cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cec.c (13830B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs.
      4 */
      5#include <linux/mm.h>
      6#include <linux/gfp.h>
      7#include <linux/ras.h>
      8#include <linux/kernel.h>
      9#include <linux/workqueue.h>
     10
     11#include <asm/mce.h>
     12
     13#include "debugfs.h"
     14
     15/*
     16 * RAS Correctable Errors Collector
     17 *
     18 * This is a simple gadget which collects correctable errors and counts their
     19 * occurrence per physical page address.
     20 *
     21 * We've opted for possibly the simplest data structure to collect those - an
     22 * array of the size of a memory page. It stores 512 u64's with the following
     23 * structure:
     24 *
     25 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
     26 *
     27 * The generation in the two highest order bits is two bits which are set to 11b
     28 * on every insertion. During the course of each entry's existence, the
     29 * generation field gets decremented during spring cleaning to 10b, then 01b and
     30 * then 00b.
     31 *
     32 * This way we're employing the natural numeric ordering to make sure that newly
     33 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
     34 * and thus iterating over the array initially won't kick out those elements
     35 * which were inserted last.
     36 *
     37 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
     38 * elements entered into the array, during which, we're decaying all elements.
     39 * If, after decay, an element gets inserted again, its generation is set to 11b
     40 * to make sure it has higher numerical count than other, older elements and
     41 * thus emulate an LRU-like behavior when deleting elements to free up space
     42 * in the page.
     43 *
     44 * When an element reaches it's max count of action_threshold, we try to poison
     45 * it by assuming that errors triggered action_threshold times in a single page
     46 * are excessive and that page shouldn't be used anymore. action_threshold is
     47 * initialized to COUNT_MASK which is the maximum.
     48 *
     49 * That error event entry causes cec_add_elem() to return !0 value and thus
     50 * signal to its callers to log the error.
     51 *
     52 * To the question why we've chosen a page and moving elements around with
     53 * memmove(), it is because it is a very simple structure to handle and max data
     54 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
     55 * We wanted to avoid the pointer traversal of more complex structures like a
     56 * linked list or some sort of a balancing search tree.
     57 *
     58 * Deleting an element takes O(n) but since it is only a single page, it should
     59 * be fast enough and it shouldn't happen all too often depending on error
     60 * patterns.
     61 */
     62
     63#undef pr_fmt
     64#define pr_fmt(fmt) "RAS: " fmt
     65
     66/*
     67 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
     68 * elements have stayed in the array without having been accessed again.
     69 */
     70#define DECAY_BITS		2
     71#define DECAY_MASK		((1ULL << DECAY_BITS) - 1)
     72#define MAX_ELEMS		(PAGE_SIZE / sizeof(u64))
     73
     74/*
     75 * Threshold amount of inserted elements after which we start spring
     76 * cleaning.
     77 */
     78#define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS)
     79
     80/* Bits which count the number of errors happened in this 4K page. */
     81#define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS)
     82#define COUNT_MASK		((1ULL << COUNT_BITS) - 1)
     83#define FULL_COUNT_MASK		(PAGE_SIZE - 1)
     84
     85/*
     86 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
     87 */
     88
     89#define PFN(e)			((e) >> PAGE_SHIFT)
     90#define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK)
     91#define COUNT(e)		((unsigned int)(e) & COUNT_MASK)
     92#define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1))
     93
     94static struct ce_array {
     95	u64 *array;			/* container page */
     96	unsigned int n;			/* number of elements in the array */
     97
     98	unsigned int decay_count;	/*
     99					 * number of element insertions/increments
    100					 * since the last spring cleaning.
    101					 */
    102
    103	u64 pfns_poisoned;		/*
    104					 * number of PFNs which got poisoned.
    105					 */
    106
    107	u64 ces_entered;		/*
    108					 * The number of correctable errors
    109					 * entered into the collector.
    110					 */
    111
    112	u64 decays_done;		/*
    113					 * Times we did spring cleaning.
    114					 */
    115
    116	union {
    117		struct {
    118			__u32	disabled : 1,	/* cmdline disabled */
    119			__resv   : 31;
    120		};
    121		__u32 flags;
    122	};
    123} ce_arr;
    124
    125static DEFINE_MUTEX(ce_mutex);
    126static u64 dfs_pfn;
    127
    128/* Amount of errors after which we offline */
    129static u64 action_threshold = COUNT_MASK;
    130
    131/* Each element "decays" each decay_interval which is 24hrs by default. */
    132#define CEC_DECAY_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */
    133#define CEC_DECAY_MIN_INTERVAL		 1 * 60 * 60	/* 1h */
    134#define CEC_DECAY_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */
    135static struct delayed_work cec_work;
    136static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;
    137
    138/*
    139 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
    140 * element in the array. On insertion and any access, it gets reset to max.
    141 */
    142static void do_spring_cleaning(struct ce_array *ca)
    143{
    144	int i;
    145
    146	for (i = 0; i < ca->n; i++) {
    147		u8 decay = DECAY(ca->array[i]);
    148
    149		if (!decay)
    150			continue;
    151
    152		decay--;
    153
    154		ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
    155		ca->array[i] |= (decay << COUNT_BITS);
    156	}
    157	ca->decay_count = 0;
    158	ca->decays_done++;
    159}
    160
    161/*
    162 * @interval in seconds
    163 */
    164static void cec_mod_work(unsigned long interval)
    165{
    166	unsigned long iv;
    167
    168	iv = interval * HZ;
    169	mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
    170}
    171
    172static void cec_work_fn(struct work_struct *work)
    173{
    174	mutex_lock(&ce_mutex);
    175	do_spring_cleaning(&ce_arr);
    176	mutex_unlock(&ce_mutex);
    177
    178	cec_mod_work(decay_interval);
    179}
    180
    181/*
    182 * @to: index of the smallest element which is >= then @pfn.
    183 *
    184 * Return the index of the pfn if found, otherwise negative value.
    185 */
    186static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
    187{
    188	int min = 0, max = ca->n - 1;
    189	u64 this_pfn;
    190
    191	while (min <= max) {
    192		int i = (min + max) >> 1;
    193
    194		this_pfn = PFN(ca->array[i]);
    195
    196		if (this_pfn < pfn)
    197			min = i + 1;
    198		else if (this_pfn > pfn)
    199			max = i - 1;
    200		else if (this_pfn == pfn) {
    201			if (to)
    202				*to = i;
    203
    204			return i;
    205		}
    206	}
    207
    208	/*
    209	 * When the loop terminates without finding @pfn, min has the index of
    210	 * the element slot where the new @pfn should be inserted. The loop
    211	 * terminates when min > max, which means the min index points to the
    212	 * bigger element while the max index to the smaller element, in-between
    213	 * which the new @pfn belongs to.
    214	 *
    215	 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
    216	 */
    217	if (to)
    218		*to = min;
    219
    220	return -ENOKEY;
    221}
    222
    223static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
    224{
    225	WARN_ON(!to);
    226
    227	if (!ca->n) {
    228		*to = 0;
    229		return -ENOKEY;
    230	}
    231	return __find_elem(ca, pfn, to);
    232}
    233
    234static void del_elem(struct ce_array *ca, int idx)
    235{
    236	/* Save us a function call when deleting the last element. */
    237	if (ca->n - (idx + 1))
    238		memmove((void *)&ca->array[idx],
    239			(void *)&ca->array[idx + 1],
    240			(ca->n - (idx + 1)) * sizeof(u64));
    241
    242	ca->n--;
    243}
    244
    245static u64 del_lru_elem_unlocked(struct ce_array *ca)
    246{
    247	unsigned int min = FULL_COUNT_MASK;
    248	int i, min_idx = 0;
    249
    250	for (i = 0; i < ca->n; i++) {
    251		unsigned int this = FULL_COUNT(ca->array[i]);
    252
    253		if (min > this) {
    254			min = this;
    255			min_idx = i;
    256		}
    257	}
    258
    259	del_elem(ca, min_idx);
    260
    261	return PFN(ca->array[min_idx]);
    262}
    263
    264/*
    265 * We return the 0th pfn in the error case under the assumption that it cannot
    266 * be poisoned and excessive CEs in there are a serious deal anyway.
    267 */
    268static u64 __maybe_unused del_lru_elem(void)
    269{
    270	struct ce_array *ca = &ce_arr;
    271	u64 pfn;
    272
    273	if (!ca->n)
    274		return 0;
    275
    276	mutex_lock(&ce_mutex);
    277	pfn = del_lru_elem_unlocked(ca);
    278	mutex_unlock(&ce_mutex);
    279
    280	return pfn;
    281}
    282
    283static bool sanity_check(struct ce_array *ca)
    284{
    285	bool ret = false;
    286	u64 prev = 0;
    287	int i;
    288
    289	for (i = 0; i < ca->n; i++) {
    290		u64 this = PFN(ca->array[i]);
    291
    292		if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this))
    293			ret = true;
    294
    295		prev = this;
    296	}
    297
    298	if (!ret)
    299		return ret;
    300
    301	pr_info("Sanity check dump:\n{ n: %d\n", ca->n);
    302	for (i = 0; i < ca->n; i++) {
    303		u64 this = PFN(ca->array[i]);
    304
    305		pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
    306	}
    307	pr_info("}\n");
    308
    309	return ret;
    310}
    311
    312/**
    313 * cec_add_elem - Add an element to the CEC array.
    314 * @pfn:	page frame number to insert
    315 *
    316 * Return values:
    317 * - <0:	on error
    318 * -  0:	on success
    319 * - >0:	when the inserted pfn was offlined
    320 */
    321static int cec_add_elem(u64 pfn)
    322{
    323	struct ce_array *ca = &ce_arr;
    324	int count, err, ret = 0;
    325	unsigned int to = 0;
    326
    327	/*
    328	 * We can be called very early on the identify_cpu() path where we are
    329	 * not initialized yet. We ignore the error for simplicity.
    330	 */
    331	if (!ce_arr.array || ce_arr.disabled)
    332		return -ENODEV;
    333
    334	mutex_lock(&ce_mutex);
    335
    336	ca->ces_entered++;
    337
    338	/* Array full, free the LRU slot. */
    339	if (ca->n == MAX_ELEMS)
    340		WARN_ON(!del_lru_elem_unlocked(ca));
    341
    342	err = find_elem(ca, pfn, &to);
    343	if (err < 0) {
    344		/*
    345		 * Shift range [to-end] to make room for one more element.
    346		 */
    347		memmove((void *)&ca->array[to + 1],
    348			(void *)&ca->array[to],
    349			(ca->n - to) * sizeof(u64));
    350
    351		ca->array[to] = pfn << PAGE_SHIFT;
    352		ca->n++;
    353	}
    354
    355	/* Add/refresh element generation and increment count */
    356	ca->array[to] |= DECAY_MASK << COUNT_BITS;
    357	ca->array[to]++;
    358
    359	/* Check action threshold and soft-offline, if reached. */
    360	count = COUNT(ca->array[to]);
    361	if (count >= action_threshold) {
    362		u64 pfn = ca->array[to] >> PAGE_SHIFT;
    363
    364		if (!pfn_valid(pfn)) {
    365			pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
    366		} else {
    367			/* We have reached max count for this page, soft-offline it. */
    368			pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
    369			memory_failure_queue(pfn, MF_SOFT_OFFLINE);
    370			ca->pfns_poisoned++;
    371		}
    372
    373		del_elem(ca, to);
    374
    375		/*
    376		 * Return a >0 value to callers, to denote that we've reached
    377		 * the offlining threshold.
    378		 */
    379		ret = 1;
    380
    381		goto unlock;
    382	}
    383
    384	ca->decay_count++;
    385
    386	if (ca->decay_count >= CLEAN_ELEMS)
    387		do_spring_cleaning(ca);
    388
    389	WARN_ON_ONCE(sanity_check(ca));
    390
    391unlock:
    392	mutex_unlock(&ce_mutex);
    393
    394	return ret;
    395}
    396
    397static int u64_get(void *data, u64 *val)
    398{
    399	*val = *(u64 *)data;
    400
    401	return 0;
    402}
    403
    404static int pfn_set(void *data, u64 val)
    405{
    406	*(u64 *)data = val;
    407
    408	cec_add_elem(val);
    409
    410	return 0;
    411}
    412
    413DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
    414
    415static int decay_interval_set(void *data, u64 val)
    416{
    417	if (val < CEC_DECAY_MIN_INTERVAL)
    418		return -EINVAL;
    419
    420	if (val > CEC_DECAY_MAX_INTERVAL)
    421		return -EINVAL;
    422
    423	*(u64 *)data   = val;
    424	decay_interval = val;
    425
    426	cec_mod_work(decay_interval);
    427
    428	return 0;
    429}
    430DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
    431
    432static int action_threshold_set(void *data, u64 val)
    433{
    434	*(u64 *)data = val;
    435
    436	if (val > COUNT_MASK)
    437		val = COUNT_MASK;
    438
    439	action_threshold = val;
    440
    441	return 0;
    442}
    443DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n");
    444
    445static const char * const bins[] = { "00", "01", "10", "11" };
    446
    447static int array_show(struct seq_file *m, void *v)
    448{
    449	struct ce_array *ca = &ce_arr;
    450	int i;
    451
    452	mutex_lock(&ce_mutex);
    453
    454	seq_printf(m, "{ n: %d\n", ca->n);
    455	for (i = 0; i < ca->n; i++) {
    456		u64 this = PFN(ca->array[i]);
    457
    458		seq_printf(m, " %3d: [%016llx|%s|%03llx]\n",
    459			   i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i]));
    460	}
    461
    462	seq_printf(m, "}\n");
    463
    464	seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
    465		   ca->ces_entered, ca->pfns_poisoned);
    466
    467	seq_printf(m, "Flags: 0x%x\n", ca->flags);
    468
    469	seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
    470	seq_printf(m, "Decays: %lld\n", ca->decays_done);
    471
    472	seq_printf(m, "Action threshold: %lld\n", action_threshold);
    473
    474	mutex_unlock(&ce_mutex);
    475
    476	return 0;
    477}
    478
    479DEFINE_SHOW_ATTRIBUTE(array);
    480
    481static int __init create_debugfs_nodes(void)
    482{
    483	struct dentry *d, *pfn, *decay, *count, *array;
    484
    485	d = debugfs_create_dir("cec", ras_debugfs_dir);
    486	if (!d) {
    487		pr_warn("Error creating cec debugfs node!\n");
    488		return -1;
    489	}
    490
    491	decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
    492				    &decay_interval, &decay_interval_ops);
    493	if (!decay) {
    494		pr_warn("Error creating decay_interval debugfs node!\n");
    495		goto err;
    496	}
    497
    498	count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d,
    499				    &action_threshold, &action_threshold_ops);
    500	if (!count) {
    501		pr_warn("Error creating action_threshold debugfs node!\n");
    502		goto err;
    503	}
    504
    505	if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG))
    506		return 0;
    507
    508	pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
    509	if (!pfn) {
    510		pr_warn("Error creating pfn debugfs node!\n");
    511		goto err;
    512	}
    513
    514	array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops);
    515	if (!array) {
    516		pr_warn("Error creating array debugfs node!\n");
    517		goto err;
    518	}
    519
    520	return 0;
    521
    522err:
    523	debugfs_remove_recursive(d);
    524
    525	return 1;
    526}
    527
    528static int cec_notifier(struct notifier_block *nb, unsigned long val,
    529			void *data)
    530{
    531	struct mce *m = (struct mce *)data;
    532
    533	if (!m)
    534		return NOTIFY_DONE;
    535
    536	/* We eat only correctable DRAM errors with usable addresses. */
    537	if (mce_is_memory_error(m) &&
    538	    mce_is_correctable(m)  &&
    539	    mce_usable_address(m)) {
    540		if (!cec_add_elem(m->addr >> PAGE_SHIFT)) {
    541			m->kflags |= MCE_HANDLED_CEC;
    542			return NOTIFY_OK;
    543		}
    544	}
    545
    546	return NOTIFY_DONE;
    547}
    548
    549static struct notifier_block cec_nb = {
    550	.notifier_call	= cec_notifier,
    551	.priority	= MCE_PRIO_CEC,
    552};
    553
    554static int __init cec_init(void)
    555{
    556	if (ce_arr.disabled)
    557		return -ENODEV;
    558
    559	ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
    560	if (!ce_arr.array) {
    561		pr_err("Error allocating CE array page!\n");
    562		return -ENOMEM;
    563	}
    564
    565	if (create_debugfs_nodes()) {
    566		free_page((unsigned long)ce_arr.array);
    567		return -ENOMEM;
    568	}
    569
    570	INIT_DELAYED_WORK(&cec_work, cec_work_fn);
    571	schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);
    572
    573	mce_register_decode_chain(&cec_nb);
    574
    575	pr_info("Correctable Errors collector initialized.\n");
    576	return 0;
    577}
    578late_initcall(cec_init);
    579
    580int __init parse_cec_param(char *str)
    581{
    582	if (!str)
    583		return 0;
    584
    585	if (*str == '=')
    586		str++;
    587
    588	if (!strcmp(str, "cec_disable"))
    589		ce_arr.disabled = 1;
    590	else
    591		return 0;
    592
    593	return 1;
    594}