bd99954-charger.c (29911B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * ROHM BD99954 charger driver 4 * 5 * Copyright (C) 2020 Rohm Semiconductors 6 * Originally written by: 7 * Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com> 8 * Markus Laine <markus.laine@fi.rohmeurope.com> 9 * Bugs added by: 10 * Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com> 11 */ 12 13/* 14 * The battery charging profile of BD99954. 15 * 16 * Curve (1) represents charging current. 17 * Curve (2) represents battery voltage. 18 * 19 * The BD99954 data sheet divides charging to three phases. 20 * a) Trickle-charge with constant current (8). 21 * b) pre-charge with constant current (6) 22 * c) fast-charge, first with constant current (5) phase. After 23 * the battery voltage has reached target level (4) we have constant 24 * voltage phase until charging current has dropped to termination 25 * level (7) 26 * 27 * V ^ ^ I 28 * . . 29 * . . 30 *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------. 31 * . :/ . 32 * . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5) 33 * . + :: + . 34 * . + /- -- . 35 * . +`/- + . 36 * . o/- -: . 37 * . .s. +` . 38 * . .--+ `/ . 39 * . ..`` + .: . 40 * . -` + -- . 41 * . (2) ...`` + :- . 42 * . ...`` + -: . 43 *(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6) 44 * . + `:. . 45 * . + -: . 46 * . + -:. . 47 * . + .--. . 48 * . (1) + `.+` ` ` `.` ` (7) 49 * -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8) 50 * . + - 51 * -------------------------------------------------+++++++++--> 52 * | trickle | pre | fast | 53 * 54 * Details of DT properties for different limits can be found from BD99954 55 * device tree binding documentation. 56 */ 57 58#include <linux/delay.h> 59#include <linux/gpio/consumer.h> 60#include <linux/interrupt.h> 61#include <linux/i2c.h> 62#include <linux/kernel.h> 63#include <linux/linear_range.h> 64#include <linux/module.h> 65#include <linux/mod_devicetable.h> 66#include <linux/power_supply.h> 67#include <linux/property.h> 68#include <linux/regmap.h> 69#include <linux/types.h> 70 71#include "bd99954-charger.h" 72 73struct battery_data { 74 u16 precharge_current; /* Trickle-charge Current */ 75 u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */ 76 u16 voltage_min; 77 u16 voltage_max; 78}; 79 80/* Initial field values, converted to initial register values */ 81struct bd9995x_init_data { 82 u16 vsysreg_set; /* VSYS Regulation Setting */ 83 u16 ibus_lim_set; /* VBUS input current limitation */ 84 u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */ 85 u16 itrich_set; /* Trickle-charge Current Setting */ 86 u16 iprech_set; /* Pre-Charge Current Setting */ 87 u16 ichg_set; /* Fast-Charge constant current */ 88 u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */ 89 u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */ 90 u16 vrechg_set; /* Re-charge Battery Voltage Setting */ 91 u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */ 92 u16 iterm_set; /* Charging termination current */ 93}; 94 95struct bd9995x_state { 96 u8 online; 97 u16 chgstm_status; 98 u16 vbat_vsys_status; 99 u16 vbus_vcc_status; 100}; 101 102struct bd9995x_device { 103 struct i2c_client *client; 104 struct device *dev; 105 struct power_supply *charger; 106 107 struct regmap *rmap; 108 struct regmap_field *rmap_fields[F_MAX_FIELDS]; 109 110 int chip_id; 111 int chip_rev; 112 struct bd9995x_init_data init_data; 113 struct bd9995x_state state; 114 115 struct mutex lock; /* Protect state data */ 116}; 117 118static const struct regmap_range bd9995x_readonly_reg_ranges[] = { 119 regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL), 120 regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL), 121 regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), 122 regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), 123 regmap_reg_range(CHIP_ID, CHIP_REV), 124 regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS), 125 regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL), 126 regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL), 127}; 128 129static const struct regmap_access_table bd9995x_writeable_regs = { 130 .no_ranges = bd9995x_readonly_reg_ranges, 131 .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges), 132}; 133 134static const struct regmap_range bd9995x_volatile_reg_ranges[] = { 135 regmap_reg_range(CHGSTM_STATUS, WDT_STATUS), 136 regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), 137 regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), 138 regmap_reg_range(INT0_STATUS, INT7_STATUS), 139 regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET), 140 regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */ 141}; 142 143static const struct regmap_access_table bd9995x_volatile_regs = { 144 .yes_ranges = bd9995x_volatile_reg_ranges, 145 .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges), 146}; 147 148static const struct regmap_range_cfg regmap_range_cfg[] = { 149 { 150 .selector_reg = MAP_SET, 151 .selector_mask = 0xFFFF, 152 .selector_shift = 0, 153 .window_start = 0, 154 .window_len = 0x100, 155 .range_min = 0 * 0x100, 156 .range_max = 3 * 0x100, 157 }, 158}; 159 160static const struct regmap_config bd9995x_regmap_config = { 161 .reg_bits = 8, 162 .val_bits = 16, 163 .reg_stride = 1, 164 165 .max_register = 3 * 0x100, 166 .cache_type = REGCACHE_RBTREE, 167 168 .ranges = regmap_range_cfg, 169 .num_ranges = ARRAY_SIZE(regmap_range_cfg), 170 .val_format_endian = REGMAP_ENDIAN_LITTLE, 171 .wr_table = &bd9995x_writeable_regs, 172 .volatile_table = &bd9995x_volatile_regs, 173}; 174 175enum bd9995x_chrg_fault { 176 CHRG_FAULT_NORMAL, 177 CHRG_FAULT_INPUT, 178 CHRG_FAULT_THERMAL_SHUTDOWN, 179 CHRG_FAULT_TIMER_EXPIRED, 180}; 181 182static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd) 183{ 184 int ret, tmp; 185 186 ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); 187 if (ret) 188 return POWER_SUPPLY_HEALTH_UNKNOWN; 189 190 /* TODO: Check these against datasheet page 34 */ 191 192 switch (tmp) { 193 case ROOM: 194 return POWER_SUPPLY_HEALTH_GOOD; 195 case HOT1: 196 case HOT2: 197 case HOT3: 198 return POWER_SUPPLY_HEALTH_OVERHEAT; 199 case COLD1: 200 case COLD2: 201 return POWER_SUPPLY_HEALTH_COLD; 202 case TEMP_DIS: 203 case BATT_OPEN: 204 default: 205 return POWER_SUPPLY_HEALTH_UNKNOWN; 206 } 207} 208 209static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd) 210{ 211 int ret, tmp; 212 213 ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp); 214 if (ret) 215 return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; 216 217 switch (tmp) { 218 case CHGSTM_TRICKLE_CHARGE: 219 case CHGSTM_PRE_CHARGE: 220 return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 221 case CHGSTM_FAST_CHARGE: 222 return POWER_SUPPLY_CHARGE_TYPE_FAST; 223 case CHGSTM_TOP_OFF: 224 case CHGSTM_DONE: 225 case CHGSTM_SUSPEND: 226 return POWER_SUPPLY_CHARGE_TYPE_NONE; 227 default: /* Rest of the states are error related, no charging */ 228 return POWER_SUPPLY_CHARGE_TYPE_NONE; 229 } 230} 231 232static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd) 233{ 234 int ret, tmp; 235 236 ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); 237 if (ret) 238 return false; 239 240 return tmp != BATT_OPEN; 241} 242 243static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd) 244{ 245 int ret, tmp; 246 247 ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp); 248 if (ret) 249 return 0; 250 251 tmp = min(tmp, 19200); 252 253 return tmp * 1000; 254} 255 256static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd) 257{ 258 int ret, tmp; 259 260 ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); 261 if (ret) 262 return 0; 263 264 return tmp * 1000; 265} 266 267#define DEFAULT_BATTERY_TEMPERATURE 250 268 269static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd) 270{ 271 int ret, tmp; 272 273 ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp); 274 if (ret) 275 return DEFAULT_BATTERY_TEMPERATURE; 276 277 return (200 - tmp) * 10; 278} 279 280static int bd9995x_power_supply_get_property(struct power_supply *psy, 281 enum power_supply_property psp, 282 union power_supply_propval *val) 283{ 284 int ret, tmp; 285 struct bd9995x_device *bd = power_supply_get_drvdata(psy); 286 struct bd9995x_state state; 287 288 mutex_lock(&bd->lock); 289 state = bd->state; 290 mutex_unlock(&bd->lock); 291 292 switch (psp) { 293 case POWER_SUPPLY_PROP_STATUS: 294 switch (state.chgstm_status) { 295 case CHGSTM_TRICKLE_CHARGE: 296 case CHGSTM_PRE_CHARGE: 297 case CHGSTM_FAST_CHARGE: 298 case CHGSTM_TOP_OFF: 299 val->intval = POWER_SUPPLY_STATUS_CHARGING; 300 break; 301 302 case CHGSTM_DONE: 303 val->intval = POWER_SUPPLY_STATUS_FULL; 304 break; 305 306 case CHGSTM_SUSPEND: 307 case CHGSTM_TEMPERATURE_ERROR_1: 308 case CHGSTM_TEMPERATURE_ERROR_2: 309 case CHGSTM_TEMPERATURE_ERROR_3: 310 case CHGSTM_TEMPERATURE_ERROR_4: 311 case CHGSTM_TEMPERATURE_ERROR_5: 312 case CHGSTM_TEMPERATURE_ERROR_6: 313 case CHGSTM_TEMPERATURE_ERROR_7: 314 case CHGSTM_THERMAL_SHUT_DOWN_1: 315 case CHGSTM_THERMAL_SHUT_DOWN_2: 316 case CHGSTM_THERMAL_SHUT_DOWN_3: 317 case CHGSTM_THERMAL_SHUT_DOWN_4: 318 case CHGSTM_THERMAL_SHUT_DOWN_5: 319 case CHGSTM_THERMAL_SHUT_DOWN_6: 320 case CHGSTM_THERMAL_SHUT_DOWN_7: 321 case CHGSTM_BATTERY_ERROR: 322 val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; 323 break; 324 325 default: 326 val->intval = POWER_SUPPLY_STATUS_UNKNOWN; 327 break; 328 } 329 break; 330 331 case POWER_SUPPLY_PROP_MANUFACTURER: 332 val->strval = BD9995X_MANUFACTURER; 333 break; 334 335 case POWER_SUPPLY_PROP_ONLINE: 336 val->intval = state.online; 337 break; 338 339 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 340 ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); 341 if (ret) 342 return ret; 343 val->intval = tmp * 1000; 344 break; 345 346 case POWER_SUPPLY_PROP_CHARGE_AVG: 347 ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp); 348 if (ret) 349 return ret; 350 val->intval = tmp * 1000; 351 break; 352 353 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 354 /* 355 * Currently the DT uses this property to give the 356 * target current for fast-charging constant current phase. 357 * I think it is correct in a sense. 358 * 359 * Yet, this prop we read and return here is the programmed 360 * safety limit for combined input currents. This feels 361 * also correct in a sense. 362 * 363 * However, this results a mismatch to DT value and value 364 * read from sysfs. 365 */ 366 ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp); 367 if (ret) 368 return ret; 369 val->intval = tmp * 1000; 370 break; 371 372 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 373 if (!state.online) { 374 val->intval = 0; 375 break; 376 } 377 378 ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1], 379 &tmp); 380 if (ret) 381 return ret; 382 383 /* 384 * The actual range : 2560 to 19200 mV. No matter what the 385 * register says 386 */ 387 val->intval = clamp_val(tmp << 4, 2560, 19200); 388 val->intval *= 1000; 389 break; 390 391 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 392 ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp); 393 if (ret) 394 return ret; 395 /* Start step is 64 mA */ 396 val->intval = tmp << 6; 397 /* Maximum is 1024 mA - no matter what register says */ 398 val->intval = min(val->intval, 1024); 399 val->intval *= 1000; 400 break; 401 402 /* Battery properties which we access through charger */ 403 case POWER_SUPPLY_PROP_PRESENT: 404 val->intval = bd9995x_get_prop_batt_present(bd); 405 break; 406 407 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 408 val->intval = bd9995x_get_prop_batt_voltage(bd); 409 break; 410 411 case POWER_SUPPLY_PROP_CURRENT_NOW: 412 val->intval = bd9995x_get_prop_batt_current(bd); 413 break; 414 415 case POWER_SUPPLY_PROP_CHARGE_TYPE: 416 val->intval = bd9995x_get_prop_charge_type(bd); 417 break; 418 419 case POWER_SUPPLY_PROP_HEALTH: 420 val->intval = bd9995x_get_prop_batt_health(bd); 421 break; 422 423 case POWER_SUPPLY_PROP_TEMP: 424 val->intval = bd9995x_get_prop_batt_temp(bd); 425 break; 426 427 case POWER_SUPPLY_PROP_TECHNOLOGY: 428 val->intval = POWER_SUPPLY_TECHNOLOGY_LION; 429 break; 430 431 case POWER_SUPPLY_PROP_MODEL_NAME: 432 val->strval = "bd99954"; 433 break; 434 435 default: 436 return -EINVAL; 437 438 } 439 440 return 0; 441} 442 443static int bd9995x_get_chip_state(struct bd9995x_device *bd, 444 struct bd9995x_state *state) 445{ 446 int i, ret, tmp; 447 struct { 448 struct regmap_field *id; 449 u16 *data; 450 } state_fields[] = { 451 { 452 bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status, 453 }, { 454 bd->rmap_fields[F_VBAT_VSYS_STATUS], 455 &state->vbat_vsys_status, 456 }, { 457 bd->rmap_fields[F_VBUS_VCC_STATUS], 458 &state->vbus_vcc_status, 459 }, 460 }; 461 462 463 for (i = 0; i < ARRAY_SIZE(state_fields); i++) { 464 ret = regmap_field_read(state_fields[i].id, &tmp); 465 if (ret) 466 return ret; 467 468 *state_fields[i].data = tmp; 469 } 470 471 if (state->vbus_vcc_status & STATUS_VCC_DET || 472 state->vbus_vcc_status & STATUS_VBUS_DET) 473 state->online = 1; 474 else 475 state->online = 0; 476 477 return 0; 478} 479 480static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private) 481{ 482 struct bd9995x_device *bd = private; 483 int ret, status, mask, i; 484 unsigned long tmp; 485 struct bd9995x_state state; 486 487 /* 488 * The bd9995x does not seem to generate big amount of interrupts. 489 * The logic regarding which interrupts can cause relevant 490 * status changes seem to be pretty complex. 491 * 492 * So lets implement really simple and hopefully bullet-proof handler: 493 * It does not really matter which IRQ we handle, we just go and 494 * re-read all interesting statuses + give the framework a nudge. 495 * 496 * Other option would be building a _complex_ and error prone logic 497 * trying to decide what could have been changed (resulting this IRQ 498 * we are now handling). During the normal operation the BD99954 does 499 * not seem to be generating much of interrupts so benefit from such 500 * logic would probably be minimal. 501 */ 502 503 ret = regmap_read(bd->rmap, INT0_STATUS, &status); 504 if (ret) { 505 dev_err(bd->dev, "Failed to read IRQ status\n"); 506 return IRQ_NONE; 507 } 508 509 ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask); 510 if (ret) { 511 dev_err(bd->dev, "Failed to read IRQ mask\n"); 512 return IRQ_NONE; 513 } 514 515 /* Handle only IRQs that are not masked */ 516 status &= mask; 517 tmp = status; 518 519 /* Lowest bit does not represent any sub-registers */ 520 tmp >>= 1; 521 522 /* 523 * Mask and ack IRQs we will handle (+ the idiot bit) 524 */ 525 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0); 526 if (ret) { 527 dev_err(bd->dev, "Failed to mask F_INT0\n"); 528 return IRQ_NONE; 529 } 530 531 ret = regmap_write(bd->rmap, INT0_STATUS, status); 532 if (ret) { 533 dev_err(bd->dev, "Failed to ack F_INT0\n"); 534 goto err_umask; 535 } 536 537 for_each_set_bit(i, &tmp, 7) { 538 int sub_status, sub_mask; 539 int sub_status_reg[] = { 540 INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS, 541 INT5_STATUS, INT6_STATUS, INT7_STATUS, 542 }; 543 struct regmap_field *sub_mask_f[] = { 544 bd->rmap_fields[F_INT1_SET], 545 bd->rmap_fields[F_INT2_SET], 546 bd->rmap_fields[F_INT3_SET], 547 bd->rmap_fields[F_INT4_SET], 548 bd->rmap_fields[F_INT5_SET], 549 bd->rmap_fields[F_INT6_SET], 550 bd->rmap_fields[F_INT7_SET], 551 }; 552 553 /* Clear sub IRQs */ 554 ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status); 555 if (ret) { 556 dev_err(bd->dev, "Failed to read IRQ sub-status\n"); 557 goto err_umask; 558 } 559 560 ret = regmap_field_read(sub_mask_f[i], &sub_mask); 561 if (ret) { 562 dev_err(bd->dev, "Failed to read IRQ sub-mask\n"); 563 goto err_umask; 564 } 565 566 /* Ack active sub-statuses */ 567 sub_status &= sub_mask; 568 569 ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status); 570 if (ret) { 571 dev_err(bd->dev, "Failed to ack sub-IRQ\n"); 572 goto err_umask; 573 } 574 } 575 576 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); 577 if (ret) 578 /* May as well retry once */ 579 goto err_umask; 580 581 /* Read whole chip state */ 582 ret = bd9995x_get_chip_state(bd, &state); 583 if (ret < 0) { 584 dev_err(bd->dev, "Failed to read chip state\n"); 585 } else { 586 mutex_lock(&bd->lock); 587 bd->state = state; 588 mutex_unlock(&bd->lock); 589 590 power_supply_changed(bd->charger); 591 } 592 593 return IRQ_HANDLED; 594 595err_umask: 596 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); 597 if (ret) 598 dev_err(bd->dev, 599 "Failed to un-mask F_INT0 - IRQ permanently disabled\n"); 600 601 return IRQ_NONE; 602} 603 604static int __bd9995x_chip_reset(struct bd9995x_device *bd) 605{ 606 int ret, state; 607 int rst_check_counter = 10; 608 u16 tmp = ALLRST | OTPLD; 609 610 ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); 611 if (ret < 0) 612 return ret; 613 614 do { 615 ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state); 616 if (ret) 617 return ret; 618 619 msleep(10); 620 } while (state == 0 && --rst_check_counter); 621 622 if (!rst_check_counter) { 623 dev_err(bd->dev, "chip reset not completed\n"); 624 return -ETIMEDOUT; 625 } 626 627 tmp = 0; 628 ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); 629 630 return ret; 631} 632 633static int bd9995x_hw_init(struct bd9995x_device *bd) 634{ 635 int ret; 636 int i; 637 struct bd9995x_state state; 638 struct bd9995x_init_data *id = &bd->init_data; 639 640 const struct { 641 enum bd9995x_fields id; 642 u16 value; 643 } init_data[] = { 644 /* Enable the charging trigger after SDP charger attached */ 645 {F_SDP_CHG_TRIG_EN, 1}, 646 /* Enable charging trigger after SDP charger attached */ 647 {F_SDP_CHG_TRIG, 1}, 648 /* Disable charging trigger by BC1.2 detection */ 649 {F_VBUS_BC_DISEN, 1}, 650 /* Disable charging trigger by BC1.2 detection */ 651 {F_VCC_BC_DISEN, 1}, 652 /* Disable automatic limitation of the input current */ 653 {F_ILIM_AUTO_DISEN, 1}, 654 /* Select current limitation when SDP charger attached*/ 655 {F_SDP_500_SEL, 1}, 656 /* Select current limitation when DCP charger attached */ 657 {F_DCP_2500_SEL, 1}, 658 {F_VSYSREG_SET, id->vsysreg_set}, 659 /* Activate USB charging and DC/DC converter */ 660 {F_USB_SUS, 0}, 661 /* DCDC clock: 1200 kHz*/ 662 {F_DCDC_CLK_SEL, 3}, 663 /* Enable charging */ 664 {F_CHG_EN, 1}, 665 /* Disable Input current Limit setting voltage measurement */ 666 {F_EXTIADPEN, 0}, 667 /* Disable input current limiting */ 668 {F_VSYS_PRIORITY, 1}, 669 {F_IBUS_LIM_SET, id->ibus_lim_set}, 670 {F_ICC_LIM_SET, id->icc_lim_set}, 671 /* Charge Termination Current Setting to 0*/ 672 {F_ITERM_SET, id->iterm_set}, 673 /* Trickle-charge Current Setting */ 674 {F_ITRICH_SET, id->itrich_set}, 675 /* Pre-charge Current setting */ 676 {F_IPRECH_SET, id->iprech_set}, 677 /* Fast Charge Current for constant current phase */ 678 {F_ICHG_SET, id->ichg_set}, 679 /* Fast Charge Voltage Regulation Setting */ 680 {F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1}, 681 /* Set Pre-charge Voltage Threshold for trickle charging. */ 682 {F_VPRECHG_TH_SET, id->vprechg_th_set}, 683 {F_VRECHG_SET, id->vrechg_set}, 684 {F_VBATOVP_SET, id->vbatovp_set}, 685 /* Reverse buck boost voltage Setting */ 686 {F_VRBOOST_SET, 0}, 687 /* Disable fast-charging watchdog */ 688 {F_WDT_FST, 0}, 689 /* Disable pre-charging watchdog */ 690 {F_WDT_PRE, 0}, 691 /* Power save off */ 692 {F_POWER_SAVE_MODE, 0}, 693 {F_INT1_SET, INT1_ALL}, 694 {F_INT2_SET, INT2_ALL}, 695 {F_INT3_SET, INT3_ALL}, 696 {F_INT4_SET, INT4_ALL}, 697 {F_INT5_SET, INT5_ALL}, 698 {F_INT6_SET, INT6_ALL}, 699 {F_INT7_SET, INT7_ALL}, 700 }; 701 702 /* 703 * Currently we initialize charger to a known state at startup. 704 * If we want to allow for example the boot code to initialize 705 * charger we should get rid of this. 706 */ 707 ret = __bd9995x_chip_reset(bd); 708 if (ret < 0) 709 return ret; 710 711 /* Initialize currents/voltages and other parameters */ 712 for (i = 0; i < ARRAY_SIZE(init_data); i++) { 713 ret = regmap_field_write(bd->rmap_fields[init_data[i].id], 714 init_data[i].value); 715 if (ret) { 716 dev_err(bd->dev, "failed to initialize charger (%d)\n", 717 ret); 718 return ret; 719 } 720 } 721 722 ret = bd9995x_get_chip_state(bd, &state); 723 if (ret < 0) 724 return ret; 725 726 mutex_lock(&bd->lock); 727 bd->state = state; 728 mutex_unlock(&bd->lock); 729 730 return 0; 731} 732 733static enum power_supply_property bd9995x_power_supply_props[] = { 734 POWER_SUPPLY_PROP_MANUFACTURER, 735 POWER_SUPPLY_PROP_STATUS, 736 POWER_SUPPLY_PROP_ONLINE, 737 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 738 POWER_SUPPLY_PROP_CHARGE_AVG, 739 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 740 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 741 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 742 /* Battery props we access through charger */ 743 POWER_SUPPLY_PROP_PRESENT, 744 POWER_SUPPLY_PROP_VOLTAGE_NOW, 745 POWER_SUPPLY_PROP_CURRENT_NOW, 746 POWER_SUPPLY_PROP_CHARGE_TYPE, 747 POWER_SUPPLY_PROP_HEALTH, 748 POWER_SUPPLY_PROP_TEMP, 749 POWER_SUPPLY_PROP_TECHNOLOGY, 750 POWER_SUPPLY_PROP_MODEL_NAME, 751}; 752 753static const struct power_supply_desc bd9995x_power_supply_desc = { 754 .name = "bd9995x-charger", 755 .type = POWER_SUPPLY_TYPE_USB, 756 .properties = bd9995x_power_supply_props, 757 .num_properties = ARRAY_SIZE(bd9995x_power_supply_props), 758 .get_property = bd9995x_power_supply_get_property, 759}; 760 761/* 762 * Limit configurations for vbus-input-current and vcc-vacp-input-current 763 * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is 764 * configured by writing a register so that each increment in register 765 * value equals to 32000 uA limit increment. 766 * 767 * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ... 768 * Describe the setting in linear_range table. 769 */ 770static const struct linear_range input_current_limit_ranges[] = { 771 { 772 .min = 0, 773 .step = 32000, 774 .min_sel = 0x0, 775 .max_sel = 0x1ff, 776 }, 777}; 778 779/* Possible trickle, pre-charging and termination current values */ 780static const struct linear_range charging_current_ranges[] = { 781 { 782 .min = 0, 783 .step = 64000, 784 .min_sel = 0x0, 785 .max_sel = 0x10, 786 }, { 787 .min = 1024000, 788 .step = 0, 789 .min_sel = 0x11, 790 .max_sel = 0x1f, 791 }, 792}; 793 794/* 795 * Fast charging voltage regulation, starting re-charging limit 796 * and battery over voltage protection have same possible values 797 */ 798static const struct linear_range charge_voltage_regulation_ranges[] = { 799 { 800 .min = 2560000, 801 .step = 0, 802 .min_sel = 0, 803 .max_sel = 0xA0, 804 }, { 805 .min = 2560000, 806 .step = 16000, 807 .min_sel = 0xA0, 808 .max_sel = 0x4B0, 809 }, { 810 .min = 19200000, 811 .step = 0, 812 .min_sel = 0x4B0, 813 .max_sel = 0x7FF, 814 }, 815}; 816 817/* Possible VSYS voltage regulation values */ 818static const struct linear_range vsys_voltage_regulation_ranges[] = { 819 { 820 .min = 2560000, 821 .step = 0, 822 .min_sel = 0, 823 .max_sel = 0x28, 824 }, { 825 .min = 2560000, 826 .step = 64000, 827 .min_sel = 0x28, 828 .max_sel = 0x12C, 829 }, { 830 .min = 19200000, 831 .step = 0, 832 .min_sel = 0x12C, 833 .max_sel = 0x1FF, 834 }, 835}; 836 837/* Possible settings for switching from trickle to pre-charging limits */ 838static const struct linear_range trickle_to_pre_threshold_ranges[] = { 839 { 840 .min = 2048000, 841 .step = 0, 842 .min_sel = 0, 843 .max_sel = 0x20, 844 }, { 845 .min = 2048000, 846 .step = 64000, 847 .min_sel = 0x20, 848 .max_sel = 0x12C, 849 }, { 850 .min = 19200000, 851 .step = 0, 852 .min_sel = 0x12C, 853 .max_sel = 0x1FF 854 } 855}; 856 857/* Possible current values for fast-charging constant current phase */ 858static const struct linear_range fast_charge_current_ranges[] = { 859 { 860 .min = 0, 861 .step = 64000, 862 .min_sel = 0, 863 .max_sel = 0xFF, 864 } 865}; 866 867struct battery_init { 868 const char *name; 869 int *info_data; 870 const struct linear_range *range; 871 int ranges; 872 u16 *data; 873}; 874 875struct dt_init { 876 char *prop; 877 const struct linear_range *range; 878 int ranges; 879 u16 *data; 880}; 881 882static int bd9995x_fw_probe(struct bd9995x_device *bd) 883{ 884 int ret; 885 struct power_supply_battery_info *info; 886 u32 property; 887 int i; 888 int regval; 889 bool found; 890 struct bd9995x_init_data *init = &bd->init_data; 891 struct battery_init battery_inits[] = { 892 { 893 .name = "trickle-charging current", 894 .range = &charging_current_ranges[0], 895 .ranges = 2, 896 .data = &init->itrich_set, 897 }, { 898 .name = "pre-charging current", 899 .range = &charging_current_ranges[0], 900 .ranges = 2, 901 .data = &init->iprech_set, 902 }, { 903 .name = "pre-to-trickle charge voltage threshold", 904 .range = &trickle_to_pre_threshold_ranges[0], 905 .ranges = 2, 906 .data = &init->vprechg_th_set, 907 }, { 908 .name = "charging termination current", 909 .range = &charging_current_ranges[0], 910 .ranges = 2, 911 .data = &init->iterm_set, 912 }, { 913 .name = "charging re-start voltage", 914 .range = &charge_voltage_regulation_ranges[0], 915 .ranges = 2, 916 .data = &init->vrechg_set, 917 }, { 918 .name = "battery overvoltage limit", 919 .range = &charge_voltage_regulation_ranges[0], 920 .ranges = 2, 921 .data = &init->vbatovp_set, 922 }, { 923 .name = "fast-charging max current", 924 .range = &fast_charge_current_ranges[0], 925 .ranges = 1, 926 .data = &init->ichg_set, 927 }, { 928 .name = "fast-charging voltage", 929 .range = &charge_voltage_regulation_ranges[0], 930 .ranges = 2, 931 .data = &init->vfastchg_reg_set1, 932 }, 933 }; 934 struct dt_init props[] = { 935 { 936 .prop = "rohm,vsys-regulation-microvolt", 937 .range = &vsys_voltage_regulation_ranges[0], 938 .ranges = 2, 939 .data = &init->vsysreg_set, 940 }, { 941 .prop = "rohm,vbus-input-current-limit-microamp", 942 .range = &input_current_limit_ranges[0], 943 .ranges = 1, 944 .data = &init->ibus_lim_set, 945 }, { 946 .prop = "rohm,vcc-input-current-limit-microamp", 947 .range = &input_current_limit_ranges[0], 948 .ranges = 1, 949 .data = &init->icc_lim_set, 950 }, 951 }; 952 953 /* 954 * The power_supply_get_battery_info() does not support getting values 955 * from ACPI. Let's fix it if ACPI is required here. 956 */ 957 ret = power_supply_get_battery_info(bd->charger, &info); 958 if (ret < 0) 959 return ret; 960 961 /* Put pointers to the generic battery info */ 962 battery_inits[0].info_data = &info->tricklecharge_current_ua; 963 battery_inits[1].info_data = &info->precharge_current_ua; 964 battery_inits[2].info_data = &info->precharge_voltage_max_uv; 965 battery_inits[3].info_data = &info->charge_term_current_ua; 966 battery_inits[4].info_data = &info->charge_restart_voltage_uv; 967 battery_inits[5].info_data = &info->overvoltage_limit_uv; 968 battery_inits[6].info_data = &info->constant_charge_current_max_ua; 969 battery_inits[7].info_data = &info->constant_charge_voltage_max_uv; 970 971 for (i = 0; i < ARRAY_SIZE(battery_inits); i++) { 972 int val = *battery_inits[i].info_data; 973 const struct linear_range *range = battery_inits[i].range; 974 int ranges = battery_inits[i].ranges; 975 976 if (val == -EINVAL) 977 continue; 978 979 ret = linear_range_get_selector_low_array(range, ranges, val, 980 ®val, &found); 981 if (ret) { 982 dev_err(bd->dev, "Unsupported value for %s\n", 983 battery_inits[i].name); 984 985 power_supply_put_battery_info(bd->charger, info); 986 return -EINVAL; 987 } 988 if (!found) { 989 dev_warn(bd->dev, 990 "Unsupported value for %s - using smaller\n", 991 battery_inits[i].name); 992 } 993 *(battery_inits[i].data) = regval; 994 } 995 996 power_supply_put_battery_info(bd->charger, info); 997 998 for (i = 0; i < ARRAY_SIZE(props); i++) { 999 ret = device_property_read_u32(bd->dev, props[i].prop, 1000 &property); 1001 if (ret < 0) { 1002 dev_err(bd->dev, "failed to read %s", props[i].prop); 1003 1004 return ret; 1005 } 1006 1007 ret = linear_range_get_selector_low_array(props[i].range, 1008 props[i].ranges, 1009 property, ®val, 1010 &found); 1011 if (ret) { 1012 dev_err(bd->dev, "Unsupported value for '%s'\n", 1013 props[i].prop); 1014 1015 return -EINVAL; 1016 } 1017 1018 if (!found) { 1019 dev_warn(bd->dev, 1020 "Unsupported value for '%s' - using smaller\n", 1021 props[i].prop); 1022 } 1023 1024 *(props[i].data) = regval; 1025 } 1026 1027 return 0; 1028} 1029 1030static void bd9995x_chip_reset(void *bd) 1031{ 1032 __bd9995x_chip_reset(bd); 1033} 1034 1035static int bd9995x_probe(struct i2c_client *client) 1036{ 1037 struct device *dev = &client->dev; 1038 struct bd9995x_device *bd; 1039 struct power_supply_config psy_cfg = {}; 1040 int ret; 1041 int i; 1042 1043 bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL); 1044 if (!bd) 1045 return -ENOMEM; 1046 1047 bd->client = client; 1048 bd->dev = dev; 1049 psy_cfg.drv_data = bd; 1050 psy_cfg.of_node = dev->of_node; 1051 1052 mutex_init(&bd->lock); 1053 1054 bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config); 1055 if (IS_ERR(bd->rmap)) { 1056 dev_err(dev, "Failed to setup register access via i2c\n"); 1057 return PTR_ERR(bd->rmap); 1058 } 1059 1060 for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) { 1061 const struct reg_field *reg_fields = bd9995x_reg_fields; 1062 1063 bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap, 1064 reg_fields[i]); 1065 if (IS_ERR(bd->rmap_fields[i])) { 1066 dev_err(dev, "cannot allocate regmap field\n"); 1067 return PTR_ERR(bd->rmap_fields[i]); 1068 } 1069 } 1070 1071 i2c_set_clientdata(client, bd); 1072 1073 ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id); 1074 if (ret) { 1075 dev_err(dev, "Cannot read chip ID.\n"); 1076 return ret; 1077 } 1078 1079 if (bd->chip_id != BD99954_ID) { 1080 dev_err(dev, "Chip with ID=0x%x, not supported!\n", 1081 bd->chip_id); 1082 return -ENODEV; 1083 } 1084 1085 ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev); 1086 if (ret) { 1087 dev_err(dev, "Cannot read revision.\n"); 1088 return ret; 1089 } 1090 1091 dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev); 1092 1093 /* 1094 * We need to init the psy before we can call 1095 * power_supply_get_battery_info() for it 1096 */ 1097 bd->charger = devm_power_supply_register(bd->dev, 1098 &bd9995x_power_supply_desc, 1099 &psy_cfg); 1100 if (IS_ERR(bd->charger)) { 1101 dev_err(dev, "Failed to register power supply\n"); 1102 return PTR_ERR(bd->charger); 1103 } 1104 1105 ret = bd9995x_fw_probe(bd); 1106 if (ret < 0) { 1107 dev_err(dev, "Cannot read device properties.\n"); 1108 return ret; 1109 } 1110 1111 ret = bd9995x_hw_init(bd); 1112 if (ret < 0) { 1113 dev_err(dev, "Cannot initialize the chip.\n"); 1114 return ret; 1115 } 1116 1117 ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd); 1118 if (ret) 1119 return ret; 1120 1121 return devm_request_threaded_irq(dev, client->irq, NULL, 1122 bd9995x_irq_handler_thread, 1123 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 1124 BD9995X_IRQ_PIN, bd); 1125} 1126 1127static const struct of_device_id bd9995x_of_match[] = { 1128 { .compatible = "rohm,bd99954", }, 1129 { } 1130}; 1131MODULE_DEVICE_TABLE(of, bd9995x_of_match); 1132 1133static struct i2c_driver bd9995x_driver = { 1134 .driver = { 1135 .name = "bd9995x-charger", 1136 .of_match_table = bd9995x_of_match, 1137 }, 1138 .probe_new = bd9995x_probe, 1139}; 1140module_i2c_driver(bd9995x_driver); 1141 1142MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>"); 1143MODULE_DESCRIPTION("ROHM BD99954 charger driver"); 1144MODULE_LICENSE("GPL");