cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

remoteproc_core.c (74895B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Remote Processor Framework
      4 *
      5 * Copyright (C) 2011 Texas Instruments, Inc.
      6 * Copyright (C) 2011 Google, Inc.
      7 *
      8 * Ohad Ben-Cohen <ohad@wizery.com>
      9 * Brian Swetland <swetland@google.com>
     10 * Mark Grosen <mgrosen@ti.com>
     11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
     12 * Suman Anna <s-anna@ti.com>
     13 * Robert Tivy <rtivy@ti.com>
     14 * Armando Uribe De Leon <x0095078@ti.com>
     15 */
     16
     17#define pr_fmt(fmt)    "%s: " fmt, __func__
     18
     19#include <linux/delay.h>
     20#include <linux/kernel.h>
     21#include <linux/module.h>
     22#include <linux/device.h>
     23#include <linux/panic_notifier.h>
     24#include <linux/slab.h>
     25#include <linux/mutex.h>
     26#include <linux/dma-map-ops.h>
     27#include <linux/dma-mapping.h>
     28#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
     29#include <linux/firmware.h>
     30#include <linux/string.h>
     31#include <linux/debugfs.h>
     32#include <linux/rculist.h>
     33#include <linux/remoteproc.h>
     34#include <linux/iommu.h>
     35#include <linux/idr.h>
     36#include <linux/elf.h>
     37#include <linux/crc32.h>
     38#include <linux/of_reserved_mem.h>
     39#include <linux/virtio_ids.h>
     40#include <linux/virtio_ring.h>
     41#include <asm/byteorder.h>
     42#include <linux/platform_device.h>
     43
     44#include "remoteproc_internal.h"
     45
     46#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
     47
     48static DEFINE_MUTEX(rproc_list_mutex);
     49static LIST_HEAD(rproc_list);
     50static struct notifier_block rproc_panic_nb;
     51
     52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
     53				 void *, int offset, int avail);
     54
     55static int rproc_alloc_carveout(struct rproc *rproc,
     56				struct rproc_mem_entry *mem);
     57static int rproc_release_carveout(struct rproc *rproc,
     58				  struct rproc_mem_entry *mem);
     59
     60/* Unique indices for remoteproc devices */
     61static DEFINE_IDA(rproc_dev_index);
     62
     63static const char * const rproc_crash_names[] = {
     64	[RPROC_MMUFAULT]	= "mmufault",
     65	[RPROC_WATCHDOG]	= "watchdog",
     66	[RPROC_FATAL_ERROR]	= "fatal error",
     67};
     68
     69/* translate rproc_crash_type to string */
     70static const char *rproc_crash_to_string(enum rproc_crash_type type)
     71{
     72	if (type < ARRAY_SIZE(rproc_crash_names))
     73		return rproc_crash_names[type];
     74	return "unknown";
     75}
     76
     77/*
     78 * This is the IOMMU fault handler we register with the IOMMU API
     79 * (when relevant; not all remote processors access memory through
     80 * an IOMMU).
     81 *
     82 * IOMMU core will invoke this handler whenever the remote processor
     83 * will try to access an unmapped device address.
     84 */
     85static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
     86			     unsigned long iova, int flags, void *token)
     87{
     88	struct rproc *rproc = token;
     89
     90	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
     91
     92	rproc_report_crash(rproc, RPROC_MMUFAULT);
     93
     94	/*
     95	 * Let the iommu core know we're not really handling this fault;
     96	 * we just used it as a recovery trigger.
     97	 */
     98	return -ENOSYS;
     99}
    100
    101static int rproc_enable_iommu(struct rproc *rproc)
    102{
    103	struct iommu_domain *domain;
    104	struct device *dev = rproc->dev.parent;
    105	int ret;
    106
    107	if (!rproc->has_iommu) {
    108		dev_dbg(dev, "iommu not present\n");
    109		return 0;
    110	}
    111
    112	domain = iommu_domain_alloc(dev->bus);
    113	if (!domain) {
    114		dev_err(dev, "can't alloc iommu domain\n");
    115		return -ENOMEM;
    116	}
    117
    118	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
    119
    120	ret = iommu_attach_device(domain, dev);
    121	if (ret) {
    122		dev_err(dev, "can't attach iommu device: %d\n", ret);
    123		goto free_domain;
    124	}
    125
    126	rproc->domain = domain;
    127
    128	return 0;
    129
    130free_domain:
    131	iommu_domain_free(domain);
    132	return ret;
    133}
    134
    135static void rproc_disable_iommu(struct rproc *rproc)
    136{
    137	struct iommu_domain *domain = rproc->domain;
    138	struct device *dev = rproc->dev.parent;
    139
    140	if (!domain)
    141		return;
    142
    143	iommu_detach_device(domain, dev);
    144	iommu_domain_free(domain);
    145}
    146
    147phys_addr_t rproc_va_to_pa(void *cpu_addr)
    148{
    149	/*
    150	 * Return physical address according to virtual address location
    151	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
    152	 * - in kernel: if region allocated in generic dma memory pool
    153	 */
    154	if (is_vmalloc_addr(cpu_addr)) {
    155		return page_to_phys(vmalloc_to_page(cpu_addr)) +
    156				    offset_in_page(cpu_addr);
    157	}
    158
    159	WARN_ON(!virt_addr_valid(cpu_addr));
    160	return virt_to_phys(cpu_addr);
    161}
    162EXPORT_SYMBOL(rproc_va_to_pa);
    163
    164/**
    165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
    166 * @rproc: handle of a remote processor
    167 * @da: remoteproc device address to translate
    168 * @len: length of the memory region @da is pointing to
    169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
    170 *
    171 * Some remote processors will ask us to allocate them physically contiguous
    172 * memory regions (which we call "carveouts"), and map them to specific
    173 * device addresses (which are hardcoded in the firmware). They may also have
    174 * dedicated memory regions internal to the processors, and use them either
    175 * exclusively or alongside carveouts.
    176 *
    177 * They may then ask us to copy objects into specific device addresses (e.g.
    178 * code/data sections) or expose us certain symbols in other device address
    179 * (e.g. their trace buffer).
    180 *
    181 * This function is a helper function with which we can go over the allocated
    182 * carveouts and translate specific device addresses to kernel virtual addresses
    183 * so we can access the referenced memory. This function also allows to perform
    184 * translations on the internal remoteproc memory regions through a platform
    185 * implementation specific da_to_va ops, if present.
    186 *
    187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
    188 * but only on kernel direct mapped RAM memory. Instead, we're just using
    189 * here the output of the DMA API for the carveouts, which should be more
    190 * correct.
    191 *
    192 * Return: a valid kernel address on success or NULL on failure
    193 */
    194void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
    195{
    196	struct rproc_mem_entry *carveout;
    197	void *ptr = NULL;
    198
    199	if (rproc->ops->da_to_va) {
    200		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
    201		if (ptr)
    202			goto out;
    203	}
    204
    205	list_for_each_entry(carveout, &rproc->carveouts, node) {
    206		int offset = da - carveout->da;
    207
    208		/*  Verify that carveout is allocated */
    209		if (!carveout->va)
    210			continue;
    211
    212		/* try next carveout if da is too small */
    213		if (offset < 0)
    214			continue;
    215
    216		/* try next carveout if da is too large */
    217		if (offset + len > carveout->len)
    218			continue;
    219
    220		ptr = carveout->va + offset;
    221
    222		if (is_iomem)
    223			*is_iomem = carveout->is_iomem;
    224
    225		break;
    226	}
    227
    228out:
    229	return ptr;
    230}
    231EXPORT_SYMBOL(rproc_da_to_va);
    232
    233/**
    234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
    235 * @rproc: handle of a remote processor
    236 * @name: carveout name to find (format string)
    237 * @...: optional parameters matching @name string
    238 *
    239 * Platform driver has the capability to register some pre-allacoted carveout
    240 * (physically contiguous memory regions) before rproc firmware loading and
    241 * associated resource table analysis. These regions may be dedicated memory
    242 * regions internal to the coprocessor or specified DDR region with specific
    243 * attributes
    244 *
    245 * This function is a helper function with which we can go over the
    246 * allocated carveouts and return associated region characteristics like
    247 * coprocessor address, length or processor virtual address.
    248 *
    249 * Return: a valid pointer on carveout entry on success or NULL on failure.
    250 */
    251__printf(2, 3)
    252struct rproc_mem_entry *
    253rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
    254{
    255	va_list args;
    256	char _name[32];
    257	struct rproc_mem_entry *carveout, *mem = NULL;
    258
    259	if (!name)
    260		return NULL;
    261
    262	va_start(args, name);
    263	vsnprintf(_name, sizeof(_name), name, args);
    264	va_end(args);
    265
    266	list_for_each_entry(carveout, &rproc->carveouts, node) {
    267		/* Compare carveout and requested names */
    268		if (!strcmp(carveout->name, _name)) {
    269			mem = carveout;
    270			break;
    271		}
    272	}
    273
    274	return mem;
    275}
    276
    277/**
    278 * rproc_check_carveout_da() - Check specified carveout da configuration
    279 * @rproc: handle of a remote processor
    280 * @mem: pointer on carveout to check
    281 * @da: area device address
    282 * @len: associated area size
    283 *
    284 * This function is a helper function to verify requested device area (couple
    285 * da, len) is part of specified carveout.
    286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
    287 * checked.
    288 *
    289 * Return: 0 if carveout matches request else error
    290 */
    291static int rproc_check_carveout_da(struct rproc *rproc,
    292				   struct rproc_mem_entry *mem, u32 da, u32 len)
    293{
    294	struct device *dev = &rproc->dev;
    295	int delta;
    296
    297	/* Check requested resource length */
    298	if (len > mem->len) {
    299		dev_err(dev, "Registered carveout doesn't fit len request\n");
    300		return -EINVAL;
    301	}
    302
    303	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
    304		/* Address doesn't match registered carveout configuration */
    305		return -EINVAL;
    306	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
    307		delta = da - mem->da;
    308
    309		/* Check requested resource belongs to registered carveout */
    310		if (delta < 0) {
    311			dev_err(dev,
    312				"Registered carveout doesn't fit da request\n");
    313			return -EINVAL;
    314		}
    315
    316		if (delta + len > mem->len) {
    317			dev_err(dev,
    318				"Registered carveout doesn't fit len request\n");
    319			return -EINVAL;
    320		}
    321	}
    322
    323	return 0;
    324}
    325
    326int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
    327{
    328	struct rproc *rproc = rvdev->rproc;
    329	struct device *dev = &rproc->dev;
    330	struct rproc_vring *rvring = &rvdev->vring[i];
    331	struct fw_rsc_vdev *rsc;
    332	int ret, notifyid;
    333	struct rproc_mem_entry *mem;
    334	size_t size;
    335
    336	/* actual size of vring (in bytes) */
    337	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
    338
    339	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
    340
    341	/* Search for pre-registered carveout */
    342	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
    343					  i);
    344	if (mem) {
    345		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
    346			return -ENOMEM;
    347	} else {
    348		/* Register carveout in in list */
    349		mem = rproc_mem_entry_init(dev, NULL, 0,
    350					   size, rsc->vring[i].da,
    351					   rproc_alloc_carveout,
    352					   rproc_release_carveout,
    353					   "vdev%dvring%d",
    354					   rvdev->index, i);
    355		if (!mem) {
    356			dev_err(dev, "Can't allocate memory entry structure\n");
    357			return -ENOMEM;
    358		}
    359
    360		rproc_add_carveout(rproc, mem);
    361	}
    362
    363	/*
    364	 * Assign an rproc-wide unique index for this vring
    365	 * TODO: assign a notifyid for rvdev updates as well
    366	 * TODO: support predefined notifyids (via resource table)
    367	 */
    368	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
    369	if (ret < 0) {
    370		dev_err(dev, "idr_alloc failed: %d\n", ret);
    371		return ret;
    372	}
    373	notifyid = ret;
    374
    375	/* Potentially bump max_notifyid */
    376	if (notifyid > rproc->max_notifyid)
    377		rproc->max_notifyid = notifyid;
    378
    379	rvring->notifyid = notifyid;
    380
    381	/* Let the rproc know the notifyid of this vring.*/
    382	rsc->vring[i].notifyid = notifyid;
    383	return 0;
    384}
    385
    386static int
    387rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
    388{
    389	struct rproc *rproc = rvdev->rproc;
    390	struct device *dev = &rproc->dev;
    391	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
    392	struct rproc_vring *rvring = &rvdev->vring[i];
    393
    394	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
    395		i, vring->da, vring->num, vring->align);
    396
    397	/* verify queue size and vring alignment are sane */
    398	if (!vring->num || !vring->align) {
    399		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
    400			vring->num, vring->align);
    401		return -EINVAL;
    402	}
    403
    404	rvring->len = vring->num;
    405	rvring->align = vring->align;
    406	rvring->rvdev = rvdev;
    407
    408	return 0;
    409}
    410
    411void rproc_free_vring(struct rproc_vring *rvring)
    412{
    413	struct rproc *rproc = rvring->rvdev->rproc;
    414	int idx = rvring - rvring->rvdev->vring;
    415	struct fw_rsc_vdev *rsc;
    416
    417	idr_remove(&rproc->notifyids, rvring->notifyid);
    418
    419	/*
    420	 * At this point rproc_stop() has been called and the installed resource
    421	 * table in the remote processor memory may no longer be accessible. As
    422	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
    423	 * resource table (rproc->cached_table).  The cached resource table is
    424	 * only available when a remote processor has been booted by the
    425	 * remoteproc core, otherwise it is NULL.
    426	 *
    427	 * Based on the above, reset the virtio device section in the cached
    428	 * resource table only if there is one to work with.
    429	 */
    430	if (rproc->table_ptr) {
    431		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
    432		rsc->vring[idx].da = 0;
    433		rsc->vring[idx].notifyid = -1;
    434	}
    435}
    436
    437static int rproc_vdev_do_start(struct rproc_subdev *subdev)
    438{
    439	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
    440
    441	return rproc_add_virtio_dev(rvdev, rvdev->id);
    442}
    443
    444static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
    445{
    446	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
    447	int ret;
    448
    449	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
    450	if (ret)
    451		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
    452}
    453
    454/**
    455 * rproc_rvdev_release() - release the existence of a rvdev
    456 *
    457 * @dev: the subdevice's dev
    458 */
    459static void rproc_rvdev_release(struct device *dev)
    460{
    461	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
    462
    463	of_reserved_mem_device_release(dev);
    464
    465	kfree(rvdev);
    466}
    467
    468static int copy_dma_range_map(struct device *to, struct device *from)
    469{
    470	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
    471	int num_ranges = 0;
    472
    473	if (!map)
    474		return 0;
    475
    476	for (r = map; r->size; r++)
    477		num_ranges++;
    478
    479	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
    480			  GFP_KERNEL);
    481	if (!new_map)
    482		return -ENOMEM;
    483	to->dma_range_map = new_map;
    484	return 0;
    485}
    486
    487/**
    488 * rproc_handle_vdev() - handle a vdev fw resource
    489 * @rproc: the remote processor
    490 * @ptr: the vring resource descriptor
    491 * @offset: offset of the resource entry
    492 * @avail: size of available data (for sanity checking the image)
    493 *
    494 * This resource entry requests the host to statically register a virtio
    495 * device (vdev), and setup everything needed to support it. It contains
    496 * everything needed to make it possible: the virtio device id, virtio
    497 * device features, vrings information, virtio config space, etc...
    498 *
    499 * Before registering the vdev, the vrings are allocated from non-cacheable
    500 * physically contiguous memory. Currently we only support two vrings per
    501 * remote processor (temporary limitation). We might also want to consider
    502 * doing the vring allocation only later when ->find_vqs() is invoked, and
    503 * then release them upon ->del_vqs().
    504 *
    505 * Note: @da is currently not really handled correctly: we dynamically
    506 * allocate it using the DMA API, ignoring requested hard coded addresses,
    507 * and we don't take care of any required IOMMU programming. This is all
    508 * going to be taken care of when the generic iommu-based DMA API will be
    509 * merged. Meanwhile, statically-addressed iommu-based firmware images should
    510 * use RSC_DEVMEM resource entries to map their required @da to the physical
    511 * address of their base CMA region (ouch, hacky!).
    512 *
    513 * Return: 0 on success, or an appropriate error code otherwise
    514 */
    515static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
    516			     int offset, int avail)
    517{
    518	struct fw_rsc_vdev *rsc = ptr;
    519	struct device *dev = &rproc->dev;
    520	struct rproc_vdev *rvdev;
    521	int i, ret;
    522	char name[16];
    523
    524	/* make sure resource isn't truncated */
    525	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
    526			avail) {
    527		dev_err(dev, "vdev rsc is truncated\n");
    528		return -EINVAL;
    529	}
    530
    531	/* make sure reserved bytes are zeroes */
    532	if (rsc->reserved[0] || rsc->reserved[1]) {
    533		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
    534		return -EINVAL;
    535	}
    536
    537	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
    538		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
    539
    540	/* we currently support only two vrings per rvdev */
    541	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
    542		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
    543		return -EINVAL;
    544	}
    545
    546	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
    547	if (!rvdev)
    548		return -ENOMEM;
    549
    550	kref_init(&rvdev->refcount);
    551
    552	rvdev->id = rsc->id;
    553	rvdev->rproc = rproc;
    554	rvdev->index = rproc->nb_vdev++;
    555
    556	/* Initialise vdev subdevice */
    557	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
    558	rvdev->dev.parent = &rproc->dev;
    559	rvdev->dev.release = rproc_rvdev_release;
    560	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
    561	dev_set_drvdata(&rvdev->dev, rvdev);
    562
    563	ret = device_register(&rvdev->dev);
    564	if (ret) {
    565		put_device(&rvdev->dev);
    566		return ret;
    567	}
    568
    569	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
    570	if (ret)
    571		goto free_rvdev;
    572
    573	/* Make device dma capable by inheriting from parent's capabilities */
    574	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
    575
    576	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
    577					   dma_get_mask(rproc->dev.parent));
    578	if (ret) {
    579		dev_warn(dev,
    580			 "Failed to set DMA mask %llx. Trying to continue... (%pe)\n",
    581			 dma_get_mask(rproc->dev.parent), ERR_PTR(ret));
    582	}
    583
    584	/* parse the vrings */
    585	for (i = 0; i < rsc->num_of_vrings; i++) {
    586		ret = rproc_parse_vring(rvdev, rsc, i);
    587		if (ret)
    588			goto free_rvdev;
    589	}
    590
    591	/* remember the resource offset*/
    592	rvdev->rsc_offset = offset;
    593
    594	/* allocate the vring resources */
    595	for (i = 0; i < rsc->num_of_vrings; i++) {
    596		ret = rproc_alloc_vring(rvdev, i);
    597		if (ret)
    598			goto unwind_vring_allocations;
    599	}
    600
    601	list_add_tail(&rvdev->node, &rproc->rvdevs);
    602
    603	rvdev->subdev.start = rproc_vdev_do_start;
    604	rvdev->subdev.stop = rproc_vdev_do_stop;
    605
    606	rproc_add_subdev(rproc, &rvdev->subdev);
    607
    608	return 0;
    609
    610unwind_vring_allocations:
    611	for (i--; i >= 0; i--)
    612		rproc_free_vring(&rvdev->vring[i]);
    613free_rvdev:
    614	device_unregister(&rvdev->dev);
    615	return ret;
    616}
    617
    618void rproc_vdev_release(struct kref *ref)
    619{
    620	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
    621	struct rproc_vring *rvring;
    622	struct rproc *rproc = rvdev->rproc;
    623	int id;
    624
    625	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
    626		rvring = &rvdev->vring[id];
    627		rproc_free_vring(rvring);
    628	}
    629
    630	rproc_remove_subdev(rproc, &rvdev->subdev);
    631	list_del(&rvdev->node);
    632	device_unregister(&rvdev->dev);
    633}
    634
    635/**
    636 * rproc_handle_trace() - handle a shared trace buffer resource
    637 * @rproc: the remote processor
    638 * @ptr: the trace resource descriptor
    639 * @offset: offset of the resource entry
    640 * @avail: size of available data (for sanity checking the image)
    641 *
    642 * In case the remote processor dumps trace logs into memory,
    643 * export it via debugfs.
    644 *
    645 * Currently, the 'da' member of @rsc should contain the device address
    646 * where the remote processor is dumping the traces. Later we could also
    647 * support dynamically allocating this address using the generic
    648 * DMA API (but currently there isn't a use case for that).
    649 *
    650 * Return: 0 on success, or an appropriate error code otherwise
    651 */
    652static int rproc_handle_trace(struct rproc *rproc, void *ptr,
    653			      int offset, int avail)
    654{
    655	struct fw_rsc_trace *rsc = ptr;
    656	struct rproc_debug_trace *trace;
    657	struct device *dev = &rproc->dev;
    658	char name[15];
    659
    660	if (sizeof(*rsc) > avail) {
    661		dev_err(dev, "trace rsc is truncated\n");
    662		return -EINVAL;
    663	}
    664
    665	/* make sure reserved bytes are zeroes */
    666	if (rsc->reserved) {
    667		dev_err(dev, "trace rsc has non zero reserved bytes\n");
    668		return -EINVAL;
    669	}
    670
    671	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
    672	if (!trace)
    673		return -ENOMEM;
    674
    675	/* set the trace buffer dma properties */
    676	trace->trace_mem.len = rsc->len;
    677	trace->trace_mem.da = rsc->da;
    678
    679	/* set pointer on rproc device */
    680	trace->rproc = rproc;
    681
    682	/* make sure snprintf always null terminates, even if truncating */
    683	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
    684
    685	/* create the debugfs entry */
    686	trace->tfile = rproc_create_trace_file(name, rproc, trace);
    687
    688	list_add_tail(&trace->node, &rproc->traces);
    689
    690	rproc->num_traces++;
    691
    692	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
    693		name, rsc->da, rsc->len);
    694
    695	return 0;
    696}
    697
    698/**
    699 * rproc_handle_devmem() - handle devmem resource entry
    700 * @rproc: remote processor handle
    701 * @ptr: the devmem resource entry
    702 * @offset: offset of the resource entry
    703 * @avail: size of available data (for sanity checking the image)
    704 *
    705 * Remote processors commonly need to access certain on-chip peripherals.
    706 *
    707 * Some of these remote processors access memory via an iommu device,
    708 * and might require us to configure their iommu before they can access
    709 * the on-chip peripherals they need.
    710 *
    711 * This resource entry is a request to map such a peripheral device.
    712 *
    713 * These devmem entries will contain the physical address of the device in
    714 * the 'pa' member. If a specific device address is expected, then 'da' will
    715 * contain it (currently this is the only use case supported). 'len' will
    716 * contain the size of the physical region we need to map.
    717 *
    718 * Currently we just "trust" those devmem entries to contain valid physical
    719 * addresses, but this is going to change: we want the implementations to
    720 * tell us ranges of physical addresses the firmware is allowed to request,
    721 * and not allow firmwares to request access to physical addresses that
    722 * are outside those ranges.
    723 *
    724 * Return: 0 on success, or an appropriate error code otherwise
    725 */
    726static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
    727			       int offset, int avail)
    728{
    729	struct fw_rsc_devmem *rsc = ptr;
    730	struct rproc_mem_entry *mapping;
    731	struct device *dev = &rproc->dev;
    732	int ret;
    733
    734	/* no point in handling this resource without a valid iommu domain */
    735	if (!rproc->domain)
    736		return -EINVAL;
    737
    738	if (sizeof(*rsc) > avail) {
    739		dev_err(dev, "devmem rsc is truncated\n");
    740		return -EINVAL;
    741	}
    742
    743	/* make sure reserved bytes are zeroes */
    744	if (rsc->reserved) {
    745		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
    746		return -EINVAL;
    747	}
    748
    749	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
    750	if (!mapping)
    751		return -ENOMEM;
    752
    753	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
    754	if (ret) {
    755		dev_err(dev, "failed to map devmem: %d\n", ret);
    756		goto out;
    757	}
    758
    759	/*
    760	 * We'll need this info later when we'll want to unmap everything
    761	 * (e.g. on shutdown).
    762	 *
    763	 * We can't trust the remote processor not to change the resource
    764	 * table, so we must maintain this info independently.
    765	 */
    766	mapping->da = rsc->da;
    767	mapping->len = rsc->len;
    768	list_add_tail(&mapping->node, &rproc->mappings);
    769
    770	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
    771		rsc->pa, rsc->da, rsc->len);
    772
    773	return 0;
    774
    775out:
    776	kfree(mapping);
    777	return ret;
    778}
    779
    780/**
    781 * rproc_alloc_carveout() - allocated specified carveout
    782 * @rproc: rproc handle
    783 * @mem: the memory entry to allocate
    784 *
    785 * This function allocate specified memory entry @mem using
    786 * dma_alloc_coherent() as default allocator
    787 *
    788 * Return: 0 on success, or an appropriate error code otherwise
    789 */
    790static int rproc_alloc_carveout(struct rproc *rproc,
    791				struct rproc_mem_entry *mem)
    792{
    793	struct rproc_mem_entry *mapping = NULL;
    794	struct device *dev = &rproc->dev;
    795	dma_addr_t dma;
    796	void *va;
    797	int ret;
    798
    799	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
    800	if (!va) {
    801		dev_err(dev->parent,
    802			"failed to allocate dma memory: len 0x%zx\n",
    803			mem->len);
    804		return -ENOMEM;
    805	}
    806
    807	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
    808		va, &dma, mem->len);
    809
    810	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
    811		/*
    812		 * Check requested da is equal to dma address
    813		 * and print a warn message in case of missalignment.
    814		 * Don't stop rproc_start sequence as coprocessor may
    815		 * build pa to da translation on its side.
    816		 */
    817		if (mem->da != (u32)dma)
    818			dev_warn(dev->parent,
    819				 "Allocated carveout doesn't fit device address request\n");
    820	}
    821
    822	/*
    823	 * Ok, this is non-standard.
    824	 *
    825	 * Sometimes we can't rely on the generic iommu-based DMA API
    826	 * to dynamically allocate the device address and then set the IOMMU
    827	 * tables accordingly, because some remote processors might
    828	 * _require_ us to use hard coded device addresses that their
    829	 * firmware was compiled with.
    830	 *
    831	 * In this case, we must use the IOMMU API directly and map
    832	 * the memory to the device address as expected by the remote
    833	 * processor.
    834	 *
    835	 * Obviously such remote processor devices should not be configured
    836	 * to use the iommu-based DMA API: we expect 'dma' to contain the
    837	 * physical address in this case.
    838	 */
    839	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
    840		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
    841		if (!mapping) {
    842			ret = -ENOMEM;
    843			goto dma_free;
    844		}
    845
    846		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
    847				mem->flags);
    848		if (ret) {
    849			dev_err(dev, "iommu_map failed: %d\n", ret);
    850			goto free_mapping;
    851		}
    852
    853		/*
    854		 * We'll need this info later when we'll want to unmap
    855		 * everything (e.g. on shutdown).
    856		 *
    857		 * We can't trust the remote processor not to change the
    858		 * resource table, so we must maintain this info independently.
    859		 */
    860		mapping->da = mem->da;
    861		mapping->len = mem->len;
    862		list_add_tail(&mapping->node, &rproc->mappings);
    863
    864		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
    865			mem->da, &dma);
    866	}
    867
    868	if (mem->da == FW_RSC_ADDR_ANY) {
    869		/* Update device address as undefined by requester */
    870		if ((u64)dma & HIGH_BITS_MASK)
    871			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
    872
    873		mem->da = (u32)dma;
    874	}
    875
    876	mem->dma = dma;
    877	mem->va = va;
    878
    879	return 0;
    880
    881free_mapping:
    882	kfree(mapping);
    883dma_free:
    884	dma_free_coherent(dev->parent, mem->len, va, dma);
    885	return ret;
    886}
    887
    888/**
    889 * rproc_release_carveout() - release acquired carveout
    890 * @rproc: rproc handle
    891 * @mem: the memory entry to release
    892 *
    893 * This function releases specified memory entry @mem allocated via
    894 * rproc_alloc_carveout() function by @rproc.
    895 *
    896 * Return: 0 on success, or an appropriate error code otherwise
    897 */
    898static int rproc_release_carveout(struct rproc *rproc,
    899				  struct rproc_mem_entry *mem)
    900{
    901	struct device *dev = &rproc->dev;
    902
    903	/* clean up carveout allocations */
    904	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
    905	return 0;
    906}
    907
    908/**
    909 * rproc_handle_carveout() - handle phys contig memory allocation requests
    910 * @rproc: rproc handle
    911 * @ptr: the resource entry
    912 * @offset: offset of the resource entry
    913 * @avail: size of available data (for image validation)
    914 *
    915 * This function will handle firmware requests for allocation of physically
    916 * contiguous memory regions.
    917 *
    918 * These request entries should come first in the firmware's resource table,
    919 * as other firmware entries might request placing other data objects inside
    920 * these memory regions (e.g. data/code segments, trace resource entries, ...).
    921 *
    922 * Allocating memory this way helps utilizing the reserved physical memory
    923 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
    924 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
    925 * pressure is important; it may have a substantial impact on performance.
    926 *
    927 * Return: 0 on success, or an appropriate error code otherwise
    928 */
    929static int rproc_handle_carveout(struct rproc *rproc,
    930				 void *ptr, int offset, int avail)
    931{
    932	struct fw_rsc_carveout *rsc = ptr;
    933	struct rproc_mem_entry *carveout;
    934	struct device *dev = &rproc->dev;
    935
    936	if (sizeof(*rsc) > avail) {
    937		dev_err(dev, "carveout rsc is truncated\n");
    938		return -EINVAL;
    939	}
    940
    941	/* make sure reserved bytes are zeroes */
    942	if (rsc->reserved) {
    943		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
    944		return -EINVAL;
    945	}
    946
    947	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
    948		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
    949
    950	/*
    951	 * Check carveout rsc already part of a registered carveout,
    952	 * Search by name, then check the da and length
    953	 */
    954	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
    955
    956	if (carveout) {
    957		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
    958			dev_err(dev,
    959				"Carveout already associated to resource table\n");
    960			return -ENOMEM;
    961		}
    962
    963		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
    964			return -ENOMEM;
    965
    966		/* Update memory carveout with resource table info */
    967		carveout->rsc_offset = offset;
    968		carveout->flags = rsc->flags;
    969
    970		return 0;
    971	}
    972
    973	/* Register carveout in in list */
    974	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
    975					rproc_alloc_carveout,
    976					rproc_release_carveout, rsc->name);
    977	if (!carveout) {
    978		dev_err(dev, "Can't allocate memory entry structure\n");
    979		return -ENOMEM;
    980	}
    981
    982	carveout->flags = rsc->flags;
    983	carveout->rsc_offset = offset;
    984	rproc_add_carveout(rproc, carveout);
    985
    986	return 0;
    987}
    988
    989/**
    990 * rproc_add_carveout() - register an allocated carveout region
    991 * @rproc: rproc handle
    992 * @mem: memory entry to register
    993 *
    994 * This function registers specified memory entry in @rproc carveouts list.
    995 * Specified carveout should have been allocated before registering.
    996 */
    997void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
    998{
    999	list_add_tail(&mem->node, &rproc->carveouts);
   1000}
   1001EXPORT_SYMBOL(rproc_add_carveout);
   1002
   1003/**
   1004 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
   1005 * @dev: pointer on device struct
   1006 * @va: virtual address
   1007 * @dma: dma address
   1008 * @len: memory carveout length
   1009 * @da: device address
   1010 * @alloc: memory carveout allocation function
   1011 * @release: memory carveout release function
   1012 * @name: carveout name
   1013 *
   1014 * This function allocates a rproc_mem_entry struct and fill it with parameters
   1015 * provided by client.
   1016 *
   1017 * Return: a valid pointer on success, or NULL on failure
   1018 */
   1019__printf(8, 9)
   1020struct rproc_mem_entry *
   1021rproc_mem_entry_init(struct device *dev,
   1022		     void *va, dma_addr_t dma, size_t len, u32 da,
   1023		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
   1024		     int (*release)(struct rproc *, struct rproc_mem_entry *),
   1025		     const char *name, ...)
   1026{
   1027	struct rproc_mem_entry *mem;
   1028	va_list args;
   1029
   1030	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
   1031	if (!mem)
   1032		return mem;
   1033
   1034	mem->va = va;
   1035	mem->dma = dma;
   1036	mem->da = da;
   1037	mem->len = len;
   1038	mem->alloc = alloc;
   1039	mem->release = release;
   1040	mem->rsc_offset = FW_RSC_ADDR_ANY;
   1041	mem->of_resm_idx = -1;
   1042
   1043	va_start(args, name);
   1044	vsnprintf(mem->name, sizeof(mem->name), name, args);
   1045	va_end(args);
   1046
   1047	return mem;
   1048}
   1049EXPORT_SYMBOL(rproc_mem_entry_init);
   1050
   1051/**
   1052 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
   1053 * from a reserved memory phandle
   1054 * @dev: pointer on device struct
   1055 * @of_resm_idx: reserved memory phandle index in "memory-region"
   1056 * @len: memory carveout length
   1057 * @da: device address
   1058 * @name: carveout name
   1059 *
   1060 * This function allocates a rproc_mem_entry struct and fill it with parameters
   1061 * provided by client.
   1062 *
   1063 * Return: a valid pointer on success, or NULL on failure
   1064 */
   1065__printf(5, 6)
   1066struct rproc_mem_entry *
   1067rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
   1068			     u32 da, const char *name, ...)
   1069{
   1070	struct rproc_mem_entry *mem;
   1071	va_list args;
   1072
   1073	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
   1074	if (!mem)
   1075		return mem;
   1076
   1077	mem->da = da;
   1078	mem->len = len;
   1079	mem->rsc_offset = FW_RSC_ADDR_ANY;
   1080	mem->of_resm_idx = of_resm_idx;
   1081
   1082	va_start(args, name);
   1083	vsnprintf(mem->name, sizeof(mem->name), name, args);
   1084	va_end(args);
   1085
   1086	return mem;
   1087}
   1088EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
   1089
   1090/**
   1091 * rproc_of_parse_firmware() - parse and return the firmware-name
   1092 * @dev: pointer on device struct representing a rproc
   1093 * @index: index to use for the firmware-name retrieval
   1094 * @fw_name: pointer to a character string, in which the firmware
   1095 *           name is returned on success and unmodified otherwise.
   1096 *
   1097 * This is an OF helper function that parses a device's DT node for
   1098 * the "firmware-name" property and returns the firmware name pointer
   1099 * in @fw_name on success.
   1100 *
   1101 * Return: 0 on success, or an appropriate failure.
   1102 */
   1103int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
   1104{
   1105	int ret;
   1106
   1107	ret = of_property_read_string_index(dev->of_node, "firmware-name",
   1108					    index, fw_name);
   1109	return ret ? ret : 0;
   1110}
   1111EXPORT_SYMBOL(rproc_of_parse_firmware);
   1112
   1113/*
   1114 * A lookup table for resource handlers. The indices are defined in
   1115 * enum fw_resource_type.
   1116 */
   1117static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
   1118	[RSC_CARVEOUT] = rproc_handle_carveout,
   1119	[RSC_DEVMEM] = rproc_handle_devmem,
   1120	[RSC_TRACE] = rproc_handle_trace,
   1121	[RSC_VDEV] = rproc_handle_vdev,
   1122};
   1123
   1124/* handle firmware resource entries before booting the remote processor */
   1125static int rproc_handle_resources(struct rproc *rproc,
   1126				  rproc_handle_resource_t handlers[RSC_LAST])
   1127{
   1128	struct device *dev = &rproc->dev;
   1129	rproc_handle_resource_t handler;
   1130	int ret = 0, i;
   1131
   1132	if (!rproc->table_ptr)
   1133		return 0;
   1134
   1135	for (i = 0; i < rproc->table_ptr->num; i++) {
   1136		int offset = rproc->table_ptr->offset[i];
   1137		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
   1138		int avail = rproc->table_sz - offset - sizeof(*hdr);
   1139		void *rsc = (void *)hdr + sizeof(*hdr);
   1140
   1141		/* make sure table isn't truncated */
   1142		if (avail < 0) {
   1143			dev_err(dev, "rsc table is truncated\n");
   1144			return -EINVAL;
   1145		}
   1146
   1147		dev_dbg(dev, "rsc: type %d\n", hdr->type);
   1148
   1149		if (hdr->type >= RSC_VENDOR_START &&
   1150		    hdr->type <= RSC_VENDOR_END) {
   1151			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
   1152					       offset + sizeof(*hdr), avail);
   1153			if (ret == RSC_HANDLED)
   1154				continue;
   1155			else if (ret < 0)
   1156				break;
   1157
   1158			dev_warn(dev, "unsupported vendor resource %d\n",
   1159				 hdr->type);
   1160			continue;
   1161		}
   1162
   1163		if (hdr->type >= RSC_LAST) {
   1164			dev_warn(dev, "unsupported resource %d\n", hdr->type);
   1165			continue;
   1166		}
   1167
   1168		handler = handlers[hdr->type];
   1169		if (!handler)
   1170			continue;
   1171
   1172		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
   1173		if (ret)
   1174			break;
   1175	}
   1176
   1177	return ret;
   1178}
   1179
   1180static int rproc_prepare_subdevices(struct rproc *rproc)
   1181{
   1182	struct rproc_subdev *subdev;
   1183	int ret;
   1184
   1185	list_for_each_entry(subdev, &rproc->subdevs, node) {
   1186		if (subdev->prepare) {
   1187			ret = subdev->prepare(subdev);
   1188			if (ret)
   1189				goto unroll_preparation;
   1190		}
   1191	}
   1192
   1193	return 0;
   1194
   1195unroll_preparation:
   1196	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
   1197		if (subdev->unprepare)
   1198			subdev->unprepare(subdev);
   1199	}
   1200
   1201	return ret;
   1202}
   1203
   1204static int rproc_start_subdevices(struct rproc *rproc)
   1205{
   1206	struct rproc_subdev *subdev;
   1207	int ret;
   1208
   1209	list_for_each_entry(subdev, &rproc->subdevs, node) {
   1210		if (subdev->start) {
   1211			ret = subdev->start(subdev);
   1212			if (ret)
   1213				goto unroll_registration;
   1214		}
   1215	}
   1216
   1217	return 0;
   1218
   1219unroll_registration:
   1220	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
   1221		if (subdev->stop)
   1222			subdev->stop(subdev, true);
   1223	}
   1224
   1225	return ret;
   1226}
   1227
   1228static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
   1229{
   1230	struct rproc_subdev *subdev;
   1231
   1232	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
   1233		if (subdev->stop)
   1234			subdev->stop(subdev, crashed);
   1235	}
   1236}
   1237
   1238static void rproc_unprepare_subdevices(struct rproc *rproc)
   1239{
   1240	struct rproc_subdev *subdev;
   1241
   1242	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
   1243		if (subdev->unprepare)
   1244			subdev->unprepare(subdev);
   1245	}
   1246}
   1247
   1248/**
   1249 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
   1250 * in the list
   1251 * @rproc: the remote processor handle
   1252 *
   1253 * This function parses registered carveout list, performs allocation
   1254 * if alloc() ops registered and updates resource table information
   1255 * if rsc_offset set.
   1256 *
   1257 * Return: 0 on success
   1258 */
   1259static int rproc_alloc_registered_carveouts(struct rproc *rproc)
   1260{
   1261	struct rproc_mem_entry *entry, *tmp;
   1262	struct fw_rsc_carveout *rsc;
   1263	struct device *dev = &rproc->dev;
   1264	u64 pa;
   1265	int ret;
   1266
   1267	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
   1268		if (entry->alloc) {
   1269			ret = entry->alloc(rproc, entry);
   1270			if (ret) {
   1271				dev_err(dev, "Unable to allocate carveout %s: %d\n",
   1272					entry->name, ret);
   1273				return -ENOMEM;
   1274			}
   1275		}
   1276
   1277		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
   1278			/* update resource table */
   1279			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
   1280
   1281			/*
   1282			 * Some remote processors might need to know the pa
   1283			 * even though they are behind an IOMMU. E.g., OMAP4's
   1284			 * remote M3 processor needs this so it can control
   1285			 * on-chip hardware accelerators that are not behind
   1286			 * the IOMMU, and therefor must know the pa.
   1287			 *
   1288			 * Generally we don't want to expose physical addresses
   1289			 * if we don't have to (remote processors are generally
   1290			 * _not_ trusted), so we might want to do this only for
   1291			 * remote processor that _must_ have this (e.g. OMAP4's
   1292			 * dual M3 subsystem).
   1293			 *
   1294			 * Non-IOMMU processors might also want to have this info.
   1295			 * In this case, the device address and the physical address
   1296			 * are the same.
   1297			 */
   1298
   1299			/* Use va if defined else dma to generate pa */
   1300			if (entry->va)
   1301				pa = (u64)rproc_va_to_pa(entry->va);
   1302			else
   1303				pa = (u64)entry->dma;
   1304
   1305			if (((u64)pa) & HIGH_BITS_MASK)
   1306				dev_warn(dev,
   1307					 "Physical address cast in 32bit to fit resource table format\n");
   1308
   1309			rsc->pa = (u32)pa;
   1310			rsc->da = entry->da;
   1311			rsc->len = entry->len;
   1312		}
   1313	}
   1314
   1315	return 0;
   1316}
   1317
   1318
   1319/**
   1320 * rproc_resource_cleanup() - clean up and free all acquired resources
   1321 * @rproc: rproc handle
   1322 *
   1323 * This function will free all resources acquired for @rproc, and it
   1324 * is called whenever @rproc either shuts down or fails to boot.
   1325 */
   1326void rproc_resource_cleanup(struct rproc *rproc)
   1327{
   1328	struct rproc_mem_entry *entry, *tmp;
   1329	struct rproc_debug_trace *trace, *ttmp;
   1330	struct rproc_vdev *rvdev, *rvtmp;
   1331	struct device *dev = &rproc->dev;
   1332
   1333	/* clean up debugfs trace entries */
   1334	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
   1335		rproc_remove_trace_file(trace->tfile);
   1336		rproc->num_traces--;
   1337		list_del(&trace->node);
   1338		kfree(trace);
   1339	}
   1340
   1341	/* clean up iommu mapping entries */
   1342	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
   1343		size_t unmapped;
   1344
   1345		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
   1346		if (unmapped != entry->len) {
   1347			/* nothing much to do besides complaining */
   1348			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
   1349				unmapped);
   1350		}
   1351
   1352		list_del(&entry->node);
   1353		kfree(entry);
   1354	}
   1355
   1356	/* clean up carveout allocations */
   1357	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
   1358		if (entry->release)
   1359			entry->release(rproc, entry);
   1360		list_del(&entry->node);
   1361		kfree(entry);
   1362	}
   1363
   1364	/* clean up remote vdev entries */
   1365	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
   1366		kref_put(&rvdev->refcount, rproc_vdev_release);
   1367
   1368	rproc_coredump_cleanup(rproc);
   1369}
   1370EXPORT_SYMBOL(rproc_resource_cleanup);
   1371
   1372static int rproc_start(struct rproc *rproc, const struct firmware *fw)
   1373{
   1374	struct resource_table *loaded_table;
   1375	struct device *dev = &rproc->dev;
   1376	int ret;
   1377
   1378	/* load the ELF segments to memory */
   1379	ret = rproc_load_segments(rproc, fw);
   1380	if (ret) {
   1381		dev_err(dev, "Failed to load program segments: %d\n", ret);
   1382		return ret;
   1383	}
   1384
   1385	/*
   1386	 * The starting device has been given the rproc->cached_table as the
   1387	 * resource table. The address of the vring along with the other
   1388	 * allocated resources (carveouts etc) is stored in cached_table.
   1389	 * In order to pass this information to the remote device we must copy
   1390	 * this information to device memory. We also update the table_ptr so
   1391	 * that any subsequent changes will be applied to the loaded version.
   1392	 */
   1393	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
   1394	if (loaded_table) {
   1395		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
   1396		rproc->table_ptr = loaded_table;
   1397	}
   1398
   1399	ret = rproc_prepare_subdevices(rproc);
   1400	if (ret) {
   1401		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
   1402			rproc->name, ret);
   1403		goto reset_table_ptr;
   1404	}
   1405
   1406	/* power up the remote processor */
   1407	ret = rproc->ops->start(rproc);
   1408	if (ret) {
   1409		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
   1410		goto unprepare_subdevices;
   1411	}
   1412
   1413	/* Start any subdevices for the remote processor */
   1414	ret = rproc_start_subdevices(rproc);
   1415	if (ret) {
   1416		dev_err(dev, "failed to probe subdevices for %s: %d\n",
   1417			rproc->name, ret);
   1418		goto stop_rproc;
   1419	}
   1420
   1421	rproc->state = RPROC_RUNNING;
   1422
   1423	dev_info(dev, "remote processor %s is now up\n", rproc->name);
   1424
   1425	return 0;
   1426
   1427stop_rproc:
   1428	rproc->ops->stop(rproc);
   1429unprepare_subdevices:
   1430	rproc_unprepare_subdevices(rproc);
   1431reset_table_ptr:
   1432	rproc->table_ptr = rproc->cached_table;
   1433
   1434	return ret;
   1435}
   1436
   1437static int __rproc_attach(struct rproc *rproc)
   1438{
   1439	struct device *dev = &rproc->dev;
   1440	int ret;
   1441
   1442	ret = rproc_prepare_subdevices(rproc);
   1443	if (ret) {
   1444		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
   1445			rproc->name, ret);
   1446		goto out;
   1447	}
   1448
   1449	/* Attach to the remote processor */
   1450	ret = rproc_attach_device(rproc);
   1451	if (ret) {
   1452		dev_err(dev, "can't attach to rproc %s: %d\n",
   1453			rproc->name, ret);
   1454		goto unprepare_subdevices;
   1455	}
   1456
   1457	/* Start any subdevices for the remote processor */
   1458	ret = rproc_start_subdevices(rproc);
   1459	if (ret) {
   1460		dev_err(dev, "failed to probe subdevices for %s: %d\n",
   1461			rproc->name, ret);
   1462		goto stop_rproc;
   1463	}
   1464
   1465	rproc->state = RPROC_ATTACHED;
   1466
   1467	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
   1468
   1469	return 0;
   1470
   1471stop_rproc:
   1472	rproc->ops->stop(rproc);
   1473unprepare_subdevices:
   1474	rproc_unprepare_subdevices(rproc);
   1475out:
   1476	return ret;
   1477}
   1478
   1479/*
   1480 * take a firmware and boot a remote processor with it.
   1481 */
   1482static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
   1483{
   1484	struct device *dev = &rproc->dev;
   1485	const char *name = rproc->firmware;
   1486	int ret;
   1487
   1488	ret = rproc_fw_sanity_check(rproc, fw);
   1489	if (ret)
   1490		return ret;
   1491
   1492	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
   1493
   1494	/*
   1495	 * if enabling an IOMMU isn't relevant for this rproc, this is
   1496	 * just a nop
   1497	 */
   1498	ret = rproc_enable_iommu(rproc);
   1499	if (ret) {
   1500		dev_err(dev, "can't enable iommu: %d\n", ret);
   1501		return ret;
   1502	}
   1503
   1504	/* Prepare rproc for firmware loading if needed */
   1505	ret = rproc_prepare_device(rproc);
   1506	if (ret) {
   1507		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
   1508		goto disable_iommu;
   1509	}
   1510
   1511	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
   1512
   1513	/* Load resource table, core dump segment list etc from the firmware */
   1514	ret = rproc_parse_fw(rproc, fw);
   1515	if (ret)
   1516		goto unprepare_rproc;
   1517
   1518	/* reset max_notifyid */
   1519	rproc->max_notifyid = -1;
   1520
   1521	/* reset handled vdev */
   1522	rproc->nb_vdev = 0;
   1523
   1524	/* handle fw resources which are required to boot rproc */
   1525	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
   1526	if (ret) {
   1527		dev_err(dev, "Failed to process resources: %d\n", ret);
   1528		goto clean_up_resources;
   1529	}
   1530
   1531	/* Allocate carveout resources associated to rproc */
   1532	ret = rproc_alloc_registered_carveouts(rproc);
   1533	if (ret) {
   1534		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
   1535			ret);
   1536		goto clean_up_resources;
   1537	}
   1538
   1539	ret = rproc_start(rproc, fw);
   1540	if (ret)
   1541		goto clean_up_resources;
   1542
   1543	return 0;
   1544
   1545clean_up_resources:
   1546	rproc_resource_cleanup(rproc);
   1547	kfree(rproc->cached_table);
   1548	rproc->cached_table = NULL;
   1549	rproc->table_ptr = NULL;
   1550unprepare_rproc:
   1551	/* release HW resources if needed */
   1552	rproc_unprepare_device(rproc);
   1553disable_iommu:
   1554	rproc_disable_iommu(rproc);
   1555	return ret;
   1556}
   1557
   1558static int rproc_set_rsc_table(struct rproc *rproc)
   1559{
   1560	struct resource_table *table_ptr;
   1561	struct device *dev = &rproc->dev;
   1562	size_t table_sz;
   1563	int ret;
   1564
   1565	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
   1566	if (!table_ptr) {
   1567		/* Not having a resource table is acceptable */
   1568		return 0;
   1569	}
   1570
   1571	if (IS_ERR(table_ptr)) {
   1572		ret = PTR_ERR(table_ptr);
   1573		dev_err(dev, "can't load resource table: %d\n", ret);
   1574		return ret;
   1575	}
   1576
   1577	/*
   1578	 * If it is possible to detach the remote processor, keep an untouched
   1579	 * copy of the resource table.  That way we can start fresh again when
   1580	 * the remote processor is re-attached, that is:
   1581	 *
   1582	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
   1583	 *
   1584	 * Free'd in rproc_reset_rsc_table_on_detach() and
   1585	 * rproc_reset_rsc_table_on_stop().
   1586	 */
   1587	if (rproc->ops->detach) {
   1588		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
   1589		if (!rproc->clean_table)
   1590			return -ENOMEM;
   1591	} else {
   1592		rproc->clean_table = NULL;
   1593	}
   1594
   1595	rproc->cached_table = NULL;
   1596	rproc->table_ptr = table_ptr;
   1597	rproc->table_sz = table_sz;
   1598
   1599	return 0;
   1600}
   1601
   1602static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
   1603{
   1604	struct resource_table *table_ptr;
   1605
   1606	/* A resource table was never retrieved, nothing to do here */
   1607	if (!rproc->table_ptr)
   1608		return 0;
   1609
   1610	/*
   1611	 * If we made it to this point a clean_table _must_ have been
   1612	 * allocated in rproc_set_rsc_table().  If one isn't present
   1613	 * something went really wrong and we must complain.
   1614	 */
   1615	if (WARN_ON(!rproc->clean_table))
   1616		return -EINVAL;
   1617
   1618	/* Remember where the external entity installed the resource table */
   1619	table_ptr = rproc->table_ptr;
   1620
   1621	/*
   1622	 * If we made it here the remote processor was started by another
   1623	 * entity and a cache table doesn't exist.  As such make a copy of
   1624	 * the resource table currently used by the remote processor and
   1625	 * use that for the rest of the shutdown process.  The memory
   1626	 * allocated here is free'd in rproc_detach().
   1627	 */
   1628	rproc->cached_table = kmemdup(rproc->table_ptr,
   1629				      rproc->table_sz, GFP_KERNEL);
   1630	if (!rproc->cached_table)
   1631		return -ENOMEM;
   1632
   1633	/*
   1634	 * Use a copy of the resource table for the remainder of the
   1635	 * shutdown process.
   1636	 */
   1637	rproc->table_ptr = rproc->cached_table;
   1638
   1639	/*
   1640	 * Reset the memory area where the firmware loaded the resource table
   1641	 * to its original value.  That way when we re-attach the remote
   1642	 * processor the resource table is clean and ready to be used again.
   1643	 */
   1644	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
   1645
   1646	/*
   1647	 * The clean resource table is no longer needed.  Allocated in
   1648	 * rproc_set_rsc_table().
   1649	 */
   1650	kfree(rproc->clean_table);
   1651
   1652	return 0;
   1653}
   1654
   1655static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
   1656{
   1657	/* A resource table was never retrieved, nothing to do here */
   1658	if (!rproc->table_ptr)
   1659		return 0;
   1660
   1661	/*
   1662	 * If a cache table exists the remote processor was started by
   1663	 * the remoteproc core.  That cache table should be used for
   1664	 * the rest of the shutdown process.
   1665	 */
   1666	if (rproc->cached_table)
   1667		goto out;
   1668
   1669	/*
   1670	 * If we made it here the remote processor was started by another
   1671	 * entity and a cache table doesn't exist.  As such make a copy of
   1672	 * the resource table currently used by the remote processor and
   1673	 * use that for the rest of the shutdown process.  The memory
   1674	 * allocated here is free'd in rproc_shutdown().
   1675	 */
   1676	rproc->cached_table = kmemdup(rproc->table_ptr,
   1677				      rproc->table_sz, GFP_KERNEL);
   1678	if (!rproc->cached_table)
   1679		return -ENOMEM;
   1680
   1681	/*
   1682	 * Since the remote processor is being switched off the clean table
   1683	 * won't be needed.  Allocated in rproc_set_rsc_table().
   1684	 */
   1685	kfree(rproc->clean_table);
   1686
   1687out:
   1688	/*
   1689	 * Use a copy of the resource table for the remainder of the
   1690	 * shutdown process.
   1691	 */
   1692	rproc->table_ptr = rproc->cached_table;
   1693	return 0;
   1694}
   1695
   1696/*
   1697 * Attach to remote processor - similar to rproc_fw_boot() but without
   1698 * the steps that deal with the firmware image.
   1699 */
   1700static int rproc_attach(struct rproc *rproc)
   1701{
   1702	struct device *dev = &rproc->dev;
   1703	int ret;
   1704
   1705	/*
   1706	 * if enabling an IOMMU isn't relevant for this rproc, this is
   1707	 * just a nop
   1708	 */
   1709	ret = rproc_enable_iommu(rproc);
   1710	if (ret) {
   1711		dev_err(dev, "can't enable iommu: %d\n", ret);
   1712		return ret;
   1713	}
   1714
   1715	/* Do anything that is needed to boot the remote processor */
   1716	ret = rproc_prepare_device(rproc);
   1717	if (ret) {
   1718		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
   1719		goto disable_iommu;
   1720	}
   1721
   1722	ret = rproc_set_rsc_table(rproc);
   1723	if (ret) {
   1724		dev_err(dev, "can't load resource table: %d\n", ret);
   1725		goto unprepare_device;
   1726	}
   1727
   1728	/* reset max_notifyid */
   1729	rproc->max_notifyid = -1;
   1730
   1731	/* reset handled vdev */
   1732	rproc->nb_vdev = 0;
   1733
   1734	/*
   1735	 * Handle firmware resources required to attach to a remote processor.
   1736	 * Because we are attaching rather than booting the remote processor,
   1737	 * we expect the platform driver to properly set rproc->table_ptr.
   1738	 */
   1739	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
   1740	if (ret) {
   1741		dev_err(dev, "Failed to process resources: %d\n", ret);
   1742		goto unprepare_device;
   1743	}
   1744
   1745	/* Allocate carveout resources associated to rproc */
   1746	ret = rproc_alloc_registered_carveouts(rproc);
   1747	if (ret) {
   1748		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
   1749			ret);
   1750		goto clean_up_resources;
   1751	}
   1752
   1753	ret = __rproc_attach(rproc);
   1754	if (ret)
   1755		goto clean_up_resources;
   1756
   1757	return 0;
   1758
   1759clean_up_resources:
   1760	rproc_resource_cleanup(rproc);
   1761unprepare_device:
   1762	/* release HW resources if needed */
   1763	rproc_unprepare_device(rproc);
   1764disable_iommu:
   1765	rproc_disable_iommu(rproc);
   1766	return ret;
   1767}
   1768
   1769/*
   1770 * take a firmware and boot it up.
   1771 *
   1772 * Note: this function is called asynchronously upon registration of the
   1773 * remote processor (so we must wait until it completes before we try
   1774 * to unregister the device. one other option is just to use kref here,
   1775 * that might be cleaner).
   1776 */
   1777static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
   1778{
   1779	struct rproc *rproc = context;
   1780
   1781	rproc_boot(rproc);
   1782
   1783	release_firmware(fw);
   1784}
   1785
   1786static int rproc_trigger_auto_boot(struct rproc *rproc)
   1787{
   1788	int ret;
   1789
   1790	/*
   1791	 * Since the remote processor is in a detached state, it has already
   1792	 * been booted by another entity.  As such there is no point in waiting
   1793	 * for a firmware image to be loaded, we can simply initiate the process
   1794	 * of attaching to it immediately.
   1795	 */
   1796	if (rproc->state == RPROC_DETACHED)
   1797		return rproc_boot(rproc);
   1798
   1799	/*
   1800	 * We're initiating an asynchronous firmware loading, so we can
   1801	 * be built-in kernel code, without hanging the boot process.
   1802	 */
   1803	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
   1804				      rproc->firmware, &rproc->dev, GFP_KERNEL,
   1805				      rproc, rproc_auto_boot_callback);
   1806	if (ret < 0)
   1807		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
   1808
   1809	return ret;
   1810}
   1811
   1812static int rproc_stop(struct rproc *rproc, bool crashed)
   1813{
   1814	struct device *dev = &rproc->dev;
   1815	int ret;
   1816
   1817	/* No need to continue if a stop() operation has not been provided */
   1818	if (!rproc->ops->stop)
   1819		return -EINVAL;
   1820
   1821	/* Stop any subdevices for the remote processor */
   1822	rproc_stop_subdevices(rproc, crashed);
   1823
   1824	/* the installed resource table is no longer accessible */
   1825	ret = rproc_reset_rsc_table_on_stop(rproc);
   1826	if (ret) {
   1827		dev_err(dev, "can't reset resource table: %d\n", ret);
   1828		return ret;
   1829	}
   1830
   1831
   1832	/* power off the remote processor */
   1833	ret = rproc->ops->stop(rproc);
   1834	if (ret) {
   1835		dev_err(dev, "can't stop rproc: %d\n", ret);
   1836		return ret;
   1837	}
   1838
   1839	rproc_unprepare_subdevices(rproc);
   1840
   1841	rproc->state = RPROC_OFFLINE;
   1842
   1843	dev_info(dev, "stopped remote processor %s\n", rproc->name);
   1844
   1845	return 0;
   1846}
   1847
   1848/*
   1849 * __rproc_detach(): Does the opposite of __rproc_attach()
   1850 */
   1851static int __rproc_detach(struct rproc *rproc)
   1852{
   1853	struct device *dev = &rproc->dev;
   1854	int ret;
   1855
   1856	/* No need to continue if a detach() operation has not been provided */
   1857	if (!rproc->ops->detach)
   1858		return -EINVAL;
   1859
   1860	/* Stop any subdevices for the remote processor */
   1861	rproc_stop_subdevices(rproc, false);
   1862
   1863	/* the installed resource table is no longer accessible */
   1864	ret = rproc_reset_rsc_table_on_detach(rproc);
   1865	if (ret) {
   1866		dev_err(dev, "can't reset resource table: %d\n", ret);
   1867		return ret;
   1868	}
   1869
   1870	/* Tell the remote processor the core isn't available anymore */
   1871	ret = rproc->ops->detach(rproc);
   1872	if (ret) {
   1873		dev_err(dev, "can't detach from rproc: %d\n", ret);
   1874		return ret;
   1875	}
   1876
   1877	rproc_unprepare_subdevices(rproc);
   1878
   1879	rproc->state = RPROC_DETACHED;
   1880
   1881	dev_info(dev, "detached remote processor %s\n", rproc->name);
   1882
   1883	return 0;
   1884}
   1885
   1886/**
   1887 * rproc_trigger_recovery() - recover a remoteproc
   1888 * @rproc: the remote processor
   1889 *
   1890 * The recovery is done by resetting all the virtio devices, that way all the
   1891 * rpmsg drivers will be reseted along with the remote processor making the
   1892 * remoteproc functional again.
   1893 *
   1894 * This function can sleep, so it cannot be called from atomic context.
   1895 *
   1896 * Return: 0 on success or a negative value upon failure
   1897 */
   1898int rproc_trigger_recovery(struct rproc *rproc)
   1899{
   1900	const struct firmware *firmware_p;
   1901	struct device *dev = &rproc->dev;
   1902	int ret;
   1903
   1904	ret = mutex_lock_interruptible(&rproc->lock);
   1905	if (ret)
   1906		return ret;
   1907
   1908	/* State could have changed before we got the mutex */
   1909	if (rproc->state != RPROC_CRASHED)
   1910		goto unlock_mutex;
   1911
   1912	dev_err(dev, "recovering %s\n", rproc->name);
   1913
   1914	ret = rproc_stop(rproc, true);
   1915	if (ret)
   1916		goto unlock_mutex;
   1917
   1918	/* generate coredump */
   1919	rproc->ops->coredump(rproc);
   1920
   1921	/* load firmware */
   1922	ret = request_firmware(&firmware_p, rproc->firmware, dev);
   1923	if (ret < 0) {
   1924		dev_err(dev, "request_firmware failed: %d\n", ret);
   1925		goto unlock_mutex;
   1926	}
   1927
   1928	/* boot the remote processor up again */
   1929	ret = rproc_start(rproc, firmware_p);
   1930
   1931	release_firmware(firmware_p);
   1932
   1933unlock_mutex:
   1934	mutex_unlock(&rproc->lock);
   1935	return ret;
   1936}
   1937
   1938/**
   1939 * rproc_crash_handler_work() - handle a crash
   1940 * @work: work treating the crash
   1941 *
   1942 * This function needs to handle everything related to a crash, like cpu
   1943 * registers and stack dump, information to help to debug the fatal error, etc.
   1944 */
   1945static void rproc_crash_handler_work(struct work_struct *work)
   1946{
   1947	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
   1948	struct device *dev = &rproc->dev;
   1949
   1950	dev_dbg(dev, "enter %s\n", __func__);
   1951
   1952	mutex_lock(&rproc->lock);
   1953
   1954	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
   1955		/* handle only the first crash detected */
   1956		mutex_unlock(&rproc->lock);
   1957		return;
   1958	}
   1959
   1960	rproc->state = RPROC_CRASHED;
   1961	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
   1962		rproc->name);
   1963
   1964	mutex_unlock(&rproc->lock);
   1965
   1966	if (!rproc->recovery_disabled)
   1967		rproc_trigger_recovery(rproc);
   1968
   1969	pm_relax(rproc->dev.parent);
   1970}
   1971
   1972/**
   1973 * rproc_boot() - boot a remote processor
   1974 * @rproc: handle of a remote processor
   1975 *
   1976 * Boot a remote processor (i.e. load its firmware, power it on, ...).
   1977 *
   1978 * If the remote processor is already powered on, this function immediately
   1979 * returns (successfully).
   1980 *
   1981 * Return: 0 on success, and an appropriate error value otherwise
   1982 */
   1983int rproc_boot(struct rproc *rproc)
   1984{
   1985	const struct firmware *firmware_p;
   1986	struct device *dev;
   1987	int ret;
   1988
   1989	if (!rproc) {
   1990		pr_err("invalid rproc handle\n");
   1991		return -EINVAL;
   1992	}
   1993
   1994	dev = &rproc->dev;
   1995
   1996	ret = mutex_lock_interruptible(&rproc->lock);
   1997	if (ret) {
   1998		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
   1999		return ret;
   2000	}
   2001
   2002	if (rproc->state == RPROC_DELETED) {
   2003		ret = -ENODEV;
   2004		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
   2005		goto unlock_mutex;
   2006	}
   2007
   2008	/* skip the boot or attach process if rproc is already powered up */
   2009	if (atomic_inc_return(&rproc->power) > 1) {
   2010		ret = 0;
   2011		goto unlock_mutex;
   2012	}
   2013
   2014	if (rproc->state == RPROC_DETACHED) {
   2015		dev_info(dev, "attaching to %s\n", rproc->name);
   2016
   2017		ret = rproc_attach(rproc);
   2018	} else {
   2019		dev_info(dev, "powering up %s\n", rproc->name);
   2020
   2021		/* load firmware */
   2022		ret = request_firmware(&firmware_p, rproc->firmware, dev);
   2023		if (ret < 0) {
   2024			dev_err(dev, "request_firmware failed: %d\n", ret);
   2025			goto downref_rproc;
   2026		}
   2027
   2028		ret = rproc_fw_boot(rproc, firmware_p);
   2029
   2030		release_firmware(firmware_p);
   2031	}
   2032
   2033downref_rproc:
   2034	if (ret)
   2035		atomic_dec(&rproc->power);
   2036unlock_mutex:
   2037	mutex_unlock(&rproc->lock);
   2038	return ret;
   2039}
   2040EXPORT_SYMBOL(rproc_boot);
   2041
   2042/**
   2043 * rproc_shutdown() - power off the remote processor
   2044 * @rproc: the remote processor
   2045 *
   2046 * Power off a remote processor (previously booted with rproc_boot()).
   2047 *
   2048 * In case @rproc is still being used by an additional user(s), then
   2049 * this function will just decrement the power refcount and exit,
   2050 * without really powering off the device.
   2051 *
   2052 * Every call to rproc_boot() must (eventually) be accompanied by a call
   2053 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
   2054 *
   2055 * Notes:
   2056 * - we're not decrementing the rproc's refcount, only the power refcount.
   2057 *   which means that the @rproc handle stays valid even after rproc_shutdown()
   2058 *   returns, and users can still use it with a subsequent rproc_boot(), if
   2059 *   needed.
   2060 *
   2061 * Return: 0 on success, and an appropriate error value otherwise
   2062 */
   2063int rproc_shutdown(struct rproc *rproc)
   2064{
   2065	struct device *dev = &rproc->dev;
   2066	int ret = 0;
   2067
   2068	ret = mutex_lock_interruptible(&rproc->lock);
   2069	if (ret) {
   2070		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
   2071		return ret;
   2072	}
   2073
   2074	if (rproc->state != RPROC_RUNNING &&
   2075	    rproc->state != RPROC_ATTACHED) {
   2076		ret = -EINVAL;
   2077		goto out;
   2078	}
   2079
   2080	/* if the remote proc is still needed, bail out */
   2081	if (!atomic_dec_and_test(&rproc->power))
   2082		goto out;
   2083
   2084	ret = rproc_stop(rproc, false);
   2085	if (ret) {
   2086		atomic_inc(&rproc->power);
   2087		goto out;
   2088	}
   2089
   2090	/* clean up all acquired resources */
   2091	rproc_resource_cleanup(rproc);
   2092
   2093	/* release HW resources if needed */
   2094	rproc_unprepare_device(rproc);
   2095
   2096	rproc_disable_iommu(rproc);
   2097
   2098	/* Free the copy of the resource table */
   2099	kfree(rproc->cached_table);
   2100	rproc->cached_table = NULL;
   2101	rproc->table_ptr = NULL;
   2102out:
   2103	mutex_unlock(&rproc->lock);
   2104	return ret;
   2105}
   2106EXPORT_SYMBOL(rproc_shutdown);
   2107
   2108/**
   2109 * rproc_detach() - Detach the remote processor from the
   2110 * remoteproc core
   2111 *
   2112 * @rproc: the remote processor
   2113 *
   2114 * Detach a remote processor (previously attached to with rproc_attach()).
   2115 *
   2116 * In case @rproc is still being used by an additional user(s), then
   2117 * this function will just decrement the power refcount and exit,
   2118 * without disconnecting the device.
   2119 *
   2120 * Function rproc_detach() calls __rproc_detach() in order to let a remote
   2121 * processor know that services provided by the application processor are
   2122 * no longer available.  From there it should be possible to remove the
   2123 * platform driver and even power cycle the application processor (if the HW
   2124 * supports it) without needing to switch off the remote processor.
   2125 *
   2126 * Return: 0 on success, and an appropriate error value otherwise
   2127 */
   2128int rproc_detach(struct rproc *rproc)
   2129{
   2130	struct device *dev = &rproc->dev;
   2131	int ret;
   2132
   2133	ret = mutex_lock_interruptible(&rproc->lock);
   2134	if (ret) {
   2135		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
   2136		return ret;
   2137	}
   2138
   2139	if (rproc->state != RPROC_ATTACHED) {
   2140		ret = -EINVAL;
   2141		goto out;
   2142	}
   2143
   2144	/* if the remote proc is still needed, bail out */
   2145	if (!atomic_dec_and_test(&rproc->power)) {
   2146		ret = 0;
   2147		goto out;
   2148	}
   2149
   2150	ret = __rproc_detach(rproc);
   2151	if (ret) {
   2152		atomic_inc(&rproc->power);
   2153		goto out;
   2154	}
   2155
   2156	/* clean up all acquired resources */
   2157	rproc_resource_cleanup(rproc);
   2158
   2159	/* release HW resources if needed */
   2160	rproc_unprepare_device(rproc);
   2161
   2162	rproc_disable_iommu(rproc);
   2163
   2164	/* Free the copy of the resource table */
   2165	kfree(rproc->cached_table);
   2166	rproc->cached_table = NULL;
   2167	rproc->table_ptr = NULL;
   2168out:
   2169	mutex_unlock(&rproc->lock);
   2170	return ret;
   2171}
   2172EXPORT_SYMBOL(rproc_detach);
   2173
   2174/**
   2175 * rproc_get_by_phandle() - find a remote processor by phandle
   2176 * @phandle: phandle to the rproc
   2177 *
   2178 * Finds an rproc handle using the remote processor's phandle, and then
   2179 * return a handle to the rproc.
   2180 *
   2181 * This function increments the remote processor's refcount, so always
   2182 * use rproc_put() to decrement it back once rproc isn't needed anymore.
   2183 *
   2184 * Return: rproc handle on success, and NULL on failure
   2185 */
   2186#ifdef CONFIG_OF
   2187struct rproc *rproc_get_by_phandle(phandle phandle)
   2188{
   2189	struct rproc *rproc = NULL, *r;
   2190	struct device_node *np;
   2191
   2192	np = of_find_node_by_phandle(phandle);
   2193	if (!np)
   2194		return NULL;
   2195
   2196	rcu_read_lock();
   2197	list_for_each_entry_rcu(r, &rproc_list, node) {
   2198		if (r->dev.parent && r->dev.parent->of_node == np) {
   2199			/* prevent underlying implementation from being removed */
   2200			if (!try_module_get(r->dev.parent->driver->owner)) {
   2201				dev_err(&r->dev, "can't get owner\n");
   2202				break;
   2203			}
   2204
   2205			rproc = r;
   2206			get_device(&rproc->dev);
   2207			break;
   2208		}
   2209	}
   2210	rcu_read_unlock();
   2211
   2212	of_node_put(np);
   2213
   2214	return rproc;
   2215}
   2216#else
   2217struct rproc *rproc_get_by_phandle(phandle phandle)
   2218{
   2219	return NULL;
   2220}
   2221#endif
   2222EXPORT_SYMBOL(rproc_get_by_phandle);
   2223
   2224/**
   2225 * rproc_set_firmware() - assign a new firmware
   2226 * @rproc: rproc handle to which the new firmware is being assigned
   2227 * @fw_name: new firmware name to be assigned
   2228 *
   2229 * This function allows remoteproc drivers or clients to configure a custom
   2230 * firmware name that is different from the default name used during remoteproc
   2231 * registration. The function does not trigger a remote processor boot,
   2232 * only sets the firmware name used for a subsequent boot. This function
   2233 * should also be called only when the remote processor is offline.
   2234 *
   2235 * This allows either the userspace to configure a different name through
   2236 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
   2237 * a specific firmware when it is controlling the boot and shutdown of the
   2238 * remote processor.
   2239 *
   2240 * Return: 0 on success or a negative value upon failure
   2241 */
   2242int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
   2243{
   2244	struct device *dev;
   2245	int ret, len;
   2246	char *p;
   2247
   2248	if (!rproc || !fw_name)
   2249		return -EINVAL;
   2250
   2251	dev = rproc->dev.parent;
   2252
   2253	ret = mutex_lock_interruptible(&rproc->lock);
   2254	if (ret) {
   2255		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
   2256		return -EINVAL;
   2257	}
   2258
   2259	if (rproc->state != RPROC_OFFLINE) {
   2260		dev_err(dev, "can't change firmware while running\n");
   2261		ret = -EBUSY;
   2262		goto out;
   2263	}
   2264
   2265	len = strcspn(fw_name, "\n");
   2266	if (!len) {
   2267		dev_err(dev, "can't provide empty string for firmware name\n");
   2268		ret = -EINVAL;
   2269		goto out;
   2270	}
   2271
   2272	p = kstrndup(fw_name, len, GFP_KERNEL);
   2273	if (!p) {
   2274		ret = -ENOMEM;
   2275		goto out;
   2276	}
   2277
   2278	kfree_const(rproc->firmware);
   2279	rproc->firmware = p;
   2280
   2281out:
   2282	mutex_unlock(&rproc->lock);
   2283	return ret;
   2284}
   2285EXPORT_SYMBOL(rproc_set_firmware);
   2286
   2287static int rproc_validate(struct rproc *rproc)
   2288{
   2289	switch (rproc->state) {
   2290	case RPROC_OFFLINE:
   2291		/*
   2292		 * An offline processor without a start()
   2293		 * function makes no sense.
   2294		 */
   2295		if (!rproc->ops->start)
   2296			return -EINVAL;
   2297		break;
   2298	case RPROC_DETACHED:
   2299		/*
   2300		 * A remote processor in a detached state without an
   2301		 * attach() function makes not sense.
   2302		 */
   2303		if (!rproc->ops->attach)
   2304			return -EINVAL;
   2305		/*
   2306		 * When attaching to a remote processor the device memory
   2307		 * is already available and as such there is no need to have a
   2308		 * cached table.
   2309		 */
   2310		if (rproc->cached_table)
   2311			return -EINVAL;
   2312		break;
   2313	default:
   2314		/*
   2315		 * When adding a remote processor, the state of the device
   2316		 * can be offline or detached, nothing else.
   2317		 */
   2318		return -EINVAL;
   2319	}
   2320
   2321	return 0;
   2322}
   2323
   2324/**
   2325 * rproc_add() - register a remote processor
   2326 * @rproc: the remote processor handle to register
   2327 *
   2328 * Registers @rproc with the remoteproc framework, after it has been
   2329 * allocated with rproc_alloc().
   2330 *
   2331 * This is called by the platform-specific rproc implementation, whenever
   2332 * a new remote processor device is probed.
   2333 *
   2334 * Note: this function initiates an asynchronous firmware loading
   2335 * context, which will look for virtio devices supported by the rproc's
   2336 * firmware.
   2337 *
   2338 * If found, those virtio devices will be created and added, so as a result
   2339 * of registering this remote processor, additional virtio drivers might be
   2340 * probed.
   2341 *
   2342 * Return: 0 on success and an appropriate error code otherwise
   2343 */
   2344int rproc_add(struct rproc *rproc)
   2345{
   2346	struct device *dev = &rproc->dev;
   2347	int ret;
   2348
   2349	ret = rproc_validate(rproc);
   2350	if (ret < 0)
   2351		return ret;
   2352
   2353	/* add char device for this remoteproc */
   2354	ret = rproc_char_device_add(rproc);
   2355	if (ret < 0)
   2356		return ret;
   2357
   2358	ret = device_add(dev);
   2359	if (ret < 0) {
   2360		put_device(dev);
   2361		goto rproc_remove_cdev;
   2362	}
   2363
   2364	dev_info(dev, "%s is available\n", rproc->name);
   2365
   2366	/* create debugfs entries */
   2367	rproc_create_debug_dir(rproc);
   2368
   2369	/* if rproc is marked always-on, request it to boot */
   2370	if (rproc->auto_boot) {
   2371		ret = rproc_trigger_auto_boot(rproc);
   2372		if (ret < 0)
   2373			goto rproc_remove_dev;
   2374	}
   2375
   2376	/* expose to rproc_get_by_phandle users */
   2377	mutex_lock(&rproc_list_mutex);
   2378	list_add_rcu(&rproc->node, &rproc_list);
   2379	mutex_unlock(&rproc_list_mutex);
   2380
   2381	return 0;
   2382
   2383rproc_remove_dev:
   2384	rproc_delete_debug_dir(rproc);
   2385	device_del(dev);
   2386rproc_remove_cdev:
   2387	rproc_char_device_remove(rproc);
   2388	return ret;
   2389}
   2390EXPORT_SYMBOL(rproc_add);
   2391
   2392static void devm_rproc_remove(void *rproc)
   2393{
   2394	rproc_del(rproc);
   2395}
   2396
   2397/**
   2398 * devm_rproc_add() - resource managed rproc_add()
   2399 * @dev: the underlying device
   2400 * @rproc: the remote processor handle to register
   2401 *
   2402 * This function performs like rproc_add() but the registered rproc device will
   2403 * automatically be removed on driver detach.
   2404 *
   2405 * Return: 0 on success, negative errno on failure
   2406 */
   2407int devm_rproc_add(struct device *dev, struct rproc *rproc)
   2408{
   2409	int err;
   2410
   2411	err = rproc_add(rproc);
   2412	if (err)
   2413		return err;
   2414
   2415	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
   2416}
   2417EXPORT_SYMBOL(devm_rproc_add);
   2418
   2419/**
   2420 * rproc_type_release() - release a remote processor instance
   2421 * @dev: the rproc's device
   2422 *
   2423 * This function should _never_ be called directly.
   2424 *
   2425 * It will be called by the driver core when no one holds a valid pointer
   2426 * to @dev anymore.
   2427 */
   2428static void rproc_type_release(struct device *dev)
   2429{
   2430	struct rproc *rproc = container_of(dev, struct rproc, dev);
   2431
   2432	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
   2433
   2434	idr_destroy(&rproc->notifyids);
   2435
   2436	if (rproc->index >= 0)
   2437		ida_simple_remove(&rproc_dev_index, rproc->index);
   2438
   2439	kfree_const(rproc->firmware);
   2440	kfree_const(rproc->name);
   2441	kfree(rproc->ops);
   2442	kfree(rproc);
   2443}
   2444
   2445static const struct device_type rproc_type = {
   2446	.name		= "remoteproc",
   2447	.release	= rproc_type_release,
   2448};
   2449
   2450static int rproc_alloc_firmware(struct rproc *rproc,
   2451				const char *name, const char *firmware)
   2452{
   2453	const char *p;
   2454
   2455	/*
   2456	 * Allocate a firmware name if the caller gave us one to work
   2457	 * with.  Otherwise construct a new one using a default pattern.
   2458	 */
   2459	if (firmware)
   2460		p = kstrdup_const(firmware, GFP_KERNEL);
   2461	else
   2462		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
   2463
   2464	if (!p)
   2465		return -ENOMEM;
   2466
   2467	rproc->firmware = p;
   2468
   2469	return 0;
   2470}
   2471
   2472static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
   2473{
   2474	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
   2475	if (!rproc->ops)
   2476		return -ENOMEM;
   2477
   2478	/* Default to rproc_coredump if no coredump function is specified */
   2479	if (!rproc->ops->coredump)
   2480		rproc->ops->coredump = rproc_coredump;
   2481
   2482	if (rproc->ops->load)
   2483		return 0;
   2484
   2485	/* Default to ELF loader if no load function is specified */
   2486	rproc->ops->load = rproc_elf_load_segments;
   2487	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
   2488	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
   2489	rproc->ops->sanity_check = rproc_elf_sanity_check;
   2490	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
   2491
   2492	return 0;
   2493}
   2494
   2495/**
   2496 * rproc_alloc() - allocate a remote processor handle
   2497 * @dev: the underlying device
   2498 * @name: name of this remote processor
   2499 * @ops: platform-specific handlers (mainly start/stop)
   2500 * @firmware: name of firmware file to load, can be NULL
   2501 * @len: length of private data needed by the rproc driver (in bytes)
   2502 *
   2503 * Allocates a new remote processor handle, but does not register
   2504 * it yet. if @firmware is NULL, a default name is used.
   2505 *
   2506 * This function should be used by rproc implementations during initialization
   2507 * of the remote processor.
   2508 *
   2509 * After creating an rproc handle using this function, and when ready,
   2510 * implementations should then call rproc_add() to complete
   2511 * the registration of the remote processor.
   2512 *
   2513 * Note: _never_ directly deallocate @rproc, even if it was not registered
   2514 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
   2515 *
   2516 * Return: new rproc pointer on success, and NULL on failure
   2517 */
   2518struct rproc *rproc_alloc(struct device *dev, const char *name,
   2519			  const struct rproc_ops *ops,
   2520			  const char *firmware, int len)
   2521{
   2522	struct rproc *rproc;
   2523
   2524	if (!dev || !name || !ops)
   2525		return NULL;
   2526
   2527	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
   2528	if (!rproc)
   2529		return NULL;
   2530
   2531	rproc->priv = &rproc[1];
   2532	rproc->auto_boot = true;
   2533	rproc->elf_class = ELFCLASSNONE;
   2534	rproc->elf_machine = EM_NONE;
   2535
   2536	device_initialize(&rproc->dev);
   2537	rproc->dev.parent = dev;
   2538	rproc->dev.type = &rproc_type;
   2539	rproc->dev.class = &rproc_class;
   2540	rproc->dev.driver_data = rproc;
   2541	idr_init(&rproc->notifyids);
   2542
   2543	rproc->name = kstrdup_const(name, GFP_KERNEL);
   2544	if (!rproc->name)
   2545		goto put_device;
   2546
   2547	if (rproc_alloc_firmware(rproc, name, firmware))
   2548		goto put_device;
   2549
   2550	if (rproc_alloc_ops(rproc, ops))
   2551		goto put_device;
   2552
   2553	/* Assign a unique device index and name */
   2554	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
   2555	if (rproc->index < 0) {
   2556		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
   2557		goto put_device;
   2558	}
   2559
   2560	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
   2561
   2562	atomic_set(&rproc->power, 0);
   2563
   2564	mutex_init(&rproc->lock);
   2565
   2566	INIT_LIST_HEAD(&rproc->carveouts);
   2567	INIT_LIST_HEAD(&rproc->mappings);
   2568	INIT_LIST_HEAD(&rproc->traces);
   2569	INIT_LIST_HEAD(&rproc->rvdevs);
   2570	INIT_LIST_HEAD(&rproc->subdevs);
   2571	INIT_LIST_HEAD(&rproc->dump_segments);
   2572
   2573	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
   2574
   2575	rproc->state = RPROC_OFFLINE;
   2576
   2577	return rproc;
   2578
   2579put_device:
   2580	put_device(&rproc->dev);
   2581	return NULL;
   2582}
   2583EXPORT_SYMBOL(rproc_alloc);
   2584
   2585/**
   2586 * rproc_free() - unroll rproc_alloc()
   2587 * @rproc: the remote processor handle
   2588 *
   2589 * This function decrements the rproc dev refcount.
   2590 *
   2591 * If no one holds any reference to rproc anymore, then its refcount would
   2592 * now drop to zero, and it would be freed.
   2593 */
   2594void rproc_free(struct rproc *rproc)
   2595{
   2596	put_device(&rproc->dev);
   2597}
   2598EXPORT_SYMBOL(rproc_free);
   2599
   2600/**
   2601 * rproc_put() - release rproc reference
   2602 * @rproc: the remote processor handle
   2603 *
   2604 * This function decrements the rproc dev refcount.
   2605 *
   2606 * If no one holds any reference to rproc anymore, then its refcount would
   2607 * now drop to zero, and it would be freed.
   2608 */
   2609void rproc_put(struct rproc *rproc)
   2610{
   2611	module_put(rproc->dev.parent->driver->owner);
   2612	put_device(&rproc->dev);
   2613}
   2614EXPORT_SYMBOL(rproc_put);
   2615
   2616/**
   2617 * rproc_del() - unregister a remote processor
   2618 * @rproc: rproc handle to unregister
   2619 *
   2620 * This function should be called when the platform specific rproc
   2621 * implementation decides to remove the rproc device. it should
   2622 * _only_ be called if a previous invocation of rproc_add()
   2623 * has completed successfully.
   2624 *
   2625 * After rproc_del() returns, @rproc isn't freed yet, because
   2626 * of the outstanding reference created by rproc_alloc. To decrement that
   2627 * one last refcount, one still needs to call rproc_free().
   2628 *
   2629 * Return: 0 on success and -EINVAL if @rproc isn't valid
   2630 */
   2631int rproc_del(struct rproc *rproc)
   2632{
   2633	if (!rproc)
   2634		return -EINVAL;
   2635
   2636	/* TODO: make sure this works with rproc->power > 1 */
   2637	rproc_shutdown(rproc);
   2638
   2639	mutex_lock(&rproc->lock);
   2640	rproc->state = RPROC_DELETED;
   2641	mutex_unlock(&rproc->lock);
   2642
   2643	rproc_delete_debug_dir(rproc);
   2644
   2645	/* the rproc is downref'ed as soon as it's removed from the klist */
   2646	mutex_lock(&rproc_list_mutex);
   2647	list_del_rcu(&rproc->node);
   2648	mutex_unlock(&rproc_list_mutex);
   2649
   2650	/* Ensure that no readers of rproc_list are still active */
   2651	synchronize_rcu();
   2652
   2653	device_del(&rproc->dev);
   2654	rproc_char_device_remove(rproc);
   2655
   2656	return 0;
   2657}
   2658EXPORT_SYMBOL(rproc_del);
   2659
   2660static void devm_rproc_free(struct device *dev, void *res)
   2661{
   2662	rproc_free(*(struct rproc **)res);
   2663}
   2664
   2665/**
   2666 * devm_rproc_alloc() - resource managed rproc_alloc()
   2667 * @dev: the underlying device
   2668 * @name: name of this remote processor
   2669 * @ops: platform-specific handlers (mainly start/stop)
   2670 * @firmware: name of firmware file to load, can be NULL
   2671 * @len: length of private data needed by the rproc driver (in bytes)
   2672 *
   2673 * This function performs like rproc_alloc() but the acquired rproc device will
   2674 * automatically be released on driver detach.
   2675 *
   2676 * Return: new rproc instance, or NULL on failure
   2677 */
   2678struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
   2679			       const struct rproc_ops *ops,
   2680			       const char *firmware, int len)
   2681{
   2682	struct rproc **ptr, *rproc;
   2683
   2684	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
   2685	if (!ptr)
   2686		return NULL;
   2687
   2688	rproc = rproc_alloc(dev, name, ops, firmware, len);
   2689	if (rproc) {
   2690		*ptr = rproc;
   2691		devres_add(dev, ptr);
   2692	} else {
   2693		devres_free(ptr);
   2694	}
   2695
   2696	return rproc;
   2697}
   2698EXPORT_SYMBOL(devm_rproc_alloc);
   2699
   2700/**
   2701 * rproc_add_subdev() - add a subdevice to a remoteproc
   2702 * @rproc: rproc handle to add the subdevice to
   2703 * @subdev: subdev handle to register
   2704 *
   2705 * Caller is responsible for populating optional subdevice function pointers.
   2706 */
   2707void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
   2708{
   2709	list_add_tail(&subdev->node, &rproc->subdevs);
   2710}
   2711EXPORT_SYMBOL(rproc_add_subdev);
   2712
   2713/**
   2714 * rproc_remove_subdev() - remove a subdevice from a remoteproc
   2715 * @rproc: rproc handle to remove the subdevice from
   2716 * @subdev: subdev handle, previously registered with rproc_add_subdev()
   2717 */
   2718void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
   2719{
   2720	list_del(&subdev->node);
   2721}
   2722EXPORT_SYMBOL(rproc_remove_subdev);
   2723
   2724/**
   2725 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
   2726 * @dev:	child device to find ancestor of
   2727 *
   2728 * Return: the ancestor rproc instance, or NULL if not found
   2729 */
   2730struct rproc *rproc_get_by_child(struct device *dev)
   2731{
   2732	for (dev = dev->parent; dev; dev = dev->parent) {
   2733		if (dev->type == &rproc_type)
   2734			return dev->driver_data;
   2735	}
   2736
   2737	return NULL;
   2738}
   2739EXPORT_SYMBOL(rproc_get_by_child);
   2740
   2741/**
   2742 * rproc_report_crash() - rproc crash reporter function
   2743 * @rproc: remote processor
   2744 * @type: crash type
   2745 *
   2746 * This function must be called every time a crash is detected by the low-level
   2747 * drivers implementing a specific remoteproc. This should not be called from a
   2748 * non-remoteproc driver.
   2749 *
   2750 * This function can be called from atomic/interrupt context.
   2751 */
   2752void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
   2753{
   2754	if (!rproc) {
   2755		pr_err("NULL rproc pointer\n");
   2756		return;
   2757	}
   2758
   2759	/* Prevent suspend while the remoteproc is being recovered */
   2760	pm_stay_awake(rproc->dev.parent);
   2761
   2762	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
   2763		rproc->name, rproc_crash_to_string(type));
   2764
   2765	/* Have a worker handle the error; ensure system is not suspended */
   2766	queue_work(system_freezable_wq, &rproc->crash_handler);
   2767}
   2768EXPORT_SYMBOL(rproc_report_crash);
   2769
   2770static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
   2771			       void *ptr)
   2772{
   2773	unsigned int longest = 0;
   2774	struct rproc *rproc;
   2775	unsigned int d;
   2776
   2777	rcu_read_lock();
   2778	list_for_each_entry_rcu(rproc, &rproc_list, node) {
   2779		if (!rproc->ops->panic)
   2780			continue;
   2781
   2782		if (rproc->state != RPROC_RUNNING &&
   2783		    rproc->state != RPROC_ATTACHED)
   2784			continue;
   2785
   2786		d = rproc->ops->panic(rproc);
   2787		longest = max(longest, d);
   2788	}
   2789	rcu_read_unlock();
   2790
   2791	/*
   2792	 * Delay for the longest requested duration before returning. This can
   2793	 * be used by the remoteproc drivers to give the remote processor time
   2794	 * to perform any requested operations (such as flush caches), when
   2795	 * it's not possible to signal the Linux side due to the panic.
   2796	 */
   2797	mdelay(longest);
   2798
   2799	return NOTIFY_DONE;
   2800}
   2801
   2802static void __init rproc_init_panic(void)
   2803{
   2804	rproc_panic_nb.notifier_call = rproc_panic_handler;
   2805	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
   2806}
   2807
   2808static void __exit rproc_exit_panic(void)
   2809{
   2810	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
   2811}
   2812
   2813static int __init remoteproc_init(void)
   2814{
   2815	rproc_init_sysfs();
   2816	rproc_init_debugfs();
   2817	rproc_init_cdev();
   2818	rproc_init_panic();
   2819
   2820	return 0;
   2821}
   2822subsys_initcall(remoteproc_init);
   2823
   2824static void __exit remoteproc_exit(void)
   2825{
   2826	ida_destroy(&rproc_dev_index);
   2827
   2828	rproc_exit_panic();
   2829	rproc_exit_debugfs();
   2830	rproc_exit_sysfs();
   2831}
   2832module_exit(remoteproc_exit);
   2833
   2834MODULE_LICENSE("GPL v2");
   2835MODULE_DESCRIPTION("Generic Remote Processor Framework");