %i\n",
   2102			error);
   2103		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
   2104				      pctldev->desc->npins);
   2105		mutex_destroy(&pctldev->mutex);
   2106		kfree(pctldev);
   2107
   2108		return error;
   2109	}
   2110
   2111	mutex_lock(&pinctrldev_list_mutex);
   2112	list_add_tail(&pctldev->node, &pinctrldev_list);
   2113	mutex_unlock(&pinctrldev_list_mutex);
   2114
   2115	pinctrl_init_device_debugfs(pctldev);
   2116
   2117	return 0;
   2118}
   2119EXPORT_SYMBOL_GPL(pinctrl_enable);
   2120
   2121/**
   2122 * pinctrl_register() - register a pin controller device
   2123 * @pctldesc: descriptor for this pin controller
   2124 * @dev: parent device for this pin controller
   2125 * @driver_data: private pin controller data for this pin controller
   2126 *
   2127 * Note that pinctrl_register() is known to have problems as the pin
   2128 * controller driver functions are called before the driver has a
   2129 * struct pinctrl_dev handle. To avoid issues later on, please use the
   2130 * new pinctrl_register_and_init() below instead.
   2131 */
   2132struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
   2133				    struct device *dev, void *driver_data)
   2134{
   2135	struct pinctrl_dev *pctldev;
   2136	int error;
   2137
   2138	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
   2139	if (IS_ERR(pctldev))
   2140		return pctldev;
   2141
   2142	error = pinctrl_enable(pctldev);
   2143	if (error)
   2144		return ERR_PTR(error);
   2145
   2146	return pctldev;
   2147}
   2148EXPORT_SYMBOL_GPL(pinctrl_register);
   2149
   2150/**
   2151 * pinctrl_register_and_init() - register and init pin controller device
   2152 * @pctldesc: descriptor for this pin controller
   2153 * @dev: parent device for this pin controller
   2154 * @driver_data: private pin controller data for this pin controller
   2155 * @pctldev: pin controller device
   2156 *
   2157 * Note that pinctrl_enable() still needs to be manually called after
   2158 * this once the driver is ready.
   2159 */
   2160int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
   2161			      struct device *dev, void *driver_data,
   2162			      struct pinctrl_dev **pctldev)
   2163{
   2164	struct pinctrl_dev *p;
   2165
   2166	p = pinctrl_init_controller(pctldesc, dev, driver_data);
   2167	if (IS_ERR(p))
   2168		return PTR_ERR(p);
   2169
   2170	/*
   2171	 * We have pinctrl_start() call functions in the pin controller
   2172	 * driver with create_pinctrl() for at least dt_node_to_map(). So
   2173	 * let's make sure pctldev is properly initialized for the
   2174	 * pin controller driver before we do anything.
   2175	 */
   2176	*pctldev = p;
   2177
   2178	return 0;
   2179}
   2180EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
   2181
   2182/**
   2183 * pinctrl_unregister() - unregister pinmux
   2184 * @pctldev: pin controller to unregister
   2185 *
   2186 * Called by pinmux drivers to unregister a pinmux.
   2187 */
   2188void pinctrl_unregister(struct pinctrl_dev *pctldev)
   2189{
   2190	struct pinctrl_gpio_range *range, *n;
   2191
   2192	if (!pctldev)
   2193		return;
   2194
   2195	mutex_lock(&pctldev->mutex);
   2196	pinctrl_remove_device_debugfs(pctldev);
   2197	mutex_unlock(&pctldev->mutex);
   2198
   2199	if (!IS_ERR_OR_NULL(pctldev->p))
   2200		pinctrl_put(pctldev->p);
   2201
   2202	mutex_lock(&pinctrldev_list_mutex);
   2203	mutex_lock(&pctldev->mutex);
   2204	/* TODO: check that no pinmuxes are still active? */
   2205	list_del(&pctldev->node);
   2206	pinmux_generic_free_functions(pctldev);
   2207	pinctrl_generic_free_groups(pctldev);
   2208	/* Destroy descriptor tree */
   2209	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
   2210			      pctldev->desc->npins);
   2211	/* remove gpio ranges map */
   2212	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
   2213		list_del(&range->node);
   2214
   2215	mutex_unlock(&pctldev->mutex);
   2216	mutex_destroy(&pctldev->mutex);
   2217	kfree(pctldev);
   2218	mutex_unlock(&pinctrldev_list_mutex);
   2219}
   2220EXPORT_SYMBOL_GPL(pinctrl_unregister);
   2221
   2222static void devm_pinctrl_dev_release(struct device *dev, void *res)
   2223{
   2224	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
   2225
   2226	pinctrl_unregister(pctldev);
   2227}
   2228
   2229static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
   2230{
   2231	struct pctldev **r = res;
   2232
   2233	if (WARN_ON(!r || !*r))
   2234		return 0;
   2235
   2236	return *r == data;
   2237}
   2238
   2239/**
   2240 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
   2241 * @dev: parent device for this pin controller
   2242 * @pctldesc: descriptor for this pin controller
   2243 * @driver_data: private pin controller data for this pin controller
   2244 *
   2245 * Returns an error pointer if pincontrol register failed. Otherwise
   2246 * it returns valid pinctrl handle.
   2247 *
   2248 * The pinctrl device will be automatically released when the device is unbound.
   2249 */
   2250struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
   2251					  struct pinctrl_desc *pctldesc,
   2252					  void *driver_data)
   2253{
   2254	struct pinctrl_dev **ptr, *pctldev;
   2255
   2256	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
   2257	if (!ptr)
   2258		return ERR_PTR(-ENOMEM);
   2259
   2260	pctldev = pinctrl_register(pctldesc, dev, driver_data);
   2261	if (IS_ERR(pctldev)) {
   2262		devres_free(ptr);
   2263		return pctldev;
   2264	}
   2265
   2266	*ptr = pctldev;
   2267	devres_add(dev, ptr);
   2268
   2269	return pctldev;
   2270}
   2271EXPORT_SYMBOL_GPL(devm_pinctrl_register);
   2272
   2273/**
   2274 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
   2275 * @dev: parent device for this pin controller
   2276 * @pctldesc: descriptor for this pin controller
   2277 * @driver_data: private pin controller data for this pin controller
   2278 * @pctldev: pin controller device
   2279 *
   2280 * Returns zero on success or an error number on failure.
   2281 *
   2282 * The pinctrl device will be automatically released when the device is unbound.
   2283 */
   2284int devm_pinctrl_register_and_init(struct device *dev,
   2285				   struct pinctrl_desc *pctldesc,
   2286				   void *driver_data,
   2287				   struct pinctrl_dev **pctldev)
   2288{
   2289	struct pinctrl_dev **ptr;
   2290	int error;
   2291
   2292	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
   2293	if (!ptr)
   2294		return -ENOMEM;
   2295
   2296	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
   2297	if (error) {
   2298		devres_free(ptr);
   2299		return error;
   2300	}
   2301
   2302	*ptr = *pctldev;
   2303	devres_add(dev, ptr);
   2304
   2305	return 0;
   2306}
   2307EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
   2308
   2309/**
   2310 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
   2311 * @dev: device for which resource was allocated
   2312 * @pctldev: the pinctrl device to unregister.
   2313 */
   2314void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
   2315{
   2316	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
   2317			       devm_pinctrl_dev_match, pctldev));
   2318}
   2319EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
   2320
   2321static int __init pinctrl_init(void)
   2322{
   2323	pr_info("initialized pinctrl subsystem\n");
   2324	pinctrl_init_debugfs();
   2325	return 0;
   2326}
   2327
   2328/* init early since many drivers really need to initialized pinmux early */
   2329core_initcall(pinctrl_init);