cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpcap-battery.c (31974B)


      1/*
      2 * Battery driver for CPCAP PMIC
      3 *
      4 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
      5 *
      6 * Some parts of the code based on earlier Motorola mapphone Linux kernel
      7 * drivers:
      8 *
      9 * Copyright (C) 2009-2010 Motorola, Inc.
     10 *
     11 * This program is free software; you can redistribute it and/or modify
     12 * it under the terms of the GNU General Public License version 2 as
     13 * published by the Free Software Foundation.
     14
     15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
     16 * kind, whether express or implied; without even the implied warranty
     17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     18 * GNU General Public License for more details.
     19 */
     20
     21#include <linux/delay.h>
     22#include <linux/err.h>
     23#include <linux/interrupt.h>
     24#include <linux/kernel.h>
     25#include <linux/module.h>
     26#include <linux/of_device.h>
     27#include <linux/platform_device.h>
     28#include <linux/power_supply.h>
     29#include <linux/reboot.h>
     30#include <linux/regmap.h>
     31#include <linux/nvmem-consumer.h>
     32#include <linux/moduleparam.h>
     33
     34#include <linux/iio/consumer.h>
     35#include <linux/iio/types.h>
     36#include <linux/mfd/motorola-cpcap.h>
     37
     38/*
     39 * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
     40 * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
     41 * to enable BATTDETEN, LOBAT and EOL features. We currently use
     42 * LOBAT interrupts instead of EOL.
     43 */
     44#define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
     45#define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
     46#define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
     47#define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
     48#define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
     49#define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
     50#define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
     51#define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
     52#define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
     53#define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
     54
     55/*
     56 * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
     57 * coulomb counter registers rather than the mc13892 registers. Both twl6030
     58 * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
     59 * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
     60 * the coulomb counter like cpcap does. So for now, we use the twl6030 style
     61 * naming for the registers.
     62 */
     63#define CPCAP_REG_CCC1_ACTIVE_MODE1	BIT(4)	/* Update rate */
     64#define CPCAP_REG_CCC1_ACTIVE_MODE0	BIT(3)	/* Update rate */
     65#define CPCAP_REG_CCC1_AUTOCLEAR	BIT(2)	/* Resets sample registers */
     66#define CPCAP_REG_CCC1_CAL_EN		BIT(1)	/* Clears after write in 1s */
     67#define CPCAP_REG_CCC1_PAUSE		BIT(0)	/* Stop counters, allow write */
     68#define CPCAP_REG_CCC1_RESET_MASK	(CPCAP_REG_CCC1_AUTOCLEAR | \
     69					 CPCAP_REG_CCC1_CAL_EN)
     70
     71#define CPCAP_REG_CCCC2_RATE1		BIT(5)
     72#define CPCAP_REG_CCCC2_RATE0		BIT(4)
     73#define CPCAP_REG_CCCC2_ENABLE		BIT(3)
     74
     75#define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
     76
     77#define CPCAP_BATTERY_EB41_HW4X_ID 0x9E
     78#define CPCAP_BATTERY_BW8X_ID 0x98
     79
     80enum {
     81	CPCAP_BATTERY_IIO_BATTDET,
     82	CPCAP_BATTERY_IIO_VOLTAGE,
     83	CPCAP_BATTERY_IIO_CHRG_CURRENT,
     84	CPCAP_BATTERY_IIO_BATT_CURRENT,
     85	CPCAP_BATTERY_IIO_NR,
     86};
     87
     88enum cpcap_battery_irq_action {
     89	CPCAP_BATTERY_IRQ_ACTION_NONE,
     90	CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
     91	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
     92	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
     93};
     94
     95struct cpcap_interrupt_desc {
     96	const char *name;
     97	struct list_head node;
     98	int irq;
     99	enum cpcap_battery_irq_action action;
    100};
    101
    102struct cpcap_battery_config {
    103	int cd_factor;
    104	struct power_supply_info info;
    105	struct power_supply_battery_info bat;
    106};
    107
    108struct cpcap_coulomb_counter_data {
    109	s32 sample;		/* 24 or 32 bits */
    110	s32 accumulator;
    111	s16 offset;		/* 9 bits */
    112	s16 integrator;		/* 13 or 16 bits */
    113};
    114
    115enum cpcap_battery_state {
    116	CPCAP_BATTERY_STATE_PREVIOUS,
    117	CPCAP_BATTERY_STATE_LATEST,
    118	CPCAP_BATTERY_STATE_EMPTY,
    119	CPCAP_BATTERY_STATE_FULL,
    120	CPCAP_BATTERY_STATE_NR,
    121};
    122
    123struct cpcap_battery_state_data {
    124	int voltage;
    125	int current_ua;
    126	int counter_uah;
    127	int temperature;
    128	ktime_t time;
    129	struct cpcap_coulomb_counter_data cc;
    130};
    131
    132struct cpcap_battery_ddata {
    133	struct device *dev;
    134	struct regmap *reg;
    135	struct list_head irq_list;
    136	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
    137	struct power_supply *psy;
    138	struct cpcap_battery_config config;
    139	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
    140	u32 cc_lsb;		/* μAms per LSB */
    141	atomic_t active;
    142	int charge_full;
    143	int status;
    144	u16 vendor;
    145	bool check_nvmem;
    146	unsigned int is_full:1;
    147};
    148
    149#define CPCAP_NO_BATTERY	-400
    150
    151static bool ignore_temperature_probe;
    152module_param(ignore_temperature_probe, bool, 0660);
    153
    154static struct cpcap_battery_state_data *
    155cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
    156			enum cpcap_battery_state state)
    157{
    158	if (state >= CPCAP_BATTERY_STATE_NR)
    159		return NULL;
    160
    161	return &ddata->state[state];
    162}
    163
    164static struct cpcap_battery_state_data *
    165cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
    166{
    167	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
    168}
    169
    170static struct cpcap_battery_state_data *
    171cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
    172{
    173	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
    174}
    175
    176static struct cpcap_battery_state_data *
    177cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
    178{
    179	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
    180}
    181
    182static struct cpcap_battery_state_data *
    183cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
    184{
    185	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
    186}
    187
    188static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
    189					     int *value)
    190{
    191	struct iio_channel *channel;
    192	int error;
    193
    194	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
    195	error = iio_read_channel_processed(channel, value);
    196	if (error < 0) {
    197		if (!ignore_temperature_probe)
    198			dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
    199		*value = CPCAP_NO_BATTERY;
    200
    201		return error;
    202	}
    203
    204	*value /= 100;
    205
    206	return 0;
    207}
    208
    209static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
    210{
    211	struct iio_channel *channel;
    212	int error, value = 0;
    213
    214	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
    215	error = iio_read_channel_processed(channel, &value);
    216	if (error < 0) {
    217		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
    218
    219		return 0;
    220	}
    221
    222	return value * 1000;
    223}
    224
    225static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
    226{
    227	struct iio_channel *channel;
    228	int error, value = 0;
    229
    230	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
    231	error = iio_read_channel_processed(channel, &value);
    232	if (error < 0) {
    233		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
    234
    235		return 0;
    236	}
    237
    238	return value * 1000;
    239}
    240
    241/**
    242 * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
    243 * @ddata: device driver data
    244 * @sample: coulomb counter sample value
    245 * @accumulator: coulomb counter integrator value
    246 * @offset: coulomb counter offset value
    247 * @divider: conversion divider
    248 *
    249 * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
    250 * function data_get_avg_curr_ua() and seem to be based on measured test
    251 * results. It also has the following comment:
    252 *
    253 * Adjustment factors are applied here as a temp solution per the test
    254 * results. Need to work out a formal solution for this adjustment.
    255 *
    256 * A coulomb counter for similar hardware seems to be documented in
    257 * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
    258 * "10 Calculating Accumulated Current". We however follow what the
    259 * Motorola mapphone Linux kernel is doing as there may be either a
    260 * TI or ST coulomb counter in the PMIC.
    261 */
    262static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
    263				    s32 sample, s32 accumulator,
    264				    s16 offset, u32 divider)
    265{
    266	s64 acc;
    267
    268	if (!divider)
    269		return 0;
    270
    271	acc = accumulator;
    272	acc -= (s64)sample * offset;
    273	acc *= ddata->cc_lsb;
    274	acc *= -1;
    275	acc = div_s64(acc, divider);
    276
    277	return acc;
    278}
    279
    280/* 3600000μAms = 1μAh */
    281static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
    282				   s32 sample, s32 accumulator,
    283				   s16 offset)
    284{
    285	return cpcap_battery_cc_raw_div(ddata, sample,
    286					accumulator, offset,
    287					3600000);
    288}
    289
    290static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
    291				  s32 sample, s32 accumulator,
    292				  s16 offset)
    293{
    294	return cpcap_battery_cc_raw_div(ddata, sample,
    295					accumulator, offset,
    296					sample *
    297					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
    298}
    299
    300/**
    301 * cpcap_battery_read_accumulated - reads cpcap coulomb counter
    302 * @ddata: device driver data
    303 * @ccd: coulomb counter values
    304 *
    305 * Based on Motorola mapphone kernel function data_read_regs().
    306 * Looking at the registers, the coulomb counter seems similar to
    307 * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
    308 * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
    309 *
    310 * Note that swca095a.pdf instructs to stop the coulomb counter
    311 * before reading to avoid values changing. Motorola mapphone
    312 * Linux kernel does not do it, so let's assume they've verified
    313 * the data produced is correct.
    314 */
    315static int
    316cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
    317			       struct cpcap_coulomb_counter_data *ccd)
    318{
    319	u16 buf[7];	/* CPCAP_REG_CCS1 to CCI */
    320	int error;
    321
    322	ccd->sample = 0;
    323	ccd->accumulator = 0;
    324	ccd->offset = 0;
    325	ccd->integrator = 0;
    326
    327	/* Read coulomb counter register range */
    328	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
    329				 buf, ARRAY_SIZE(buf));
    330	if (error)
    331		return 0;
    332
    333	/* Sample value CPCAP_REG_CCS1 & 2 */
    334	ccd->sample = (buf[1] & 0x0fff) << 16;
    335	ccd->sample |= buf[0];
    336	if (ddata->vendor == CPCAP_VENDOR_TI)
    337		ccd->sample = sign_extend32(24, ccd->sample);
    338
    339	/* Accumulator value CPCAP_REG_CCA1 & 2 */
    340	ccd->accumulator = ((s16)buf[3]) << 16;
    341	ccd->accumulator |= buf[2];
    342
    343	/*
    344	 * Coulomb counter calibration offset is CPCAP_REG_CCM,
    345	 * REG_CCO seems unused
    346	 */
    347	ccd->offset = buf[4];
    348	ccd->offset = sign_extend32(ccd->offset, 9);
    349
    350	/* Integrator register CPCAP_REG_CCI */
    351	if (ddata->vendor == CPCAP_VENDOR_TI)
    352		ccd->integrator = sign_extend32(buf[6], 13);
    353	else
    354		ccd->integrator = (s16)buf[6];
    355
    356	return cpcap_battery_cc_to_uah(ddata,
    357				       ccd->sample,
    358				       ccd->accumulator,
    359				       ccd->offset);
    360}
    361
    362
    363/*
    364 * Based on the values from Motorola mapphone Linux kernel for the
    365 * stock Droid 4 battery eb41. In the Motorola mapphone Linux
    366 * kernel tree the value for pm_cd_factor is passed to the kernel
    367 * via device tree. If it turns out to be something device specific
    368 * we can consider that too later. These values are also fine for
    369 * Bionic's hw4x.
    370 *
    371 * And looking at the battery full and shutdown values for the stock
    372 * kernel on droid 4, full is 4351000 and software initiates shutdown
    373 * at 3078000. The device will die around 2743000.
    374 */
    375static const struct cpcap_battery_config cpcap_battery_eb41_data = {
    376	.cd_factor = 0x3cc,
    377	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
    378	.info.voltage_max_design = 4351000,
    379	.info.voltage_min_design = 3100000,
    380	.info.charge_full_design = 1740000,
    381	.bat.constant_charge_voltage_max_uv = 4200000,
    382};
    383
    384/* Values for the extended Droid Bionic battery bw8x. */
    385static const struct cpcap_battery_config cpcap_battery_bw8x_data = {
    386	.cd_factor = 0x3cc,
    387	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
    388	.info.voltage_max_design = 4200000,
    389	.info.voltage_min_design = 3200000,
    390	.info.charge_full_design = 2760000,
    391	.bat.constant_charge_voltage_max_uv = 4200000,
    392};
    393
    394/*
    395 * Safe values for any lipo battery likely to fit into a mapphone
    396 * battery bay.
    397 */
    398static const struct cpcap_battery_config cpcap_battery_unkown_data = {
    399	.cd_factor = 0x3cc,
    400	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
    401	.info.voltage_max_design = 4200000,
    402	.info.voltage_min_design = 3200000,
    403	.info.charge_full_design = 3000000,
    404	.bat.constant_charge_voltage_max_uv = 4200000,
    405};
    406
    407static int cpcap_battery_match_nvmem(struct device *dev, const void *data)
    408{
    409	if (strcmp(dev_name(dev), "89-500029ba0f73") == 0)
    410		return 1;
    411	else
    412		return 0;
    413}
    414
    415static void cpcap_battery_detect_battery_type(struct cpcap_battery_ddata *ddata)
    416{
    417	struct nvmem_device *nvmem;
    418	u8 battery_id = 0;
    419
    420	ddata->check_nvmem = false;
    421
    422	nvmem = nvmem_device_find(NULL, &cpcap_battery_match_nvmem);
    423	if (IS_ERR_OR_NULL(nvmem)) {
    424		ddata->check_nvmem = true;
    425		dev_info_once(ddata->dev, "Can not find battery nvmem device. Assuming generic lipo battery\n");
    426	} else if (nvmem_device_read(nvmem, 2, 1, &battery_id) < 0) {
    427		battery_id = 0;
    428		ddata->check_nvmem = true;
    429		dev_warn(ddata->dev, "Can not read battery nvmem device. Assuming generic lipo battery\n");
    430	}
    431
    432	switch (battery_id) {
    433	case CPCAP_BATTERY_EB41_HW4X_ID:
    434		ddata->config = cpcap_battery_eb41_data;
    435		break;
    436	case CPCAP_BATTERY_BW8X_ID:
    437		ddata->config = cpcap_battery_bw8x_data;
    438		break;
    439	default:
    440		ddata->config = cpcap_battery_unkown_data;
    441	}
    442}
    443
    444/**
    445 * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
    446 * @ddata: cpcap battery driver device data
    447 */
    448static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
    449{
    450	int value, acc, error;
    451	s32 sample;
    452	s16 offset;
    453
    454	/* Coulomb counter integrator */
    455	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
    456	if (error)
    457		return error;
    458
    459	if (ddata->vendor == CPCAP_VENDOR_TI) {
    460		acc = sign_extend32(value, 13);
    461		sample = 1;
    462	} else {
    463		acc = (s16)value;
    464		sample = 4;
    465	}
    466
    467	/* Coulomb counter calibration offset  */
    468	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
    469	if (error)
    470		return error;
    471
    472	offset = sign_extend32(value, 9);
    473
    474	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
    475}
    476
    477static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
    478					    int *val)
    479{
    480	union power_supply_propval prop;
    481	struct power_supply *charger;
    482	int error;
    483
    484	charger = power_supply_get_by_name("usb");
    485	if (!charger)
    486		return -ENODEV;
    487
    488	error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
    489					  &prop);
    490	if (error)
    491		*val = POWER_SUPPLY_STATUS_UNKNOWN;
    492	else
    493		*val = prop.intval;
    494
    495	power_supply_put(charger);
    496
    497	return error;
    498}
    499
    500static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
    501{
    502	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
    503	unsigned int vfull;
    504	int error, val;
    505
    506	error = cpcap_battery_get_charger_status(ddata, &val);
    507	if (!error) {
    508		switch (val) {
    509		case POWER_SUPPLY_STATUS_DISCHARGING:
    510			dev_dbg(ddata->dev, "charger disconnected\n");
    511			ddata->is_full = 0;
    512			break;
    513		case POWER_SUPPLY_STATUS_FULL:
    514			dev_dbg(ddata->dev, "charger full status\n");
    515			ddata->is_full = 1;
    516			break;
    517		default:
    518			break;
    519		}
    520	}
    521
    522	/*
    523	 * The full battery voltage here can be inaccurate, it's used just to
    524	 * filter out any trickle charging events. We clear the is_full status
    525	 * on charger disconnect above anyways.
    526	 */
    527	vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
    528
    529	if (ddata->is_full && state->voltage < vfull)
    530		ddata->is_full = 0;
    531
    532	return ddata->is_full;
    533}
    534
    535static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
    536{
    537	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
    538	static bool is_low;
    539
    540	if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
    541		is_low = true;
    542	else
    543		is_low = false;
    544
    545	return is_low;
    546}
    547
    548static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
    549{
    550	struct cpcap_battery_state_data state, *latest, *previous,
    551					*empty, *full;
    552	ktime_t now;
    553	int error;
    554
    555	memset(&state, 0, sizeof(state));
    556	now = ktime_get();
    557
    558	latest = cpcap_battery_latest(ddata);
    559	if (latest) {
    560		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
    561
    562		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
    563			return delta_ms;
    564	}
    565
    566	state.time = now;
    567	state.voltage = cpcap_battery_get_voltage(ddata);
    568	state.current_ua = cpcap_battery_get_current(ddata);
    569	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
    570
    571	error = cpcap_charger_battery_temperature(ddata,
    572						  &state.temperature);
    573	if (error)
    574		return error;
    575
    576	previous = cpcap_battery_previous(ddata);
    577	memcpy(previous, latest, sizeof(*previous));
    578	memcpy(latest, &state, sizeof(*latest));
    579
    580	if (cpcap_battery_full(ddata)) {
    581		full = cpcap_battery_get_full(ddata);
    582		memcpy(full, latest, sizeof(*full));
    583
    584		empty = cpcap_battery_get_empty(ddata);
    585		if (empty->voltage && empty->voltage != -1) {
    586			empty->voltage = -1;
    587			ddata->charge_full =
    588				empty->counter_uah - full->counter_uah;
    589		} else if (ddata->charge_full) {
    590			empty->voltage = -1;
    591			empty->counter_uah =
    592				full->counter_uah + ddata->charge_full;
    593		}
    594	} else if (cpcap_battery_low(ddata)) {
    595		empty = cpcap_battery_get_empty(ddata);
    596		memcpy(empty, latest, sizeof(*empty));
    597
    598		full = cpcap_battery_get_full(ddata);
    599		if (full->voltage) {
    600			full->voltage = 0;
    601			ddata->charge_full =
    602				empty->counter_uah - full->counter_uah;
    603		}
    604	}
    605
    606	return 0;
    607}
    608
    609/*
    610 * Update battery status when cpcap-charger calls power_supply_changed().
    611 * This allows us to detect battery full condition before the charger
    612 * disconnects.
    613 */
    614static void cpcap_battery_external_power_changed(struct power_supply *psy)
    615{
    616	union power_supply_propval prop;
    617
    618	power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
    619}
    620
    621static enum power_supply_property cpcap_battery_props[] = {
    622	POWER_SUPPLY_PROP_STATUS,
    623	POWER_SUPPLY_PROP_PRESENT,
    624	POWER_SUPPLY_PROP_TECHNOLOGY,
    625	POWER_SUPPLY_PROP_VOLTAGE_NOW,
    626	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
    627	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
    628	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
    629	POWER_SUPPLY_PROP_CURRENT_AVG,
    630	POWER_SUPPLY_PROP_CURRENT_NOW,
    631	POWER_SUPPLY_PROP_CHARGE_FULL,
    632	POWER_SUPPLY_PROP_CHARGE_NOW,
    633	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
    634	POWER_SUPPLY_PROP_CHARGE_COUNTER,
    635	POWER_SUPPLY_PROP_POWER_NOW,
    636	POWER_SUPPLY_PROP_POWER_AVG,
    637	POWER_SUPPLY_PROP_CAPACITY,
    638	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
    639	POWER_SUPPLY_PROP_SCOPE,
    640	POWER_SUPPLY_PROP_TEMP,
    641};
    642
    643static int cpcap_battery_get_property(struct power_supply *psy,
    644				      enum power_supply_property psp,
    645				      union power_supply_propval *val)
    646{
    647	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
    648	struct cpcap_battery_state_data *latest, *previous, *empty;
    649	u32 sample;
    650	s32 accumulator;
    651	int cached;
    652	s64 tmp;
    653
    654	cached = cpcap_battery_update_status(ddata);
    655	if (cached < 0)
    656		return cached;
    657
    658	latest = cpcap_battery_latest(ddata);
    659	previous = cpcap_battery_previous(ddata);
    660
    661	if (ddata->check_nvmem)
    662		cpcap_battery_detect_battery_type(ddata);
    663
    664	switch (psp) {
    665	case POWER_SUPPLY_PROP_PRESENT:
    666		if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
    667			val->intval = 1;
    668		else
    669			val->intval = 0;
    670		break;
    671	case POWER_SUPPLY_PROP_STATUS:
    672		if (cpcap_battery_full(ddata)) {
    673			val->intval = POWER_SUPPLY_STATUS_FULL;
    674			break;
    675		}
    676		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
    677			val->intval = POWER_SUPPLY_STATUS_CHARGING;
    678		else
    679			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
    680		break;
    681	case POWER_SUPPLY_PROP_TECHNOLOGY:
    682		val->intval = ddata->config.info.technology;
    683		break;
    684	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
    685		val->intval = cpcap_battery_get_voltage(ddata);
    686		break;
    687	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
    688		val->intval = ddata->config.info.voltage_max_design;
    689		break;
    690	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
    691		val->intval = ddata->config.info.voltage_min_design;
    692		break;
    693	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
    694		val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
    695		break;
    696	case POWER_SUPPLY_PROP_CURRENT_AVG:
    697		sample = latest->cc.sample - previous->cc.sample;
    698		if (!sample) {
    699			val->intval = cpcap_battery_cc_get_avg_current(ddata);
    700			break;
    701		}
    702		accumulator = latest->cc.accumulator - previous->cc.accumulator;
    703		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
    704						     accumulator,
    705						     latest->cc.offset);
    706		break;
    707	case POWER_SUPPLY_PROP_CURRENT_NOW:
    708		val->intval = latest->current_ua;
    709		break;
    710	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
    711		val->intval = latest->counter_uah;
    712		break;
    713	case POWER_SUPPLY_PROP_POWER_NOW:
    714		tmp = (latest->voltage / 10000) * latest->current_ua;
    715		val->intval = div64_s64(tmp, 100);
    716		break;
    717	case POWER_SUPPLY_PROP_POWER_AVG:
    718		sample = latest->cc.sample - previous->cc.sample;
    719		if (!sample) {
    720			tmp = cpcap_battery_cc_get_avg_current(ddata);
    721			tmp *= (latest->voltage / 10000);
    722			val->intval = div64_s64(tmp, 100);
    723			break;
    724		}
    725		accumulator = latest->cc.accumulator - previous->cc.accumulator;
    726		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
    727					     latest->cc.offset);
    728		tmp *= ((latest->voltage + previous->voltage) / 20000);
    729		val->intval = div64_s64(tmp, 100);
    730		break;
    731	case POWER_SUPPLY_PROP_CAPACITY:
    732		empty = cpcap_battery_get_empty(ddata);
    733		if (!empty->voltage || !ddata->charge_full)
    734			return -ENODATA;
    735		/* (ddata->charge_full / 200) is needed for rounding */
    736		val->intval = empty->counter_uah - latest->counter_uah +
    737			ddata->charge_full / 200;
    738		val->intval = clamp(val->intval, 0, ddata->charge_full);
    739		val->intval = val->intval * 100 / ddata->charge_full;
    740		break;
    741	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
    742		if (cpcap_battery_full(ddata))
    743			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
    744		else if (latest->voltage >= 3750000)
    745			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
    746		else if (latest->voltage >= 3300000)
    747			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
    748		else if (latest->voltage > 3100000)
    749			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
    750		else if (latest->voltage <= 3100000)
    751			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
    752		else
    753			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
    754		break;
    755	case POWER_SUPPLY_PROP_CHARGE_NOW:
    756		empty = cpcap_battery_get_empty(ddata);
    757		if (!empty->voltage)
    758			return -ENODATA;
    759		val->intval = empty->counter_uah - latest->counter_uah;
    760		if (val->intval < 0) {
    761			/* Assume invalid config if CHARGE_NOW is -20% */
    762			if (ddata->charge_full && abs(val->intval) > ddata->charge_full/5) {
    763				empty->voltage = 0;
    764				ddata->charge_full = 0;
    765				return -ENODATA;
    766			}
    767			val->intval = 0;
    768		} else if (ddata->charge_full && ddata->charge_full < val->intval) {
    769			/* Assume invalid config if CHARGE_NOW exceeds CHARGE_FULL by 20% */
    770			if (val->intval > (6*ddata->charge_full)/5) {
    771				empty->voltage = 0;
    772				ddata->charge_full = 0;
    773				return -ENODATA;
    774			}
    775			val->intval = ddata->charge_full;
    776		}
    777		break;
    778	case POWER_SUPPLY_PROP_CHARGE_FULL:
    779		if (!ddata->charge_full)
    780			return -ENODATA;
    781		val->intval = ddata->charge_full;
    782		break;
    783	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
    784		val->intval = ddata->config.info.charge_full_design;
    785		break;
    786	case POWER_SUPPLY_PROP_SCOPE:
    787		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
    788		break;
    789	case POWER_SUPPLY_PROP_TEMP:
    790		if (ignore_temperature_probe)
    791			return -ENODATA;
    792		val->intval = latest->temperature;
    793		break;
    794	default:
    795		return -EINVAL;
    796	}
    797
    798	return 0;
    799}
    800
    801static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
    802					int const_charge_voltage)
    803{
    804	union power_supply_propval prop;
    805	union power_supply_propval val;
    806	struct power_supply *charger;
    807	int error;
    808
    809	charger = power_supply_get_by_name("usb");
    810	if (!charger)
    811		return -ENODEV;
    812
    813	error = power_supply_get_property(charger,
    814				POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
    815				&prop);
    816	if (error)
    817		goto out_put;
    818
    819	/* Allow charger const voltage lower than battery const voltage */
    820	if (const_charge_voltage > prop.intval)
    821		goto out_put;
    822
    823	val.intval = const_charge_voltage;
    824
    825	error = power_supply_set_property(charger,
    826			POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
    827			&val);
    828out_put:
    829	power_supply_put(charger);
    830
    831	return error;
    832}
    833
    834static int cpcap_battery_set_property(struct power_supply *psy,
    835				      enum power_supply_property psp,
    836				      const union power_supply_propval *val)
    837{
    838	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
    839
    840	switch (psp) {
    841	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
    842		if (val->intval < ddata->config.info.voltage_min_design)
    843			return -EINVAL;
    844		if (val->intval > ddata->config.info.voltage_max_design)
    845			return -EINVAL;
    846
    847		ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
    848
    849		return cpcap_battery_update_charger(ddata, val->intval);
    850	case POWER_SUPPLY_PROP_CHARGE_FULL:
    851		if (val->intval < 0)
    852			return -EINVAL;
    853		if (val->intval > (6*ddata->config.info.charge_full_design)/5)
    854			return -EINVAL;
    855
    856		ddata->charge_full = val->intval;
    857
    858		return 0;
    859	default:
    860		return -EINVAL;
    861	}
    862
    863	return 0;
    864}
    865
    866static int cpcap_battery_property_is_writeable(struct power_supply *psy,
    867					       enum power_supply_property psp)
    868{
    869	switch (psp) {
    870	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
    871	case POWER_SUPPLY_PROP_CHARGE_FULL:
    872		return 1;
    873	default:
    874		return 0;
    875	}
    876}
    877
    878static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
    879{
    880	struct cpcap_battery_ddata *ddata = data;
    881	struct cpcap_battery_state_data *latest;
    882	struct cpcap_interrupt_desc *d;
    883
    884	if (!atomic_read(&ddata->active))
    885		return IRQ_NONE;
    886
    887	list_for_each_entry(d, &ddata->irq_list, node) {
    888		if (irq == d->irq)
    889			break;
    890	}
    891
    892	if (list_entry_is_head(d, &ddata->irq_list, node))
    893		return IRQ_NONE;
    894
    895	latest = cpcap_battery_latest(ddata);
    896
    897	switch (d->action) {
    898	case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
    899		dev_info(ddata->dev, "Coulomb counter calibration done\n");
    900		break;
    901	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
    902		if (latest->current_ua >= 0)
    903			dev_warn(ddata->dev, "Battery low at %imV!\n",
    904				latest->voltage / 1000);
    905		break;
    906	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
    907		if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
    908			dev_emerg(ddata->dev,
    909				  "Battery empty at %imV, powering off\n",
    910				  latest->voltage / 1000);
    911			orderly_poweroff(true);
    912		}
    913		break;
    914	default:
    915		break;
    916	}
    917
    918	power_supply_changed(ddata->psy);
    919
    920	return IRQ_HANDLED;
    921}
    922
    923static int cpcap_battery_init_irq(struct platform_device *pdev,
    924				  struct cpcap_battery_ddata *ddata,
    925				  const char *name)
    926{
    927	struct cpcap_interrupt_desc *d;
    928	int irq, error;
    929
    930	irq = platform_get_irq_byname(pdev, name);
    931	if (irq < 0)
    932		return irq;
    933
    934	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
    935					  cpcap_battery_irq_thread,
    936					  IRQF_SHARED | IRQF_ONESHOT,
    937					  name, ddata);
    938	if (error) {
    939		dev_err(ddata->dev, "could not get irq %s: %i\n",
    940			name, error);
    941
    942		return error;
    943	}
    944
    945	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
    946	if (!d)
    947		return -ENOMEM;
    948
    949	d->name = name;
    950	d->irq = irq;
    951
    952	if (!strncmp(name, "cccal", 5))
    953		d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
    954	else if (!strncmp(name, "lowbph", 6))
    955		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
    956	else if (!strncmp(name, "lowbpl", 6))
    957		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
    958
    959	list_add(&d->node, &ddata->irq_list);
    960
    961	return 0;
    962}
    963
    964static int cpcap_battery_init_interrupts(struct platform_device *pdev,
    965					 struct cpcap_battery_ddata *ddata)
    966{
    967	static const char * const cpcap_battery_irqs[] = {
    968		"eol", "lowbph", "lowbpl",
    969		"chrgcurr1", "battdetb"
    970	};
    971	int i, error;
    972
    973	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
    974		error = cpcap_battery_init_irq(pdev, ddata,
    975					       cpcap_battery_irqs[i]);
    976		if (error)
    977			return error;
    978	}
    979
    980	/* Enable calibration interrupt if already available in dts */
    981	cpcap_battery_init_irq(pdev, ddata, "cccal");
    982
    983	/* Enable low battery interrupts for 3.3V high and 3.1V low */
    984	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
    985				   0xffff,
    986				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
    987	if (error)
    988		return error;
    989
    990	return 0;
    991}
    992
    993static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
    994{
    995	const char * const names[CPCAP_BATTERY_IIO_NR] = {
    996		"battdetb", "battp", "chg_isense", "batti",
    997	};
    998	int error, i;
    999
   1000	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
   1001		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
   1002							  names[i]);
   1003		if (IS_ERR(ddata->channels[i])) {
   1004			error = PTR_ERR(ddata->channels[i]);
   1005			goto out_err;
   1006		}
   1007
   1008		if (!ddata->channels[i]->indio_dev) {
   1009			error = -ENXIO;
   1010			goto out_err;
   1011		}
   1012	}
   1013
   1014	return 0;
   1015
   1016out_err:
   1017	return dev_err_probe(ddata->dev, error,
   1018			     "could not initialize VBUS or ID IIO\n");
   1019}
   1020
   1021/* Calibrate coulomb counter */
   1022static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
   1023{
   1024	int error, ccc1, value;
   1025	unsigned long timeout;
   1026
   1027	error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
   1028	if (error)
   1029		return error;
   1030
   1031	timeout = jiffies + msecs_to_jiffies(6000);
   1032
   1033	/* Start calibration */
   1034	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
   1035				   0xffff,
   1036				   CPCAP_REG_CCC1_CAL_EN);
   1037	if (error)
   1038		goto restore;
   1039
   1040	while (time_before(jiffies, timeout)) {
   1041		error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
   1042		if (error)
   1043			goto restore;
   1044
   1045		if (!(value & CPCAP_REG_CCC1_CAL_EN))
   1046			break;
   1047
   1048		error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
   1049		if (error)
   1050			goto restore;
   1051
   1052		msleep(300);
   1053	}
   1054
   1055	/* Read calibration offset from CCM */
   1056	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
   1057	if (error)
   1058		goto restore;
   1059
   1060	dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
   1061
   1062restore:
   1063	if (error)
   1064		dev_err(ddata->dev, "%s: error %i\n", __func__, error);
   1065
   1066	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
   1067				   0xffff, ccc1);
   1068	if (error)
   1069		dev_err(ddata->dev, "%s: restore error %i\n",
   1070			__func__, error);
   1071
   1072	return error;
   1073}
   1074
   1075#ifdef CONFIG_OF
   1076static const struct of_device_id cpcap_battery_id_table[] = {
   1077	{
   1078		.compatible = "motorola,cpcap-battery",
   1079	},
   1080	{},
   1081};
   1082MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
   1083#endif
   1084
   1085static const struct power_supply_desc cpcap_charger_battery_desc = {
   1086	.name		= "battery",
   1087	.type		= POWER_SUPPLY_TYPE_BATTERY,
   1088	.properties	= cpcap_battery_props,
   1089	.num_properties	= ARRAY_SIZE(cpcap_battery_props),
   1090	.get_property	= cpcap_battery_get_property,
   1091	.set_property	= cpcap_battery_set_property,
   1092	.property_is_writeable = cpcap_battery_property_is_writeable,
   1093	.external_power_changed = cpcap_battery_external_power_changed,
   1094};
   1095
   1096static int cpcap_battery_probe(struct platform_device *pdev)
   1097{
   1098	struct cpcap_battery_ddata *ddata;
   1099	struct power_supply_config psy_cfg = {};
   1100	int error;
   1101
   1102	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
   1103	if (!ddata)
   1104		return -ENOMEM;
   1105
   1106	cpcap_battery_detect_battery_type(ddata);
   1107
   1108	INIT_LIST_HEAD(&ddata->irq_list);
   1109	ddata->dev = &pdev->dev;
   1110
   1111	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
   1112	if (!ddata->reg)
   1113		return -ENODEV;
   1114
   1115	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
   1116	if (error)
   1117		return error;
   1118
   1119	switch (ddata->vendor) {
   1120	case CPCAP_VENDOR_ST:
   1121		ddata->cc_lsb = 95374;	/* μAms per LSB */
   1122		break;
   1123	case CPCAP_VENDOR_TI:
   1124		ddata->cc_lsb = 91501;	/* μAms per LSB */
   1125		break;
   1126	default:
   1127		return -EINVAL;
   1128	}
   1129	ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
   1130
   1131	platform_set_drvdata(pdev, ddata);
   1132
   1133	error = cpcap_battery_init_interrupts(pdev, ddata);
   1134	if (error)
   1135		return error;
   1136
   1137	error = cpcap_battery_init_iio(ddata);
   1138	if (error)
   1139		return error;
   1140
   1141	psy_cfg.of_node = pdev->dev.of_node;
   1142	psy_cfg.drv_data = ddata;
   1143
   1144	ddata->psy = devm_power_supply_register(ddata->dev,
   1145						&cpcap_charger_battery_desc,
   1146						&psy_cfg);
   1147	error = PTR_ERR_OR_ZERO(ddata->psy);
   1148	if (error) {
   1149		dev_err(ddata->dev, "failed to register power supply\n");
   1150		return error;
   1151	}
   1152
   1153	atomic_set(&ddata->active, 1);
   1154
   1155	error = cpcap_battery_calibrate(ddata);
   1156	if (error)
   1157		return error;
   1158
   1159	return 0;
   1160}
   1161
   1162static int cpcap_battery_remove(struct platform_device *pdev)
   1163{
   1164	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
   1165	int error;
   1166
   1167	atomic_set(&ddata->active, 0);
   1168	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
   1169				   0xffff, 0);
   1170	if (error)
   1171		dev_err(&pdev->dev, "could not disable: %i\n", error);
   1172
   1173	return 0;
   1174}
   1175
   1176static struct platform_driver cpcap_battery_driver = {
   1177	.driver	= {
   1178		.name		= "cpcap_battery",
   1179		.of_match_table = of_match_ptr(cpcap_battery_id_table),
   1180	},
   1181	.probe	= cpcap_battery_probe,
   1182	.remove = cpcap_battery_remove,
   1183};
   1184module_platform_driver(cpcap_battery_driver);
   1185
   1186MODULE_LICENSE("GPL v2");
   1187MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
   1188MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");