cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cros_ec_sensorhub_ring.c (31272B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for Chrome OS EC Sensor hub FIFO.
      4 *
      5 * Copyright 2020 Google LLC
      6 */
      7
      8#include <linux/delay.h>
      9#include <linux/device.h>
     10#include <linux/iio/iio.h>
     11#include <linux/kernel.h>
     12#include <linux/module.h>
     13#include <linux/platform_data/cros_ec_commands.h>
     14#include <linux/platform_data/cros_ec_proto.h>
     15#include <linux/platform_data/cros_ec_sensorhub.h>
     16#include <linux/platform_device.h>
     17#include <linux/sort.h>
     18#include <linux/slab.h>
     19
     20#define CREATE_TRACE_POINTS
     21#include "cros_ec_sensorhub_trace.h"
     22
     23/* Precision of fixed point for the m values from the filter */
     24#define M_PRECISION BIT(23)
     25
     26/* Only activate the filter once we have at least this many elements. */
     27#define TS_HISTORY_THRESHOLD 8
     28
     29/*
     30 * If we don't have any history entries for this long, empty the filter to
     31 * make sure there are no big discontinuities.
     32 */
     33#define TS_HISTORY_BORED_US 500000
     34
     35/* To measure by how much the filter is overshooting, if it happens. */
     36#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
     37
     38static inline int
     39cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
     40			   struct cros_ec_sensors_ring_sample *sample)
     41{
     42	cros_ec_sensorhub_push_data_cb_t cb;
     43	int id = sample->sensor_id;
     44	struct iio_dev *indio_dev;
     45
     46	if (id >= sensorhub->sensor_num)
     47		return -EINVAL;
     48
     49	cb = sensorhub->push_data[id].push_data_cb;
     50	if (!cb)
     51		return 0;
     52
     53	indio_dev = sensorhub->push_data[id].indio_dev;
     54
     55	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
     56		return 0;
     57
     58	return cb(indio_dev, sample->vector, sample->timestamp);
     59}
     60
     61/**
     62 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
     63 *
     64 * @sensorhub : Sensor Hub object
     65 * @sensor_num : The sensor the caller is interested in.
     66 * @indio_dev : The iio device to use when a sample arrives.
     67 * @cb : The callback to call when a sample arrives.
     68 *
     69 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
     70 * from the EC.
     71 *
     72 * Return: 0 when callback is registered.
     73 *         EINVAL is the sensor number is invalid or the slot already used.
     74 */
     75int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
     76					 u8 sensor_num,
     77					 struct iio_dev *indio_dev,
     78					 cros_ec_sensorhub_push_data_cb_t cb)
     79{
     80	if (sensor_num >= sensorhub->sensor_num)
     81		return -EINVAL;
     82	if (sensorhub->push_data[sensor_num].indio_dev)
     83		return -EINVAL;
     84
     85	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
     86	sensorhub->push_data[sensor_num].push_data_cb = cb;
     87
     88	return 0;
     89}
     90EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
     91
     92void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
     93					    u8 sensor_num)
     94{
     95	sensorhub->push_data[sensor_num].indio_dev = NULL;
     96	sensorhub->push_data[sensor_num].push_data_cb = NULL;
     97}
     98EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
     99
    100/**
    101 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
    102 *					  for FIFO events.
    103 * @sensorhub: Sensor Hub object
    104 * @on: true when events are requested.
    105 *
    106 * To be called before sleeping or when noone is listening.
    107 * Return: 0 on success, or an error when we can not communicate with the EC.
    108 *
    109 */
    110int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
    111				       bool on)
    112{
    113	int ret, i;
    114
    115	mutex_lock(&sensorhub->cmd_lock);
    116	if (sensorhub->tight_timestamps)
    117		for (i = 0; i < sensorhub->sensor_num; i++)
    118			sensorhub->batch_state[i].last_len = 0;
    119
    120	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
    121	sensorhub->params->fifo_int_enable.enable = on;
    122
    123	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
    124	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
    125
    126	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
    127	mutex_unlock(&sensorhub->cmd_lock);
    128
    129	/* We expect to receive a payload of 4 bytes, ignore. */
    130	if (ret > 0)
    131		ret = 0;
    132
    133	return ret;
    134}
    135
    136static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
    137{
    138	s64 v1 = *(s64 *)pv1;
    139	s64 v2 = *(s64 *)pv2;
    140
    141	if (v1 > v2)
    142		return 1;
    143	else if (v1 < v2)
    144		return -1;
    145	else
    146		return 0;
    147}
    148
    149/*
    150 * cros_ec_sensor_ring_median: Gets median of an array of numbers
    151 *
    152 * For now it's implemented using an inefficient > O(n) sort then return
    153 * the middle element. A more optimal method would be something like
    154 * quickselect, but given that n = 64 we can probably live with it in the
    155 * name of clarity.
    156 *
    157 * Warning: the input array gets modified (sorted)!
    158 */
    159static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
    160{
    161	sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
    162	return array[length / 2];
    163}
    164
    165/*
    166 * IRQ Timestamp Filtering
    167 *
    168 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
    169 * we have to calculate it's timestamp in the AP timebase. There are 3 time
    170 * points:
    171 *   a - EC timebase, sensor event
    172 *   b - EC timebase, IRQ
    173 *   c - AP timebase, IRQ
    174 *   a' - what we want: sensor even in AP timebase
    175 *
    176 * While a and b are recorded at accurate times (due to the EC real time
    177 * nature); c is pretty untrustworthy, even though it's recorded the
    178 * first thing in ec_irq_handler(). There is a very good change we'll get
    179 * added lantency due to:
    180 *   other irqs
    181 *   ddrfreq
    182 *   cpuidle
    183 *
    184 * Normally a' = c - b + a, but if we do that naive math any jitter in c
    185 * will get coupled in a', which we don't want. We want a function
    186 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
    187 *
    188 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
    189 * The slope of the line won't be exactly 1, there will be some clock drift
    190 * between the 2 chips for various reasons (mechanical stress, temperature,
    191 * voltage). We need to extrapolate values for a future x, without trusting
    192 * recent y values too much.
    193 *
    194 * We use a median filter for the slope, then another median filter for the
    195 * y-intercept to calculate this function:
    196 *   dx[n] = x[n-1] - x[n]
    197 *   dy[n] = x[n-1] - x[n]
    198 *   m[n] = dy[n] / dx[n]
    199 *   median_m = median(m[n-k:n])
    200 *   error[i] = y[n-i] - median_m * x[n-i]
    201 *   median_error = median(error[:k])
    202 *   predicted_y = median_m * x + median_error
    203 *
    204 * Implementation differences from above:
    205 * - Redefined y to be actually c - b, this gives us a lot more precision
    206 * to do the math. (c-b)/b variations are more obvious than c/b variations.
    207 * - Since we don't have floating point, any operations involving slope are
    208 * done using fixed point math (*M_PRECISION)
    209 * - Since x and y grow with time, we keep zeroing the graph (relative to
    210 * the last sample), this way math involving *x[n-i] will not overflow
    211 * - EC timestamps are kept in us, it improves the slope calculation precision
    212 */
    213
    214/**
    215 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
    216 *
    217 * @state: Filter information.
    218 * @b: IRQ timestamp, EC timebase (us)
    219 * @c: IRQ timestamp, AP timebase (ns)
    220 *
    221 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
    222 * history.
    223 */
    224static void
    225cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
    226				     *state,
    227				     s64 b, s64 c)
    228{
    229	s64 x, y;
    230	s64 dx, dy;
    231	s64 m; /* stored as *M_PRECISION */
    232	s64 *m_history_copy = state->temp_buf;
    233	s64 *error = state->temp_buf;
    234	int i;
    235
    236	/* we trust b the most, that'll be our independent variable */
    237	x = b;
    238	/* y is the offset between AP and EC times, in ns */
    239	y = c - b * 1000;
    240
    241	dx = (state->x_history[0] + state->x_offset) - x;
    242	if (dx == 0)
    243		return; /* we already have this irq in the history */
    244	dy = (state->y_history[0] + state->y_offset) - y;
    245	m = div64_s64(dy * M_PRECISION, dx);
    246
    247	/* Empty filter if we haven't seen any action in a while. */
    248	if (-dx > TS_HISTORY_BORED_US)
    249		state->history_len = 0;
    250
    251	/* Move everything over, also update offset to all absolute coords .*/
    252	for (i = state->history_len - 1; i >= 1; i--) {
    253		state->x_history[i] = state->x_history[i - 1] + dx;
    254		state->y_history[i] = state->y_history[i - 1] + dy;
    255
    256		state->m_history[i] = state->m_history[i - 1];
    257		/*
    258		 * Also use the same loop to copy m_history for future
    259		 * median extraction.
    260		 */
    261		m_history_copy[i] = state->m_history[i - 1];
    262	}
    263
    264	/* Store the x and y, but remember offset is actually last sample. */
    265	state->x_offset = x;
    266	state->y_offset = y;
    267	state->x_history[0] = 0;
    268	state->y_history[0] = 0;
    269
    270	state->m_history[0] = m;
    271	m_history_copy[0] = m;
    272
    273	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
    274		state->history_len++;
    275
    276	/* Precalculate things for the filter. */
    277	if (state->history_len > TS_HISTORY_THRESHOLD) {
    278		state->median_m =
    279		    cros_ec_sensor_ring_median(m_history_copy,
    280					       state->history_len - 1);
    281
    282		/*
    283		 * Calculate y-intercepts as if m_median is the slope and
    284		 * points in the history are on the line. median_error will
    285		 * still be in the offset coordinate system.
    286		 */
    287		for (i = 0; i < state->history_len; i++)
    288			error[i] = state->y_history[i] -
    289				div_s64(state->median_m * state->x_history[i],
    290					M_PRECISION);
    291		state->median_error =
    292			cros_ec_sensor_ring_median(error, state->history_len);
    293	} else {
    294		state->median_m = 0;
    295		state->median_error = 0;
    296	}
    297	trace_cros_ec_sensorhub_filter(state, dx, dy);
    298}
    299
    300/**
    301 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
    302 *                                   timebase
    303 *
    304 * @state: filter information.
    305 * @x: any ec timestamp (us):
    306 *
    307 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
    308 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
    309 *                           should have happened on the AP, with low jitter
    310 *
    311 * Note: The filter will only activate once state->history_len goes
    312 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
    313 * transform.
    314 *
    315 * How to derive the formula, starting from:
    316 *   f(x) = median_m * x + median_error
    317 * That's the calculated AP - EC offset (at the x point in time)
    318 * Undo the coordinate system transform:
    319 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
    320 * Remember to undo the "y = c - b * 1000" modification:
    321 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
    322 *
    323 * Return: timestamp in AP timebase (ns)
    324 */
    325static s64
    326cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
    327			      s64 x)
    328{
    329	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
    330	       + state->median_error + state->y_offset + x * 1000;
    331}
    332
    333/*
    334 * Since a and b were originally 32 bit values from the EC,
    335 * they overflow relatively often, casting is not enough, so we need to
    336 * add an offset.
    337 */
    338static void
    339cros_ec_sensor_ring_fix_overflow(s64 *ts,
    340				 const s64 overflow_period,
    341				 struct cros_ec_sensors_ec_overflow_state
    342				 *state)
    343{
    344	s64 adjust;
    345
    346	*ts += state->offset;
    347	if (abs(state->last - *ts) > (overflow_period / 2)) {
    348		adjust = state->last > *ts ? overflow_period : -overflow_period;
    349		state->offset += adjust;
    350		*ts += adjust;
    351	}
    352	state->last = *ts;
    353}
    354
    355static void
    356cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
    357					     *sensorhub,
    358					     struct cros_ec_sensors_ring_sample
    359					     *sample)
    360{
    361	const u8 sensor_id = sample->sensor_id;
    362
    363	/* If this event is earlier than one we saw before... */
    364	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
    365	    sample->timestamp)
    366		/* mark it for spreading. */
    367		sample->timestamp =
    368			sensorhub->batch_state[sensor_id].last_ts;
    369	else
    370		sensorhub->batch_state[sensor_id].newest_sensor_event =
    371			sample->timestamp;
    372}
    373
    374/**
    375 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
    376 *
    377 * @sensorhub: Sensor Hub object.
    378 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
    379 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
    380 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
    381 * @in: incoming FIFO event from EC (includes a point, EC timebase).
    382 * @out: outgoing event to user space (includes a').
    383 *
    384 * Process one EC event, add it in the ring if necessary.
    385 *
    386 * Return: true if out event has been populated.
    387 */
    388static bool
    389cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
    390				const struct ec_response_motion_sense_fifo_info
    391				*fifo_info,
    392				const ktime_t fifo_timestamp,
    393				ktime_t *current_timestamp,
    394				struct ec_response_motion_sensor_data *in,
    395				struct cros_ec_sensors_ring_sample *out)
    396{
    397	const s64 now = cros_ec_get_time_ns();
    398	int axis, async_flags;
    399
    400	/* Do not populate the filter based on asynchronous events. */
    401	async_flags = in->flags &
    402		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
    403
    404	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
    405		s64 a = in->timestamp;
    406		s64 b = fifo_info->timestamp;
    407		s64 c = fifo_timestamp;
    408
    409		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
    410					  &sensorhub->overflow_a);
    411		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
    412					  &sensorhub->overflow_b);
    413
    414		if (sensorhub->tight_timestamps) {
    415			cros_ec_sensor_ring_ts_filter_update(
    416					&sensorhub->filter, b, c);
    417			*current_timestamp = cros_ec_sensor_ring_ts_filter(
    418					&sensorhub->filter, a);
    419		} else {
    420			s64 new_timestamp;
    421
    422			/*
    423			 * Disable filtering since we might add more jitter
    424			 * if b is in a random point in time.
    425			 */
    426			new_timestamp = c - b * 1000 + a * 1000;
    427			/*
    428			 * The timestamp can be stale if we had to use the fifo
    429			 * info timestamp.
    430			 */
    431			if (new_timestamp - *current_timestamp > 0)
    432				*current_timestamp = new_timestamp;
    433		}
    434		trace_cros_ec_sensorhub_timestamp(in->timestamp,
    435						  fifo_info->timestamp,
    436						  fifo_timestamp,
    437						  *current_timestamp,
    438						  now);
    439	}
    440
    441	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
    442		if (sensorhub->tight_timestamps) {
    443			sensorhub->batch_state[in->sensor_num].last_len = 0;
    444			sensorhub->batch_state[in->sensor_num].penul_len = 0;
    445		}
    446		/*
    447		 * ODR change is only useful for the sensor_ring, it does not
    448		 * convey information to clients.
    449		 */
    450		return false;
    451	}
    452
    453	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
    454		out->sensor_id = in->sensor_num;
    455		out->timestamp = *current_timestamp;
    456		out->flag = in->flags;
    457		if (sensorhub->tight_timestamps)
    458			sensorhub->batch_state[out->sensor_id].last_len = 0;
    459		/*
    460		 * No other payload information provided with
    461		 * flush ack.
    462		 */
    463		return true;
    464	}
    465
    466	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
    467		/* If we just have a timestamp, skip this entry. */
    468		return false;
    469
    470	/* Regular sample */
    471	out->sensor_id = in->sensor_num;
    472	trace_cros_ec_sensorhub_data(in->sensor_num,
    473				     fifo_info->timestamp,
    474				     fifo_timestamp,
    475				     *current_timestamp,
    476				     now);
    477
    478	if (*current_timestamp - now > 0) {
    479		/*
    480		 * This fix is needed to overcome the timestamp filter putting
    481		 * events in the future.
    482		 */
    483		sensorhub->future_timestamp_total_ns +=
    484			*current_timestamp - now;
    485		if (++sensorhub->future_timestamp_count ==
    486				FUTURE_TS_ANALYTICS_COUNT_MAX) {
    487			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
    488					sensorhub->future_timestamp_count);
    489			dev_warn_ratelimited(sensorhub->dev,
    490					     "100 timestamps in the future, %lldns shaved on average\n",
    491					     avg);
    492			sensorhub->future_timestamp_count = 0;
    493			sensorhub->future_timestamp_total_ns = 0;
    494		}
    495		out->timestamp = now;
    496	} else {
    497		out->timestamp = *current_timestamp;
    498	}
    499
    500	out->flag = in->flags;
    501	for (axis = 0; axis < 3; axis++)
    502		out->vector[axis] = in->data[axis];
    503
    504	if (sensorhub->tight_timestamps)
    505		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
    506	return true;
    507}
    508
    509/*
    510 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
    511 *                                 ringbuffer.
    512 *
    513 * This is the new spreading code, assumes every sample's timestamp
    514 * preceeds the sample. Run if tight_timestamps == true.
    515 *
    516 * Sometimes the EC receives only one interrupt (hence timestamp) for
    517 * a batch of samples. Only the first sample will have the correct
    518 * timestamp. So we must interpolate the other samples.
    519 * We use the previous batch timestamp and our current batch timestamp
    520 * as a way to calculate period, then spread the samples evenly.
    521 *
    522 * s0 int, 0ms
    523 * s1 int, 10ms
    524 * s2 int, 20ms
    525 * 30ms point goes by, no interrupt, previous one is still asserted
    526 * downloading s2 and s3
    527 * s3 sample, 20ms (incorrect timestamp)
    528 * s4 int, 40ms
    529 *
    530 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
    531 * has 2 samples in them, we adjust the timestamp of s3.
    532 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
    533 * been part of a bigger batch things would have gotten a little
    534 * more complicated.
    535 *
    536 * Note: we also assume another sensor sample doesn't break up a batch
    537 * in 2 or more partitions. Example, there can't ever be a sync sensor
    538 * in between S2 and S3. This simplifies the following code.
    539 */
    540static void
    541cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
    542			       unsigned long sensor_mask,
    543			       struct cros_ec_sensors_ring_sample *last_out)
    544{
    545	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
    546	int id;
    547
    548	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
    549		for (batch_start = sensorhub->ring; batch_start < last_out;
    550		     batch_start = next_batch_start) {
    551			/*
    552			 * For each batch (where all samples have the same
    553			 * timestamp).
    554			 */
    555			int batch_len, sample_idx;
    556			struct cros_ec_sensors_ring_sample *batch_end =
    557				batch_start;
    558			struct cros_ec_sensors_ring_sample *s;
    559			s64 batch_timestamp = batch_start->timestamp;
    560			s64 sample_period;
    561
    562			/*
    563			 * Skip over batches that start with the sensor types
    564			 * we're not looking at right now.
    565			 */
    566			if (batch_start->sensor_id != id) {
    567				next_batch_start = batch_start + 1;
    568				continue;
    569			}
    570
    571			/*
    572			 * Do not start a batch
    573			 * from a flush, as it happens asynchronously to the
    574			 * regular flow of events.
    575			 */
    576			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
    577				cros_sensorhub_send_sample(sensorhub,
    578							   batch_start);
    579				next_batch_start = batch_start + 1;
    580				continue;
    581			}
    582
    583			if (batch_start->timestamp <=
    584			    sensorhub->batch_state[id].last_ts) {
    585				batch_timestamp =
    586					sensorhub->batch_state[id].last_ts;
    587				batch_len = sensorhub->batch_state[id].last_len;
    588
    589				sample_idx = batch_len;
    590
    591				sensorhub->batch_state[id].last_ts =
    592				  sensorhub->batch_state[id].penul_ts;
    593				sensorhub->batch_state[id].last_len =
    594				  sensorhub->batch_state[id].penul_len;
    595			} else {
    596				/*
    597				 * Push first sample in the batch to the,
    598				 * kifo, it's guaranteed to be correct, the
    599				 * rest will follow later on.
    600				 */
    601				sample_idx = 1;
    602				batch_len = 1;
    603				cros_sensorhub_send_sample(sensorhub,
    604							   batch_start);
    605				batch_start++;
    606			}
    607
    608			/* Find all samples have the same timestamp. */
    609			for (s = batch_start; s < last_out; s++) {
    610				if (s->sensor_id != id)
    611					/*
    612					 * Skip over other sensor types that
    613					 * are interleaved, don't count them.
    614					 */
    615					continue;
    616				if (s->timestamp != batch_timestamp)
    617					/* we discovered the next batch */
    618					break;
    619				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
    620					/* break on flush packets */
    621					break;
    622				batch_end = s;
    623				batch_len++;
    624			}
    625
    626			if (batch_len == 1)
    627				goto done_with_this_batch;
    628
    629			/* Can we calculate period? */
    630			if (sensorhub->batch_state[id].last_len == 0) {
    631				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
    632					 id, batch_len - 1);
    633				goto done_with_this_batch;
    634				/*
    635				 * Note: we're dropping the rest of the samples
    636				 * in this batch since we have no idea where
    637				 * they're supposed to go without a period
    638				 * calculation.
    639				 */
    640			}
    641
    642			sample_period = div_s64(batch_timestamp -
    643				sensorhub->batch_state[id].last_ts,
    644				sensorhub->batch_state[id].last_len);
    645			dev_dbg(sensorhub->dev,
    646				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
    647				batch_len, id,
    648				sensorhub->batch_state[id].last_ts,
    649				sensorhub->batch_state[id].last_len,
    650				batch_timestamp,
    651				sample_period);
    652
    653			/*
    654			 * Adjust timestamps of the samples then push them to
    655			 * kfifo.
    656			 */
    657			for (s = batch_start; s <= batch_end; s++) {
    658				if (s->sensor_id != id)
    659					/*
    660					 * Skip over other sensor types that
    661					 * are interleaved, don't change them.
    662					 */
    663					continue;
    664
    665				s->timestamp = batch_timestamp +
    666					sample_period * sample_idx;
    667				sample_idx++;
    668
    669				cros_sensorhub_send_sample(sensorhub, s);
    670			}
    671
    672done_with_this_batch:
    673			sensorhub->batch_state[id].penul_ts =
    674				sensorhub->batch_state[id].last_ts;
    675			sensorhub->batch_state[id].penul_len =
    676				sensorhub->batch_state[id].last_len;
    677
    678			sensorhub->batch_state[id].last_ts =
    679				batch_timestamp;
    680			sensorhub->batch_state[id].last_len = batch_len;
    681
    682			next_batch_start = batch_end + 1;
    683		}
    684	}
    685}
    686
    687/*
    688 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
    689 * add to ringbuffer (legacy).
    690 *
    691 * Note: This assumes we're running old firmware, where timestamp
    692 * is inserted after its sample(s)e. There can be several samples between
    693 * timestamps, so several samples can have the same timestamp.
    694 *
    695 *                        timestamp | count
    696 *                        -----------------
    697 *          1st sample --> TS1      | 1
    698 *                         TS2      | 2
    699 *                         TS2      | 3
    700 *                         TS3      | 4
    701 *           last_out -->
    702 *
    703 *
    704 * We spread time for the samples using perod p = (current - TS1)/4.
    705 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
    706 *
    707 */
    708static void
    709cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
    710				      unsigned long sensor_mask,
    711				      s64 current_timestamp,
    712				      struct cros_ec_sensors_ring_sample
    713				      *last_out)
    714{
    715	struct cros_ec_sensors_ring_sample *out;
    716	int i;
    717
    718	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
    719		s64 timestamp;
    720		int count = 0;
    721		s64 time_period;
    722
    723		for (out = sensorhub->ring; out < last_out; out++) {
    724			if (out->sensor_id != i)
    725				continue;
    726
    727			/* Timestamp to start with */
    728			timestamp = out->timestamp;
    729			out++;
    730			count = 1;
    731			break;
    732		}
    733		for (; out < last_out; out++) {
    734			/* Find last sample. */
    735			if (out->sensor_id != i)
    736				continue;
    737			count++;
    738		}
    739		if (count == 0)
    740			continue;
    741
    742		/* Spread uniformly between the first and last samples. */
    743		time_period = div_s64(current_timestamp - timestamp, count);
    744
    745		for (out = sensorhub->ring; out < last_out; out++) {
    746			if (out->sensor_id != i)
    747				continue;
    748			timestamp += time_period;
    749			out->timestamp = timestamp;
    750		}
    751	}
    752
    753	/* Push the event into the kfifo */
    754	for (out = sensorhub->ring; out < last_out; out++)
    755		cros_sensorhub_send_sample(sensorhub, out);
    756}
    757
    758/**
    759 * cros_ec_sensorhub_ring_handler() - The trigger handler function
    760 *
    761 * @sensorhub: Sensor Hub object.
    762 *
    763 * Called by the notifier, process the EC sensor FIFO queue.
    764 */
    765static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
    766{
    767	struct ec_response_motion_sense_fifo_info *fifo_info =
    768		sensorhub->fifo_info;
    769	struct cros_ec_dev *ec = sensorhub->ec;
    770	ktime_t fifo_timestamp, current_timestamp;
    771	int i, j, number_data, ret;
    772	unsigned long sensor_mask = 0;
    773	struct ec_response_motion_sensor_data *in;
    774	struct cros_ec_sensors_ring_sample *out, *last_out;
    775
    776	mutex_lock(&sensorhub->cmd_lock);
    777
    778	/* Get FIFO information if there are lost vectors. */
    779	if (fifo_info->total_lost) {
    780		int fifo_info_length =
    781			sizeof(struct ec_response_motion_sense_fifo_info) +
    782			sizeof(u16) * sensorhub->sensor_num;
    783
    784		/* Need to retrieve the number of lost vectors per sensor */
    785		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
    786		sensorhub->msg->outsize = 1;
    787		sensorhub->msg->insize = fifo_info_length;
    788
    789		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
    790			goto error;
    791
    792		memcpy(fifo_info, &sensorhub->resp->fifo_info,
    793		       fifo_info_length);
    794
    795		/*
    796		 * Update collection time, will not be as precise as the
    797		 * non-error case.
    798		 */
    799		fifo_timestamp = cros_ec_get_time_ns();
    800	} else {
    801		fifo_timestamp = sensorhub->fifo_timestamp[
    802			CROS_EC_SENSOR_NEW_TS];
    803	}
    804
    805	if (fifo_info->count > sensorhub->fifo_size ||
    806	    fifo_info->size != sensorhub->fifo_size) {
    807		dev_warn(sensorhub->dev,
    808			 "Mismatch EC data: count %d, size %d - expected %d\n",
    809			 fifo_info->count, fifo_info->size,
    810			 sensorhub->fifo_size);
    811		goto error;
    812	}
    813
    814	/* Copy elements in the main fifo */
    815	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
    816	out = sensorhub->ring;
    817	for (i = 0; i < fifo_info->count; i += number_data) {
    818		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
    819		sensorhub->params->fifo_read.max_data_vector =
    820			fifo_info->count - i;
    821		sensorhub->msg->outsize =
    822			sizeof(struct ec_params_motion_sense);
    823		sensorhub->msg->insize =
    824			sizeof(sensorhub->resp->fifo_read) +
    825			sensorhub->params->fifo_read.max_data_vector *
    826			  sizeof(struct ec_response_motion_sensor_data);
    827		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
    828		if (ret < 0) {
    829			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
    830			break;
    831		}
    832		number_data = sensorhub->resp->fifo_read.number_data;
    833		if (number_data == 0) {
    834			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
    835			break;
    836		}
    837		if (number_data > fifo_info->count - i) {
    838			dev_warn(sensorhub->dev,
    839				 "Invalid EC data: too many entry received: %d, expected %d\n",
    840				 number_data, fifo_info->count - i);
    841			break;
    842		}
    843		if (out + number_data >
    844		    sensorhub->ring + fifo_info->count) {
    845			dev_warn(sensorhub->dev,
    846				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
    847				 i, out - sensorhub->ring, i + number_data,
    848				 fifo_info->count);
    849			break;
    850		}
    851
    852		for (in = sensorhub->resp->fifo_read.data, j = 0;
    853		     j < number_data; j++, in++) {
    854			if (cros_ec_sensor_ring_process_event(
    855						sensorhub, fifo_info,
    856						fifo_timestamp,
    857						&current_timestamp,
    858						in, out)) {
    859				sensor_mask |= BIT(in->sensor_num);
    860				out++;
    861			}
    862		}
    863	}
    864	mutex_unlock(&sensorhub->cmd_lock);
    865	last_out = out;
    866
    867	if (out == sensorhub->ring)
    868		/* Unexpected empty FIFO. */
    869		goto ring_handler_end;
    870
    871	/*
    872	 * Check if current_timestamp is ahead of the last sample. Normally,
    873	 * the EC appends a timestamp after the last sample, but if the AP
    874	 * is slow to respond to the IRQ, the EC may have added new samples.
    875	 * Use the FIFO info timestamp as last timestamp then.
    876	 */
    877	if (!sensorhub->tight_timestamps &&
    878	    (last_out - 1)->timestamp == current_timestamp)
    879		current_timestamp = fifo_timestamp;
    880
    881	/* Warn on lost samples. */
    882	if (fifo_info->total_lost)
    883		for (i = 0; i < sensorhub->sensor_num; i++) {
    884			if (fifo_info->lost[i]) {
    885				dev_warn_ratelimited(sensorhub->dev,
    886						     "Sensor %d: lost: %d out of %d\n",
    887						     i, fifo_info->lost[i],
    888						     fifo_info->total_lost);
    889				if (sensorhub->tight_timestamps)
    890					sensorhub->batch_state[i].last_len = 0;
    891			}
    892		}
    893
    894	/*
    895	 * Spread samples in case of batching, then add them to the
    896	 * ringbuffer.
    897	 */
    898	if (sensorhub->tight_timestamps)
    899		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
    900					       last_out);
    901	else
    902		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
    903						      current_timestamp,
    904						      last_out);
    905
    906ring_handler_end:
    907	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
    908	return;
    909
    910error:
    911	mutex_unlock(&sensorhub->cmd_lock);
    912}
    913
    914static int cros_ec_sensorhub_event(struct notifier_block *nb,
    915				   unsigned long queued_during_suspend,
    916				   void *_notify)
    917{
    918	struct cros_ec_sensorhub *sensorhub;
    919	struct cros_ec_device *ec_dev;
    920
    921	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
    922	ec_dev = sensorhub->ec->ec_dev;
    923
    924	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
    925		return NOTIFY_DONE;
    926
    927	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
    928		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
    929		return NOTIFY_DONE;
    930	}
    931
    932	if (queued_during_suspend)
    933		return NOTIFY_OK;
    934
    935	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
    936	       sizeof(*sensorhub->fifo_info));
    937	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
    938		ec_dev->last_event_time;
    939	cros_ec_sensorhub_ring_handler(sensorhub);
    940
    941	return NOTIFY_OK;
    942}
    943
    944/**
    945 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
    946 *				       supports it.
    947 *
    948 * @sensorhub : Sensor Hub object.
    949 *
    950 * Return: 0 on success.
    951 */
    952int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
    953{
    954	int fifo_info_length =
    955		sizeof(struct ec_response_motion_sense_fifo_info) +
    956		sizeof(u16) * sensorhub->sensor_num;
    957
    958	/* Allocate the array for lost events. */
    959	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
    960					    GFP_KERNEL);
    961	if (!sensorhub->fifo_info)
    962		return -ENOMEM;
    963
    964	/*
    965	 * Allocate the callback area based on the number of sensors.
    966	 * Add one for the sensor ring.
    967	 */
    968	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
    969			sensorhub->sensor_num,
    970			sizeof(*sensorhub->push_data),
    971			GFP_KERNEL);
    972	if (!sensorhub->push_data)
    973		return -ENOMEM;
    974
    975	sensorhub->tight_timestamps = cros_ec_check_features(
    976			sensorhub->ec,
    977			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
    978
    979	if (sensorhub->tight_timestamps) {
    980		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
    981				sensorhub->sensor_num,
    982				sizeof(*sensorhub->batch_state),
    983				GFP_KERNEL);
    984		if (!sensorhub->batch_state)
    985			return -ENOMEM;
    986	}
    987
    988	return 0;
    989}
    990
    991/**
    992 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
    993 *				  supports it.
    994 *
    995 * @sensorhub : Sensor Hub object.
    996 *
    997 * Return: 0 on success.
    998 */
    999int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
   1000{
   1001	struct cros_ec_dev *ec = sensorhub->ec;
   1002	int ret;
   1003	int fifo_info_length =
   1004		sizeof(struct ec_response_motion_sense_fifo_info) +
   1005		sizeof(u16) * sensorhub->sensor_num;
   1006
   1007	/* Retrieve FIFO information */
   1008	sensorhub->msg->version = 2;
   1009	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
   1010	sensorhub->msg->outsize = 1;
   1011	sensorhub->msg->insize = fifo_info_length;
   1012
   1013	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
   1014	if (ret < 0)
   1015		return ret;
   1016
   1017	/*
   1018	 * Allocate the full fifo. We need to copy the whole FIFO to set
   1019	 * timestamps properly.
   1020	 */
   1021	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
   1022	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
   1023				       sizeof(*sensorhub->ring), GFP_KERNEL);
   1024	if (!sensorhub->ring)
   1025		return -ENOMEM;
   1026
   1027	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
   1028		cros_ec_get_time_ns();
   1029
   1030	/* Register the notifier that will act as a top half interrupt. */
   1031	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
   1032	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
   1033					       &sensorhub->notifier);
   1034	if (ret < 0)
   1035		return ret;
   1036
   1037	/* Start collection samples. */
   1038	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
   1039}
   1040
   1041void cros_ec_sensorhub_ring_remove(void *arg)
   1042{
   1043	struct cros_ec_sensorhub *sensorhub = arg;
   1044	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
   1045
   1046	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
   1047	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
   1048	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
   1049					   &sensorhub->notifier);
   1050}