cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rio.c (61724B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * RapidIO interconnect services
      4 * (RapidIO Interconnect Specification, http://www.rapidio.org)
      5 *
      6 * Copyright 2005 MontaVista Software, Inc.
      7 * Matt Porter <mporter@kernel.crashing.org>
      8 *
      9 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
     10 * Alex Bounine <alexandre.bounine@idt.com>
     11 */
     12
     13#include <linux/types.h>
     14#include <linux/kernel.h>
     15
     16#include <linux/delay.h>
     17#include <linux/init.h>
     18#include <linux/rio.h>
     19#include <linux/rio_drv.h>
     20#include <linux/rio_ids.h>
     21#include <linux/rio_regs.h>
     22#include <linux/module.h>
     23#include <linux/spinlock.h>
     24#include <linux/slab.h>
     25#include <linux/interrupt.h>
     26
     27#include "rio.h"
     28
     29/*
     30 * struct rio_pwrite - RIO portwrite event
     31 * @node:    Node in list of doorbell events
     32 * @pwcback: Doorbell event callback
     33 * @context: Handler specific context to pass on event
     34 */
     35struct rio_pwrite {
     36	struct list_head node;
     37
     38	int (*pwcback)(struct rio_mport *mport, void *context,
     39		       union rio_pw_msg *msg, int step);
     40	void *context;
     41};
     42
     43MODULE_DESCRIPTION("RapidIO Subsystem Core");
     44MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
     45MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
     46MODULE_LICENSE("GPL");
     47
     48static int hdid[RIO_MAX_MPORTS];
     49static int ids_num;
     50module_param_array(hdid, int, &ids_num, 0);
     51MODULE_PARM_DESC(hdid,
     52	"Destination ID assignment to local RapidIO controllers");
     53
     54static LIST_HEAD(rio_devices);
     55static LIST_HEAD(rio_nets);
     56static DEFINE_SPINLOCK(rio_global_list_lock);
     57
     58static LIST_HEAD(rio_mports);
     59static LIST_HEAD(rio_scans);
     60static DEFINE_MUTEX(rio_mport_list_lock);
     61static unsigned char next_portid;
     62static DEFINE_SPINLOCK(rio_mmap_lock);
     63
     64/**
     65 * rio_local_get_device_id - Get the base/extended device id for a port
     66 * @port: RIO master port from which to get the deviceid
     67 *
     68 * Reads the base/extended device id from the local device
     69 * implementing the master port. Returns the 8/16-bit device
     70 * id.
     71 */
     72u16 rio_local_get_device_id(struct rio_mport *port)
     73{
     74	u32 result;
     75
     76	rio_local_read_config_32(port, RIO_DID_CSR, &result);
     77
     78	return (RIO_GET_DID(port->sys_size, result));
     79}
     80EXPORT_SYMBOL_GPL(rio_local_get_device_id);
     81
     82/**
     83 * rio_query_mport - Query mport device attributes
     84 * @port: mport device to query
     85 * @mport_attr: mport attributes data structure
     86 *
     87 * Returns attributes of specified mport through the
     88 * pointer to attributes data structure.
     89 */
     90int rio_query_mport(struct rio_mport *port,
     91		    struct rio_mport_attr *mport_attr)
     92{
     93	if (!port->ops->query_mport)
     94		return -ENODATA;
     95	return port->ops->query_mport(port, mport_attr);
     96}
     97EXPORT_SYMBOL(rio_query_mport);
     98
     99/**
    100 * rio_alloc_net- Allocate and initialize a new RIO network data structure
    101 * @mport: Master port associated with the RIO network
    102 *
    103 * Allocates a RIO network structure, initializes per-network
    104 * list heads, and adds the associated master port to the
    105 * network list of associated master ports. Returns a
    106 * RIO network pointer on success or %NULL on failure.
    107 */
    108struct rio_net *rio_alloc_net(struct rio_mport *mport)
    109{
    110	struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
    111
    112	if (net) {
    113		INIT_LIST_HEAD(&net->node);
    114		INIT_LIST_HEAD(&net->devices);
    115		INIT_LIST_HEAD(&net->switches);
    116		INIT_LIST_HEAD(&net->mports);
    117		mport->net = net;
    118	}
    119	return net;
    120}
    121EXPORT_SYMBOL_GPL(rio_alloc_net);
    122
    123int rio_add_net(struct rio_net *net)
    124{
    125	int err;
    126
    127	err = device_register(&net->dev);
    128	if (err)
    129		return err;
    130	spin_lock(&rio_global_list_lock);
    131	list_add_tail(&net->node, &rio_nets);
    132	spin_unlock(&rio_global_list_lock);
    133
    134	return 0;
    135}
    136EXPORT_SYMBOL_GPL(rio_add_net);
    137
    138void rio_free_net(struct rio_net *net)
    139{
    140	spin_lock(&rio_global_list_lock);
    141	if (!list_empty(&net->node))
    142		list_del(&net->node);
    143	spin_unlock(&rio_global_list_lock);
    144	if (net->release)
    145		net->release(net);
    146	device_unregister(&net->dev);
    147}
    148EXPORT_SYMBOL_GPL(rio_free_net);
    149
    150/**
    151 * rio_local_set_device_id - Set the base/extended device id for a port
    152 * @port: RIO master port
    153 * @did: Device ID value to be written
    154 *
    155 * Writes the base/extended device id from a device.
    156 */
    157void rio_local_set_device_id(struct rio_mport *port, u16 did)
    158{
    159	rio_local_write_config_32(port, RIO_DID_CSR,
    160				  RIO_SET_DID(port->sys_size, did));
    161}
    162EXPORT_SYMBOL_GPL(rio_local_set_device_id);
    163
    164/**
    165 * rio_add_device- Adds a RIO device to the device model
    166 * @rdev: RIO device
    167 *
    168 * Adds the RIO device to the global device list and adds the RIO
    169 * device to the RIO device list.  Creates the generic sysfs nodes
    170 * for an RIO device.
    171 */
    172int rio_add_device(struct rio_dev *rdev)
    173{
    174	int err;
    175
    176	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
    177	err = device_register(&rdev->dev);
    178	if (err)
    179		return err;
    180
    181	spin_lock(&rio_global_list_lock);
    182	list_add_tail(&rdev->global_list, &rio_devices);
    183	if (rdev->net) {
    184		list_add_tail(&rdev->net_list, &rdev->net->devices);
    185		if (rdev->pef & RIO_PEF_SWITCH)
    186			list_add_tail(&rdev->rswitch->node,
    187				      &rdev->net->switches);
    188	}
    189	spin_unlock(&rio_global_list_lock);
    190
    191	return 0;
    192}
    193EXPORT_SYMBOL_GPL(rio_add_device);
    194
    195/*
    196 * rio_del_device - removes a RIO device from the device model
    197 * @rdev: RIO device
    198 * @state: device state to set during removal process
    199 *
    200 * Removes the RIO device to the kernel device list and subsystem's device list.
    201 * Clears sysfs entries for the removed device.
    202 */
    203void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
    204{
    205	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
    206	atomic_set(&rdev->state, state);
    207	spin_lock(&rio_global_list_lock);
    208	list_del(&rdev->global_list);
    209	if (rdev->net) {
    210		list_del(&rdev->net_list);
    211		if (rdev->pef & RIO_PEF_SWITCH) {
    212			list_del(&rdev->rswitch->node);
    213			kfree(rdev->rswitch->route_table);
    214		}
    215	}
    216	spin_unlock(&rio_global_list_lock);
    217	device_unregister(&rdev->dev);
    218}
    219EXPORT_SYMBOL_GPL(rio_del_device);
    220
    221/**
    222 * rio_request_inb_mbox - request inbound mailbox service
    223 * @mport: RIO master port from which to allocate the mailbox resource
    224 * @dev_id: Device specific pointer to pass on event
    225 * @mbox: Mailbox number to claim
    226 * @entries: Number of entries in inbound mailbox queue
    227 * @minb: Callback to execute when inbound message is received
    228 *
    229 * Requests ownership of an inbound mailbox resource and binds
    230 * a callback function to the resource. Returns %0 on success.
    231 */
    232int rio_request_inb_mbox(struct rio_mport *mport,
    233			 void *dev_id,
    234			 int mbox,
    235			 int entries,
    236			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
    237				       int slot))
    238{
    239	int rc = -ENOSYS;
    240	struct resource *res;
    241
    242	if (!mport->ops->open_inb_mbox)
    243		goto out;
    244
    245	res = kzalloc(sizeof(*res), GFP_KERNEL);
    246	if (res) {
    247		rio_init_mbox_res(res, mbox, mbox);
    248
    249		/* Make sure this mailbox isn't in use */
    250		rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
    251				      res);
    252		if (rc < 0) {
    253			kfree(res);
    254			goto out;
    255		}
    256
    257		mport->inb_msg[mbox].res = res;
    258
    259		/* Hook the inbound message callback */
    260		mport->inb_msg[mbox].mcback = minb;
    261
    262		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
    263		if (rc) {
    264			mport->inb_msg[mbox].mcback = NULL;
    265			mport->inb_msg[mbox].res = NULL;
    266			release_resource(res);
    267			kfree(res);
    268		}
    269	} else
    270		rc = -ENOMEM;
    271
    272      out:
    273	return rc;
    274}
    275EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
    276
    277/**
    278 * rio_release_inb_mbox - release inbound mailbox message service
    279 * @mport: RIO master port from which to release the mailbox resource
    280 * @mbox: Mailbox number to release
    281 *
    282 * Releases ownership of an inbound mailbox resource. Returns 0
    283 * if the request has been satisfied.
    284 */
    285int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
    286{
    287	int rc;
    288
    289	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
    290		return -EINVAL;
    291
    292	mport->ops->close_inb_mbox(mport, mbox);
    293	mport->inb_msg[mbox].mcback = NULL;
    294
    295	rc = release_resource(mport->inb_msg[mbox].res);
    296	if (rc)
    297		return rc;
    298
    299	kfree(mport->inb_msg[mbox].res);
    300	mport->inb_msg[mbox].res = NULL;
    301
    302	return 0;
    303}
    304EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
    305
    306/**
    307 * rio_request_outb_mbox - request outbound mailbox service
    308 * @mport: RIO master port from which to allocate the mailbox resource
    309 * @dev_id: Device specific pointer to pass on event
    310 * @mbox: Mailbox number to claim
    311 * @entries: Number of entries in outbound mailbox queue
    312 * @moutb: Callback to execute when outbound message is sent
    313 *
    314 * Requests ownership of an outbound mailbox resource and binds
    315 * a callback function to the resource. Returns 0 on success.
    316 */
    317int rio_request_outb_mbox(struct rio_mport *mport,
    318			  void *dev_id,
    319			  int mbox,
    320			  int entries,
    321			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
    322{
    323	int rc = -ENOSYS;
    324	struct resource *res;
    325
    326	if (!mport->ops->open_outb_mbox)
    327		goto out;
    328
    329	res = kzalloc(sizeof(*res), GFP_KERNEL);
    330	if (res) {
    331		rio_init_mbox_res(res, mbox, mbox);
    332
    333		/* Make sure this outbound mailbox isn't in use */
    334		rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
    335				      res);
    336		if (rc < 0) {
    337			kfree(res);
    338			goto out;
    339		}
    340
    341		mport->outb_msg[mbox].res = res;
    342
    343		/* Hook the inbound message callback */
    344		mport->outb_msg[mbox].mcback = moutb;
    345
    346		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
    347		if (rc) {
    348			mport->outb_msg[mbox].mcback = NULL;
    349			mport->outb_msg[mbox].res = NULL;
    350			release_resource(res);
    351			kfree(res);
    352		}
    353	} else
    354		rc = -ENOMEM;
    355
    356      out:
    357	return rc;
    358}
    359EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
    360
    361/**
    362 * rio_release_outb_mbox - release outbound mailbox message service
    363 * @mport: RIO master port from which to release the mailbox resource
    364 * @mbox: Mailbox number to release
    365 *
    366 * Releases ownership of an inbound mailbox resource. Returns 0
    367 * if the request has been satisfied.
    368 */
    369int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
    370{
    371	int rc;
    372
    373	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
    374		return -EINVAL;
    375
    376	mport->ops->close_outb_mbox(mport, mbox);
    377	mport->outb_msg[mbox].mcback = NULL;
    378
    379	rc = release_resource(mport->outb_msg[mbox].res);
    380	if (rc)
    381		return rc;
    382
    383	kfree(mport->outb_msg[mbox].res);
    384	mport->outb_msg[mbox].res = NULL;
    385
    386	return 0;
    387}
    388EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
    389
    390/**
    391 * rio_setup_inb_dbell - bind inbound doorbell callback
    392 * @mport: RIO master port to bind the doorbell callback
    393 * @dev_id: Device specific pointer to pass on event
    394 * @res: Doorbell message resource
    395 * @dinb: Callback to execute when doorbell is received
    396 *
    397 * Adds a doorbell resource/callback pair into a port's
    398 * doorbell event list. Returns 0 if the request has been
    399 * satisfied.
    400 */
    401static int
    402rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
    403		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
    404				  u16 info))
    405{
    406	struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
    407
    408	if (!dbell)
    409		return -ENOMEM;
    410
    411	dbell->res = res;
    412	dbell->dinb = dinb;
    413	dbell->dev_id = dev_id;
    414
    415	mutex_lock(&mport->lock);
    416	list_add_tail(&dbell->node, &mport->dbells);
    417	mutex_unlock(&mport->lock);
    418	return 0;
    419}
    420
    421/**
    422 * rio_request_inb_dbell - request inbound doorbell message service
    423 * @mport: RIO master port from which to allocate the doorbell resource
    424 * @dev_id: Device specific pointer to pass on event
    425 * @start: Doorbell info range start
    426 * @end: Doorbell info range end
    427 * @dinb: Callback to execute when doorbell is received
    428 *
    429 * Requests ownership of an inbound doorbell resource and binds
    430 * a callback function to the resource. Returns 0 if the request
    431 * has been satisfied.
    432 */
    433int rio_request_inb_dbell(struct rio_mport *mport,
    434			  void *dev_id,
    435			  u16 start,
    436			  u16 end,
    437			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
    438					u16 dst, u16 info))
    439{
    440	int rc;
    441	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
    442
    443	if (res) {
    444		rio_init_dbell_res(res, start, end);
    445
    446		/* Make sure these doorbells aren't in use */
    447		rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
    448				      res);
    449		if (rc < 0) {
    450			kfree(res);
    451			goto out;
    452		}
    453
    454		/* Hook the doorbell callback */
    455		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
    456	} else
    457		rc = -ENOMEM;
    458
    459      out:
    460	return rc;
    461}
    462EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
    463
    464/**
    465 * rio_release_inb_dbell - release inbound doorbell message service
    466 * @mport: RIO master port from which to release the doorbell resource
    467 * @start: Doorbell info range start
    468 * @end: Doorbell info range end
    469 *
    470 * Releases ownership of an inbound doorbell resource and removes
    471 * callback from the doorbell event list. Returns 0 if the request
    472 * has been satisfied.
    473 */
    474int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
    475{
    476	int rc = 0, found = 0;
    477	struct rio_dbell *dbell;
    478
    479	mutex_lock(&mport->lock);
    480	list_for_each_entry(dbell, &mport->dbells, node) {
    481		if ((dbell->res->start == start) && (dbell->res->end == end)) {
    482			list_del(&dbell->node);
    483			found = 1;
    484			break;
    485		}
    486	}
    487	mutex_unlock(&mport->lock);
    488
    489	/* If we can't find an exact match, fail */
    490	if (!found) {
    491		rc = -EINVAL;
    492		goto out;
    493	}
    494
    495	/* Release the doorbell resource */
    496	rc = release_resource(dbell->res);
    497
    498	/* Free the doorbell event */
    499	kfree(dbell);
    500
    501      out:
    502	return rc;
    503}
    504EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
    505
    506/**
    507 * rio_request_outb_dbell - request outbound doorbell message range
    508 * @rdev: RIO device from which to allocate the doorbell resource
    509 * @start: Doorbell message range start
    510 * @end: Doorbell message range end
    511 *
    512 * Requests ownership of a doorbell message range. Returns a resource
    513 * if the request has been satisfied or %NULL on failure.
    514 */
    515struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
    516					u16 end)
    517{
    518	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
    519
    520	if (res) {
    521		rio_init_dbell_res(res, start, end);
    522
    523		/* Make sure these doorbells aren't in use */
    524		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
    525		    < 0) {
    526			kfree(res);
    527			res = NULL;
    528		}
    529	}
    530
    531	return res;
    532}
    533EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
    534
    535/**
    536 * rio_release_outb_dbell - release outbound doorbell message range
    537 * @rdev: RIO device from which to release the doorbell resource
    538 * @res: Doorbell resource to be freed
    539 *
    540 * Releases ownership of a doorbell message range. Returns 0 if the
    541 * request has been satisfied.
    542 */
    543int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
    544{
    545	int rc = release_resource(res);
    546
    547	kfree(res);
    548
    549	return rc;
    550}
    551EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
    552
    553/**
    554 * rio_add_mport_pw_handler - add port-write message handler into the list
    555 *                            of mport specific pw handlers
    556 * @mport:   RIO master port to bind the portwrite callback
    557 * @context: Handler specific context to pass on event
    558 * @pwcback: Callback to execute when portwrite is received
    559 *
    560 * Returns 0 if the request has been satisfied.
    561 */
    562int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
    563			     int (*pwcback)(struct rio_mport *mport,
    564			     void *context, union rio_pw_msg *msg, int step))
    565{
    566	struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
    567
    568	if (!pwrite)
    569		return -ENOMEM;
    570
    571	pwrite->pwcback = pwcback;
    572	pwrite->context = context;
    573	mutex_lock(&mport->lock);
    574	list_add_tail(&pwrite->node, &mport->pwrites);
    575	mutex_unlock(&mport->lock);
    576	return 0;
    577}
    578EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
    579
    580/**
    581 * rio_del_mport_pw_handler - remove port-write message handler from the list
    582 *                            of mport specific pw handlers
    583 * @mport:   RIO master port to bind the portwrite callback
    584 * @context: Registered handler specific context to pass on event
    585 * @pwcback: Registered callback function
    586 *
    587 * Returns 0 if the request has been satisfied.
    588 */
    589int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
    590			     int (*pwcback)(struct rio_mport *mport,
    591			     void *context, union rio_pw_msg *msg, int step))
    592{
    593	int rc = -EINVAL;
    594	struct rio_pwrite *pwrite;
    595
    596	mutex_lock(&mport->lock);
    597	list_for_each_entry(pwrite, &mport->pwrites, node) {
    598		if (pwrite->pwcback == pwcback && pwrite->context == context) {
    599			list_del(&pwrite->node);
    600			kfree(pwrite);
    601			rc = 0;
    602			break;
    603		}
    604	}
    605	mutex_unlock(&mport->lock);
    606
    607	return rc;
    608}
    609EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
    610
    611/**
    612 * rio_request_inb_pwrite - request inbound port-write message service for
    613 *                          specific RapidIO device
    614 * @rdev: RIO device to which register inbound port-write callback routine
    615 * @pwcback: Callback routine to execute when port-write is received
    616 *
    617 * Binds a port-write callback function to the RapidIO device.
    618 * Returns 0 if the request has been satisfied.
    619 */
    620int rio_request_inb_pwrite(struct rio_dev *rdev,
    621	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
    622{
    623	int rc = 0;
    624
    625	spin_lock(&rio_global_list_lock);
    626	if (rdev->pwcback)
    627		rc = -ENOMEM;
    628	else
    629		rdev->pwcback = pwcback;
    630
    631	spin_unlock(&rio_global_list_lock);
    632	return rc;
    633}
    634EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
    635
    636/**
    637 * rio_release_inb_pwrite - release inbound port-write message service
    638 *                          associated with specific RapidIO device
    639 * @rdev: RIO device which registered for inbound port-write callback
    640 *
    641 * Removes callback from the rio_dev structure. Returns 0 if the request
    642 * has been satisfied.
    643 */
    644int rio_release_inb_pwrite(struct rio_dev *rdev)
    645{
    646	int rc = -ENOMEM;
    647
    648	spin_lock(&rio_global_list_lock);
    649	if (rdev->pwcback) {
    650		rdev->pwcback = NULL;
    651		rc = 0;
    652	}
    653
    654	spin_unlock(&rio_global_list_lock);
    655	return rc;
    656}
    657EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
    658
    659/**
    660 * rio_pw_enable - Enables/disables port-write handling by a master port
    661 * @mport: Master port associated with port-write handling
    662 * @enable:  1=enable,  0=disable
    663 */
    664void rio_pw_enable(struct rio_mport *mport, int enable)
    665{
    666	if (mport->ops->pwenable) {
    667		mutex_lock(&mport->lock);
    668
    669		if ((enable && ++mport->pwe_refcnt == 1) ||
    670		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
    671			mport->ops->pwenable(mport, enable);
    672		mutex_unlock(&mport->lock);
    673	}
    674}
    675EXPORT_SYMBOL_GPL(rio_pw_enable);
    676
    677/**
    678 * rio_map_inb_region -- Map inbound memory region.
    679 * @mport: Master port.
    680 * @local: physical address of memory region to be mapped
    681 * @rbase: RIO base address assigned to this window
    682 * @size: Size of the memory region
    683 * @rflags: Flags for mapping.
    684 *
    685 * Return: 0 -- Success.
    686 *
    687 * This function will create the mapping from RIO space to local memory.
    688 */
    689int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
    690			u64 rbase, u32 size, u32 rflags)
    691{
    692	int rc;
    693	unsigned long flags;
    694
    695	if (!mport->ops->map_inb)
    696		return -1;
    697	spin_lock_irqsave(&rio_mmap_lock, flags);
    698	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
    699	spin_unlock_irqrestore(&rio_mmap_lock, flags);
    700	return rc;
    701}
    702EXPORT_SYMBOL_GPL(rio_map_inb_region);
    703
    704/**
    705 * rio_unmap_inb_region -- Unmap the inbound memory region
    706 * @mport: Master port
    707 * @lstart: physical address of memory region to be unmapped
    708 */
    709void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
    710{
    711	unsigned long flags;
    712	if (!mport->ops->unmap_inb)
    713		return;
    714	spin_lock_irqsave(&rio_mmap_lock, flags);
    715	mport->ops->unmap_inb(mport, lstart);
    716	spin_unlock_irqrestore(&rio_mmap_lock, flags);
    717}
    718EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
    719
    720/**
    721 * rio_map_outb_region -- Map outbound memory region.
    722 * @mport: Master port.
    723 * @destid: destination id window points to
    724 * @rbase: RIO base address window translates to
    725 * @size: Size of the memory region
    726 * @rflags: Flags for mapping.
    727 * @local: physical address of memory region mapped
    728 *
    729 * Return: 0 -- Success.
    730 *
    731 * This function will create the mapping from RIO space to local memory.
    732 */
    733int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
    734			u32 size, u32 rflags, dma_addr_t *local)
    735{
    736	int rc;
    737	unsigned long flags;
    738
    739	if (!mport->ops->map_outb)
    740		return -ENODEV;
    741
    742	spin_lock_irqsave(&rio_mmap_lock, flags);
    743	rc = mport->ops->map_outb(mport, destid, rbase, size,
    744		rflags, local);
    745	spin_unlock_irqrestore(&rio_mmap_lock, flags);
    746
    747	return rc;
    748}
    749EXPORT_SYMBOL_GPL(rio_map_outb_region);
    750
    751/**
    752 * rio_unmap_outb_region -- Unmap the inbound memory region
    753 * @mport: Master port
    754 * @destid: destination id mapping points to
    755 * @rstart: RIO base address window translates to
    756 */
    757void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
    758{
    759	unsigned long flags;
    760
    761	if (!mport->ops->unmap_outb)
    762		return;
    763
    764	spin_lock_irqsave(&rio_mmap_lock, flags);
    765	mport->ops->unmap_outb(mport, destid, rstart);
    766	spin_unlock_irqrestore(&rio_mmap_lock, flags);
    767}
    768EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
    769
    770/**
    771 * rio_mport_get_physefb - Helper function that returns register offset
    772 *                      for Physical Layer Extended Features Block.
    773 * @port: Master port to issue transaction
    774 * @local: Indicate a local master port or remote device access
    775 * @destid: Destination ID of the device
    776 * @hopcount: Number of switch hops to the device
    777 * @rmap: pointer to location to store register map type info
    778 */
    779u32
    780rio_mport_get_physefb(struct rio_mport *port, int local,
    781		      u16 destid, u8 hopcount, u32 *rmap)
    782{
    783	u32 ext_ftr_ptr;
    784	u32 ftr_header;
    785
    786	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
    787
    788	while (ext_ftr_ptr)  {
    789		if (local)
    790			rio_local_read_config_32(port, ext_ftr_ptr,
    791						 &ftr_header);
    792		else
    793			rio_mport_read_config_32(port, destid, hopcount,
    794						 ext_ftr_ptr, &ftr_header);
    795
    796		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
    797		switch (ftr_header) {
    798
    799		case RIO_EFB_SER_EP_ID:
    800		case RIO_EFB_SER_EP_REC_ID:
    801		case RIO_EFB_SER_EP_FREE_ID:
    802		case RIO_EFB_SER_EP_M1_ID:
    803		case RIO_EFB_SER_EP_SW_M1_ID:
    804		case RIO_EFB_SER_EPF_M1_ID:
    805		case RIO_EFB_SER_EPF_SW_M1_ID:
    806			*rmap = 1;
    807			return ext_ftr_ptr;
    808
    809		case RIO_EFB_SER_EP_M2_ID:
    810		case RIO_EFB_SER_EP_SW_M2_ID:
    811		case RIO_EFB_SER_EPF_M2_ID:
    812		case RIO_EFB_SER_EPF_SW_M2_ID:
    813			*rmap = 2;
    814			return ext_ftr_ptr;
    815
    816		default:
    817			break;
    818		}
    819
    820		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
    821						hopcount, ext_ftr_ptr);
    822	}
    823
    824	return ext_ftr_ptr;
    825}
    826EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
    827
    828/**
    829 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
    830 * @comp_tag: RIO component tag to match
    831 * @from: Previous RIO device found in search, or %NULL for new search
    832 *
    833 * Iterates through the list of known RIO devices. If a RIO device is
    834 * found with a matching @comp_tag, a pointer to its device
    835 * structure is returned. Otherwise, %NULL is returned. A new search
    836 * is initiated by passing %NULL to the @from argument. Otherwise, if
    837 * @from is not %NULL, searches continue from next device on the global
    838 * list.
    839 */
    840struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
    841{
    842	struct list_head *n;
    843	struct rio_dev *rdev;
    844
    845	spin_lock(&rio_global_list_lock);
    846	n = from ? from->global_list.next : rio_devices.next;
    847
    848	while (n && (n != &rio_devices)) {
    849		rdev = rio_dev_g(n);
    850		if (rdev->comp_tag == comp_tag)
    851			goto exit;
    852		n = n->next;
    853	}
    854	rdev = NULL;
    855exit:
    856	spin_unlock(&rio_global_list_lock);
    857	return rdev;
    858}
    859EXPORT_SYMBOL_GPL(rio_get_comptag);
    860
    861/**
    862 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
    863 * @rdev: Pointer to RIO device control structure
    864 * @pnum: Switch port number to set LOCKOUT bit
    865 * @lock: Operation : set (=1) or clear (=0)
    866 */
    867int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
    868{
    869	u32 regval;
    870
    871	rio_read_config_32(rdev,
    872		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
    873		&regval);
    874	if (lock)
    875		regval |= RIO_PORT_N_CTL_LOCKOUT;
    876	else
    877		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
    878
    879	rio_write_config_32(rdev,
    880		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
    881		regval);
    882	return 0;
    883}
    884EXPORT_SYMBOL_GPL(rio_set_port_lockout);
    885
    886/**
    887 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
    888 * given port
    889 * @port: Master port associated with the RIO network
    890 * @local: local=1 select local port otherwise a far device is reached
    891 * @destid: Destination ID of the device to check host bit
    892 * @hopcount: Number of hops to reach the target
    893 * @port_num: Port (-number on switch) to enable on a far end device
    894 *
    895 * Returns 0 or 1 from on General Control Command and Status Register
    896 * (EXT_PTR+0x3C)
    897 */
    898int rio_enable_rx_tx_port(struct rio_mport *port,
    899			  int local, u16 destid,
    900			  u8 hopcount, u8 port_num)
    901{
    902#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
    903	u32 regval;
    904	u32 ext_ftr_ptr;
    905	u32 rmap;
    906
    907	/*
    908	* enable rx input tx output port
    909	*/
    910	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
    911		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
    912
    913	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
    914					    hopcount, &rmap);
    915
    916	if (local) {
    917		rio_local_read_config_32(port,
    918				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
    919				&regval);
    920	} else {
    921		if (rio_mport_read_config_32(port, destid, hopcount,
    922			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
    923				&regval) < 0)
    924			return -EIO;
    925	}
    926
    927	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
    928
    929	if (local) {
    930		rio_local_write_config_32(port,
    931			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
    932	} else {
    933		if (rio_mport_write_config_32(port, destid, hopcount,
    934			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
    935				regval) < 0)
    936			return -EIO;
    937	}
    938#endif
    939	return 0;
    940}
    941EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
    942
    943
    944/**
    945 * rio_chk_dev_route - Validate route to the specified device.
    946 * @rdev:  RIO device failed to respond
    947 * @nrdev: Last active device on the route to rdev
    948 * @npnum: nrdev's port number on the route to rdev
    949 *
    950 * Follows a route to the specified RIO device to determine the last available
    951 * device (and corresponding RIO port) on the route.
    952 */
    953static int
    954rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
    955{
    956	u32 result;
    957	int p_port, rc = -EIO;
    958	struct rio_dev *prev = NULL;
    959
    960	/* Find switch with failed RIO link */
    961	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
    962		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
    963			prev = rdev->prev;
    964			break;
    965		}
    966		rdev = rdev->prev;
    967	}
    968
    969	if (!prev)
    970		goto err_out;
    971
    972	p_port = prev->rswitch->route_table[rdev->destid];
    973
    974	if (p_port != RIO_INVALID_ROUTE) {
    975		pr_debug("RIO: link failed on [%s]-P%d\n",
    976			 rio_name(prev), p_port);
    977		*nrdev = prev;
    978		*npnum = p_port;
    979		rc = 0;
    980	} else
    981		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
    982err_out:
    983	return rc;
    984}
    985
    986/**
    987 * rio_mport_chk_dev_access - Validate access to the specified device.
    988 * @mport: Master port to send transactions
    989 * @destid: Device destination ID in network
    990 * @hopcount: Number of hops into the network
    991 */
    992int
    993rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
    994{
    995	int i = 0;
    996	u32 tmp;
    997
    998	while (rio_mport_read_config_32(mport, destid, hopcount,
    999					RIO_DEV_ID_CAR, &tmp)) {
   1000		i++;
   1001		if (i == RIO_MAX_CHK_RETRY)
   1002			return -EIO;
   1003		mdelay(1);
   1004	}
   1005
   1006	return 0;
   1007}
   1008EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
   1009
   1010/**
   1011 * rio_chk_dev_access - Validate access to the specified device.
   1012 * @rdev: Pointer to RIO device control structure
   1013 */
   1014static int rio_chk_dev_access(struct rio_dev *rdev)
   1015{
   1016	return rio_mport_chk_dev_access(rdev->net->hport,
   1017					rdev->destid, rdev->hopcount);
   1018}
   1019
   1020/**
   1021 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
   1022 *                        returns link-response (if requested).
   1023 * @rdev: RIO devive to issue Input-status command
   1024 * @pnum: Device port number to issue the command
   1025 * @lnkresp: Response from a link partner
   1026 */
   1027static int
   1028rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
   1029{
   1030	u32 regval;
   1031	int checkcount;
   1032
   1033	if (lnkresp) {
   1034		/* Read from link maintenance response register
   1035		 * to clear valid bit */
   1036		rio_read_config_32(rdev,
   1037			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
   1038			&regval);
   1039		udelay(50);
   1040	}
   1041
   1042	/* Issue Input-status command */
   1043	rio_write_config_32(rdev,
   1044		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
   1045		RIO_MNT_REQ_CMD_IS);
   1046
   1047	/* Exit if the response is not expected */
   1048	if (!lnkresp)
   1049		return 0;
   1050
   1051	checkcount = 3;
   1052	while (checkcount--) {
   1053		udelay(50);
   1054		rio_read_config_32(rdev,
   1055			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
   1056			&regval);
   1057		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
   1058			*lnkresp = regval;
   1059			return 0;
   1060		}
   1061	}
   1062
   1063	return -EIO;
   1064}
   1065
   1066/**
   1067 * rio_clr_err_stopped - Clears port Error-stopped states.
   1068 * @rdev: Pointer to RIO device control structure
   1069 * @pnum: Switch port number to clear errors
   1070 * @err_status: port error status (if 0 reads register from device)
   1071 *
   1072 * TODO: Currently this routine is not compatible with recovery process
   1073 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
   1074 * to implement universal recovery process that is compatible full range
   1075 * off available devices.
   1076 * IDT gen3 switch driver now implements HW-specific error handler that
   1077 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
   1078 */
   1079static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
   1080{
   1081	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
   1082	u32 regval;
   1083	u32 far_ackid, far_linkstat, near_ackid;
   1084
   1085	if (err_status == 0)
   1086		rio_read_config_32(rdev,
   1087			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
   1088			&err_status);
   1089
   1090	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
   1091		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
   1092		/*
   1093		 * Send a Link-Request/Input-Status control symbol
   1094		 */
   1095		if (rio_get_input_status(rdev, pnum, &regval)) {
   1096			pr_debug("RIO_EM: Input-status response timeout\n");
   1097			goto rd_err;
   1098		}
   1099
   1100		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
   1101			 pnum, regval);
   1102		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
   1103		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
   1104		rio_read_config_32(rdev,
   1105			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
   1106			&regval);
   1107		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
   1108		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
   1109		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
   1110			 " near_ackID=0x%02x\n",
   1111			pnum, far_ackid, far_linkstat, near_ackid);
   1112
   1113		/*
   1114		 * If required, synchronize ackIDs of near and
   1115		 * far sides.
   1116		 */
   1117		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
   1118		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
   1119			/* Align near outstanding/outbound ackIDs with
   1120			 * far inbound.
   1121			 */
   1122			rio_write_config_32(rdev,
   1123				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
   1124				(near_ackid << 24) |
   1125					(far_ackid << 8) | far_ackid);
   1126			/* Align far outstanding/outbound ackIDs with
   1127			 * near inbound.
   1128			 */
   1129			far_ackid++;
   1130			if (!nextdev) {
   1131				pr_debug("RIO_EM: nextdev pointer == NULL\n");
   1132				goto rd_err;
   1133			}
   1134
   1135			rio_write_config_32(nextdev,
   1136				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
   1137					RIO_GET_PORT_NUM(nextdev->swpinfo)),
   1138				(far_ackid << 24) |
   1139				(near_ackid << 8) | near_ackid);
   1140		}
   1141rd_err:
   1142		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
   1143				   &err_status);
   1144		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
   1145	}
   1146
   1147	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
   1148		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
   1149		rio_get_input_status(nextdev,
   1150				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
   1151		udelay(50);
   1152
   1153		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
   1154				   &err_status);
   1155		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
   1156	}
   1157
   1158	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
   1159			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
   1160}
   1161
   1162/**
   1163 * rio_inb_pwrite_handler - inbound port-write message handler
   1164 * @mport:  mport device associated with port-write
   1165 * @pw_msg: pointer to inbound port-write message
   1166 *
   1167 * Processes an inbound port-write message. Returns 0 if the request
   1168 * has been satisfied.
   1169 */
   1170int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
   1171{
   1172	struct rio_dev *rdev;
   1173	u32 err_status, em_perrdet, em_ltlerrdet;
   1174	int rc, portnum;
   1175	struct rio_pwrite *pwrite;
   1176
   1177#ifdef DEBUG_PW
   1178	{
   1179		u32 i;
   1180
   1181		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
   1182		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
   1183			pr_debug("0x%02x: %08x %08x %08x %08x\n",
   1184				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
   1185				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
   1186		}
   1187	}
   1188#endif
   1189
   1190	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
   1191	if (rdev) {
   1192		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
   1193	} else {
   1194		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
   1195			__func__, pw_msg->em.comptag);
   1196	}
   1197
   1198	/* Call a device-specific handler (if it is registered for the device).
   1199	 * This may be the service for endpoints that send device-specific
   1200	 * port-write messages. End-point messages expected to be handled
   1201	 * completely by EP specific device driver.
   1202	 * For switches rc==0 signals that no standard processing required.
   1203	 */
   1204	if (rdev && rdev->pwcback) {
   1205		rc = rdev->pwcback(rdev, pw_msg, 0);
   1206		if (rc == 0)
   1207			return 0;
   1208	}
   1209
   1210	mutex_lock(&mport->lock);
   1211	list_for_each_entry(pwrite, &mport->pwrites, node)
   1212		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
   1213	mutex_unlock(&mport->lock);
   1214
   1215	if (!rdev)
   1216		return 0;
   1217
   1218	/*
   1219	 * FIXME: The code below stays as it was before for now until we decide
   1220	 * how to do default PW handling in combination with per-mport callbacks
   1221	 */
   1222
   1223	portnum = pw_msg->em.is_port & 0xFF;
   1224
   1225	/* Check if device and route to it are functional:
   1226	 * Sometimes devices may send PW message(s) just before being
   1227	 * powered down (or link being lost).
   1228	 */
   1229	if (rio_chk_dev_access(rdev)) {
   1230		pr_debug("RIO: device access failed - get link partner\n");
   1231		/* Scan route to the device and identify failed link.
   1232		 * This will replace device and port reported in PW message.
   1233		 * PW message should not be used after this point.
   1234		 */
   1235		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
   1236			pr_err("RIO: Route trace for %s failed\n",
   1237				rio_name(rdev));
   1238			return -EIO;
   1239		}
   1240		pw_msg = NULL;
   1241	}
   1242
   1243	/* For End-point devices processing stops here */
   1244	if (!(rdev->pef & RIO_PEF_SWITCH))
   1245		return 0;
   1246
   1247	if (rdev->phys_efptr == 0) {
   1248		pr_err("RIO_PW: Bad switch initialization for %s\n",
   1249			rio_name(rdev));
   1250		return 0;
   1251	}
   1252
   1253	/*
   1254	 * Process the port-write notification from switch
   1255	 */
   1256	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
   1257		rdev->rswitch->ops->em_handle(rdev, portnum);
   1258
   1259	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
   1260			   &err_status);
   1261	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
   1262
   1263	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
   1264
   1265		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
   1266			rdev->rswitch->port_ok |= (1 << portnum);
   1267			rio_set_port_lockout(rdev, portnum, 0);
   1268			/* Schedule Insertion Service */
   1269			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
   1270			       rio_name(rdev), portnum);
   1271		}
   1272
   1273		/* Clear error-stopped states (if reported).
   1274		 * Depending on the link partner state, two attempts
   1275		 * may be needed for successful recovery.
   1276		 */
   1277		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
   1278				  RIO_PORT_N_ERR_STS_INP_ES)) {
   1279			if (rio_clr_err_stopped(rdev, portnum, err_status))
   1280				rio_clr_err_stopped(rdev, portnum, 0);
   1281		}
   1282	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
   1283
   1284		if (rdev->rswitch->port_ok & (1 << portnum)) {
   1285			rdev->rswitch->port_ok &= ~(1 << portnum);
   1286			rio_set_port_lockout(rdev, portnum, 1);
   1287
   1288			if (rdev->phys_rmap == 1) {
   1289			rio_write_config_32(rdev,
   1290				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
   1291				RIO_PORT_N_ACK_CLEAR);
   1292			} else {
   1293				rio_write_config_32(rdev,
   1294					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
   1295					RIO_PORT_N_OB_ACK_CLEAR);
   1296				rio_write_config_32(rdev,
   1297					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
   1298					0);
   1299			}
   1300
   1301			/* Schedule Extraction Service */
   1302			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
   1303			       rio_name(rdev), portnum);
   1304		}
   1305	}
   1306
   1307	rio_read_config_32(rdev,
   1308		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
   1309	if (em_perrdet) {
   1310		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
   1311			 portnum, em_perrdet);
   1312		/* Clear EM Port N Error Detect CSR */
   1313		rio_write_config_32(rdev,
   1314			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
   1315	}
   1316
   1317	rio_read_config_32(rdev,
   1318		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
   1319	if (em_ltlerrdet) {
   1320		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
   1321			 em_ltlerrdet);
   1322		/* Clear EM L/T Layer Error Detect CSR */
   1323		rio_write_config_32(rdev,
   1324			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
   1325	}
   1326
   1327	/* Clear remaining error bits and Port-Write Pending bit */
   1328	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
   1329			    err_status);
   1330
   1331	return 0;
   1332}
   1333EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
   1334
   1335/**
   1336 * rio_mport_get_efb - get pointer to next extended features block
   1337 * @port: Master port to issue transaction
   1338 * @local: Indicate a local master port or remote device access
   1339 * @destid: Destination ID of the device
   1340 * @hopcount: Number of switch hops to the device
   1341 * @from: Offset of  current Extended Feature block header (if 0 starts
   1342 * from	ExtFeaturePtr)
   1343 */
   1344u32
   1345rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
   1346		      u8 hopcount, u32 from)
   1347{
   1348	u32 reg_val;
   1349
   1350	if (from == 0) {
   1351		if (local)
   1352			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
   1353						 &reg_val);
   1354		else
   1355			rio_mport_read_config_32(port, destid, hopcount,
   1356						 RIO_ASM_INFO_CAR, &reg_val);
   1357		return reg_val & RIO_EXT_FTR_PTR_MASK;
   1358	} else {
   1359		if (local)
   1360			rio_local_read_config_32(port, from, &reg_val);
   1361		else
   1362			rio_mport_read_config_32(port, destid, hopcount,
   1363						 from, &reg_val);
   1364		return RIO_GET_BLOCK_ID(reg_val);
   1365	}
   1366}
   1367EXPORT_SYMBOL_GPL(rio_mport_get_efb);
   1368
   1369/**
   1370 * rio_mport_get_feature - query for devices' extended features
   1371 * @port: Master port to issue transaction
   1372 * @local: Indicate a local master port or remote device access
   1373 * @destid: Destination ID of the device
   1374 * @hopcount: Number of switch hops to the device
   1375 * @ftr: Extended feature code
   1376 *
   1377 * Tell if a device supports a given RapidIO capability.
   1378 * Returns the offset of the requested extended feature
   1379 * block within the device's RIO configuration space or
   1380 * 0 in case the device does not support it.
   1381 */
   1382u32
   1383rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
   1384		      u8 hopcount, int ftr)
   1385{
   1386	u32 asm_info, ext_ftr_ptr, ftr_header;
   1387
   1388	if (local)
   1389		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
   1390	else
   1391		rio_mport_read_config_32(port, destid, hopcount,
   1392					 RIO_ASM_INFO_CAR, &asm_info);
   1393
   1394	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
   1395
   1396	while (ext_ftr_ptr) {
   1397		if (local)
   1398			rio_local_read_config_32(port, ext_ftr_ptr,
   1399						 &ftr_header);
   1400		else
   1401			rio_mport_read_config_32(port, destid, hopcount,
   1402						 ext_ftr_ptr, &ftr_header);
   1403		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
   1404			return ext_ftr_ptr;
   1405
   1406		ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
   1407		if (!ext_ftr_ptr)
   1408			break;
   1409	}
   1410
   1411	return 0;
   1412}
   1413EXPORT_SYMBOL_GPL(rio_mport_get_feature);
   1414
   1415/**
   1416 * rio_std_route_add_entry - Add switch route table entry using standard
   1417 *   registers defined in RIO specification rev.1.3
   1418 * @mport: Master port to issue transaction
   1419 * @destid: Destination ID of the device
   1420 * @hopcount: Number of switch hops to the device
   1421 * @table: routing table ID (global or port-specific)
   1422 * @route_destid: destID entry in the RT
   1423 * @route_port: destination port for specified destID
   1424 */
   1425static int
   1426rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
   1427			u16 table, u16 route_destid, u8 route_port)
   1428{
   1429	if (table == RIO_GLOBAL_TABLE) {
   1430		rio_mport_write_config_32(mport, destid, hopcount,
   1431				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
   1432				(u32)route_destid);
   1433		rio_mport_write_config_32(mport, destid, hopcount,
   1434				RIO_STD_RTE_CONF_PORT_SEL_CSR,
   1435				(u32)route_port);
   1436	}
   1437
   1438	udelay(10);
   1439	return 0;
   1440}
   1441
   1442/**
   1443 * rio_std_route_get_entry - Read switch route table entry (port number)
   1444 *   associated with specified destID using standard registers defined in RIO
   1445 *   specification rev.1.3
   1446 * @mport: Master port to issue transaction
   1447 * @destid: Destination ID of the device
   1448 * @hopcount: Number of switch hops to the device
   1449 * @table: routing table ID (global or port-specific)
   1450 * @route_destid: destID entry in the RT
   1451 * @route_port: returned destination port for specified destID
   1452 */
   1453static int
   1454rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
   1455			u16 table, u16 route_destid, u8 *route_port)
   1456{
   1457	u32 result;
   1458
   1459	if (table == RIO_GLOBAL_TABLE) {
   1460		rio_mport_write_config_32(mport, destid, hopcount,
   1461				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
   1462		rio_mport_read_config_32(mport, destid, hopcount,
   1463				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
   1464
   1465		*route_port = (u8)result;
   1466	}
   1467
   1468	return 0;
   1469}
   1470
   1471/**
   1472 * rio_std_route_clr_table - Clear swotch route table using standard registers
   1473 *   defined in RIO specification rev.1.3.
   1474 * @mport: Master port to issue transaction
   1475 * @destid: Destination ID of the device
   1476 * @hopcount: Number of switch hops to the device
   1477 * @table: routing table ID (global or port-specific)
   1478 */
   1479static int
   1480rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
   1481			u16 table)
   1482{
   1483	u32 max_destid = 0xff;
   1484	u32 i, pef, id_inc = 1, ext_cfg = 0;
   1485	u32 port_sel = RIO_INVALID_ROUTE;
   1486
   1487	if (table == RIO_GLOBAL_TABLE) {
   1488		rio_mport_read_config_32(mport, destid, hopcount,
   1489					 RIO_PEF_CAR, &pef);
   1490
   1491		if (mport->sys_size) {
   1492			rio_mport_read_config_32(mport, destid, hopcount,
   1493						 RIO_SWITCH_RT_LIMIT,
   1494						 &max_destid);
   1495			max_destid &= RIO_RT_MAX_DESTID;
   1496		}
   1497
   1498		if (pef & RIO_PEF_EXT_RT) {
   1499			ext_cfg = 0x80000000;
   1500			id_inc = 4;
   1501			port_sel = (RIO_INVALID_ROUTE << 24) |
   1502				   (RIO_INVALID_ROUTE << 16) |
   1503				   (RIO_INVALID_ROUTE << 8) |
   1504				   RIO_INVALID_ROUTE;
   1505		}
   1506
   1507		for (i = 0; i <= max_destid;) {
   1508			rio_mport_write_config_32(mport, destid, hopcount,
   1509					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
   1510					ext_cfg | i);
   1511			rio_mport_write_config_32(mport, destid, hopcount,
   1512					RIO_STD_RTE_CONF_PORT_SEL_CSR,
   1513					port_sel);
   1514			i += id_inc;
   1515		}
   1516	}
   1517
   1518	udelay(10);
   1519	return 0;
   1520}
   1521
   1522/**
   1523 * rio_lock_device - Acquires host device lock for specified device
   1524 * @port: Master port to send transaction
   1525 * @destid: Destination ID for device/switch
   1526 * @hopcount: Hopcount to reach switch
   1527 * @wait_ms: Max wait time in msec (0 = no timeout)
   1528 *
   1529 * Attepts to acquire host device lock for specified device
   1530 * Returns 0 if device lock acquired or EINVAL if timeout expires.
   1531 */
   1532int rio_lock_device(struct rio_mport *port, u16 destid,
   1533		    u8 hopcount, int wait_ms)
   1534{
   1535	u32 result;
   1536	int tcnt = 0;
   1537
   1538	/* Attempt to acquire device lock */
   1539	rio_mport_write_config_32(port, destid, hopcount,
   1540				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
   1541	rio_mport_read_config_32(port, destid, hopcount,
   1542				 RIO_HOST_DID_LOCK_CSR, &result);
   1543
   1544	while (result != port->host_deviceid) {
   1545		if (wait_ms != 0 && tcnt == wait_ms) {
   1546			pr_debug("RIO: timeout when locking device %x:%x\n",
   1547				destid, hopcount);
   1548			return -EINVAL;
   1549		}
   1550
   1551		/* Delay a bit */
   1552		mdelay(1);
   1553		tcnt++;
   1554		/* Try to acquire device lock again */
   1555		rio_mport_write_config_32(port, destid,
   1556			hopcount,
   1557			RIO_HOST_DID_LOCK_CSR,
   1558			port->host_deviceid);
   1559		rio_mport_read_config_32(port, destid,
   1560			hopcount,
   1561			RIO_HOST_DID_LOCK_CSR, &result);
   1562	}
   1563
   1564	return 0;
   1565}
   1566EXPORT_SYMBOL_GPL(rio_lock_device);
   1567
   1568/**
   1569 * rio_unlock_device - Releases host device lock for specified device
   1570 * @port: Master port to send transaction
   1571 * @destid: Destination ID for device/switch
   1572 * @hopcount: Hopcount to reach switch
   1573 *
   1574 * Returns 0 if device lock released or EINVAL if fails.
   1575 */
   1576int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
   1577{
   1578	u32 result;
   1579
   1580	/* Release device lock */
   1581	rio_mport_write_config_32(port, destid,
   1582				  hopcount,
   1583				  RIO_HOST_DID_LOCK_CSR,
   1584				  port->host_deviceid);
   1585	rio_mport_read_config_32(port, destid, hopcount,
   1586		RIO_HOST_DID_LOCK_CSR, &result);
   1587	if ((result & 0xffff) != 0xffff) {
   1588		pr_debug("RIO: badness when releasing device lock %x:%x\n",
   1589			 destid, hopcount);
   1590		return -EINVAL;
   1591	}
   1592
   1593	return 0;
   1594}
   1595EXPORT_SYMBOL_GPL(rio_unlock_device);
   1596
   1597/**
   1598 * rio_route_add_entry- Add a route entry to a switch routing table
   1599 * @rdev: RIO device
   1600 * @table: Routing table ID
   1601 * @route_destid: Destination ID to be routed
   1602 * @route_port: Port number to be routed
   1603 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
   1604 *
   1605 * If available calls the switch specific add_entry() method to add a route
   1606 * entry into a switch routing table. Otherwise uses standard RT update method
   1607 * as defined by RapidIO specification. A specific routing table can be selected
   1608 * using the @table argument if a switch has per port routing tables or
   1609 * the standard (or global) table may be used by passing
   1610 * %RIO_GLOBAL_TABLE in @table.
   1611 *
   1612 * Returns %0 on success or %-EINVAL on failure.
   1613 */
   1614int rio_route_add_entry(struct rio_dev *rdev,
   1615			u16 table, u16 route_destid, u8 route_port, int lock)
   1616{
   1617	int rc = -EINVAL;
   1618	struct rio_switch_ops *ops = rdev->rswitch->ops;
   1619
   1620	if (lock) {
   1621		rc = rio_lock_device(rdev->net->hport, rdev->destid,
   1622				     rdev->hopcount, 1000);
   1623		if (rc)
   1624			return rc;
   1625	}
   1626
   1627	spin_lock(&rdev->rswitch->lock);
   1628
   1629	if (!ops || !ops->add_entry) {
   1630		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
   1631					     rdev->hopcount, table,
   1632					     route_destid, route_port);
   1633	} else if (try_module_get(ops->owner)) {
   1634		rc = ops->add_entry(rdev->net->hport, rdev->destid,
   1635				    rdev->hopcount, table, route_destid,
   1636				    route_port);
   1637		module_put(ops->owner);
   1638	}
   1639
   1640	spin_unlock(&rdev->rswitch->lock);
   1641
   1642	if (lock)
   1643		rio_unlock_device(rdev->net->hport, rdev->destid,
   1644				  rdev->hopcount);
   1645
   1646	return rc;
   1647}
   1648EXPORT_SYMBOL_GPL(rio_route_add_entry);
   1649
   1650/**
   1651 * rio_route_get_entry- Read an entry from a switch routing table
   1652 * @rdev: RIO device
   1653 * @table: Routing table ID
   1654 * @route_destid: Destination ID to be routed
   1655 * @route_port: Pointer to read port number into
   1656 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
   1657 *
   1658 * If available calls the switch specific get_entry() method to fetch a route
   1659 * entry from a switch routing table. Otherwise uses standard RT read method
   1660 * as defined by RapidIO specification. A specific routing table can be selected
   1661 * using the @table argument if a switch has per port routing tables or
   1662 * the standard (or global) table may be used by passing
   1663 * %RIO_GLOBAL_TABLE in @table.
   1664 *
   1665 * Returns %0 on success or %-EINVAL on failure.
   1666 */
   1667int rio_route_get_entry(struct rio_dev *rdev, u16 table,
   1668			u16 route_destid, u8 *route_port, int lock)
   1669{
   1670	int rc = -EINVAL;
   1671	struct rio_switch_ops *ops = rdev->rswitch->ops;
   1672
   1673	if (lock) {
   1674		rc = rio_lock_device(rdev->net->hport, rdev->destid,
   1675				     rdev->hopcount, 1000);
   1676		if (rc)
   1677			return rc;
   1678	}
   1679
   1680	spin_lock(&rdev->rswitch->lock);
   1681
   1682	if (!ops || !ops->get_entry) {
   1683		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
   1684					     rdev->hopcount, table,
   1685					     route_destid, route_port);
   1686	} else if (try_module_get(ops->owner)) {
   1687		rc = ops->get_entry(rdev->net->hport, rdev->destid,
   1688				    rdev->hopcount, table, route_destid,
   1689				    route_port);
   1690		module_put(ops->owner);
   1691	}
   1692
   1693	spin_unlock(&rdev->rswitch->lock);
   1694
   1695	if (lock)
   1696		rio_unlock_device(rdev->net->hport, rdev->destid,
   1697				  rdev->hopcount);
   1698	return rc;
   1699}
   1700EXPORT_SYMBOL_GPL(rio_route_get_entry);
   1701
   1702/**
   1703 * rio_route_clr_table - Clear a switch routing table
   1704 * @rdev: RIO device
   1705 * @table: Routing table ID
   1706 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
   1707 *
   1708 * If available calls the switch specific clr_table() method to clear a switch
   1709 * routing table. Otherwise uses standard RT write method as defined by RapidIO
   1710 * specification. A specific routing table can be selected using the @table
   1711 * argument if a switch has per port routing tables or the standard (or global)
   1712 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
   1713 *
   1714 * Returns %0 on success or %-EINVAL on failure.
   1715 */
   1716int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
   1717{
   1718	int rc = -EINVAL;
   1719	struct rio_switch_ops *ops = rdev->rswitch->ops;
   1720
   1721	if (lock) {
   1722		rc = rio_lock_device(rdev->net->hport, rdev->destid,
   1723				     rdev->hopcount, 1000);
   1724		if (rc)
   1725			return rc;
   1726	}
   1727
   1728	spin_lock(&rdev->rswitch->lock);
   1729
   1730	if (!ops || !ops->clr_table) {
   1731		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
   1732					     rdev->hopcount, table);
   1733	} else if (try_module_get(ops->owner)) {
   1734		rc = ops->clr_table(rdev->net->hport, rdev->destid,
   1735				    rdev->hopcount, table);
   1736
   1737		module_put(ops->owner);
   1738	}
   1739
   1740	spin_unlock(&rdev->rswitch->lock);
   1741
   1742	if (lock)
   1743		rio_unlock_device(rdev->net->hport, rdev->destid,
   1744				  rdev->hopcount);
   1745
   1746	return rc;
   1747}
   1748EXPORT_SYMBOL_GPL(rio_route_clr_table);
   1749
   1750#ifdef CONFIG_RAPIDIO_DMA_ENGINE
   1751
   1752static bool rio_chan_filter(struct dma_chan *chan, void *arg)
   1753{
   1754	struct rio_mport *mport = arg;
   1755
   1756	/* Check that DMA device belongs to the right MPORT */
   1757	return mport == container_of(chan->device, struct rio_mport, dma);
   1758}
   1759
   1760/**
   1761 * rio_request_mport_dma - request RapidIO capable DMA channel associated
   1762 *   with specified local RapidIO mport device.
   1763 * @mport: RIO mport to perform DMA data transfers
   1764 *
   1765 * Returns pointer to allocated DMA channel or NULL if failed.
   1766 */
   1767struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
   1768{
   1769	dma_cap_mask_t mask;
   1770
   1771	dma_cap_zero(mask);
   1772	dma_cap_set(DMA_SLAVE, mask);
   1773	return dma_request_channel(mask, rio_chan_filter, mport);
   1774}
   1775EXPORT_SYMBOL_GPL(rio_request_mport_dma);
   1776
   1777/**
   1778 * rio_request_dma - request RapidIO capable DMA channel that supports
   1779 *   specified target RapidIO device.
   1780 * @rdev: RIO device associated with DMA transfer
   1781 *
   1782 * Returns pointer to allocated DMA channel or NULL if failed.
   1783 */
   1784struct dma_chan *rio_request_dma(struct rio_dev *rdev)
   1785{
   1786	return rio_request_mport_dma(rdev->net->hport);
   1787}
   1788EXPORT_SYMBOL_GPL(rio_request_dma);
   1789
   1790/**
   1791 * rio_release_dma - release specified DMA channel
   1792 * @dchan: DMA channel to release
   1793 */
   1794void rio_release_dma(struct dma_chan *dchan)
   1795{
   1796	dma_release_channel(dchan);
   1797}
   1798EXPORT_SYMBOL_GPL(rio_release_dma);
   1799
   1800/**
   1801 * rio_dma_prep_xfer - RapidIO specific wrapper
   1802 *   for device_prep_slave_sg callback defined by DMAENGINE.
   1803 * @dchan: DMA channel to configure
   1804 * @destid: target RapidIO device destination ID
   1805 * @data: RIO specific data descriptor
   1806 * @direction: DMA data transfer direction (TO or FROM the device)
   1807 * @flags: dmaengine defined flags
   1808 *
   1809 * Initializes RapidIO capable DMA channel for the specified data transfer.
   1810 * Uses DMA channel private extension to pass information related to remote
   1811 * target RIO device.
   1812 *
   1813 * Returns: pointer to DMA transaction descriptor if successful,
   1814 *          error-valued pointer or NULL if failed.
   1815 */
   1816struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
   1817	u16 destid, struct rio_dma_data *data,
   1818	enum dma_transfer_direction direction, unsigned long flags)
   1819{
   1820	struct rio_dma_ext rio_ext;
   1821
   1822	if (!dchan->device->device_prep_slave_sg) {
   1823		pr_err("%s: prep_rio_sg == NULL\n", __func__);
   1824		return NULL;
   1825	}
   1826
   1827	rio_ext.destid = destid;
   1828	rio_ext.rio_addr_u = data->rio_addr_u;
   1829	rio_ext.rio_addr = data->rio_addr;
   1830	rio_ext.wr_type = data->wr_type;
   1831
   1832	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
   1833				     direction, flags, &rio_ext);
   1834}
   1835EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
   1836
   1837/**
   1838 * rio_dma_prep_slave_sg - RapidIO specific wrapper
   1839 *   for device_prep_slave_sg callback defined by DMAENGINE.
   1840 * @rdev: RIO device control structure
   1841 * @dchan: DMA channel to configure
   1842 * @data: RIO specific data descriptor
   1843 * @direction: DMA data transfer direction (TO or FROM the device)
   1844 * @flags: dmaengine defined flags
   1845 *
   1846 * Initializes RapidIO capable DMA channel for the specified data transfer.
   1847 * Uses DMA channel private extension to pass information related to remote
   1848 * target RIO device.
   1849 *
   1850 * Returns: pointer to DMA transaction descriptor if successful,
   1851 *          error-valued pointer or NULL if failed.
   1852 */
   1853struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
   1854	struct dma_chan *dchan, struct rio_dma_data *data,
   1855	enum dma_transfer_direction direction, unsigned long flags)
   1856{
   1857	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
   1858}
   1859EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
   1860
   1861#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
   1862
   1863/**
   1864 * rio_find_mport - find RIO mport by its ID
   1865 * @mport_id: number (ID) of mport device
   1866 *
   1867 * Given a RIO mport number, the desired mport is located
   1868 * in the global list of mports. If the mport is found, a pointer to its
   1869 * data structure is returned.  If no mport is found, %NULL is returned.
   1870 */
   1871struct rio_mport *rio_find_mport(int mport_id)
   1872{
   1873	struct rio_mport *port;
   1874
   1875	mutex_lock(&rio_mport_list_lock);
   1876	list_for_each_entry(port, &rio_mports, node) {
   1877		if (port->id == mport_id)
   1878			goto found;
   1879	}
   1880	port = NULL;
   1881found:
   1882	mutex_unlock(&rio_mport_list_lock);
   1883
   1884	return port;
   1885}
   1886
   1887/**
   1888 * rio_register_scan - enumeration/discovery method registration interface
   1889 * @mport_id: mport device ID for which fabric scan routine has to be set
   1890 *            (RIO_MPORT_ANY = set for all available mports)
   1891 * @scan_ops: enumeration/discovery operations structure
   1892 *
   1893 * Registers enumeration/discovery operations with RapidIO subsystem and
   1894 * attaches it to the specified mport device (or all available mports
   1895 * if RIO_MPORT_ANY is specified).
   1896 *
   1897 * Returns error if the mport already has an enumerator attached to it.
   1898 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
   1899 */
   1900int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
   1901{
   1902	struct rio_mport *port;
   1903	struct rio_scan_node *scan;
   1904	int rc = 0;
   1905
   1906	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
   1907
   1908	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
   1909	    !scan_ops)
   1910		return -EINVAL;
   1911
   1912	mutex_lock(&rio_mport_list_lock);
   1913
   1914	/*
   1915	 * Check if there is another enumerator already registered for
   1916	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
   1917	 * for the same mport ID are not supported.
   1918	 */
   1919	list_for_each_entry(scan, &rio_scans, node) {
   1920		if (scan->mport_id == mport_id) {
   1921			rc = -EBUSY;
   1922			goto err_out;
   1923		}
   1924	}
   1925
   1926	/*
   1927	 * Allocate and initialize new scan registration node.
   1928	 */
   1929	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
   1930	if (!scan) {
   1931		rc = -ENOMEM;
   1932		goto err_out;
   1933	}
   1934
   1935	scan->mport_id = mport_id;
   1936	scan->ops = scan_ops;
   1937
   1938	/*
   1939	 * Traverse the list of registered mports to attach this new scan.
   1940	 *
   1941	 * The new scan with matching mport ID overrides any previously attached
   1942	 * scan assuming that old scan (if any) is the default one (based on the
   1943	 * enumerator registration check above).
   1944	 * If the new scan is the global one, it will be attached only to mports
   1945	 * that do not have their own individual operations already attached.
   1946	 */
   1947	list_for_each_entry(port, &rio_mports, node) {
   1948		if (port->id == mport_id) {
   1949			port->nscan = scan_ops;
   1950			break;
   1951		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
   1952			port->nscan = scan_ops;
   1953	}
   1954
   1955	list_add_tail(&scan->node, &rio_scans);
   1956
   1957err_out:
   1958	mutex_unlock(&rio_mport_list_lock);
   1959
   1960	return rc;
   1961}
   1962EXPORT_SYMBOL_GPL(rio_register_scan);
   1963
   1964/**
   1965 * rio_unregister_scan - removes enumeration/discovery method from mport
   1966 * @mport_id: mport device ID for which fabric scan routine has to be
   1967 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
   1968 *            the specified scan_ops)
   1969 * @scan_ops: enumeration/discovery operations structure
   1970 *
   1971 * Removes enumeration or discovery method assigned to the specified mport
   1972 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
   1973 * all mports that have them attached.
   1974 */
   1975int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
   1976{
   1977	struct rio_mport *port;
   1978	struct rio_scan_node *scan;
   1979
   1980	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
   1981
   1982	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
   1983		return -EINVAL;
   1984
   1985	mutex_lock(&rio_mport_list_lock);
   1986
   1987	list_for_each_entry(port, &rio_mports, node)
   1988		if (port->id == mport_id ||
   1989		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
   1990			port->nscan = NULL;
   1991
   1992	list_for_each_entry(scan, &rio_scans, node) {
   1993		if (scan->mport_id == mport_id) {
   1994			list_del(&scan->node);
   1995			kfree(scan);
   1996			break;
   1997		}
   1998	}
   1999
   2000	mutex_unlock(&rio_mport_list_lock);
   2001
   2002	return 0;
   2003}
   2004EXPORT_SYMBOL_GPL(rio_unregister_scan);
   2005
   2006/**
   2007 * rio_mport_scan - execute enumeration/discovery on the specified mport
   2008 * @mport_id: number (ID) of mport device
   2009 */
   2010int rio_mport_scan(int mport_id)
   2011{
   2012	struct rio_mport *port = NULL;
   2013	int rc;
   2014
   2015	mutex_lock(&rio_mport_list_lock);
   2016	list_for_each_entry(port, &rio_mports, node) {
   2017		if (port->id == mport_id)
   2018			goto found;
   2019	}
   2020	mutex_unlock(&rio_mport_list_lock);
   2021	return -ENODEV;
   2022found:
   2023	if (!port->nscan) {
   2024		mutex_unlock(&rio_mport_list_lock);
   2025		return -EINVAL;
   2026	}
   2027
   2028	if (!try_module_get(port->nscan->owner)) {
   2029		mutex_unlock(&rio_mport_list_lock);
   2030		return -ENODEV;
   2031	}
   2032
   2033	mutex_unlock(&rio_mport_list_lock);
   2034
   2035	if (port->host_deviceid >= 0)
   2036		rc = port->nscan->enumerate(port, 0);
   2037	else
   2038		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
   2039
   2040	module_put(port->nscan->owner);
   2041	return rc;
   2042}
   2043
   2044static struct workqueue_struct *rio_wq;
   2045
   2046struct rio_disc_work {
   2047	struct work_struct	work;
   2048	struct rio_mport	*mport;
   2049};
   2050
   2051static void disc_work_handler(struct work_struct *_work)
   2052{
   2053	struct rio_disc_work *work;
   2054
   2055	work = container_of(_work, struct rio_disc_work, work);
   2056	pr_debug("RIO: discovery work for mport %d %s\n",
   2057		 work->mport->id, work->mport->name);
   2058	if (try_module_get(work->mport->nscan->owner)) {
   2059		work->mport->nscan->discover(work->mport, 0);
   2060		module_put(work->mport->nscan->owner);
   2061	}
   2062}
   2063
   2064int rio_init_mports(void)
   2065{
   2066	struct rio_mport *port;
   2067	struct rio_disc_work *work;
   2068	int n = 0;
   2069
   2070	if (!next_portid)
   2071		return -ENODEV;
   2072
   2073	/*
   2074	 * First, run enumerations and check if we need to perform discovery
   2075	 * on any of the registered mports.
   2076	 */
   2077	mutex_lock(&rio_mport_list_lock);
   2078	list_for_each_entry(port, &rio_mports, node) {
   2079		if (port->host_deviceid >= 0) {
   2080			if (port->nscan && try_module_get(port->nscan->owner)) {
   2081				port->nscan->enumerate(port, 0);
   2082				module_put(port->nscan->owner);
   2083			}
   2084		} else
   2085			n++;
   2086	}
   2087	mutex_unlock(&rio_mport_list_lock);
   2088
   2089	if (!n)
   2090		goto no_disc;
   2091
   2092	/*
   2093	 * If we have mports that require discovery schedule a discovery work
   2094	 * for each of them. If the code below fails to allocate needed
   2095	 * resources, exit without error to keep results of enumeration
   2096	 * process (if any).
   2097	 * TODO: Implement restart of discovery process for all or
   2098	 * individual discovering mports.
   2099	 */
   2100	rio_wq = alloc_workqueue("riodisc", 0, 0);
   2101	if (!rio_wq) {
   2102		pr_err("RIO: unable allocate rio_wq\n");
   2103		goto no_disc;
   2104	}
   2105
   2106	work = kcalloc(n, sizeof *work, GFP_KERNEL);
   2107	if (!work) {
   2108		destroy_workqueue(rio_wq);
   2109		goto no_disc;
   2110	}
   2111
   2112	n = 0;
   2113	mutex_lock(&rio_mport_list_lock);
   2114	list_for_each_entry(port, &rio_mports, node) {
   2115		if (port->host_deviceid < 0 && port->nscan) {
   2116			work[n].mport = port;
   2117			INIT_WORK(&work[n].work, disc_work_handler);
   2118			queue_work(rio_wq, &work[n].work);
   2119			n++;
   2120		}
   2121	}
   2122
   2123	flush_workqueue(rio_wq);
   2124	mutex_unlock(&rio_mport_list_lock);
   2125	pr_debug("RIO: destroy discovery workqueue\n");
   2126	destroy_workqueue(rio_wq);
   2127	kfree(work);
   2128
   2129no_disc:
   2130	return 0;
   2131}
   2132EXPORT_SYMBOL_GPL(rio_init_mports);
   2133
   2134static int rio_get_hdid(int index)
   2135{
   2136	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
   2137		return -1;
   2138
   2139	return hdid[index];
   2140}
   2141
   2142int rio_mport_initialize(struct rio_mport *mport)
   2143{
   2144	if (next_portid >= RIO_MAX_MPORTS) {
   2145		pr_err("RIO: reached specified max number of mports\n");
   2146		return -ENODEV;
   2147	}
   2148
   2149	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
   2150	mport->id = next_portid++;
   2151	mport->host_deviceid = rio_get_hdid(mport->id);
   2152	mport->nscan = NULL;
   2153	mutex_init(&mport->lock);
   2154	mport->pwe_refcnt = 0;
   2155	INIT_LIST_HEAD(&mport->pwrites);
   2156
   2157	return 0;
   2158}
   2159EXPORT_SYMBOL_GPL(rio_mport_initialize);
   2160
   2161int rio_register_mport(struct rio_mport *port)
   2162{
   2163	struct rio_scan_node *scan = NULL;
   2164	int res = 0;
   2165
   2166	mutex_lock(&rio_mport_list_lock);
   2167
   2168	/*
   2169	 * Check if there are any registered enumeration/discovery operations
   2170	 * that have to be attached to the added mport.
   2171	 */
   2172	list_for_each_entry(scan, &rio_scans, node) {
   2173		if (port->id == scan->mport_id ||
   2174		    scan->mport_id == RIO_MPORT_ANY) {
   2175			port->nscan = scan->ops;
   2176			if (port->id == scan->mport_id)
   2177				break;
   2178		}
   2179	}
   2180
   2181	list_add_tail(&port->node, &rio_mports);
   2182	mutex_unlock(&rio_mport_list_lock);
   2183
   2184	dev_set_name(&port->dev, "rapidio%d", port->id);
   2185	port->dev.class = &rio_mport_class;
   2186	atomic_set(&port->state, RIO_DEVICE_RUNNING);
   2187
   2188	res = device_register(&port->dev);
   2189	if (res)
   2190		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
   2191			port->id, res);
   2192	else
   2193		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
   2194
   2195	return res;
   2196}
   2197EXPORT_SYMBOL_GPL(rio_register_mport);
   2198
   2199static int rio_mport_cleanup_callback(struct device *dev, void *data)
   2200{
   2201	struct rio_dev *rdev = to_rio_dev(dev);
   2202
   2203	if (dev->bus == &rio_bus_type)
   2204		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
   2205	return 0;
   2206}
   2207
   2208static int rio_net_remove_children(struct rio_net *net)
   2209{
   2210	/*
   2211	 * Unregister all RapidIO devices residing on this net (this will
   2212	 * invoke notification of registered subsystem interfaces as well).
   2213	 */
   2214	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
   2215	return 0;
   2216}
   2217
   2218int rio_unregister_mport(struct rio_mport *port)
   2219{
   2220	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
   2221
   2222	/* Transition mport to the SHUTDOWN state */
   2223	if (atomic_cmpxchg(&port->state,
   2224			   RIO_DEVICE_RUNNING,
   2225			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
   2226		pr_err("RIO: %s unexpected state transition for mport %s\n",
   2227			__func__, port->name);
   2228	}
   2229
   2230	if (port->net && port->net->hport == port) {
   2231		rio_net_remove_children(port->net);
   2232		rio_free_net(port->net);
   2233	}
   2234
   2235	/*
   2236	 * Unregister all RapidIO devices attached to this mport (this will
   2237	 * invoke notification of registered subsystem interfaces as well).
   2238	 */
   2239	mutex_lock(&rio_mport_list_lock);
   2240	list_del(&port->node);
   2241	mutex_unlock(&rio_mport_list_lock);
   2242	device_unregister(&port->dev);
   2243
   2244	return 0;
   2245}
   2246EXPORT_SYMBOL_GPL(rio_unregister_mport);