cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bd99954-charger.c (29911B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * ROHM BD99954 charger driver
      4 *
      5 * Copyright (C) 2020 Rohm Semiconductors
      6 *	Originally written by:
      7 *		Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
      8 *		Markus Laine <markus.laine@fi.rohmeurope.com>
      9 *	Bugs added by:
     10 *		Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
     11 */
     12
     13/*
     14 *   The battery charging profile of BD99954.
     15 *
     16 *   Curve (1) represents charging current.
     17 *   Curve (2) represents battery voltage.
     18 *
     19 *   The BD99954 data sheet divides charging to three phases.
     20 *   a) Trickle-charge with constant current (8).
     21 *   b) pre-charge with constant current (6)
     22 *   c) fast-charge, first with constant current (5) phase. After
     23 *      the battery voltage has reached target level (4) we have constant
     24 *      voltage phase until charging current has dropped to termination
     25 *      level (7)
     26 *
     27 *    V ^                                                        ^ I
     28 *      .                                                        .
     29 *      .                                                        .
     30 *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
     31 *      .                           :/                           .
     32 *      .                     o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
     33 *      .                     +   ::  +                          .
     34 *      .                     +  /-   --                         .
     35 *      .                     +`/-     +                         .
     36 *      .                     o/-      -:                        .
     37 *      .                    .s.        +`                       .
     38 *      .                  .--+         `/                       .
     39 *      .               ..``  +          .:                      .
     40 *      .             -`      +           --                     .
     41 *      .    (2)  ...``       +            :-                    .
     42 *      .    ...``            +             -:                   .
     43 *(3)` `.`.""  ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
     44 *      .             +                       `:.                .
     45 *      .             +                         -:               .
     46 *      .             +                           -:.            .
     47 *      .             +                             .--.         .
     48 *      .   (1)       +                                `.+` ` ` `.` ` (7)
     49 *      -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
     50 *      .                                                +       -
     51 *      -------------------------------------------------+++++++++-->
     52 *      |   trickle   |  pre  |          fast            |
     53 *
     54 * Details of DT properties for different limits can be found from BD99954
     55 * device tree binding documentation.
     56 */
     57
     58#include <linux/delay.h>
     59#include <linux/gpio/consumer.h>
     60#include <linux/interrupt.h>
     61#include <linux/i2c.h>
     62#include <linux/kernel.h>
     63#include <linux/linear_range.h>
     64#include <linux/module.h>
     65#include <linux/mod_devicetable.h>
     66#include <linux/power_supply.h>
     67#include <linux/property.h>
     68#include <linux/regmap.h>
     69#include <linux/types.h>
     70
     71#include "bd99954-charger.h"
     72
     73struct battery_data {
     74	u16 precharge_current;	/* Trickle-charge Current */
     75	u16 fc_reg_voltage;	/* Fast Charging Regulation Voltage */
     76	u16 voltage_min;
     77	u16 voltage_max;
     78};
     79
     80/* Initial field values, converted to initial register values */
     81struct bd9995x_init_data {
     82	u16 vsysreg_set;	/* VSYS Regulation Setting */
     83	u16 ibus_lim_set;	/* VBUS input current limitation */
     84	u16 icc_lim_set;	/* VCC/VACP Input Current Limit Setting */
     85	u16 itrich_set;		/* Trickle-charge Current Setting */
     86	u16 iprech_set;		/* Pre-Charge Current Setting */
     87	u16 ichg_set;		/* Fast-Charge constant current */
     88	u16 vfastchg_reg_set1;	/* Fast Charging Regulation Voltage */
     89	u16 vprechg_th_set;	/* Pre-charge Voltage Threshold Setting */
     90	u16 vrechg_set;		/* Re-charge Battery Voltage Setting */
     91	u16 vbatovp_set;	/* Battery Over Voltage Threshold Setting */
     92	u16 iterm_set;		/* Charging termination current */
     93};
     94
     95struct bd9995x_state {
     96	u8 online;
     97	u16 chgstm_status;
     98	u16 vbat_vsys_status;
     99	u16 vbus_vcc_status;
    100};
    101
    102struct bd9995x_device {
    103	struct i2c_client *client;
    104	struct device *dev;
    105	struct power_supply *charger;
    106
    107	struct regmap *rmap;
    108	struct regmap_field *rmap_fields[F_MAX_FIELDS];
    109
    110	int chip_id;
    111	int chip_rev;
    112	struct bd9995x_init_data init_data;
    113	struct bd9995x_state state;
    114
    115	struct mutex lock; /* Protect state data */
    116};
    117
    118static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
    119	regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
    120	regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
    121	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
    122	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
    123	regmap_reg_range(CHIP_ID, CHIP_REV),
    124	regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
    125	regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
    126	regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
    127};
    128
    129static const struct regmap_access_table bd9995x_writeable_regs = {
    130	.no_ranges = bd9995x_readonly_reg_ranges,
    131	.n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
    132};
    133
    134static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
    135	regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
    136	regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
    137	regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
    138	regmap_reg_range(INT0_STATUS, INT7_STATUS),
    139	regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
    140	regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
    141};
    142
    143static const struct regmap_access_table bd9995x_volatile_regs = {
    144	.yes_ranges = bd9995x_volatile_reg_ranges,
    145	.n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
    146};
    147
    148static const struct regmap_range_cfg regmap_range_cfg[] = {
    149	{
    150	.selector_reg     = MAP_SET,
    151	.selector_mask    = 0xFFFF,
    152	.selector_shift   = 0,
    153	.window_start     = 0,
    154	.window_len       = 0x100,
    155	.range_min        = 0 * 0x100,
    156	.range_max        = 3 * 0x100,
    157	},
    158};
    159
    160static const struct regmap_config bd9995x_regmap_config = {
    161	.reg_bits = 8,
    162	.val_bits = 16,
    163	.reg_stride = 1,
    164
    165	.max_register = 3 * 0x100,
    166	.cache_type = REGCACHE_RBTREE,
    167
    168	.ranges = regmap_range_cfg,
    169	.num_ranges = ARRAY_SIZE(regmap_range_cfg),
    170	.val_format_endian = REGMAP_ENDIAN_LITTLE,
    171	.wr_table = &bd9995x_writeable_regs,
    172	.volatile_table = &bd9995x_volatile_regs,
    173};
    174
    175enum bd9995x_chrg_fault {
    176	CHRG_FAULT_NORMAL,
    177	CHRG_FAULT_INPUT,
    178	CHRG_FAULT_THERMAL_SHUTDOWN,
    179	CHRG_FAULT_TIMER_EXPIRED,
    180};
    181
    182static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
    183{
    184	int ret, tmp;
    185
    186	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
    187	if (ret)
    188		return POWER_SUPPLY_HEALTH_UNKNOWN;
    189
    190	/* TODO: Check these against datasheet page 34 */
    191
    192	switch (tmp) {
    193	case ROOM:
    194		return POWER_SUPPLY_HEALTH_GOOD;
    195	case HOT1:
    196	case HOT2:
    197	case HOT3:
    198		return POWER_SUPPLY_HEALTH_OVERHEAT;
    199	case COLD1:
    200	case COLD2:
    201		return POWER_SUPPLY_HEALTH_COLD;
    202	case TEMP_DIS:
    203	case BATT_OPEN:
    204	default:
    205		return POWER_SUPPLY_HEALTH_UNKNOWN;
    206	}
    207}
    208
    209static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
    210{
    211	int ret, tmp;
    212
    213	ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
    214	if (ret)
    215		return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
    216
    217	switch (tmp) {
    218	case CHGSTM_TRICKLE_CHARGE:
    219	case CHGSTM_PRE_CHARGE:
    220		return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
    221	case CHGSTM_FAST_CHARGE:
    222		return POWER_SUPPLY_CHARGE_TYPE_FAST;
    223	case CHGSTM_TOP_OFF:
    224	case CHGSTM_DONE:
    225	case CHGSTM_SUSPEND:
    226		return POWER_SUPPLY_CHARGE_TYPE_NONE;
    227	default: /* Rest of the states are error related, no charging */
    228		return POWER_SUPPLY_CHARGE_TYPE_NONE;
    229	}
    230}
    231
    232static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
    233{
    234	int ret, tmp;
    235
    236	ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
    237	if (ret)
    238		return false;
    239
    240	return tmp != BATT_OPEN;
    241}
    242
    243static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
    244{
    245	int ret, tmp;
    246
    247	ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
    248	if (ret)
    249		return 0;
    250
    251	tmp = min(tmp, 19200);
    252
    253	return tmp * 1000;
    254}
    255
    256static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
    257{
    258	int ret, tmp;
    259
    260	ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
    261	if (ret)
    262		return 0;
    263
    264	return tmp * 1000;
    265}
    266
    267#define DEFAULT_BATTERY_TEMPERATURE 250
    268
    269static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
    270{
    271	int ret, tmp;
    272
    273	ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
    274	if (ret)
    275		return DEFAULT_BATTERY_TEMPERATURE;
    276
    277	return (200 - tmp) * 10;
    278}
    279
    280static int bd9995x_power_supply_get_property(struct power_supply *psy,
    281					     enum power_supply_property psp,
    282					     union power_supply_propval *val)
    283{
    284	int ret, tmp;
    285	struct bd9995x_device *bd = power_supply_get_drvdata(psy);
    286	struct bd9995x_state state;
    287
    288	mutex_lock(&bd->lock);
    289	state = bd->state;
    290	mutex_unlock(&bd->lock);
    291
    292	switch (psp) {
    293	case POWER_SUPPLY_PROP_STATUS:
    294		switch (state.chgstm_status) {
    295		case CHGSTM_TRICKLE_CHARGE:
    296		case CHGSTM_PRE_CHARGE:
    297		case CHGSTM_FAST_CHARGE:
    298		case CHGSTM_TOP_OFF:
    299			val->intval = POWER_SUPPLY_STATUS_CHARGING;
    300			break;
    301
    302		case CHGSTM_DONE:
    303			val->intval = POWER_SUPPLY_STATUS_FULL;
    304			break;
    305
    306		case CHGSTM_SUSPEND:
    307		case CHGSTM_TEMPERATURE_ERROR_1:
    308		case CHGSTM_TEMPERATURE_ERROR_2:
    309		case CHGSTM_TEMPERATURE_ERROR_3:
    310		case CHGSTM_TEMPERATURE_ERROR_4:
    311		case CHGSTM_TEMPERATURE_ERROR_5:
    312		case CHGSTM_TEMPERATURE_ERROR_6:
    313		case CHGSTM_TEMPERATURE_ERROR_7:
    314		case CHGSTM_THERMAL_SHUT_DOWN_1:
    315		case CHGSTM_THERMAL_SHUT_DOWN_2:
    316		case CHGSTM_THERMAL_SHUT_DOWN_3:
    317		case CHGSTM_THERMAL_SHUT_DOWN_4:
    318		case CHGSTM_THERMAL_SHUT_DOWN_5:
    319		case CHGSTM_THERMAL_SHUT_DOWN_6:
    320		case CHGSTM_THERMAL_SHUT_DOWN_7:
    321		case CHGSTM_BATTERY_ERROR:
    322			val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
    323			break;
    324
    325		default:
    326			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
    327			break;
    328		}
    329		break;
    330
    331	case POWER_SUPPLY_PROP_MANUFACTURER:
    332		val->strval = BD9995X_MANUFACTURER;
    333		break;
    334
    335	case POWER_SUPPLY_PROP_ONLINE:
    336		val->intval = state.online;
    337		break;
    338
    339	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
    340		ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
    341		if (ret)
    342			return ret;
    343		val->intval = tmp * 1000;
    344		break;
    345
    346	case POWER_SUPPLY_PROP_CHARGE_AVG:
    347		ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
    348		if (ret)
    349			return ret;
    350		val->intval = tmp * 1000;
    351		break;
    352
    353	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
    354		/*
    355		 * Currently the DT uses this property to give the
    356		 * target current for fast-charging constant current phase.
    357		 * I think it is correct in a sense.
    358		 *
    359		 * Yet, this prop we read and return here is the programmed
    360		 * safety limit for combined input currents. This feels
    361		 * also correct in a sense.
    362		 *
    363		 * However, this results a mismatch to DT value and value
    364		 * read from sysfs.
    365		 */
    366		ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
    367		if (ret)
    368			return ret;
    369		val->intval = tmp * 1000;
    370		break;
    371
    372	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
    373		if (!state.online) {
    374			val->intval = 0;
    375			break;
    376		}
    377
    378		ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
    379					&tmp);
    380		if (ret)
    381			return ret;
    382
    383		/*
    384		 * The actual range : 2560 to 19200 mV. No matter what the
    385		 * register says
    386		 */
    387		val->intval = clamp_val(tmp << 4, 2560, 19200);
    388		val->intval *= 1000;
    389		break;
    390
    391	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
    392		ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
    393		if (ret)
    394			return ret;
    395		/* Start step is 64 mA */
    396		val->intval = tmp << 6;
    397		/* Maximum is 1024 mA - no matter what register says */
    398		val->intval = min(val->intval, 1024);
    399		val->intval *= 1000;
    400		break;
    401
    402	/* Battery properties which we access through charger */
    403	case POWER_SUPPLY_PROP_PRESENT:
    404		val->intval = bd9995x_get_prop_batt_present(bd);
    405		break;
    406
    407	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
    408		val->intval = bd9995x_get_prop_batt_voltage(bd);
    409		break;
    410
    411	case POWER_SUPPLY_PROP_CURRENT_NOW:
    412		val->intval = bd9995x_get_prop_batt_current(bd);
    413		break;
    414
    415	case POWER_SUPPLY_PROP_CHARGE_TYPE:
    416		val->intval = bd9995x_get_prop_charge_type(bd);
    417		break;
    418
    419	case POWER_SUPPLY_PROP_HEALTH:
    420		val->intval = bd9995x_get_prop_batt_health(bd);
    421		break;
    422
    423	case POWER_SUPPLY_PROP_TEMP:
    424		val->intval = bd9995x_get_prop_batt_temp(bd);
    425		break;
    426
    427	case POWER_SUPPLY_PROP_TECHNOLOGY:
    428		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
    429		break;
    430
    431	case POWER_SUPPLY_PROP_MODEL_NAME:
    432		val->strval = "bd99954";
    433		break;
    434
    435	default:
    436		return -EINVAL;
    437
    438	}
    439
    440	return 0;
    441}
    442
    443static int bd9995x_get_chip_state(struct bd9995x_device *bd,
    444				  struct bd9995x_state *state)
    445{
    446	int i, ret, tmp;
    447	struct {
    448		struct regmap_field *id;
    449		u16 *data;
    450	} state_fields[] = {
    451		{
    452			bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
    453		}, {
    454			bd->rmap_fields[F_VBAT_VSYS_STATUS],
    455			&state->vbat_vsys_status,
    456		}, {
    457			bd->rmap_fields[F_VBUS_VCC_STATUS],
    458			&state->vbus_vcc_status,
    459		},
    460	};
    461
    462
    463	for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
    464		ret = regmap_field_read(state_fields[i].id, &tmp);
    465		if (ret)
    466			return ret;
    467
    468		*state_fields[i].data = tmp;
    469	}
    470
    471	if (state->vbus_vcc_status & STATUS_VCC_DET ||
    472	    state->vbus_vcc_status & STATUS_VBUS_DET)
    473		state->online = 1;
    474	else
    475		state->online = 0;
    476
    477	return 0;
    478}
    479
    480static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
    481{
    482	struct bd9995x_device *bd = private;
    483	int ret, status, mask, i;
    484	unsigned long tmp;
    485	struct bd9995x_state state;
    486
    487	/*
    488	 * The bd9995x does not seem to generate big amount of interrupts.
    489	 * The logic regarding which interrupts can cause relevant
    490	 * status changes seem to be pretty complex.
    491	 *
    492	 * So lets implement really simple and hopefully bullet-proof handler:
    493	 * It does not really matter which IRQ we handle, we just go and
    494	 * re-read all interesting statuses + give the framework a nudge.
    495	 *
    496	 * Other option would be building a _complex_ and error prone logic
    497	 * trying to decide what could have been changed (resulting this IRQ
    498	 * we are now handling). During the normal operation the BD99954 does
    499	 * not seem to be generating much of interrupts so benefit from such
    500	 * logic would probably be minimal.
    501	 */
    502
    503	ret = regmap_read(bd->rmap, INT0_STATUS, &status);
    504	if (ret) {
    505		dev_err(bd->dev, "Failed to read IRQ status\n");
    506		return IRQ_NONE;
    507	}
    508
    509	ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
    510	if (ret) {
    511		dev_err(bd->dev, "Failed to read IRQ mask\n");
    512		return IRQ_NONE;
    513	}
    514
    515	/* Handle only IRQs that are not masked */
    516	status &= mask;
    517	tmp = status;
    518
    519	/* Lowest bit does not represent any sub-registers */
    520	tmp >>= 1;
    521
    522	/*
    523	 * Mask and ack IRQs we will handle (+ the idiot bit)
    524	 */
    525	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
    526	if (ret) {
    527		dev_err(bd->dev, "Failed to mask F_INT0\n");
    528		return IRQ_NONE;
    529	}
    530
    531	ret = regmap_write(bd->rmap, INT0_STATUS, status);
    532	if (ret) {
    533		dev_err(bd->dev, "Failed to ack F_INT0\n");
    534		goto err_umask;
    535	}
    536
    537	for_each_set_bit(i, &tmp, 7) {
    538		int sub_status, sub_mask;
    539		int sub_status_reg[] = {
    540			INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
    541			INT5_STATUS, INT6_STATUS, INT7_STATUS,
    542		};
    543		struct regmap_field *sub_mask_f[] = {
    544			bd->rmap_fields[F_INT1_SET],
    545			bd->rmap_fields[F_INT2_SET],
    546			bd->rmap_fields[F_INT3_SET],
    547			bd->rmap_fields[F_INT4_SET],
    548			bd->rmap_fields[F_INT5_SET],
    549			bd->rmap_fields[F_INT6_SET],
    550			bd->rmap_fields[F_INT7_SET],
    551		};
    552
    553		/* Clear sub IRQs */
    554		ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
    555		if (ret) {
    556			dev_err(bd->dev, "Failed to read IRQ sub-status\n");
    557			goto err_umask;
    558		}
    559
    560		ret = regmap_field_read(sub_mask_f[i], &sub_mask);
    561		if (ret) {
    562			dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
    563			goto err_umask;
    564		}
    565
    566		/* Ack active sub-statuses */
    567		sub_status &= sub_mask;
    568
    569		ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
    570		if (ret) {
    571			dev_err(bd->dev, "Failed to ack sub-IRQ\n");
    572			goto err_umask;
    573		}
    574	}
    575
    576	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
    577	if (ret)
    578		/* May as well retry once */
    579		goto err_umask;
    580
    581	/* Read whole chip state */
    582	ret = bd9995x_get_chip_state(bd, &state);
    583	if (ret < 0) {
    584		dev_err(bd->dev, "Failed to read chip state\n");
    585	} else {
    586		mutex_lock(&bd->lock);
    587		bd->state = state;
    588		mutex_unlock(&bd->lock);
    589
    590		power_supply_changed(bd->charger);
    591	}
    592
    593	return IRQ_HANDLED;
    594
    595err_umask:
    596	ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
    597	if (ret)
    598		dev_err(bd->dev,
    599		"Failed to un-mask F_INT0 - IRQ permanently disabled\n");
    600
    601	return IRQ_NONE;
    602}
    603
    604static int __bd9995x_chip_reset(struct bd9995x_device *bd)
    605{
    606	int ret, state;
    607	int rst_check_counter = 10;
    608	u16 tmp = ALLRST | OTPLD;
    609
    610	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
    611	if (ret < 0)
    612		return ret;
    613
    614	do {
    615		ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
    616		if (ret)
    617			return ret;
    618
    619		msleep(10);
    620	} while (state == 0 && --rst_check_counter);
    621
    622	if (!rst_check_counter) {
    623		dev_err(bd->dev, "chip reset not completed\n");
    624		return -ETIMEDOUT;
    625	}
    626
    627	tmp = 0;
    628	ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
    629
    630	return ret;
    631}
    632
    633static int bd9995x_hw_init(struct bd9995x_device *bd)
    634{
    635	int ret;
    636	int i;
    637	struct bd9995x_state state;
    638	struct bd9995x_init_data *id = &bd->init_data;
    639
    640	const struct {
    641		enum bd9995x_fields id;
    642		u16 value;
    643	} init_data[] = {
    644		/* Enable the charging trigger after SDP charger attached */
    645		{F_SDP_CHG_TRIG_EN,	1},
    646		/* Enable charging trigger after SDP charger attached */
    647		{F_SDP_CHG_TRIG,	1},
    648		/* Disable charging trigger by BC1.2 detection */
    649		{F_VBUS_BC_DISEN,	1},
    650		/* Disable charging trigger by BC1.2 detection */
    651		{F_VCC_BC_DISEN,	1},
    652		/* Disable automatic limitation of the input current */
    653		{F_ILIM_AUTO_DISEN,	1},
    654		/* Select current limitation when SDP charger attached*/
    655		{F_SDP_500_SEL,		1},
    656		/* Select current limitation when DCP charger attached */
    657		{F_DCP_2500_SEL,	1},
    658		{F_VSYSREG_SET,		id->vsysreg_set},
    659		/* Activate USB charging and DC/DC converter */
    660		{F_USB_SUS,		0},
    661		/* DCDC clock: 1200 kHz*/
    662		{F_DCDC_CLK_SEL,	3},
    663		/* Enable charging */
    664		{F_CHG_EN,		1},
    665		/* Disable Input current Limit setting voltage measurement */
    666		{F_EXTIADPEN,		0},
    667		/* Disable input current limiting */
    668		{F_VSYS_PRIORITY,	1},
    669		{F_IBUS_LIM_SET,	id->ibus_lim_set},
    670		{F_ICC_LIM_SET,		id->icc_lim_set},
    671		/* Charge Termination Current Setting to 0*/
    672		{F_ITERM_SET,		id->iterm_set},
    673		/* Trickle-charge Current Setting */
    674		{F_ITRICH_SET,		id->itrich_set},
    675		/* Pre-charge Current setting */
    676		{F_IPRECH_SET,		id->iprech_set},
    677		/* Fast Charge Current for constant current phase */
    678		{F_ICHG_SET,		id->ichg_set},
    679		/* Fast Charge Voltage Regulation Setting */
    680		{F_VFASTCHG_REG_SET1,	id->vfastchg_reg_set1},
    681		/* Set Pre-charge Voltage Threshold for trickle charging. */
    682		{F_VPRECHG_TH_SET,	id->vprechg_th_set},
    683		{F_VRECHG_SET,		id->vrechg_set},
    684		{F_VBATOVP_SET,		id->vbatovp_set},
    685		/* Reverse buck boost voltage Setting */
    686		{F_VRBOOST_SET,		0},
    687		/* Disable fast-charging watchdog */
    688		{F_WDT_FST,		0},
    689		/* Disable pre-charging watchdog */
    690		{F_WDT_PRE,		0},
    691		/* Power save off */
    692		{F_POWER_SAVE_MODE,	0},
    693		{F_INT1_SET,		INT1_ALL},
    694		{F_INT2_SET,		INT2_ALL},
    695		{F_INT3_SET,		INT3_ALL},
    696		{F_INT4_SET,		INT4_ALL},
    697		{F_INT5_SET,		INT5_ALL},
    698		{F_INT6_SET,		INT6_ALL},
    699		{F_INT7_SET,		INT7_ALL},
    700	};
    701
    702	/*
    703	 * Currently we initialize charger to a known state at startup.
    704	 * If we want to allow for example the boot code to initialize
    705	 * charger we should get rid of this.
    706	 */
    707	ret = __bd9995x_chip_reset(bd);
    708	if (ret < 0)
    709		return ret;
    710
    711	/* Initialize currents/voltages and other parameters */
    712	for (i = 0; i < ARRAY_SIZE(init_data); i++) {
    713		ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
    714					 init_data[i].value);
    715		if (ret) {
    716			dev_err(bd->dev, "failed to initialize charger (%d)\n",
    717				ret);
    718			return ret;
    719		}
    720	}
    721
    722	ret = bd9995x_get_chip_state(bd, &state);
    723	if (ret < 0)
    724		return ret;
    725
    726	mutex_lock(&bd->lock);
    727	bd->state = state;
    728	mutex_unlock(&bd->lock);
    729
    730	return 0;
    731}
    732
    733static enum power_supply_property bd9995x_power_supply_props[] = {
    734	POWER_SUPPLY_PROP_MANUFACTURER,
    735	POWER_SUPPLY_PROP_STATUS,
    736	POWER_SUPPLY_PROP_ONLINE,
    737	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
    738	POWER_SUPPLY_PROP_CHARGE_AVG,
    739	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
    740	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
    741	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
    742	/* Battery props we access through charger */
    743	POWER_SUPPLY_PROP_PRESENT,
    744	POWER_SUPPLY_PROP_VOLTAGE_NOW,
    745	POWER_SUPPLY_PROP_CURRENT_NOW,
    746	POWER_SUPPLY_PROP_CHARGE_TYPE,
    747	POWER_SUPPLY_PROP_HEALTH,
    748	POWER_SUPPLY_PROP_TEMP,
    749	POWER_SUPPLY_PROP_TECHNOLOGY,
    750	POWER_SUPPLY_PROP_MODEL_NAME,
    751};
    752
    753static const struct power_supply_desc bd9995x_power_supply_desc = {
    754	.name = "bd9995x-charger",
    755	.type = POWER_SUPPLY_TYPE_USB,
    756	.properties = bd9995x_power_supply_props,
    757	.num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
    758	.get_property = bd9995x_power_supply_get_property,
    759};
    760
    761/*
    762 * Limit configurations for vbus-input-current and vcc-vacp-input-current
    763 * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
    764 * configured by writing a register so that each increment in register
    765 * value equals to 32000 uA limit increment.
    766 *
    767 * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
    768 * Describe the setting in linear_range table.
    769 */
    770static const struct linear_range input_current_limit_ranges[] = {
    771	{
    772		.min = 0,
    773		.step = 32000,
    774		.min_sel = 0x0,
    775		.max_sel = 0x1ff,
    776	},
    777};
    778
    779/* Possible trickle, pre-charging and termination current values */
    780static const struct linear_range charging_current_ranges[] = {
    781	{
    782		.min = 0,
    783		.step = 64000,
    784		.min_sel = 0x0,
    785		.max_sel = 0x10,
    786	}, {
    787		.min = 1024000,
    788		.step = 0,
    789		.min_sel = 0x11,
    790		.max_sel = 0x1f,
    791	},
    792};
    793
    794/*
    795 * Fast charging voltage regulation, starting re-charging limit
    796 * and battery over voltage protection have same possible values
    797 */
    798static const struct linear_range charge_voltage_regulation_ranges[] = {
    799	{
    800		.min = 2560000,
    801		.step = 0,
    802		.min_sel = 0,
    803		.max_sel = 0xA0,
    804	}, {
    805		.min = 2560000,
    806		.step = 16000,
    807		.min_sel = 0xA0,
    808		.max_sel = 0x4B0,
    809	}, {
    810		.min = 19200000,
    811		.step = 0,
    812		.min_sel = 0x4B0,
    813		.max_sel = 0x7FF,
    814	},
    815};
    816
    817/* Possible VSYS voltage regulation values */
    818static const struct linear_range vsys_voltage_regulation_ranges[] = {
    819	{
    820		.min = 2560000,
    821		.step = 0,
    822		.min_sel = 0,
    823		.max_sel = 0x28,
    824	}, {
    825		.min = 2560000,
    826		.step = 64000,
    827		.min_sel = 0x28,
    828		.max_sel = 0x12C,
    829	}, {
    830		.min = 19200000,
    831		.step = 0,
    832		.min_sel = 0x12C,
    833		.max_sel = 0x1FF,
    834	},
    835};
    836
    837/* Possible settings for switching from trickle to pre-charging limits */
    838static const struct linear_range trickle_to_pre_threshold_ranges[] = {
    839	{
    840		.min = 2048000,
    841		.step = 0,
    842		.min_sel = 0,
    843		.max_sel = 0x20,
    844	}, {
    845		.min = 2048000,
    846		.step = 64000,
    847		.min_sel = 0x20,
    848		.max_sel = 0x12C,
    849	}, {
    850		.min = 19200000,
    851		.step = 0,
    852		.min_sel = 0x12C,
    853		.max_sel = 0x1FF
    854	}
    855};
    856
    857/* Possible current values for fast-charging constant current phase */
    858static const struct linear_range fast_charge_current_ranges[] = {
    859	{
    860		.min = 0,
    861		.step = 64000,
    862		.min_sel = 0,
    863		.max_sel = 0xFF,
    864	}
    865};
    866
    867struct battery_init {
    868	const char *name;
    869	int *info_data;
    870	const struct linear_range *range;
    871	int ranges;
    872	u16 *data;
    873};
    874
    875struct dt_init {
    876	char *prop;
    877	const struct linear_range *range;
    878	int ranges;
    879	u16 *data;
    880};
    881
    882static int bd9995x_fw_probe(struct bd9995x_device *bd)
    883{
    884	int ret;
    885	struct power_supply_battery_info *info;
    886	u32 property;
    887	int i;
    888	int regval;
    889	bool found;
    890	struct bd9995x_init_data *init = &bd->init_data;
    891	struct battery_init battery_inits[] = {
    892		{
    893			.name = "trickle-charging current",
    894			.range = &charging_current_ranges[0],
    895			.ranges = 2,
    896			.data = &init->itrich_set,
    897		}, {
    898			.name = "pre-charging current",
    899			.range = &charging_current_ranges[0],
    900			.ranges = 2,
    901			.data = &init->iprech_set,
    902		}, {
    903			.name = "pre-to-trickle charge voltage threshold",
    904			.range = &trickle_to_pre_threshold_ranges[0],
    905			.ranges = 2,
    906			.data = &init->vprechg_th_set,
    907		}, {
    908			.name = "charging termination current",
    909			.range = &charging_current_ranges[0],
    910			.ranges = 2,
    911			.data = &init->iterm_set,
    912		}, {
    913			.name = "charging re-start voltage",
    914			.range = &charge_voltage_regulation_ranges[0],
    915			.ranges = 2,
    916			.data = &init->vrechg_set,
    917		}, {
    918			.name = "battery overvoltage limit",
    919			.range = &charge_voltage_regulation_ranges[0],
    920			.ranges = 2,
    921			.data = &init->vbatovp_set,
    922		}, {
    923			.name = "fast-charging max current",
    924			.range = &fast_charge_current_ranges[0],
    925			.ranges = 1,
    926			.data = &init->ichg_set,
    927		}, {
    928			.name = "fast-charging voltage",
    929			.range = &charge_voltage_regulation_ranges[0],
    930			.ranges = 2,
    931			.data = &init->vfastchg_reg_set1,
    932		},
    933	};
    934	struct dt_init props[] = {
    935		{
    936			.prop = "rohm,vsys-regulation-microvolt",
    937			.range = &vsys_voltage_regulation_ranges[0],
    938			.ranges = 2,
    939			.data = &init->vsysreg_set,
    940		}, {
    941			.prop = "rohm,vbus-input-current-limit-microamp",
    942			.range = &input_current_limit_ranges[0],
    943			.ranges = 1,
    944			.data = &init->ibus_lim_set,
    945		}, {
    946			.prop = "rohm,vcc-input-current-limit-microamp",
    947			.range = &input_current_limit_ranges[0],
    948			.ranges = 1,
    949			.data = &init->icc_lim_set,
    950		},
    951	};
    952
    953	/*
    954	 * The power_supply_get_battery_info() does not support getting values
    955	 * from ACPI. Let's fix it if ACPI is required here.
    956	 */
    957	ret = power_supply_get_battery_info(bd->charger, &info);
    958	if (ret < 0)
    959		return ret;
    960
    961	/* Put pointers to the generic battery info */
    962	battery_inits[0].info_data = &info->tricklecharge_current_ua;
    963	battery_inits[1].info_data = &info->precharge_current_ua;
    964	battery_inits[2].info_data = &info->precharge_voltage_max_uv;
    965	battery_inits[3].info_data = &info->charge_term_current_ua;
    966	battery_inits[4].info_data = &info->charge_restart_voltage_uv;
    967	battery_inits[5].info_data = &info->overvoltage_limit_uv;
    968	battery_inits[6].info_data = &info->constant_charge_current_max_ua;
    969	battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
    970
    971	for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
    972		int val = *battery_inits[i].info_data;
    973		const struct linear_range *range = battery_inits[i].range;
    974		int ranges = battery_inits[i].ranges;
    975
    976		if (val == -EINVAL)
    977			continue;
    978
    979		ret = linear_range_get_selector_low_array(range, ranges, val,
    980							  &regval, &found);
    981		if (ret) {
    982			dev_err(bd->dev, "Unsupported value for %s\n",
    983				battery_inits[i].name);
    984
    985			power_supply_put_battery_info(bd->charger, info);
    986			return -EINVAL;
    987		}
    988		if (!found) {
    989			dev_warn(bd->dev,
    990				 "Unsupported value for %s - using smaller\n",
    991				 battery_inits[i].name);
    992		}
    993		*(battery_inits[i].data) = regval;
    994	}
    995
    996	power_supply_put_battery_info(bd->charger, info);
    997
    998	for (i = 0; i < ARRAY_SIZE(props); i++) {
    999		ret = device_property_read_u32(bd->dev, props[i].prop,
   1000					       &property);
   1001		if (ret < 0) {
   1002			dev_err(bd->dev, "failed to read %s", props[i].prop);
   1003
   1004			return ret;
   1005		}
   1006
   1007		ret = linear_range_get_selector_low_array(props[i].range,
   1008							  props[i].ranges,
   1009							  property, &regval,
   1010							  &found);
   1011		if (ret) {
   1012			dev_err(bd->dev, "Unsupported value for '%s'\n",
   1013				props[i].prop);
   1014
   1015			return -EINVAL;
   1016		}
   1017
   1018		if (!found) {
   1019			dev_warn(bd->dev,
   1020				 "Unsupported value for '%s' - using smaller\n",
   1021				 props[i].prop);
   1022		}
   1023
   1024		*(props[i].data) = regval;
   1025	}
   1026
   1027	return 0;
   1028}
   1029
   1030static void bd9995x_chip_reset(void *bd)
   1031{
   1032	__bd9995x_chip_reset(bd);
   1033}
   1034
   1035static int bd9995x_probe(struct i2c_client *client)
   1036{
   1037	struct device *dev = &client->dev;
   1038	struct bd9995x_device *bd;
   1039	struct power_supply_config psy_cfg = {};
   1040	int ret;
   1041	int i;
   1042
   1043	bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
   1044	if (!bd)
   1045		return -ENOMEM;
   1046
   1047	bd->client = client;
   1048	bd->dev = dev;
   1049	psy_cfg.drv_data = bd;
   1050	psy_cfg.of_node = dev->of_node;
   1051
   1052	mutex_init(&bd->lock);
   1053
   1054	bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
   1055	if (IS_ERR(bd->rmap)) {
   1056		dev_err(dev, "Failed to setup register access via i2c\n");
   1057		return PTR_ERR(bd->rmap);
   1058	}
   1059
   1060	for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
   1061		const struct reg_field *reg_fields = bd9995x_reg_fields;
   1062
   1063		bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
   1064							     reg_fields[i]);
   1065		if (IS_ERR(bd->rmap_fields[i])) {
   1066			dev_err(dev, "cannot allocate regmap field\n");
   1067			return PTR_ERR(bd->rmap_fields[i]);
   1068		}
   1069	}
   1070
   1071	i2c_set_clientdata(client, bd);
   1072
   1073	ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
   1074	if (ret) {
   1075		dev_err(dev, "Cannot read chip ID.\n");
   1076		return ret;
   1077	}
   1078
   1079	if (bd->chip_id != BD99954_ID) {
   1080		dev_err(dev, "Chip with ID=0x%x, not supported!\n",
   1081			bd->chip_id);
   1082		return -ENODEV;
   1083	}
   1084
   1085	ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
   1086	if (ret) {
   1087		dev_err(dev, "Cannot read revision.\n");
   1088		return ret;
   1089	}
   1090
   1091	dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
   1092
   1093	/*
   1094	 * We need to init the psy before we can call
   1095	 * power_supply_get_battery_info() for it
   1096	 */
   1097	bd->charger = devm_power_supply_register(bd->dev,
   1098						 &bd9995x_power_supply_desc,
   1099						&psy_cfg);
   1100	if (IS_ERR(bd->charger)) {
   1101		dev_err(dev, "Failed to register power supply\n");
   1102		return PTR_ERR(bd->charger);
   1103	}
   1104
   1105	ret = bd9995x_fw_probe(bd);
   1106	if (ret < 0) {
   1107		dev_err(dev, "Cannot read device properties.\n");
   1108		return ret;
   1109	}
   1110
   1111	ret = bd9995x_hw_init(bd);
   1112	if (ret < 0) {
   1113		dev_err(dev, "Cannot initialize the chip.\n");
   1114		return ret;
   1115	}
   1116
   1117	ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
   1118	if (ret)
   1119		return ret;
   1120
   1121	return devm_request_threaded_irq(dev, client->irq, NULL,
   1122					 bd9995x_irq_handler_thread,
   1123					 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
   1124					 BD9995X_IRQ_PIN, bd);
   1125}
   1126
   1127static const struct of_device_id bd9995x_of_match[] = {
   1128	{ .compatible = "rohm,bd99954", },
   1129	{ }
   1130};
   1131MODULE_DEVICE_TABLE(of, bd9995x_of_match);
   1132
   1133static struct i2c_driver bd9995x_driver = {
   1134	.driver = {
   1135		.name = "bd9995x-charger",
   1136		.of_match_table = bd9995x_of_match,
   1137	},
   1138	.probe_new = bd9995x_probe,
   1139};
   1140module_i2c_driver(bd9995x_driver);
   1141
   1142MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
   1143MODULE_DESCRIPTION("ROHM BD99954 charger driver");
   1144MODULE_LICENSE("GPL");