cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pwm-sun4i.c (13135B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
      4 *
      5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
      6 *
      7 * Limitations:
      8 * - When outputing the source clock directly, the PWM logic will be bypassed
      9 *   and the currently running period is not guaranteed to be completed
     10 */
     11
     12#include <linux/bitops.h>
     13#include <linux/clk.h>
     14#include <linux/delay.h>
     15#include <linux/err.h>
     16#include <linux/io.h>
     17#include <linux/jiffies.h>
     18#include <linux/module.h>
     19#include <linux/of.h>
     20#include <linux/of_device.h>
     21#include <linux/platform_device.h>
     22#include <linux/pwm.h>
     23#include <linux/reset.h>
     24#include <linux/slab.h>
     25#include <linux/spinlock.h>
     26#include <linux/time.h>
     27
     28#define PWM_CTRL_REG		0x0
     29
     30#define PWM_CH_PRD_BASE		0x4
     31#define PWM_CH_PRD_OFFSET	0x4
     32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
     33
     34#define PWMCH_OFFSET		15
     35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
     36#define PWM_PRESCAL_OFF		0
     37#define PWM_EN			BIT(4)
     38#define PWM_ACT_STATE		BIT(5)
     39#define PWM_CLK_GATING		BIT(6)
     40#define PWM_MODE		BIT(7)
     41#define PWM_PULSE		BIT(8)
     42#define PWM_BYPASS		BIT(9)
     43
     44#define PWM_RDY_BASE		28
     45#define PWM_RDY_OFFSET		1
     46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
     47
     48#define PWM_PRD(prd)		(((prd) - 1) << 16)
     49#define PWM_PRD_MASK		GENMASK(15, 0)
     50
     51#define PWM_DTY_MASK		GENMASK(15, 0)
     52
     53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
     54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
     55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
     56
     57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
     58
     59static const u32 prescaler_table[] = {
     60	120,
     61	180,
     62	240,
     63	360,
     64	480,
     65	0,
     66	0,
     67	0,
     68	12000,
     69	24000,
     70	36000,
     71	48000,
     72	72000,
     73	0,
     74	0,
     75	0, /* Actually 1 but tested separately */
     76};
     77
     78struct sun4i_pwm_data {
     79	bool has_prescaler_bypass;
     80	bool has_direct_mod_clk_output;
     81	unsigned int npwm;
     82};
     83
     84struct sun4i_pwm_chip {
     85	struct pwm_chip chip;
     86	struct clk *bus_clk;
     87	struct clk *clk;
     88	struct reset_control *rst;
     89	void __iomem *base;
     90	spinlock_t ctrl_lock;
     91	const struct sun4i_pwm_data *data;
     92};
     93
     94static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
     95{
     96	return container_of(chip, struct sun4i_pwm_chip, chip);
     97}
     98
     99static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
    100				  unsigned long offset)
    101{
    102	return readl(chip->base + offset);
    103}
    104
    105static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
    106				    u32 val, unsigned long offset)
    107{
    108	writel(val, chip->base + offset);
    109}
    110
    111static void sun4i_pwm_get_state(struct pwm_chip *chip,
    112				struct pwm_device *pwm,
    113				struct pwm_state *state)
    114{
    115	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
    116	u64 clk_rate, tmp;
    117	u32 val;
    118	unsigned int prescaler;
    119
    120	clk_rate = clk_get_rate(sun4i_pwm->clk);
    121
    122	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
    123
    124	/*
    125	 * PWM chapter in H6 manual has a diagram which explains that if bypass
    126	 * bit is set, no other setting has any meaning. Even more, experiment
    127	 * proved that also enable bit is ignored in this case.
    128	 */
    129	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
    130	    sun4i_pwm->data->has_direct_mod_clk_output) {
    131		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
    132		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
    133		state->polarity = PWM_POLARITY_NORMAL;
    134		state->enabled = true;
    135		return;
    136	}
    137
    138	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
    139	    sun4i_pwm->data->has_prescaler_bypass)
    140		prescaler = 1;
    141	else
    142		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
    143
    144	if (prescaler == 0)
    145		return;
    146
    147	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
    148		state->polarity = PWM_POLARITY_NORMAL;
    149	else
    150		state->polarity = PWM_POLARITY_INVERSED;
    151
    152	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
    153	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
    154		state->enabled = true;
    155	else
    156		state->enabled = false;
    157
    158	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
    159
    160	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
    161	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
    162
    163	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
    164	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
    165}
    166
    167static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
    168			       const struct pwm_state *state,
    169			       u32 *dty, u32 *prd, unsigned int *prsclr,
    170			       bool *bypass)
    171{
    172	u64 clk_rate, div = 0;
    173	unsigned int prescaler = 0;
    174
    175	clk_rate = clk_get_rate(sun4i_pwm->clk);
    176
    177	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
    178		  state->enabled &&
    179		  (state->period * clk_rate >= NSEC_PER_SEC) &&
    180		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
    181		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
    182
    183	/* Skip calculation of other parameters if we bypass them */
    184	if (*bypass)
    185		return 0;
    186
    187	if (sun4i_pwm->data->has_prescaler_bypass) {
    188		/* First, test without any prescaler when available */
    189		prescaler = PWM_PRESCAL_MASK;
    190		/*
    191		 * When not using any prescaler, the clock period in nanoseconds
    192		 * is not an integer so round it half up instead of
    193		 * truncating to get less surprising values.
    194		 */
    195		div = clk_rate * state->period + NSEC_PER_SEC / 2;
    196		do_div(div, NSEC_PER_SEC);
    197		if (div - 1 > PWM_PRD_MASK)
    198			prescaler = 0;
    199	}
    200
    201	if (prescaler == 0) {
    202		/* Go up from the first divider */
    203		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
    204			unsigned int pval = prescaler_table[prescaler];
    205
    206			if (!pval)
    207				continue;
    208
    209			div = clk_rate;
    210			do_div(div, pval);
    211			div = div * state->period;
    212			do_div(div, NSEC_PER_SEC);
    213			if (div - 1 <= PWM_PRD_MASK)
    214				break;
    215		}
    216
    217		if (div - 1 > PWM_PRD_MASK)
    218			return -EINVAL;
    219	}
    220
    221	*prd = div;
    222	div *= state->duty_cycle;
    223	do_div(div, state->period);
    224	*dty = div;
    225	*prsclr = prescaler;
    226
    227	return 0;
    228}
    229
    230static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
    231			   const struct pwm_state *state)
    232{
    233	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
    234	struct pwm_state cstate;
    235	u32 ctrl, duty = 0, period = 0, val;
    236	int ret;
    237	unsigned int delay_us, prescaler = 0;
    238	bool bypass;
    239
    240	pwm_get_state(pwm, &cstate);
    241
    242	if (!cstate.enabled) {
    243		ret = clk_prepare_enable(sun4i_pwm->clk);
    244		if (ret) {
    245			dev_err(chip->dev, "failed to enable PWM clock\n");
    246			return ret;
    247		}
    248	}
    249
    250	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
    251				  &bypass);
    252	if (ret) {
    253		dev_err(chip->dev, "period exceeds the maximum value\n");
    254		if (!cstate.enabled)
    255			clk_disable_unprepare(sun4i_pwm->clk);
    256		return ret;
    257	}
    258
    259	spin_lock(&sun4i_pwm->ctrl_lock);
    260	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
    261
    262	if (sun4i_pwm->data->has_direct_mod_clk_output) {
    263		if (bypass) {
    264			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
    265			/* We can skip other parameter */
    266			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
    267			spin_unlock(&sun4i_pwm->ctrl_lock);
    268			return 0;
    269		}
    270
    271		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
    272	}
    273
    274	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
    275		/* Prescaler changed, the clock has to be gated */
    276		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
    277		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
    278
    279		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
    280		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
    281	}
    282
    283	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
    284	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
    285
    286	if (state->polarity != PWM_POLARITY_NORMAL)
    287		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
    288	else
    289		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
    290
    291	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
    292
    293	if (state->enabled)
    294		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
    295
    296	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
    297
    298	spin_unlock(&sun4i_pwm->ctrl_lock);
    299
    300	if (state->enabled)
    301		return 0;
    302
    303	/* We need a full period to elapse before disabling the channel. */
    304	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
    305	if ((delay_us / 500) > MAX_UDELAY_MS)
    306		msleep(delay_us / 1000 + 1);
    307	else
    308		usleep_range(delay_us, delay_us * 2);
    309
    310	spin_lock(&sun4i_pwm->ctrl_lock);
    311	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
    312	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
    313	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
    314	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
    315	spin_unlock(&sun4i_pwm->ctrl_lock);
    316
    317	clk_disable_unprepare(sun4i_pwm->clk);
    318
    319	return 0;
    320}
    321
    322static const struct pwm_ops sun4i_pwm_ops = {
    323	.apply = sun4i_pwm_apply,
    324	.get_state = sun4i_pwm_get_state,
    325	.owner = THIS_MODULE,
    326};
    327
    328static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
    329	.has_prescaler_bypass = false,
    330	.npwm = 2,
    331};
    332
    333static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
    334	.has_prescaler_bypass = true,
    335	.npwm = 2,
    336};
    337
    338static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
    339	.has_prescaler_bypass = true,
    340	.npwm = 1,
    341};
    342
    343static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
    344	.has_prescaler_bypass = true,
    345	.has_direct_mod_clk_output = true,
    346	.npwm = 1,
    347};
    348
    349static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
    350	.has_prescaler_bypass = true,
    351	.has_direct_mod_clk_output = true,
    352	.npwm = 2,
    353};
    354
    355static const struct of_device_id sun4i_pwm_dt_ids[] = {
    356	{
    357		.compatible = "allwinner,sun4i-a10-pwm",
    358		.data = &sun4i_pwm_dual_nobypass,
    359	}, {
    360		.compatible = "allwinner,sun5i-a10s-pwm",
    361		.data = &sun4i_pwm_dual_bypass,
    362	}, {
    363		.compatible = "allwinner,sun5i-a13-pwm",
    364		.data = &sun4i_pwm_single_bypass,
    365	}, {
    366		.compatible = "allwinner,sun7i-a20-pwm",
    367		.data = &sun4i_pwm_dual_bypass,
    368	}, {
    369		.compatible = "allwinner,sun8i-h3-pwm",
    370		.data = &sun4i_pwm_single_bypass,
    371	}, {
    372		.compatible = "allwinner,sun50i-a64-pwm",
    373		.data = &sun50i_a64_pwm_data,
    374	}, {
    375		.compatible = "allwinner,sun50i-h6-pwm",
    376		.data = &sun50i_h6_pwm_data,
    377	}, {
    378		/* sentinel */
    379	},
    380};
    381MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
    382
    383static int sun4i_pwm_probe(struct platform_device *pdev)
    384{
    385	struct sun4i_pwm_chip *sun4ichip;
    386	int ret;
    387
    388	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
    389	if (!sun4ichip)
    390		return -ENOMEM;
    391
    392	sun4ichip->data = of_device_get_match_data(&pdev->dev);
    393	if (!sun4ichip->data)
    394		return -ENODEV;
    395
    396	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
    397	if (IS_ERR(sun4ichip->base))
    398		return PTR_ERR(sun4ichip->base);
    399
    400	/*
    401	 * All hardware variants need a source clock that is divided and
    402	 * then feeds the counter that defines the output wave form. In the
    403	 * device tree this clock is either unnamed or called "mod".
    404	 * Some variants (e.g. H6) need another clock to access the
    405	 * hardware registers; this is called "bus".
    406	 * So we request "mod" first (and ignore the corner case that a
    407	 * parent provides a "mod" clock while the right one would be the
    408	 * unnamed one of the PWM device) and if this is not found we fall
    409	 * back to the first clock of the PWM.
    410	 */
    411	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
    412	if (IS_ERR(sun4ichip->clk))
    413		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
    414				     "get mod clock failed\n");
    415
    416	if (!sun4ichip->clk) {
    417		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
    418		if (IS_ERR(sun4ichip->clk))
    419			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
    420					     "get unnamed clock failed\n");
    421	}
    422
    423	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
    424	if (IS_ERR(sun4ichip->bus_clk))
    425		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
    426				     "get bus clock failed\n");
    427
    428	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
    429	if (IS_ERR(sun4ichip->rst))
    430		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
    431				     "get reset failed\n");
    432
    433	/* Deassert reset */
    434	ret = reset_control_deassert(sun4ichip->rst);
    435	if (ret) {
    436		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
    437			ERR_PTR(ret));
    438		return ret;
    439	}
    440
    441	/*
    442	 * We're keeping the bus clock on for the sake of simplicity.
    443	 * Actually it only needs to be on for hardware register accesses.
    444	 */
    445	ret = clk_prepare_enable(sun4ichip->bus_clk);
    446	if (ret) {
    447		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
    448			ERR_PTR(ret));
    449		goto err_bus;
    450	}
    451
    452	sun4ichip->chip.dev = &pdev->dev;
    453	sun4ichip->chip.ops = &sun4i_pwm_ops;
    454	sun4ichip->chip.npwm = sun4ichip->data->npwm;
    455
    456	spin_lock_init(&sun4ichip->ctrl_lock);
    457
    458	ret = pwmchip_add(&sun4ichip->chip);
    459	if (ret < 0) {
    460		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
    461		goto err_pwm_add;
    462	}
    463
    464	platform_set_drvdata(pdev, sun4ichip);
    465
    466	return 0;
    467
    468err_pwm_add:
    469	clk_disable_unprepare(sun4ichip->bus_clk);
    470err_bus:
    471	reset_control_assert(sun4ichip->rst);
    472
    473	return ret;
    474}
    475
    476static int sun4i_pwm_remove(struct platform_device *pdev)
    477{
    478	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
    479
    480	pwmchip_remove(&sun4ichip->chip);
    481
    482	clk_disable_unprepare(sun4ichip->bus_clk);
    483	reset_control_assert(sun4ichip->rst);
    484
    485	return 0;
    486}
    487
    488static struct platform_driver sun4i_pwm_driver = {
    489	.driver = {
    490		.name = "sun4i-pwm",
    491		.of_match_table = sun4i_pwm_dt_ids,
    492	},
    493	.probe = sun4i_pwm_probe,
    494	.remove = sun4i_pwm_remove,
    495};
    496module_platform_driver(sun4i_pwm_driver);
    497
    498MODULE_ALIAS("platform:sun4i-pwm");
    499MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
    500MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
    501MODULE_LICENSE("GPL v2");