cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pwm-tegra.c (10923B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * drivers/pwm/pwm-tegra.c
      4 *
      5 * Tegra pulse-width-modulation controller driver
      6 *
      7 * Copyright (c) 2010-2020, NVIDIA Corporation.
      8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
      9 *
     10 * Overview of Tegra Pulse Width Modulator Register:
     11 * 1. 13-bit: Frequency division (SCALE)
     12 * 2. 8-bit : Pulse division (DUTY)
     13 * 3. 1-bit : Enable bit
     14 *
     15 * The PWM clock frequency is divided by 256 before subdividing it based
     16 * on the programmable frequency division value to generate the required
     17 * frequency for PWM output. The maximum output frequency that can be
     18 * achieved is (max rate of source clock) / 256.
     19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
     20 * 408 MHz/256 = 1.6 MHz.
     21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
     22 *
     23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
     24 * To achieve 100% duty cycle, program Bit [24] of this register to
     25 * 1’b1. In which case the other bits [23:16] are set to don't care.
     26 *
     27 * Limitations:
     28 * -	When PWM is disabled, the output is driven to inactive.
     29 * -	It does not allow the current PWM period to complete and
     30 *	stops abruptly.
     31 *
     32 * -	If the register is reconfigured while PWM is running,
     33 *	it does not complete the currently running period.
     34 *
     35 * -	If the user input duty is beyond acceptible limits,
     36 *	-EINVAL is returned.
     37 */
     38
     39#include <linux/clk.h>
     40#include <linux/err.h>
     41#include <linux/io.h>
     42#include <linux/module.h>
     43#include <linux/of.h>
     44#include <linux/of_device.h>
     45#include <linux/pm_opp.h>
     46#include <linux/pwm.h>
     47#include <linux/platform_device.h>
     48#include <linux/pinctrl/consumer.h>
     49#include <linux/pm_runtime.h>
     50#include <linux/slab.h>
     51#include <linux/reset.h>
     52
     53#include <soc/tegra/common.h>
     54
     55#define PWM_ENABLE	(1 << 31)
     56#define PWM_DUTY_WIDTH	8
     57#define PWM_DUTY_SHIFT	16
     58#define PWM_SCALE_WIDTH	13
     59#define PWM_SCALE_SHIFT	0
     60
     61struct tegra_pwm_soc {
     62	unsigned int num_channels;
     63
     64	/* Maximum IP frequency for given SoCs */
     65	unsigned long max_frequency;
     66};
     67
     68struct tegra_pwm_chip {
     69	struct pwm_chip chip;
     70	struct device *dev;
     71
     72	struct clk *clk;
     73	struct reset_control*rst;
     74
     75	unsigned long clk_rate;
     76	unsigned long min_period_ns;
     77
     78	void __iomem *regs;
     79
     80	const struct tegra_pwm_soc *soc;
     81};
     82
     83static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
     84{
     85	return container_of(chip, struct tegra_pwm_chip, chip);
     86}
     87
     88static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
     89{
     90	return readl(pc->regs + (offset << 4));
     91}
     92
     93static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
     94{
     95	writel(value, pc->regs + (offset << 4));
     96}
     97
     98static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
     99			    int duty_ns, int period_ns)
    100{
    101	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
    102	unsigned long long c = duty_ns;
    103	unsigned long rate, required_clk_rate;
    104	u32 val = 0;
    105	int err;
    106
    107	/*
    108	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
    109	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
    110	 * nearest integer during division.
    111	 */
    112	c *= (1 << PWM_DUTY_WIDTH);
    113	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
    114
    115	val = (u32)c << PWM_DUTY_SHIFT;
    116
    117	/*
    118	 *  min period = max clock limit >> PWM_DUTY_WIDTH
    119	 */
    120	if (period_ns < pc->min_period_ns)
    121		return -EINVAL;
    122
    123	/*
    124	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
    125	 * cycles at the PWM clock rate will take period_ns nanoseconds.
    126	 *
    127	 * num_channels: If single instance of PWM controller has multiple
    128	 * channels (e.g. Tegra210 or older) then it is not possible to
    129	 * configure separate clock rates to each of the channels, in such
    130	 * case the value stored during probe will be referred.
    131	 *
    132	 * If every PWM controller instance has one channel respectively, i.e.
    133	 * nums_channels == 1 then only the clock rate can be modified
    134	 * dynamically (e.g. Tegra186 or Tegra194).
    135	 */
    136	if (pc->soc->num_channels == 1) {
    137		/*
    138		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
    139		 * with the maximum possible rate that the controller can
    140		 * provide. Any further lower value can be derived by setting
    141		 * PFM bits[0:12].
    142		 *
    143		 * required_clk_rate is a reference rate for source clock and
    144		 * it is derived based on user requested period. By setting the
    145		 * source clock rate as required_clk_rate, PWM controller will
    146		 * be able to configure the requested period.
    147		 */
    148		required_clk_rate =
    149			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
    150
    151		err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
    152		if (err < 0)
    153			return -EINVAL;
    154
    155		/* Store the new rate for further references */
    156		pc->clk_rate = clk_get_rate(pc->clk);
    157	}
    158
    159	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
    160	rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
    161				   (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
    162
    163	/*
    164	 * Since the actual PWM divider is the register's frequency divider
    165	 * field plus 1, we need to decrement to get the correct value to
    166	 * write to the register.
    167	 */
    168	if (rate > 0)
    169		rate--;
    170	else
    171		return -EINVAL;
    172
    173	/*
    174	 * Make sure that the rate will fit in the register's frequency
    175	 * divider field.
    176	 */
    177	if (rate >> PWM_SCALE_WIDTH)
    178		return -EINVAL;
    179
    180	val |= rate << PWM_SCALE_SHIFT;
    181
    182	/*
    183	 * If the PWM channel is disabled, make sure to turn on the clock
    184	 * before writing the register. Otherwise, keep it enabled.
    185	 */
    186	if (!pwm_is_enabled(pwm)) {
    187		err = pm_runtime_resume_and_get(pc->dev);
    188		if (err)
    189			return err;
    190	} else
    191		val |= PWM_ENABLE;
    192
    193	pwm_writel(pc, pwm->hwpwm, val);
    194
    195	/*
    196	 * If the PWM is not enabled, turn the clock off again to save power.
    197	 */
    198	if (!pwm_is_enabled(pwm))
    199		pm_runtime_put(pc->dev);
    200
    201	return 0;
    202}
    203
    204static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
    205{
    206	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
    207	int rc = 0;
    208	u32 val;
    209
    210	rc = pm_runtime_resume_and_get(pc->dev);
    211	if (rc)
    212		return rc;
    213
    214	val = pwm_readl(pc, pwm->hwpwm);
    215	val |= PWM_ENABLE;
    216	pwm_writel(pc, pwm->hwpwm, val);
    217
    218	return 0;
    219}
    220
    221static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
    222{
    223	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
    224	u32 val;
    225
    226	val = pwm_readl(pc, pwm->hwpwm);
    227	val &= ~PWM_ENABLE;
    228	pwm_writel(pc, pwm->hwpwm, val);
    229
    230	pm_runtime_put_sync(pc->dev);
    231}
    232
    233static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
    234			   const struct pwm_state *state)
    235{
    236	int err;
    237	bool enabled = pwm->state.enabled;
    238
    239	if (state->polarity != PWM_POLARITY_NORMAL)
    240		return -EINVAL;
    241
    242	if (!state->enabled) {
    243		if (enabled)
    244			tegra_pwm_disable(chip, pwm);
    245
    246		return 0;
    247	}
    248
    249	err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
    250	if (err)
    251		return err;
    252
    253	if (!enabled)
    254		err = tegra_pwm_enable(chip, pwm);
    255
    256	return err;
    257}
    258
    259static const struct pwm_ops tegra_pwm_ops = {
    260	.apply = tegra_pwm_apply,
    261	.owner = THIS_MODULE,
    262};
    263
    264static int tegra_pwm_probe(struct platform_device *pdev)
    265{
    266	struct tegra_pwm_chip *pc;
    267	int ret;
    268
    269	pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
    270	if (!pc)
    271		return -ENOMEM;
    272
    273	pc->soc = of_device_get_match_data(&pdev->dev);
    274	pc->dev = &pdev->dev;
    275
    276	pc->regs = devm_platform_ioremap_resource(pdev, 0);
    277	if (IS_ERR(pc->regs))
    278		return PTR_ERR(pc->regs);
    279
    280	platform_set_drvdata(pdev, pc);
    281
    282	pc->clk = devm_clk_get(&pdev->dev, NULL);
    283	if (IS_ERR(pc->clk))
    284		return PTR_ERR(pc->clk);
    285
    286	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
    287	if (ret)
    288		return ret;
    289
    290	pm_runtime_enable(&pdev->dev);
    291	ret = pm_runtime_resume_and_get(&pdev->dev);
    292	if (ret)
    293		return ret;
    294
    295	/* Set maximum frequency of the IP */
    296	ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
    297	if (ret < 0) {
    298		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
    299		goto put_pm;
    300	}
    301
    302	/*
    303	 * The requested and configured frequency may differ due to
    304	 * clock register resolutions. Get the configured frequency
    305	 * so that PWM period can be calculated more accurately.
    306	 */
    307	pc->clk_rate = clk_get_rate(pc->clk);
    308
    309	/* Set minimum limit of PWM period for the IP */
    310	pc->min_period_ns =
    311	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
    312
    313	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
    314	if (IS_ERR(pc->rst)) {
    315		ret = PTR_ERR(pc->rst);
    316		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
    317		goto put_pm;
    318	}
    319
    320	reset_control_deassert(pc->rst);
    321
    322	pc->chip.dev = &pdev->dev;
    323	pc->chip.ops = &tegra_pwm_ops;
    324	pc->chip.npwm = pc->soc->num_channels;
    325
    326	ret = pwmchip_add(&pc->chip);
    327	if (ret < 0) {
    328		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
    329		reset_control_assert(pc->rst);
    330		goto put_pm;
    331	}
    332
    333	pm_runtime_put(&pdev->dev);
    334
    335	return 0;
    336put_pm:
    337	pm_runtime_put_sync_suspend(&pdev->dev);
    338	pm_runtime_force_suspend(&pdev->dev);
    339	return ret;
    340}
    341
    342static int tegra_pwm_remove(struct platform_device *pdev)
    343{
    344	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
    345
    346	pwmchip_remove(&pc->chip);
    347
    348	reset_control_assert(pc->rst);
    349
    350	pm_runtime_force_suspend(&pdev->dev);
    351
    352	return 0;
    353}
    354
    355static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
    356{
    357	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
    358	int err;
    359
    360	clk_disable_unprepare(pc->clk);
    361
    362	err = pinctrl_pm_select_sleep_state(dev);
    363	if (err) {
    364		clk_prepare_enable(pc->clk);
    365		return err;
    366	}
    367
    368	return 0;
    369}
    370
    371static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
    372{
    373	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
    374	int err;
    375
    376	err = pinctrl_pm_select_default_state(dev);
    377	if (err)
    378		return err;
    379
    380	err = clk_prepare_enable(pc->clk);
    381	if (err) {
    382		pinctrl_pm_select_sleep_state(dev);
    383		return err;
    384	}
    385
    386	return 0;
    387}
    388
    389static const struct tegra_pwm_soc tegra20_pwm_soc = {
    390	.num_channels = 4,
    391	.max_frequency = 48000000UL,
    392};
    393
    394static const struct tegra_pwm_soc tegra186_pwm_soc = {
    395	.num_channels = 1,
    396	.max_frequency = 102000000UL,
    397};
    398
    399static const struct tegra_pwm_soc tegra194_pwm_soc = {
    400	.num_channels = 1,
    401	.max_frequency = 408000000UL,
    402};
    403
    404static const struct of_device_id tegra_pwm_of_match[] = {
    405	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
    406	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
    407	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
    408	{ }
    409};
    410MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
    411
    412static const struct dev_pm_ops tegra_pwm_pm_ops = {
    413	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
    414			   NULL)
    415	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
    416				pm_runtime_force_resume)
    417};
    418
    419static struct platform_driver tegra_pwm_driver = {
    420	.driver = {
    421		.name = "tegra-pwm",
    422		.of_match_table = tegra_pwm_of_match,
    423		.pm = &tegra_pwm_pm_ops,
    424	},
    425	.probe = tegra_pwm_probe,
    426	.remove = tegra_pwm_remove,
    427};
    428
    429module_platform_driver(tegra_pwm_driver);
    430
    431MODULE_LICENSE("GPL");
    432MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
    433MODULE_DESCRIPTION("Tegra PWM controller driver");
    434MODULE_ALIAS("platform:tegra-pwm");