cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pru_rproc.c (25850B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * PRU-ICSS remoteproc driver for various TI SoCs
      4 *
      5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
      6 *
      7 * Author(s):
      8 *	Suman Anna <s-anna@ti.com>
      9 *	Andrew F. Davis <afd@ti.com>
     10 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
     11 */
     12
     13#include <linux/bitops.h>
     14#include <linux/debugfs.h>
     15#include <linux/irqdomain.h>
     16#include <linux/module.h>
     17#include <linux/of_device.h>
     18#include <linux/of_irq.h>
     19#include <linux/pruss_driver.h>
     20#include <linux/remoteproc.h>
     21
     22#include "remoteproc_internal.h"
     23#include "remoteproc_elf_helpers.h"
     24#include "pru_rproc.h"
     25
     26/* PRU_ICSS_PRU_CTRL registers */
     27#define PRU_CTRL_CTRL		0x0000
     28#define PRU_CTRL_STS		0x0004
     29#define PRU_CTRL_WAKEUP_EN	0x0008
     30#define PRU_CTRL_CYCLE		0x000C
     31#define PRU_CTRL_STALL		0x0010
     32#define PRU_CTRL_CTBIR0		0x0020
     33#define PRU_CTRL_CTBIR1		0x0024
     34#define PRU_CTRL_CTPPR0		0x0028
     35#define PRU_CTRL_CTPPR1		0x002C
     36
     37/* CTRL register bit-fields */
     38#define CTRL_CTRL_SOFT_RST_N	BIT(0)
     39#define CTRL_CTRL_EN		BIT(1)
     40#define CTRL_CTRL_SLEEPING	BIT(2)
     41#define CTRL_CTRL_CTR_EN	BIT(3)
     42#define CTRL_CTRL_SINGLE_STEP	BIT(8)
     43#define CTRL_CTRL_RUNSTATE	BIT(15)
     44
     45/* PRU_ICSS_PRU_DEBUG registers */
     46#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
     47#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
     48
     49/* PRU/RTU/Tx_PRU Core IRAM address masks */
     50#define PRU_IRAM_ADDR_MASK	0x3ffff
     51#define PRU0_IRAM_ADDR_MASK	0x34000
     52#define PRU1_IRAM_ADDR_MASK	0x38000
     53#define RTU0_IRAM_ADDR_MASK	0x4000
     54#define RTU1_IRAM_ADDR_MASK	0x6000
     55#define TX_PRU0_IRAM_ADDR_MASK	0xa000
     56#define TX_PRU1_IRAM_ADDR_MASK	0xc000
     57
     58/* PRU device addresses for various type of PRU RAMs */
     59#define PRU_IRAM_DA	0	/* Instruction RAM */
     60#define PRU_PDRAM_DA	0	/* Primary Data RAM */
     61#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
     62#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
     63
     64#define MAX_PRU_SYS_EVENTS 160
     65
     66/**
     67 * enum pru_iomem - PRU core memory/register range identifiers
     68 *
     69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
     70 * @PRU_IOMEM_CTRL: PRU Control register range
     71 * @PRU_IOMEM_DEBUG: PRU Debug register range
     72 * @PRU_IOMEM_MAX: just keep this one at the end
     73 */
     74enum pru_iomem {
     75	PRU_IOMEM_IRAM = 0,
     76	PRU_IOMEM_CTRL,
     77	PRU_IOMEM_DEBUG,
     78	PRU_IOMEM_MAX,
     79};
     80
     81/**
     82 * enum pru_type - PRU core type identifier
     83 *
     84 * @PRU_TYPE_PRU: Programmable Real-time Unit
     85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
     86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
     87 * @PRU_TYPE_MAX: just keep this one at the end
     88 */
     89enum pru_type {
     90	PRU_TYPE_PRU = 0,
     91	PRU_TYPE_RTU,
     92	PRU_TYPE_TX_PRU,
     93	PRU_TYPE_MAX,
     94};
     95
     96/**
     97 * struct pru_private_data - device data for a PRU core
     98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
     99 * @is_k3: flag used to identify the need for special load handling
    100 */
    101struct pru_private_data {
    102	enum pru_type type;
    103	unsigned int is_k3 : 1;
    104};
    105
    106/**
    107 * struct pru_rproc - PRU remoteproc structure
    108 * @id: id of the PRU core within the PRUSS
    109 * @dev: PRU core device pointer
    110 * @pruss: back-reference to parent PRUSS structure
    111 * @rproc: remoteproc pointer for this PRU core
    112 * @data: PRU core specific data
    113 * @mem_regions: data for each of the PRU memory regions
    114 * @fw_name: name of firmware image used during loading
    115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
    116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
    117 * @pru_interrupt_map_sz: pru_interrupt_map size
    118 * @dbg_single_step: debug state variable to set PRU into single step mode
    119 * @dbg_continuous: debug state variable to restore PRU execution mode
    120 * @evt_count: number of mapped events
    121 */
    122struct pru_rproc {
    123	int id;
    124	struct device *dev;
    125	struct pruss *pruss;
    126	struct rproc *rproc;
    127	const struct pru_private_data *data;
    128	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
    129	const char *fw_name;
    130	unsigned int *mapped_irq;
    131	struct pru_irq_rsc *pru_interrupt_map;
    132	size_t pru_interrupt_map_sz;
    133	u32 dbg_single_step;
    134	u32 dbg_continuous;
    135	u8 evt_count;
    136};
    137
    138static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
    139{
    140	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
    141}
    142
    143static inline
    144void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
    145{
    146	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
    147}
    148
    149static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
    150{
    151	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
    152}
    153
    154static int regs_show(struct seq_file *s, void *data)
    155{
    156	struct rproc *rproc = s->private;
    157	struct pru_rproc *pru = rproc->priv;
    158	int i, nregs = 32;
    159	u32 pru_sts;
    160	int pru_is_running;
    161
    162	seq_puts(s, "============== Control Registers ==============\n");
    163	seq_printf(s, "CTRL      := 0x%08x\n",
    164		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
    165	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
    166	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
    167	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
    168		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
    169	seq_printf(s, "CYCLE     := 0x%08x\n",
    170		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
    171	seq_printf(s, "STALL     := 0x%08x\n",
    172		   pru_control_read_reg(pru, PRU_CTRL_STALL));
    173	seq_printf(s, "CTBIR0    := 0x%08x\n",
    174		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
    175	seq_printf(s, "CTBIR1    := 0x%08x\n",
    176		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
    177	seq_printf(s, "CTPPR0    := 0x%08x\n",
    178		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
    179	seq_printf(s, "CTPPR1    := 0x%08x\n",
    180		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
    181
    182	seq_puts(s, "=============== Debug Registers ===============\n");
    183	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
    184				CTRL_CTRL_RUNSTATE;
    185	if (pru_is_running) {
    186		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
    187		return 0;
    188	}
    189
    190	for (i = 0; i < nregs; i++) {
    191		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
    192			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
    193			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
    194	}
    195
    196	return 0;
    197}
    198DEFINE_SHOW_ATTRIBUTE(regs);
    199
    200/*
    201 * Control PRU single-step mode
    202 *
    203 * This is a debug helper function used for controlling the single-step
    204 * mode of the PRU. The PRU Debug registers are not accessible when the
    205 * PRU is in RUNNING state.
    206 *
    207 * Writing a non-zero value sets the PRU into single-step mode irrespective
    208 * of its previous state. The PRU mode is saved only on the first set into
    209 * a single-step mode. Writing a zero value will restore the PRU into its
    210 * original mode.
    211 */
    212static int pru_rproc_debug_ss_set(void *data, u64 val)
    213{
    214	struct rproc *rproc = data;
    215	struct pru_rproc *pru = rproc->priv;
    216	u32 reg_val;
    217
    218	val = val ? 1 : 0;
    219	if (!val && !pru->dbg_single_step)
    220		return 0;
    221
    222	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
    223
    224	if (val && !pru->dbg_single_step)
    225		pru->dbg_continuous = reg_val;
    226
    227	if (val)
    228		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
    229	else
    230		reg_val = pru->dbg_continuous;
    231
    232	pru->dbg_single_step = val;
    233	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
    234
    235	return 0;
    236}
    237
    238static int pru_rproc_debug_ss_get(void *data, u64 *val)
    239{
    240	struct rproc *rproc = data;
    241	struct pru_rproc *pru = rproc->priv;
    242
    243	*val = pru->dbg_single_step;
    244
    245	return 0;
    246}
    247DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
    248			 pru_rproc_debug_ss_set, "%llu\n");
    249
    250/*
    251 * Create PRU-specific debugfs entries
    252 *
    253 * The entries are created only if the parent remoteproc debugfs directory
    254 * exists, and will be cleaned up by the remoteproc core.
    255 */
    256static void pru_rproc_create_debug_entries(struct rproc *rproc)
    257{
    258	if (!rproc->dbg_dir)
    259		return;
    260
    261	debugfs_create_file("regs", 0400, rproc->dbg_dir,
    262			    rproc, &regs_fops);
    263	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
    264			    rproc, &pru_rproc_debug_ss_fops);
    265}
    266
    267static void pru_dispose_irq_mapping(struct pru_rproc *pru)
    268{
    269	if (!pru->mapped_irq)
    270		return;
    271
    272	while (pru->evt_count) {
    273		pru->evt_count--;
    274		if (pru->mapped_irq[pru->evt_count] > 0)
    275			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
    276	}
    277
    278	kfree(pru->mapped_irq);
    279	pru->mapped_irq = NULL;
    280}
    281
    282/*
    283 * Parse the custom PRU interrupt map resource and configure the INTC
    284 * appropriately.
    285 */
    286static int pru_handle_intrmap(struct rproc *rproc)
    287{
    288	struct device *dev = rproc->dev.parent;
    289	struct pru_rproc *pru = rproc->priv;
    290	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
    291	struct irq_fwspec fwspec;
    292	struct device_node *parent, *irq_parent;
    293	int i, ret = 0;
    294
    295	/* not having pru_interrupt_map is not an error */
    296	if (!rsc)
    297		return 0;
    298
    299	/* currently supporting only type 0 */
    300	if (rsc->type != 0) {
    301		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
    302		return -EINVAL;
    303	}
    304
    305	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
    306		return -EINVAL;
    307
    308	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
    309	    pru->pru_interrupt_map_sz)
    310		return -EINVAL;
    311
    312	pru->evt_count = rsc->num_evts;
    313	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
    314				  GFP_KERNEL);
    315	if (!pru->mapped_irq) {
    316		pru->evt_count = 0;
    317		return -ENOMEM;
    318	}
    319
    320	/*
    321	 * parse and fill in system event to interrupt channel and
    322	 * channel-to-host mapping. The interrupt controller to be used
    323	 * for these mappings for a given PRU remoteproc is always its
    324	 * corresponding sibling PRUSS INTC node.
    325	 */
    326	parent = of_get_parent(dev_of_node(pru->dev));
    327	if (!parent) {
    328		kfree(pru->mapped_irq);
    329		pru->mapped_irq = NULL;
    330		pru->evt_count = 0;
    331		return -ENODEV;
    332	}
    333
    334	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
    335	of_node_put(parent);
    336	if (!irq_parent) {
    337		kfree(pru->mapped_irq);
    338		pru->mapped_irq = NULL;
    339		pru->evt_count = 0;
    340		return -ENODEV;
    341	}
    342
    343	fwspec.fwnode = of_node_to_fwnode(irq_parent);
    344	fwspec.param_count = 3;
    345	for (i = 0; i < pru->evt_count; i++) {
    346		fwspec.param[0] = rsc->pru_intc_map[i].event;
    347		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
    348		fwspec.param[2] = rsc->pru_intc_map[i].host;
    349
    350		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
    351			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
    352
    353		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
    354		if (!pru->mapped_irq[i]) {
    355			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
    356				i, fwspec.param[0], fwspec.param[1],
    357				fwspec.param[2]);
    358			ret = -EINVAL;
    359			goto map_fail;
    360		}
    361	}
    362	of_node_put(irq_parent);
    363
    364	return ret;
    365
    366map_fail:
    367	pru_dispose_irq_mapping(pru);
    368	of_node_put(irq_parent);
    369
    370	return ret;
    371}
    372
    373static int pru_rproc_start(struct rproc *rproc)
    374{
    375	struct device *dev = &rproc->dev;
    376	struct pru_rproc *pru = rproc->priv;
    377	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
    378	u32 val;
    379	int ret;
    380
    381	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
    382		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
    383
    384	ret = pru_handle_intrmap(rproc);
    385	/*
    386	 * reset references to pru interrupt map - they will stop being valid
    387	 * after rproc_start returns
    388	 */
    389	pru->pru_interrupt_map = NULL;
    390	pru->pru_interrupt_map_sz = 0;
    391	if (ret)
    392		return ret;
    393
    394	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
    395	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
    396
    397	return 0;
    398}
    399
    400static int pru_rproc_stop(struct rproc *rproc)
    401{
    402	struct device *dev = &rproc->dev;
    403	struct pru_rproc *pru = rproc->priv;
    404	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
    405	u32 val;
    406
    407	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
    408
    409	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
    410	val &= ~CTRL_CTRL_EN;
    411	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
    412
    413	/* dispose irq mapping - new firmware can provide new mapping */
    414	pru_dispose_irq_mapping(pru);
    415
    416	return 0;
    417}
    418
    419/*
    420 * Convert PRU device address (data spaces only) to kernel virtual address.
    421 *
    422 * Each PRU has access to all data memories within the PRUSS, accessible at
    423 * different ranges. So, look through both its primary and secondary Data
    424 * RAMs as well as any shared Data RAM to convert a PRU device address to
    425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
    426 * RAM1 is primary Data RAM for PRU1.
    427 */
    428static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
    429{
    430	struct pruss_mem_region dram0, dram1, shrd_ram;
    431	struct pruss *pruss = pru->pruss;
    432	u32 offset;
    433	void *va = NULL;
    434
    435	if (len == 0)
    436		return NULL;
    437
    438	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
    439	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
    440	/* PRU1 has its local RAM addresses reversed */
    441	if (pru->id == 1)
    442		swap(dram0, dram1);
    443	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
    444
    445	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
    446		offset = da - PRU_PDRAM_DA;
    447		va = (__force void *)(dram0.va + offset);
    448	} else if (da >= PRU_SDRAM_DA &&
    449		   da + len <= PRU_SDRAM_DA + dram1.size) {
    450		offset = da - PRU_SDRAM_DA;
    451		va = (__force void *)(dram1.va + offset);
    452	} else if (da >= PRU_SHRDRAM_DA &&
    453		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
    454		offset = da - PRU_SHRDRAM_DA;
    455		va = (__force void *)(shrd_ram.va + offset);
    456	}
    457
    458	return va;
    459}
    460
    461/*
    462 * Convert PRU device address (instruction space) to kernel virtual address.
    463 *
    464 * A PRU does not have an unified address space. Each PRU has its very own
    465 * private Instruction RAM, and its device address is identical to that of
    466 * its primary Data RAM device address.
    467 */
    468static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
    469{
    470	u32 offset;
    471	void *va = NULL;
    472
    473	if (len == 0)
    474		return NULL;
    475
    476	/*
    477	 * GNU binutils do not support multiple address spaces. The GNU
    478	 * linker's default linker script places IRAM at an arbitrary high
    479	 * offset, in order to differentiate it from DRAM. Hence we need to
    480	 * strip the artificial offset in the IRAM addresses coming from the
    481	 * ELF file.
    482	 *
    483	 * The TI proprietary linker would never set those higher IRAM address
    484	 * bits anyway. PRU architecture limits the program counter to 16-bit
    485	 * word-address range. This in turn corresponds to 18-bit IRAM
    486	 * byte-address range for ELF.
    487	 *
    488	 * Two more bits are added just in case to make the final 20-bit mask.
    489	 * Idea is to have a safeguard in case TI decides to add banking
    490	 * in future SoCs.
    491	 */
    492	da &= 0xfffff;
    493
    494	if (da >= PRU_IRAM_DA &&
    495	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
    496		offset = da - PRU_IRAM_DA;
    497		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
    498				      offset);
    499	}
    500
    501	return va;
    502}
    503
    504/*
    505 * Provide address translations for only PRU Data RAMs through the remoteproc
    506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
    507 * only to the PRU loader code.
    508 */
    509static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
    510{
    511	struct pru_rproc *pru = rproc->priv;
    512
    513	return pru_d_da_to_va(pru, da, len);
    514}
    515
    516/* PRU-specific address translator used by PRU loader. */
    517static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
    518{
    519	struct pru_rproc *pru = rproc->priv;
    520	void *va;
    521
    522	if (is_iram)
    523		va = pru_i_da_to_va(pru, da, len);
    524	else
    525		va = pru_d_da_to_va(pru, da, len);
    526
    527	return va;
    528}
    529
    530static struct rproc_ops pru_rproc_ops = {
    531	.start		= pru_rproc_start,
    532	.stop		= pru_rproc_stop,
    533	.da_to_va	= pru_rproc_da_to_va,
    534};
    535
    536/*
    537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
    538 *
    539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
    540 * memories, that is not seen on previous generation SoCs. The data is reflected
    541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
    542 * copies result in all the other pre-existing bytes zeroed out within that
    543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
    544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
    545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
    546 * ports do not show this behavior.
    547 */
    548static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
    549{
    550	const u32 *s = src;
    551	u32 *d = dest;
    552	size_t size = count / 4;
    553	u32 *tmp_src = NULL;
    554
    555	/*
    556	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
    557	 * sizes
    558	 */
    559	if ((long)dest % 4 || count % 4)
    560		return -EINVAL;
    561
    562	/* src offsets in ELF firmware image can be non-aligned */
    563	if ((long)src % 4) {
    564		tmp_src = kmemdup(src, count, GFP_KERNEL);
    565		if (!tmp_src)
    566			return -ENOMEM;
    567		s = tmp_src;
    568	}
    569
    570	while (size--)
    571		*d++ = *s++;
    572
    573	kfree(tmp_src);
    574
    575	return 0;
    576}
    577
    578static int
    579pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
    580{
    581	struct pru_rproc *pru = rproc->priv;
    582	struct device *dev = &rproc->dev;
    583	struct elf32_hdr *ehdr;
    584	struct elf32_phdr *phdr;
    585	int i, ret = 0;
    586	const u8 *elf_data = fw->data;
    587
    588	ehdr = (struct elf32_hdr *)elf_data;
    589	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
    590
    591	/* go through the available ELF segments */
    592	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
    593		u32 da = phdr->p_paddr;
    594		u32 memsz = phdr->p_memsz;
    595		u32 filesz = phdr->p_filesz;
    596		u32 offset = phdr->p_offset;
    597		bool is_iram;
    598		void *ptr;
    599
    600		if (phdr->p_type != PT_LOAD || !filesz)
    601			continue;
    602
    603		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
    604			phdr->p_type, da, memsz, filesz);
    605
    606		if (filesz > memsz) {
    607			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
    608				filesz, memsz);
    609			ret = -EINVAL;
    610			break;
    611		}
    612
    613		if (offset + filesz > fw->size) {
    614			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
    615				offset + filesz, fw->size);
    616			ret = -EINVAL;
    617			break;
    618		}
    619
    620		/* grab the kernel address for this device address */
    621		is_iram = phdr->p_flags & PF_X;
    622		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
    623		if (!ptr) {
    624			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
    625			ret = -EINVAL;
    626			break;
    627		}
    628
    629		if (pru->data->is_k3) {
    630			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
    631					       filesz);
    632			if (ret) {
    633				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
    634					da, memsz);
    635				break;
    636			}
    637		} else {
    638			memcpy(ptr, elf_data + phdr->p_offset, filesz);
    639		}
    640
    641		/* skip the memzero logic performed by remoteproc ELF loader */
    642	}
    643
    644	return ret;
    645}
    646
    647static const void *
    648pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
    649{
    650	struct elf32_shdr *shdr, *name_table_shdr;
    651	const char *name_table;
    652	const u8 *elf_data = fw->data;
    653	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
    654	u16 shnum = ehdr->e_shnum;
    655	u16 shstrndx = ehdr->e_shstrndx;
    656	int i;
    657
    658	/* first, get the section header */
    659	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
    660	/* compute name table section header entry in shdr array */
    661	name_table_shdr = shdr + shstrndx;
    662	/* finally, compute the name table section address in elf */
    663	name_table = elf_data + name_table_shdr->sh_offset;
    664
    665	for (i = 0; i < shnum; i++, shdr++) {
    666		u32 size = shdr->sh_size;
    667		u32 offset = shdr->sh_offset;
    668		u32 name = shdr->sh_name;
    669
    670		if (strcmp(name_table + name, ".pru_irq_map"))
    671			continue;
    672
    673		/* make sure we have the entire irq map */
    674		if (offset + size > fw->size || offset + size < size) {
    675			dev_err(dev, ".pru_irq_map section truncated\n");
    676			return ERR_PTR(-EINVAL);
    677		}
    678
    679		/* make sure irq map has at least the header */
    680		if (sizeof(struct pru_irq_rsc) > size) {
    681			dev_err(dev, "header-less .pru_irq_map section\n");
    682			return ERR_PTR(-EINVAL);
    683		}
    684
    685		return shdr;
    686	}
    687
    688	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
    689
    690	return NULL;
    691}
    692
    693/*
    694 * Use a custom parse_fw callback function for dealing with PRU firmware
    695 * specific sections.
    696 *
    697 * The firmware blob can contain optional ELF sections: .resource_table section
    698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
    699 * description, which needs to be setup before powering on the PRU core. To
    700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
    701 * firmware linker) and therefore is not loaded to PRU memory.
    702 */
    703static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
    704{
    705	struct device *dev = &rproc->dev;
    706	struct pru_rproc *pru = rproc->priv;
    707	const u8 *elf_data = fw->data;
    708	const void *shdr;
    709	u8 class = fw_elf_get_class(fw);
    710	u64 sh_offset;
    711	int ret;
    712
    713	/* load optional rsc table */
    714	ret = rproc_elf_load_rsc_table(rproc, fw);
    715	if (ret == -EINVAL)
    716		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
    717	else if (ret)
    718		return ret;
    719
    720	/* find .pru_interrupt_map section, not having it is not an error */
    721	shdr = pru_rproc_find_interrupt_map(dev, fw);
    722	if (IS_ERR(shdr))
    723		return PTR_ERR(shdr);
    724
    725	if (!shdr)
    726		return 0;
    727
    728	/* preserve pointer to PRU interrupt map together with it size */
    729	sh_offset = elf_shdr_get_sh_offset(class, shdr);
    730	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
    731	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
    732
    733	return 0;
    734}
    735
    736/*
    737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
    738 * always at a particular offset within the PRUSS address space.
    739 */
    740static int pru_rproc_set_id(struct pru_rproc *pru)
    741{
    742	int ret = 0;
    743
    744	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
    745	case TX_PRU0_IRAM_ADDR_MASK:
    746		fallthrough;
    747	case RTU0_IRAM_ADDR_MASK:
    748		fallthrough;
    749	case PRU0_IRAM_ADDR_MASK:
    750		pru->id = 0;
    751		break;
    752	case TX_PRU1_IRAM_ADDR_MASK:
    753		fallthrough;
    754	case RTU1_IRAM_ADDR_MASK:
    755		fallthrough;
    756	case PRU1_IRAM_ADDR_MASK:
    757		pru->id = 1;
    758		break;
    759	default:
    760		ret = -EINVAL;
    761	}
    762
    763	return ret;
    764}
    765
    766static int pru_rproc_probe(struct platform_device *pdev)
    767{
    768	struct device *dev = &pdev->dev;
    769	struct device_node *np = dev->of_node;
    770	struct platform_device *ppdev = to_platform_device(dev->parent);
    771	struct pru_rproc *pru;
    772	const char *fw_name;
    773	struct rproc *rproc = NULL;
    774	struct resource *res;
    775	int i, ret;
    776	const struct pru_private_data *data;
    777	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
    778
    779	data = of_device_get_match_data(&pdev->dev);
    780	if (!data)
    781		return -ENODEV;
    782
    783	ret = of_property_read_string(np, "firmware-name", &fw_name);
    784	if (ret) {
    785		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
    786		return ret;
    787	}
    788
    789	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
    790				 sizeof(*pru));
    791	if (!rproc) {
    792		dev_err(dev, "rproc_alloc failed\n");
    793		return -ENOMEM;
    794	}
    795	/* use a custom load function to deal with PRU-specific quirks */
    796	rproc->ops->load = pru_rproc_load_elf_segments;
    797
    798	/* use a custom parse function to deal with PRU-specific resources */
    799	rproc->ops->parse_fw = pru_rproc_parse_fw;
    800
    801	/* error recovery is not supported for PRUs */
    802	rproc->recovery_disabled = true;
    803
    804	/*
    805	 * rproc_add will auto-boot the processor normally, but this is not
    806	 * desired with PRU client driven boot-flow methodology. A PRU
    807	 * application/client driver will boot the corresponding PRU
    808	 * remote-processor as part of its state machine either through the
    809	 * remoteproc sysfs interface or through the equivalent kernel API.
    810	 */
    811	rproc->auto_boot = false;
    812
    813	pru = rproc->priv;
    814	pru->dev = dev;
    815	pru->data = data;
    816	pru->pruss = platform_get_drvdata(ppdev);
    817	pru->rproc = rproc;
    818	pru->fw_name = fw_name;
    819
    820	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
    821		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
    822						   mem_names[i]);
    823		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
    824		if (IS_ERR(pru->mem_regions[i].va)) {
    825			dev_err(dev, "failed to parse and map memory resource %d %s\n",
    826				i, mem_names[i]);
    827			ret = PTR_ERR(pru->mem_regions[i].va);
    828			return ret;
    829		}
    830		pru->mem_regions[i].pa = res->start;
    831		pru->mem_regions[i].size = resource_size(res);
    832
    833		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
    834			mem_names[i], &pru->mem_regions[i].pa,
    835			pru->mem_regions[i].size, pru->mem_regions[i].va);
    836	}
    837
    838	ret = pru_rproc_set_id(pru);
    839	if (ret < 0)
    840		return ret;
    841
    842	platform_set_drvdata(pdev, rproc);
    843
    844	ret = devm_rproc_add(dev, pru->rproc);
    845	if (ret) {
    846		dev_err(dev, "rproc_add failed: %d\n", ret);
    847		return ret;
    848	}
    849
    850	pru_rproc_create_debug_entries(rproc);
    851
    852	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
    853
    854	return 0;
    855}
    856
    857static int pru_rproc_remove(struct platform_device *pdev)
    858{
    859	struct device *dev = &pdev->dev;
    860	struct rproc *rproc = platform_get_drvdata(pdev);
    861
    862	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
    863
    864	return 0;
    865}
    866
    867static const struct pru_private_data pru_data = {
    868	.type = PRU_TYPE_PRU,
    869};
    870
    871static const struct pru_private_data k3_pru_data = {
    872	.type = PRU_TYPE_PRU,
    873	.is_k3 = 1,
    874};
    875
    876static const struct pru_private_data k3_rtu_data = {
    877	.type = PRU_TYPE_RTU,
    878	.is_k3 = 1,
    879};
    880
    881static const struct pru_private_data k3_tx_pru_data = {
    882	.type = PRU_TYPE_TX_PRU,
    883	.is_k3 = 1,
    884};
    885
    886static const struct of_device_id pru_rproc_match[] = {
    887	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
    888	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
    889	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
    890	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
    891	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
    892	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
    893	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
    894	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
    895	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
    896	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
    897	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
    898	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
    899	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
    900	{},
    901};
    902MODULE_DEVICE_TABLE(of, pru_rproc_match);
    903
    904static struct platform_driver pru_rproc_driver = {
    905	.driver = {
    906		.name   = "pru-rproc",
    907		.of_match_table = pru_rproc_match,
    908		.suppress_bind_attrs = true,
    909	},
    910	.probe  = pru_rproc_probe,
    911	.remove = pru_rproc_remove,
    912};
    913module_platform_driver(pru_rproc_driver);
    914
    915MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
    916MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
    917MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
    918MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
    919MODULE_LICENSE("GPL v2");