cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ti_k3_r5_remoteproc.c (53448B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * TI K3 R5F (MCU) Remote Processor driver
      4 *
      5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
      6 *	Suman Anna <s-anna@ti.com>
      7 */
      8
      9#include <linux/dma-mapping.h>
     10#include <linux/err.h>
     11#include <linux/interrupt.h>
     12#include <linux/kernel.h>
     13#include <linux/mailbox_client.h>
     14#include <linux/module.h>
     15#include <linux/of_address.h>
     16#include <linux/of_device.h>
     17#include <linux/of_reserved_mem.h>
     18#include <linux/omap-mailbox.h>
     19#include <linux/platform_device.h>
     20#include <linux/pm_runtime.h>
     21#include <linux/remoteproc.h>
     22#include <linux/reset.h>
     23#include <linux/slab.h>
     24
     25#include "omap_remoteproc.h"
     26#include "remoteproc_internal.h"
     27#include "ti_sci_proc.h"
     28
     29/* This address can either be for ATCM or BTCM with the other at address 0x0 */
     30#define K3_R5_TCM_DEV_ADDR	0x41010000
     31
     32/* R5 TI-SCI Processor Configuration Flags */
     33#define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
     34#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
     35#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
     36#define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
     37#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
     38#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
     39#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
     40#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
     41/* Available from J7200 SoCs onwards */
     42#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
     43/* Applicable to only AM64x SoCs */
     44#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000
     45
     46/* R5 TI-SCI Processor Control Flags */
     47#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
     48
     49/* R5 TI-SCI Processor Status Flags */
     50#define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
     51#define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
     52#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
     53#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
     54/* Applicable to only AM64x SoCs */
     55#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200
     56
     57/**
     58 * struct k3_r5_mem - internal memory structure
     59 * @cpu_addr: MPU virtual address of the memory region
     60 * @bus_addr: Bus address used to access the memory region
     61 * @dev_addr: Device address from remoteproc view
     62 * @size: Size of the memory region
     63 */
     64struct k3_r5_mem {
     65	void __iomem *cpu_addr;
     66	phys_addr_t bus_addr;
     67	u32 dev_addr;
     68	size_t size;
     69};
     70
     71/*
     72 * All cluster mode values are not applicable on all SoCs. The following
     73 * are the modes supported on various SoCs:
     74 *   Split mode      : AM65x, J721E, J7200 and AM64x SoCs
     75 *   LockStep mode   : AM65x, J721E and J7200 SoCs
     76 *   Single-CPU mode : AM64x SoCs only
     77 */
     78enum cluster_mode {
     79	CLUSTER_MODE_SPLIT = 0,
     80	CLUSTER_MODE_LOCKSTEP,
     81	CLUSTER_MODE_SINGLECPU,
     82};
     83
     84/**
     85 * struct k3_r5_soc_data - match data to handle SoC variations
     86 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
     87 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
     88 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
     89 */
     90struct k3_r5_soc_data {
     91	bool tcm_is_double;
     92	bool tcm_ecc_autoinit;
     93	bool single_cpu_mode;
     94};
     95
     96/**
     97 * struct k3_r5_cluster - K3 R5F Cluster structure
     98 * @dev: cached device pointer
     99 * @mode: Mode to configure the Cluster - Split or LockStep
    100 * @cores: list of R5 cores within the cluster
    101 * @soc_data: SoC-specific feature data for a R5FSS
    102 */
    103struct k3_r5_cluster {
    104	struct device *dev;
    105	enum cluster_mode mode;
    106	struct list_head cores;
    107	const struct k3_r5_soc_data *soc_data;
    108};
    109
    110/**
    111 * struct k3_r5_core - K3 R5 core structure
    112 * @elem: linked list item
    113 * @dev: cached device pointer
    114 * @rproc: rproc handle representing this core
    115 * @mem: internal memory regions data
    116 * @sram: on-chip SRAM memory regions data
    117 * @num_mems: number of internal memory regions
    118 * @num_sram: number of on-chip SRAM memory regions
    119 * @reset: reset control handle
    120 * @tsp: TI-SCI processor control handle
    121 * @ti_sci: TI-SCI handle
    122 * @ti_sci_id: TI-SCI device identifier
    123 * @atcm_enable: flag to control ATCM enablement
    124 * @btcm_enable: flag to control BTCM enablement
    125 * @loczrama: flag to dictate which TCM is at device address 0x0
    126 */
    127struct k3_r5_core {
    128	struct list_head elem;
    129	struct device *dev;
    130	struct rproc *rproc;
    131	struct k3_r5_mem *mem;
    132	struct k3_r5_mem *sram;
    133	int num_mems;
    134	int num_sram;
    135	struct reset_control *reset;
    136	struct ti_sci_proc *tsp;
    137	const struct ti_sci_handle *ti_sci;
    138	u32 ti_sci_id;
    139	u32 atcm_enable;
    140	u32 btcm_enable;
    141	u32 loczrama;
    142};
    143
    144/**
    145 * struct k3_r5_rproc - K3 remote processor state
    146 * @dev: cached device pointer
    147 * @cluster: cached pointer to parent cluster structure
    148 * @mbox: mailbox channel handle
    149 * @client: mailbox client to request the mailbox channel
    150 * @rproc: rproc handle
    151 * @core: cached pointer to r5 core structure being used
    152 * @rmem: reserved memory regions data
    153 * @num_rmems: number of reserved memory regions
    154 */
    155struct k3_r5_rproc {
    156	struct device *dev;
    157	struct k3_r5_cluster *cluster;
    158	struct mbox_chan *mbox;
    159	struct mbox_client client;
    160	struct rproc *rproc;
    161	struct k3_r5_core *core;
    162	struct k3_r5_mem *rmem;
    163	int num_rmems;
    164};
    165
    166/**
    167 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
    168 * @client: mailbox client pointer used for requesting the mailbox channel
    169 * @data: mailbox payload
    170 *
    171 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
    172 * message is received. Usually, the mailbox payload simply contains
    173 * the index of the virtqueue that is kicked by the remote processor,
    174 * and we let remoteproc core handle it.
    175 *
    176 * In addition to virtqueue indices, we also have some out-of-band values
    177 * that indicate different events. Those values are deliberately very
    178 * large so they don't coincide with virtqueue indices.
    179 */
    180static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
    181{
    182	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
    183						client);
    184	struct device *dev = kproc->rproc->dev.parent;
    185	const char *name = kproc->rproc->name;
    186	u32 msg = omap_mbox_message(data);
    187
    188	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
    189
    190	switch (msg) {
    191	case RP_MBOX_CRASH:
    192		/*
    193		 * remoteproc detected an exception, but error recovery is not
    194		 * supported. So, just log this for now
    195		 */
    196		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
    197		break;
    198	case RP_MBOX_ECHO_REPLY:
    199		dev_info(dev, "received echo reply from %s\n", name);
    200		break;
    201	default:
    202		/* silently handle all other valid messages */
    203		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
    204			return;
    205		if (msg > kproc->rproc->max_notifyid) {
    206			dev_dbg(dev, "dropping unknown message 0x%x", msg);
    207			return;
    208		}
    209		/* msg contains the index of the triggered vring */
    210		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
    211			dev_dbg(dev, "no message was found in vqid %d\n", msg);
    212	}
    213}
    214
    215/* kick a virtqueue */
    216static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
    217{
    218	struct k3_r5_rproc *kproc = rproc->priv;
    219	struct device *dev = rproc->dev.parent;
    220	mbox_msg_t msg = (mbox_msg_t)vqid;
    221	int ret;
    222
    223	/* send the index of the triggered virtqueue in the mailbox payload */
    224	ret = mbox_send_message(kproc->mbox, (void *)msg);
    225	if (ret < 0)
    226		dev_err(dev, "failed to send mailbox message, status = %d\n",
    227			ret);
    228}
    229
    230static int k3_r5_split_reset(struct k3_r5_core *core)
    231{
    232	int ret;
    233
    234	ret = reset_control_assert(core->reset);
    235	if (ret) {
    236		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
    237			ret);
    238		return ret;
    239	}
    240
    241	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
    242						   core->ti_sci_id);
    243	if (ret) {
    244		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
    245			ret);
    246		if (reset_control_deassert(core->reset))
    247			dev_warn(core->dev, "local-reset deassert back failed\n");
    248	}
    249
    250	return ret;
    251}
    252
    253static int k3_r5_split_release(struct k3_r5_core *core)
    254{
    255	int ret;
    256
    257	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
    258						   core->ti_sci_id);
    259	if (ret) {
    260		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
    261			ret);
    262		return ret;
    263	}
    264
    265	ret = reset_control_deassert(core->reset);
    266	if (ret) {
    267		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
    268			ret);
    269		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
    270							 core->ti_sci_id))
    271			dev_warn(core->dev, "module-reset assert back failed\n");
    272	}
    273
    274	return ret;
    275}
    276
    277static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
    278{
    279	struct k3_r5_core *core;
    280	int ret;
    281
    282	/* assert local reset on all applicable cores */
    283	list_for_each_entry(core, &cluster->cores, elem) {
    284		ret = reset_control_assert(core->reset);
    285		if (ret) {
    286			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
    287				ret);
    288			core = list_prev_entry(core, elem);
    289			goto unroll_local_reset;
    290		}
    291	}
    292
    293	/* disable PSC modules on all applicable cores */
    294	list_for_each_entry(core, &cluster->cores, elem) {
    295		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
    296							   core->ti_sci_id);
    297		if (ret) {
    298			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
    299				ret);
    300			goto unroll_module_reset;
    301		}
    302	}
    303
    304	return 0;
    305
    306unroll_module_reset:
    307	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
    308		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
    309							 core->ti_sci_id))
    310			dev_warn(core->dev, "module-reset assert back failed\n");
    311	}
    312	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
    313unroll_local_reset:
    314	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
    315		if (reset_control_deassert(core->reset))
    316			dev_warn(core->dev, "local-reset deassert back failed\n");
    317	}
    318
    319	return ret;
    320}
    321
    322static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
    323{
    324	struct k3_r5_core *core;
    325	int ret;
    326
    327	/* enable PSC modules on all applicable cores */
    328	list_for_each_entry_reverse(core, &cluster->cores, elem) {
    329		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
    330							   core->ti_sci_id);
    331		if (ret) {
    332			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
    333				ret);
    334			core = list_next_entry(core, elem);
    335			goto unroll_module_reset;
    336		}
    337	}
    338
    339	/* deassert local reset on all applicable cores */
    340	list_for_each_entry_reverse(core, &cluster->cores, elem) {
    341		ret = reset_control_deassert(core->reset);
    342		if (ret) {
    343			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
    344				ret);
    345			goto unroll_local_reset;
    346		}
    347	}
    348
    349	return 0;
    350
    351unroll_local_reset:
    352	list_for_each_entry_continue(core, &cluster->cores, elem) {
    353		if (reset_control_assert(core->reset))
    354			dev_warn(core->dev, "local-reset assert back failed\n");
    355	}
    356	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
    357unroll_module_reset:
    358	list_for_each_entry_from(core, &cluster->cores, elem) {
    359		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
    360							 core->ti_sci_id))
    361			dev_warn(core->dev, "module-reset assert back failed\n");
    362	}
    363
    364	return ret;
    365}
    366
    367static inline int k3_r5_core_halt(struct k3_r5_core *core)
    368{
    369	return ti_sci_proc_set_control(core->tsp,
    370				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
    371}
    372
    373static inline int k3_r5_core_run(struct k3_r5_core *core)
    374{
    375	return ti_sci_proc_set_control(core->tsp,
    376				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
    377}
    378
    379static int k3_r5_rproc_request_mbox(struct rproc *rproc)
    380{
    381	struct k3_r5_rproc *kproc = rproc->priv;
    382	struct mbox_client *client = &kproc->client;
    383	struct device *dev = kproc->dev;
    384	int ret;
    385
    386	client->dev = dev;
    387	client->tx_done = NULL;
    388	client->rx_callback = k3_r5_rproc_mbox_callback;
    389	client->tx_block = false;
    390	client->knows_txdone = false;
    391
    392	kproc->mbox = mbox_request_channel(client, 0);
    393	if (IS_ERR(kproc->mbox)) {
    394		ret = -EBUSY;
    395		dev_err(dev, "mbox_request_channel failed: %ld\n",
    396			PTR_ERR(kproc->mbox));
    397		return ret;
    398	}
    399
    400	/*
    401	 * Ping the remote processor, this is only for sanity-sake for now;
    402	 * there is no functional effect whatsoever.
    403	 *
    404	 * Note that the reply will _not_ arrive immediately: this message
    405	 * will wait in the mailbox fifo until the remote processor is booted.
    406	 */
    407	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
    408	if (ret < 0) {
    409		dev_err(dev, "mbox_send_message failed: %d\n", ret);
    410		mbox_free_channel(kproc->mbox);
    411		return ret;
    412	}
    413
    414	return 0;
    415}
    416
    417/*
    418 * The R5F cores have controls for both a reset and a halt/run. The code
    419 * execution from DDR requires the initial boot-strapping code to be run
    420 * from the internal TCMs. This function is used to release the resets on
    421 * applicable cores to allow loading into the TCMs. The .prepare() ops is
    422 * invoked by remoteproc core before any firmware loading, and is followed
    423 * by the .start() ops after loading to actually let the R5 cores run.
    424 *
    425 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
    426 * execute code, but combines the TCMs from both cores. The resets for both
    427 * cores need to be released to make this possible, as the TCMs are in general
    428 * private to each core. Only Core0 needs to be unhalted for running the
    429 * cluster in this mode. The function uses the same reset logic as LockStep
    430 * mode for this (though the behavior is agnostic of the reset release order).
    431 * This callback is invoked only in remoteproc mode.
    432 */
    433static int k3_r5_rproc_prepare(struct rproc *rproc)
    434{
    435	struct k3_r5_rproc *kproc = rproc->priv;
    436	struct k3_r5_cluster *cluster = kproc->cluster;
    437	struct k3_r5_core *core = kproc->core;
    438	struct device *dev = kproc->dev;
    439	u32 ctrl = 0, cfg = 0, stat = 0;
    440	u64 boot_vec = 0;
    441	bool mem_init_dis;
    442	int ret;
    443
    444	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
    445	if (ret < 0)
    446		return ret;
    447	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
    448
    449	/* Re-use LockStep-mode reset logic for Single-CPU mode */
    450	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
    451	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
    452		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
    453	if (ret) {
    454		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
    455			ret);
    456		return ret;
    457	}
    458
    459	/*
    460	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
    461	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
    462	 * configurable through System Firmware, the default value does perform
    463	 * auto-init, but account for it in case it is disabled
    464	 */
    465	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
    466		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
    467		return 0;
    468	}
    469
    470	/*
    471	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
    472	 * affected by ATCM & BTCM enable configuration values) so that ECC
    473	 * can be effective on all TCM addresses.
    474	 */
    475	dev_dbg(dev, "zeroing out ATCM memory\n");
    476	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
    477
    478	dev_dbg(dev, "zeroing out BTCM memory\n");
    479	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
    480
    481	return 0;
    482}
    483
    484/*
    485 * This function implements the .unprepare() ops and performs the complimentary
    486 * operations to that of the .prepare() ops. The function is used to assert the
    487 * resets on all applicable cores for the rproc device (depending on LockStep
    488 * or Split mode). This completes the second portion of powering down the R5F
    489 * cores. The cores themselves are only halted in the .stop() ops, and the
    490 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
    491 * stopped.
    492 *
    493 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
    494 * both cores. The access is made possible only with releasing the resets for
    495 * both cores, but with only Core0 unhalted. This function re-uses the same
    496 * reset assert logic as LockStep mode for this mode (though the behavior is
    497 * agnostic of the reset assert order). This callback is invoked only in
    498 * remoteproc mode.
    499 */
    500static int k3_r5_rproc_unprepare(struct rproc *rproc)
    501{
    502	struct k3_r5_rproc *kproc = rproc->priv;
    503	struct k3_r5_cluster *cluster = kproc->cluster;
    504	struct k3_r5_core *core = kproc->core;
    505	struct device *dev = kproc->dev;
    506	int ret;
    507
    508	/* Re-use LockStep-mode reset logic for Single-CPU mode */
    509	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
    510	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
    511		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
    512	if (ret)
    513		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
    514
    515	return ret;
    516}
    517
    518/*
    519 * The R5F start sequence includes two different operations
    520 * 1. Configure the boot vector for R5F core(s)
    521 * 2. Unhalt/Run the R5F core(s)
    522 *
    523 * The sequence is different between LockStep and Split modes. The LockStep
    524 * mode requires the boot vector to be configured only for Core0, and then
    525 * unhalt both the cores to start the execution - Core1 needs to be unhalted
    526 * first followed by Core0. The Split-mode requires that Core0 to be maintained
    527 * always in a higher power state that Core1 (implying Core1 needs to be started
    528 * always only after Core0 is started).
    529 *
    530 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
    531 * code, so only Core0 needs to be unhalted. The function uses the same logic
    532 * flow as Split-mode for this. This callback is invoked only in remoteproc
    533 * mode.
    534 */
    535static int k3_r5_rproc_start(struct rproc *rproc)
    536{
    537	struct k3_r5_rproc *kproc = rproc->priv;
    538	struct k3_r5_cluster *cluster = kproc->cluster;
    539	struct device *dev = kproc->dev;
    540	struct k3_r5_core *core;
    541	u32 boot_addr;
    542	int ret;
    543
    544	ret = k3_r5_rproc_request_mbox(rproc);
    545	if (ret)
    546		return ret;
    547
    548	boot_addr = rproc->bootaddr;
    549	/* TODO: add boot_addr sanity checking */
    550	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
    551
    552	/* boot vector need not be programmed for Core1 in LockStep mode */
    553	core = kproc->core;
    554	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
    555	if (ret)
    556		goto put_mbox;
    557
    558	/* unhalt/run all applicable cores */
    559	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
    560		list_for_each_entry_reverse(core, &cluster->cores, elem) {
    561			ret = k3_r5_core_run(core);
    562			if (ret)
    563				goto unroll_core_run;
    564		}
    565	} else {
    566		ret = k3_r5_core_run(core);
    567		if (ret)
    568			goto put_mbox;
    569	}
    570
    571	return 0;
    572
    573unroll_core_run:
    574	list_for_each_entry_continue(core, &cluster->cores, elem) {
    575		if (k3_r5_core_halt(core))
    576			dev_warn(core->dev, "core halt back failed\n");
    577	}
    578put_mbox:
    579	mbox_free_channel(kproc->mbox);
    580	return ret;
    581}
    582
    583/*
    584 * The R5F stop function includes the following operations
    585 * 1. Halt R5F core(s)
    586 *
    587 * The sequence is different between LockStep and Split modes, and the order
    588 * of cores the operations are performed are also in general reverse to that
    589 * of the start function. The LockStep mode requires each operation to be
    590 * performed first on Core0 followed by Core1. The Split-mode requires that
    591 * Core0 to be maintained always in a higher power state that Core1 (implying
    592 * Core1 needs to be stopped first before Core0).
    593 *
    594 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
    595 * code, so only Core0 needs to be halted. The function uses the same logic
    596 * flow as Split-mode for this.
    597 *
    598 * Note that the R5F halt operation in general is not effective when the R5F
    599 * core is running, but is needed to make sure the core won't run after
    600 * deasserting the reset the subsequent time. The asserting of reset can
    601 * be done here, but is preferred to be done in the .unprepare() ops - this
    602 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
    603 * and .unprepare() ops, and also balances them well between sysfs 'state'
    604 * flow and device bind/unbind or module removal. This callback is invoked
    605 * only in remoteproc mode.
    606 */
    607static int k3_r5_rproc_stop(struct rproc *rproc)
    608{
    609	struct k3_r5_rproc *kproc = rproc->priv;
    610	struct k3_r5_cluster *cluster = kproc->cluster;
    611	struct k3_r5_core *core = kproc->core;
    612	int ret;
    613
    614	/* halt all applicable cores */
    615	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
    616		list_for_each_entry(core, &cluster->cores, elem) {
    617			ret = k3_r5_core_halt(core);
    618			if (ret) {
    619				core = list_prev_entry(core, elem);
    620				goto unroll_core_halt;
    621			}
    622		}
    623	} else {
    624		ret = k3_r5_core_halt(core);
    625		if (ret)
    626			goto out;
    627	}
    628
    629	mbox_free_channel(kproc->mbox);
    630
    631	return 0;
    632
    633unroll_core_halt:
    634	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
    635		if (k3_r5_core_run(core))
    636			dev_warn(core->dev, "core run back failed\n");
    637	}
    638out:
    639	return ret;
    640}
    641
    642/*
    643 * Attach to a running R5F remote processor (IPC-only mode)
    644 *
    645 * The R5F attach callback only needs to request the mailbox, the remote
    646 * processor is already booted, so there is no need to issue any TI-SCI
    647 * commands to boot the R5F cores in IPC-only mode. This callback is invoked
    648 * only in IPC-only mode.
    649 */
    650static int k3_r5_rproc_attach(struct rproc *rproc)
    651{
    652	struct k3_r5_rproc *kproc = rproc->priv;
    653	struct device *dev = kproc->dev;
    654	int ret;
    655
    656	ret = k3_r5_rproc_request_mbox(rproc);
    657	if (ret)
    658		return ret;
    659
    660	dev_info(dev, "R5F core initialized in IPC-only mode\n");
    661	return 0;
    662}
    663
    664/*
    665 * Detach from a running R5F remote processor (IPC-only mode)
    666 *
    667 * The R5F detach callback performs the opposite operation to attach callback
    668 * and only needs to release the mailbox, the R5F cores are not stopped and
    669 * will be left in booted state in IPC-only mode. This callback is invoked
    670 * only in IPC-only mode.
    671 */
    672static int k3_r5_rproc_detach(struct rproc *rproc)
    673{
    674	struct k3_r5_rproc *kproc = rproc->priv;
    675	struct device *dev = kproc->dev;
    676
    677	mbox_free_channel(kproc->mbox);
    678	dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
    679	return 0;
    680}
    681
    682/*
    683 * This function implements the .get_loaded_rsc_table() callback and is used
    684 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
    685 * firmwares follow a design-by-contract approach and are expected to have the
    686 * resource table at the base of the DDR region reserved for firmware usage.
    687 * This provides flexibility for the remote processor to be booted by different
    688 * bootloaders that may or may not have the ability to publish the resource table
    689 * address and size through a DT property. This callback is invoked only in
    690 * IPC-only mode.
    691 */
    692static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
    693							 size_t *rsc_table_sz)
    694{
    695	struct k3_r5_rproc *kproc = rproc->priv;
    696	struct device *dev = kproc->dev;
    697
    698	if (!kproc->rmem[0].cpu_addr) {
    699		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
    700		return ERR_PTR(-ENOMEM);
    701	}
    702
    703	/*
    704	 * NOTE: The resource table size is currently hard-coded to a maximum
    705	 * of 256 bytes. The most common resource table usage for K3 firmwares
    706	 * is to only have the vdev resource entry and an optional trace entry.
    707	 * The exact size could be computed based on resource table address, but
    708	 * the hard-coded value suffices to support the IPC-only mode.
    709	 */
    710	*rsc_table_sz = 256;
    711	return (struct resource_table *)kproc->rmem[0].cpu_addr;
    712}
    713
    714/*
    715 * Internal Memory translation helper
    716 *
    717 * Custom function implementing the rproc .da_to_va ops to provide address
    718 * translation (device address to kernel virtual address) for internal RAMs
    719 * present in a DSP or IPU device). The translated addresses can be used
    720 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
    721 */
    722static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
    723{
    724	struct k3_r5_rproc *kproc = rproc->priv;
    725	struct k3_r5_core *core = kproc->core;
    726	void __iomem *va = NULL;
    727	phys_addr_t bus_addr;
    728	u32 dev_addr, offset;
    729	size_t size;
    730	int i;
    731
    732	if (len == 0)
    733		return NULL;
    734
    735	/* handle both R5 and SoC views of ATCM and BTCM */
    736	for (i = 0; i < core->num_mems; i++) {
    737		bus_addr = core->mem[i].bus_addr;
    738		dev_addr = core->mem[i].dev_addr;
    739		size = core->mem[i].size;
    740
    741		/* handle R5-view addresses of TCMs */
    742		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
    743			offset = da - dev_addr;
    744			va = core->mem[i].cpu_addr + offset;
    745			return (__force void *)va;
    746		}
    747
    748		/* handle SoC-view addresses of TCMs */
    749		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
    750			offset = da - bus_addr;
    751			va = core->mem[i].cpu_addr + offset;
    752			return (__force void *)va;
    753		}
    754	}
    755
    756	/* handle any SRAM regions using SoC-view addresses */
    757	for (i = 0; i < core->num_sram; i++) {
    758		dev_addr = core->sram[i].dev_addr;
    759		size = core->sram[i].size;
    760
    761		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
    762			offset = da - dev_addr;
    763			va = core->sram[i].cpu_addr + offset;
    764			return (__force void *)va;
    765		}
    766	}
    767
    768	/* handle static DDR reserved memory regions */
    769	for (i = 0; i < kproc->num_rmems; i++) {
    770		dev_addr = kproc->rmem[i].dev_addr;
    771		size = kproc->rmem[i].size;
    772
    773		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
    774			offset = da - dev_addr;
    775			va = kproc->rmem[i].cpu_addr + offset;
    776			return (__force void *)va;
    777		}
    778	}
    779
    780	return NULL;
    781}
    782
    783static const struct rproc_ops k3_r5_rproc_ops = {
    784	.prepare	= k3_r5_rproc_prepare,
    785	.unprepare	= k3_r5_rproc_unprepare,
    786	.start		= k3_r5_rproc_start,
    787	.stop		= k3_r5_rproc_stop,
    788	.kick		= k3_r5_rproc_kick,
    789	.da_to_va	= k3_r5_rproc_da_to_va,
    790};
    791
    792/*
    793 * Internal R5F Core configuration
    794 *
    795 * Each R5FSS has a cluster-level setting for configuring the processor
    796 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
    797 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
    798 * as an alternate for LockStep mode that exercises only a single R5F core
    799 * called Single-CPU mode. Each R5F core has a number of settings to either
    800 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
    801 * address 0x0. These settings need to be configured before the resets for the
    802 * corresponding core are released. These settings are all protected and managed
    803 * by the System Processor.
    804 *
    805 * This function is used to pre-configure these settings for each R5F core, and
    806 * the configuration is all done through various ti_sci_proc functions that
    807 * communicate with the System Processor. The function also ensures that both
    808 * the cores are halted before the .prepare() step.
    809 *
    810 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
    811 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
    812 * for LockStep-mode is dictated by an eFUSE register bit, and the config
    813 * settings retrieved from DT are adjusted accordingly as per the permitted
    814 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
    815 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
    816 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
    817 * and retrieved using Core0.
    818 *
    819 * The function behavior is different based on the cluster mode. The R5F cores
    820 * are configured independently as per their individual settings in Split mode.
    821 * They are identically configured in LockStep mode using the primary Core0
    822 * settings. However, some individual settings cannot be set in LockStep mode.
    823 * This is overcome by switching to Split-mode initially and then programming
    824 * both the cores with the same settings, before reconfiguing again for
    825 * LockStep mode.
    826 */
    827static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
    828{
    829	struct k3_r5_cluster *cluster = kproc->cluster;
    830	struct device *dev = kproc->dev;
    831	struct k3_r5_core *core0, *core, *temp;
    832	u32 ctrl = 0, cfg = 0, stat = 0;
    833	u32 set_cfg = 0, clr_cfg = 0;
    834	u64 boot_vec = 0;
    835	bool lockstep_en;
    836	bool single_cpu;
    837	int ret;
    838
    839	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
    840	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
    841	    cluster->mode == CLUSTER_MODE_SINGLECPU) {
    842		core = core0;
    843	} else {
    844		core = kproc->core;
    845	}
    846
    847	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
    848				     &stat);
    849	if (ret < 0)
    850		return ret;
    851
    852	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
    853		boot_vec, cfg, ctrl, stat);
    854
    855	/* check if only Single-CPU mode is supported on applicable SoCs */
    856	if (cluster->soc_data->single_cpu_mode) {
    857		single_cpu =
    858			!!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
    859		if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
    860			dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
    861			cluster->mode = CLUSTER_MODE_SINGLECPU;
    862		}
    863		goto config;
    864	}
    865
    866	/* check conventional LockStep vs Split mode configuration */
    867	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
    868	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
    869		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
    870		cluster->mode = CLUSTER_MODE_SPLIT;
    871	}
    872
    873config:
    874	/* always enable ARM mode and set boot vector to 0 */
    875	boot_vec = 0x0;
    876	if (core == core0) {
    877		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
    878		if (cluster->soc_data->single_cpu_mode) {
    879			/*
    880			 * Single-CPU configuration bit can only be configured
    881			 * on Core0 and system firmware will NACK any requests
    882			 * with the bit configured, so program it only on
    883			 * permitted cores
    884			 */
    885			if (cluster->mode == CLUSTER_MODE_SINGLECPU)
    886				set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
    887		} else {
    888			/*
    889			 * LockStep configuration bit is Read-only on Split-mode
    890			 * _only_ devices and system firmware will NACK any
    891			 * requests with the bit configured, so program it only
    892			 * on permitted devices
    893			 */
    894			if (lockstep_en)
    895				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
    896		}
    897	}
    898
    899	if (core->atcm_enable)
    900		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
    901	else
    902		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
    903
    904	if (core->btcm_enable)
    905		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
    906	else
    907		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
    908
    909	if (core->loczrama)
    910		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
    911	else
    912		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
    913
    914	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
    915		/*
    916		 * work around system firmware limitations to make sure both
    917		 * cores are programmed symmetrically in LockStep. LockStep
    918		 * and TEINIT config is only allowed with Core0.
    919		 */
    920		list_for_each_entry(temp, &cluster->cores, elem) {
    921			ret = k3_r5_core_halt(temp);
    922			if (ret)
    923				goto out;
    924
    925			if (temp != core) {
    926				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
    927				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
    928			}
    929			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
    930						     set_cfg, clr_cfg);
    931			if (ret)
    932				goto out;
    933		}
    934
    935		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
    936		clr_cfg = 0;
    937		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
    938					     set_cfg, clr_cfg);
    939	} else {
    940		ret = k3_r5_core_halt(core);
    941		if (ret)
    942			goto out;
    943
    944		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
    945					     set_cfg, clr_cfg);
    946	}
    947
    948out:
    949	return ret;
    950}
    951
    952static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
    953{
    954	struct device *dev = kproc->dev;
    955	struct device_node *np = dev_of_node(dev);
    956	struct device_node *rmem_np;
    957	struct reserved_mem *rmem;
    958	int num_rmems;
    959	int ret, i;
    960
    961	num_rmems = of_property_count_elems_of_size(np, "memory-region",
    962						    sizeof(phandle));
    963	if (num_rmems <= 0) {
    964		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
    965			num_rmems);
    966		return -EINVAL;
    967	}
    968	if (num_rmems < 2) {
    969		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
    970			num_rmems);
    971		return -EINVAL;
    972	}
    973
    974	/* use reserved memory region 0 for vring DMA allocations */
    975	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
    976	if (ret) {
    977		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
    978			ret);
    979		return ret;
    980	}
    981
    982	num_rmems--;
    983	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
    984	if (!kproc->rmem) {
    985		ret = -ENOMEM;
    986		goto release_rmem;
    987	}
    988
    989	/* use remaining reserved memory regions for static carveouts */
    990	for (i = 0; i < num_rmems; i++) {
    991		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
    992		if (!rmem_np) {
    993			ret = -EINVAL;
    994			goto unmap_rmem;
    995		}
    996
    997		rmem = of_reserved_mem_lookup(rmem_np);
    998		if (!rmem) {
    999			of_node_put(rmem_np);
   1000			ret = -EINVAL;
   1001			goto unmap_rmem;
   1002		}
   1003		of_node_put(rmem_np);
   1004
   1005		kproc->rmem[i].bus_addr = rmem->base;
   1006		/*
   1007		 * R5Fs do not have an MMU, but have a Region Address Translator
   1008		 * (RAT) module that provides a fixed entry translation between
   1009		 * the 32-bit processor addresses to 64-bit bus addresses. The
   1010		 * RAT is programmable only by the R5F cores. Support for RAT
   1011		 * is currently not supported, so 64-bit address regions are not
   1012		 * supported. The absence of MMUs implies that the R5F device
   1013		 * addresses/supported memory regions are restricted to 32-bit
   1014		 * bus addresses, and are identical
   1015		 */
   1016		kproc->rmem[i].dev_addr = (u32)rmem->base;
   1017		kproc->rmem[i].size = rmem->size;
   1018		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
   1019		if (!kproc->rmem[i].cpu_addr) {
   1020			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
   1021				i + 1, &rmem->base, &rmem->size);
   1022			ret = -ENOMEM;
   1023			goto unmap_rmem;
   1024		}
   1025
   1026		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
   1027			i + 1, &kproc->rmem[i].bus_addr,
   1028			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
   1029			kproc->rmem[i].dev_addr);
   1030	}
   1031	kproc->num_rmems = num_rmems;
   1032
   1033	return 0;
   1034
   1035unmap_rmem:
   1036	for (i--; i >= 0; i--)
   1037		iounmap(kproc->rmem[i].cpu_addr);
   1038	kfree(kproc->rmem);
   1039release_rmem:
   1040	of_reserved_mem_device_release(dev);
   1041	return ret;
   1042}
   1043
   1044static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
   1045{
   1046	int i;
   1047
   1048	for (i = 0; i < kproc->num_rmems; i++)
   1049		iounmap(kproc->rmem[i].cpu_addr);
   1050	kfree(kproc->rmem);
   1051
   1052	of_reserved_mem_device_release(kproc->dev);
   1053}
   1054
   1055/*
   1056 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
   1057 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
   1058 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
   1059 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
   1060 * leveraging the Core1 TCMs as well in certain modes where they would have
   1061 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
   1062 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
   1063 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
   1064 * the Core0 TCMs, and the dts representation reflects this increased size on
   1065 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
   1066 * half the original size in Split mode.
   1067 */
   1068static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
   1069{
   1070	struct k3_r5_cluster *cluster = kproc->cluster;
   1071	struct k3_r5_core *core = kproc->core;
   1072	struct device *cdev = core->dev;
   1073	struct k3_r5_core *core0;
   1074
   1075	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
   1076	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
   1077	    !cluster->soc_data->tcm_is_double)
   1078		return;
   1079
   1080	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
   1081	if (core == core0) {
   1082		WARN_ON(core->mem[0].size != SZ_64K);
   1083		WARN_ON(core->mem[1].size != SZ_64K);
   1084
   1085		core->mem[0].size /= 2;
   1086		core->mem[1].size /= 2;
   1087
   1088		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
   1089			core->mem[0].size, core->mem[1].size);
   1090	}
   1091}
   1092
   1093/*
   1094 * This function checks and configures a R5F core for IPC-only or remoteproc
   1095 * mode. The driver is configured to be in IPC-only mode for a R5F core when
   1096 * the core has been loaded and started by a bootloader. The IPC-only mode is
   1097 * detected by querying the System Firmware for reset, power on and halt status
   1098 * and ensuring that the core is running. Any incomplete steps at bootloader
   1099 * are validated and errored out.
   1100 *
   1101 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
   1102 * and cluster mode parsed originally from kernel DT are updated to reflect the
   1103 * actual values configured by bootloader. The driver internal device memory
   1104 * addresses for TCMs are also updated.
   1105 */
   1106static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
   1107{
   1108	struct k3_r5_cluster *cluster = kproc->cluster;
   1109	struct k3_r5_core *core = kproc->core;
   1110	struct device *cdev = core->dev;
   1111	bool r_state = false, c_state = false;
   1112	u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
   1113	u64 boot_vec = 0;
   1114	u32 atcm_enable, btcm_enable, loczrama;
   1115	struct k3_r5_core *core0;
   1116	enum cluster_mode mode;
   1117	int ret;
   1118
   1119	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
   1120
   1121	ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
   1122					      &r_state, &c_state);
   1123	if (ret) {
   1124		dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
   1125			ret);
   1126		return ret;
   1127	}
   1128	if (r_state != c_state) {
   1129		dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
   1130			 r_state, c_state);
   1131	}
   1132
   1133	ret = reset_control_status(core->reset);
   1134	if (ret < 0) {
   1135		dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
   1136			ret);
   1137		return ret;
   1138	}
   1139
   1140	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
   1141				     &stat);
   1142	if (ret < 0) {
   1143		dev_err(cdev, "failed to get initial processor status, ret = %d\n",
   1144			ret);
   1145		return ret;
   1146	}
   1147	atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ?  1 : 0;
   1148	btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ?  1 : 0;
   1149	loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ?  1 : 0;
   1150	if (cluster->soc_data->single_cpu_mode) {
   1151		mode = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ?
   1152				CLUSTER_MODE_SINGLECPU : CLUSTER_MODE_SPLIT;
   1153	} else {
   1154		mode = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ?
   1155				CLUSTER_MODE_LOCKSTEP : CLUSTER_MODE_SPLIT;
   1156	}
   1157	halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
   1158
   1159	/*
   1160	 * IPC-only mode detection requires both local and module resets to
   1161	 * be deasserted and R5F core to be unhalted. Local reset status is
   1162	 * irrelevant if module reset is asserted (POR value has local reset
   1163	 * deasserted), and is deemed as remoteproc mode
   1164	 */
   1165	if (c_state && !ret && !halted) {
   1166		dev_info(cdev, "configured R5F for IPC-only mode\n");
   1167		kproc->rproc->state = RPROC_DETACHED;
   1168		ret = 1;
   1169		/* override rproc ops with only required IPC-only mode ops */
   1170		kproc->rproc->ops->prepare = NULL;
   1171		kproc->rproc->ops->unprepare = NULL;
   1172		kproc->rproc->ops->start = NULL;
   1173		kproc->rproc->ops->stop = NULL;
   1174		kproc->rproc->ops->attach = k3_r5_rproc_attach;
   1175		kproc->rproc->ops->detach = k3_r5_rproc_detach;
   1176		kproc->rproc->ops->get_loaded_rsc_table =
   1177						k3_r5_get_loaded_rsc_table;
   1178	} else if (!c_state) {
   1179		dev_info(cdev, "configured R5F for remoteproc mode\n");
   1180		ret = 0;
   1181	} else {
   1182		dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
   1183			!ret ? "deasserted" : "asserted",
   1184			c_state ? "deasserted" : "asserted",
   1185			halted ? "halted" : "unhalted");
   1186		ret = -EINVAL;
   1187	}
   1188
   1189	/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
   1190	if (ret > 0) {
   1191		if (core == core0)
   1192			cluster->mode = mode;
   1193		core->atcm_enable = atcm_enable;
   1194		core->btcm_enable = btcm_enable;
   1195		core->loczrama = loczrama;
   1196		core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
   1197		core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
   1198	}
   1199
   1200	return ret;
   1201}
   1202
   1203static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
   1204{
   1205	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
   1206	struct device *dev = &pdev->dev;
   1207	struct k3_r5_rproc *kproc;
   1208	struct k3_r5_core *core, *core1;
   1209	struct device *cdev;
   1210	const char *fw_name;
   1211	struct rproc *rproc;
   1212	int ret, ret1;
   1213
   1214	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
   1215	list_for_each_entry(core, &cluster->cores, elem) {
   1216		cdev = core->dev;
   1217		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
   1218		if (ret) {
   1219			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
   1220				ret);
   1221			goto out;
   1222		}
   1223
   1224		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
   1225				    fw_name, sizeof(*kproc));
   1226		if (!rproc) {
   1227			ret = -ENOMEM;
   1228			goto out;
   1229		}
   1230
   1231		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
   1232		rproc->has_iommu = false;
   1233		/* error recovery is not supported at present */
   1234		rproc->recovery_disabled = true;
   1235
   1236		kproc = rproc->priv;
   1237		kproc->cluster = cluster;
   1238		kproc->core = core;
   1239		kproc->dev = cdev;
   1240		kproc->rproc = rproc;
   1241		core->rproc = rproc;
   1242
   1243		ret = k3_r5_rproc_configure_mode(kproc);
   1244		if (ret < 0)
   1245			goto err_config;
   1246		if (ret)
   1247			goto init_rmem;
   1248
   1249		ret = k3_r5_rproc_configure(kproc);
   1250		if (ret) {
   1251			dev_err(dev, "initial configure failed, ret = %d\n",
   1252				ret);
   1253			goto err_config;
   1254		}
   1255
   1256init_rmem:
   1257		k3_r5_adjust_tcm_sizes(kproc);
   1258
   1259		ret = k3_r5_reserved_mem_init(kproc);
   1260		if (ret) {
   1261			dev_err(dev, "reserved memory init failed, ret = %d\n",
   1262				ret);
   1263			goto err_config;
   1264		}
   1265
   1266		ret = rproc_add(rproc);
   1267		if (ret) {
   1268			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
   1269			goto err_add;
   1270		}
   1271
   1272		/* create only one rproc in lockstep mode or single-cpu mode */
   1273		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
   1274		    cluster->mode == CLUSTER_MODE_SINGLECPU)
   1275			break;
   1276	}
   1277
   1278	return 0;
   1279
   1280err_split:
   1281	if (rproc->state == RPROC_ATTACHED) {
   1282		ret1 = rproc_detach(rproc);
   1283		if (ret1) {
   1284			dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
   1285				ret1);
   1286			return ret1;
   1287		}
   1288	}
   1289
   1290	rproc_del(rproc);
   1291err_add:
   1292	k3_r5_reserved_mem_exit(kproc);
   1293err_config:
   1294	rproc_free(rproc);
   1295	core->rproc = NULL;
   1296out:
   1297	/* undo core0 upon any failures on core1 in split-mode */
   1298	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
   1299		core = list_prev_entry(core, elem);
   1300		rproc = core->rproc;
   1301		kproc = rproc->priv;
   1302		goto err_split;
   1303	}
   1304	return ret;
   1305}
   1306
   1307static void k3_r5_cluster_rproc_exit(void *data)
   1308{
   1309	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
   1310	struct k3_r5_rproc *kproc;
   1311	struct k3_r5_core *core;
   1312	struct rproc *rproc;
   1313	int ret;
   1314
   1315	/*
   1316	 * lockstep mode and single-cpu modes have only one rproc associated
   1317	 * with first core, whereas split-mode has two rprocs associated with
   1318	 * each core, and requires that core1 be powered down first
   1319	 */
   1320	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
   1321		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
   1322		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
   1323		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
   1324
   1325	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
   1326		rproc = core->rproc;
   1327		kproc = rproc->priv;
   1328
   1329		if (rproc->state == RPROC_ATTACHED) {
   1330			ret = rproc_detach(rproc);
   1331			if (ret) {
   1332				dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
   1333				return;
   1334			}
   1335		}
   1336
   1337		rproc_del(rproc);
   1338
   1339		k3_r5_reserved_mem_exit(kproc);
   1340
   1341		rproc_free(rproc);
   1342		core->rproc = NULL;
   1343	}
   1344}
   1345
   1346static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
   1347					       struct k3_r5_core *core)
   1348{
   1349	static const char * const mem_names[] = {"atcm", "btcm"};
   1350	struct device *dev = &pdev->dev;
   1351	struct resource *res;
   1352	int num_mems;
   1353	int i;
   1354
   1355	num_mems = ARRAY_SIZE(mem_names);
   1356	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
   1357	if (!core->mem)
   1358		return -ENOMEM;
   1359
   1360	for (i = 0; i < num_mems; i++) {
   1361		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
   1362						   mem_names[i]);
   1363		if (!res) {
   1364			dev_err(dev, "found no memory resource for %s\n",
   1365				mem_names[i]);
   1366			return -EINVAL;
   1367		}
   1368		if (!devm_request_mem_region(dev, res->start,
   1369					     resource_size(res),
   1370					     dev_name(dev))) {
   1371			dev_err(dev, "could not request %s region for resource\n",
   1372				mem_names[i]);
   1373			return -EBUSY;
   1374		}
   1375
   1376		/*
   1377		 * TCMs are designed in general to support RAM-like backing
   1378		 * memories. So, map these as Normal Non-Cached memories. This
   1379		 * also avoids/fixes any potential alignment faults due to
   1380		 * unaligned data accesses when using memcpy() or memset()
   1381		 * functions (normally seen with device type memory).
   1382		 */
   1383		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
   1384							resource_size(res));
   1385		if (!core->mem[i].cpu_addr) {
   1386			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
   1387			return -ENOMEM;
   1388		}
   1389		core->mem[i].bus_addr = res->start;
   1390
   1391		/*
   1392		 * TODO:
   1393		 * The R5F cores can place ATCM & BTCM anywhere in its address
   1394		 * based on the corresponding Region Registers in the System
   1395		 * Control coprocessor. For now, place ATCM and BTCM at
   1396		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
   1397		 * SoCs) based on loczrama setting
   1398		 */
   1399		if (!strcmp(mem_names[i], "atcm")) {
   1400			core->mem[i].dev_addr = core->loczrama ?
   1401							0 : K3_R5_TCM_DEV_ADDR;
   1402		} else {
   1403			core->mem[i].dev_addr = core->loczrama ?
   1404							K3_R5_TCM_DEV_ADDR : 0;
   1405		}
   1406		core->mem[i].size = resource_size(res);
   1407
   1408		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
   1409			mem_names[i], &core->mem[i].bus_addr,
   1410			core->mem[i].size, core->mem[i].cpu_addr,
   1411			core->mem[i].dev_addr);
   1412	}
   1413	core->num_mems = num_mems;
   1414
   1415	return 0;
   1416}
   1417
   1418static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
   1419					   struct k3_r5_core *core)
   1420{
   1421	struct device_node *np = pdev->dev.of_node;
   1422	struct device *dev = &pdev->dev;
   1423	struct device_node *sram_np;
   1424	struct resource res;
   1425	int num_sram;
   1426	int i, ret;
   1427
   1428	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
   1429	if (num_sram <= 0) {
   1430		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
   1431			num_sram);
   1432		return 0;
   1433	}
   1434
   1435	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
   1436	if (!core->sram)
   1437		return -ENOMEM;
   1438
   1439	for (i = 0; i < num_sram; i++) {
   1440		sram_np = of_parse_phandle(np, "sram", i);
   1441		if (!sram_np)
   1442			return -EINVAL;
   1443
   1444		if (!of_device_is_available(sram_np)) {
   1445			of_node_put(sram_np);
   1446			return -EINVAL;
   1447		}
   1448
   1449		ret = of_address_to_resource(sram_np, 0, &res);
   1450		of_node_put(sram_np);
   1451		if (ret)
   1452			return -EINVAL;
   1453
   1454		core->sram[i].bus_addr = res.start;
   1455		core->sram[i].dev_addr = res.start;
   1456		core->sram[i].size = resource_size(&res);
   1457		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
   1458							 resource_size(&res));
   1459		if (!core->sram[i].cpu_addr) {
   1460			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
   1461				i, &res.start);
   1462			return -ENOMEM;
   1463		}
   1464
   1465		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
   1466			i, &core->sram[i].bus_addr,
   1467			core->sram[i].size, core->sram[i].cpu_addr,
   1468			core->sram[i].dev_addr);
   1469	}
   1470	core->num_sram = num_sram;
   1471
   1472	return 0;
   1473}
   1474
   1475static
   1476struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
   1477					  const struct ti_sci_handle *sci)
   1478{
   1479	struct ti_sci_proc *tsp;
   1480	u32 temp[2];
   1481	int ret;
   1482
   1483	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
   1484					 temp, 2);
   1485	if (ret < 0)
   1486		return ERR_PTR(ret);
   1487
   1488	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
   1489	if (!tsp)
   1490		return ERR_PTR(-ENOMEM);
   1491
   1492	tsp->dev = dev;
   1493	tsp->sci = sci;
   1494	tsp->ops = &sci->ops.proc_ops;
   1495	tsp->proc_id = temp[0];
   1496	tsp->host_id = temp[1];
   1497
   1498	return tsp;
   1499}
   1500
   1501static int k3_r5_core_of_init(struct platform_device *pdev)
   1502{
   1503	struct device *dev = &pdev->dev;
   1504	struct device_node *np = dev_of_node(dev);
   1505	struct k3_r5_core *core;
   1506	int ret;
   1507
   1508	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
   1509		return -ENOMEM;
   1510
   1511	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
   1512	if (!core) {
   1513		ret = -ENOMEM;
   1514		goto err;
   1515	}
   1516
   1517	core->dev = dev;
   1518	/*
   1519	 * Use SoC Power-on-Reset values as default if no DT properties are
   1520	 * used to dictate the TCM configurations
   1521	 */
   1522	core->atcm_enable = 0;
   1523	core->btcm_enable = 1;
   1524	core->loczrama = 1;
   1525
   1526	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
   1527	if (ret < 0 && ret != -EINVAL) {
   1528		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
   1529			ret);
   1530		goto err;
   1531	}
   1532
   1533	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
   1534	if (ret < 0 && ret != -EINVAL) {
   1535		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
   1536			ret);
   1537		goto err;
   1538	}
   1539
   1540	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
   1541	if (ret < 0 && ret != -EINVAL) {
   1542		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
   1543		goto err;
   1544	}
   1545
   1546	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
   1547	if (IS_ERR(core->ti_sci)) {
   1548		ret = PTR_ERR(core->ti_sci);
   1549		if (ret != -EPROBE_DEFER) {
   1550			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
   1551				ret);
   1552		}
   1553		core->ti_sci = NULL;
   1554		goto err;
   1555	}
   1556
   1557	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
   1558	if (ret) {
   1559		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
   1560		goto err;
   1561	}
   1562
   1563	core->reset = devm_reset_control_get_exclusive(dev, NULL);
   1564	if (IS_ERR_OR_NULL(core->reset)) {
   1565		ret = PTR_ERR_OR_ZERO(core->reset);
   1566		if (!ret)
   1567			ret = -ENODEV;
   1568		if (ret != -EPROBE_DEFER) {
   1569			dev_err(dev, "failed to get reset handle, ret = %d\n",
   1570				ret);
   1571		}
   1572		goto err;
   1573	}
   1574
   1575	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
   1576	if (IS_ERR(core->tsp)) {
   1577		ret = PTR_ERR(core->tsp);
   1578		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
   1579			ret);
   1580		goto err;
   1581	}
   1582
   1583	ret = k3_r5_core_of_get_internal_memories(pdev, core);
   1584	if (ret) {
   1585		dev_err(dev, "failed to get internal memories, ret = %d\n",
   1586			ret);
   1587		goto err;
   1588	}
   1589
   1590	ret = k3_r5_core_of_get_sram_memories(pdev, core);
   1591	if (ret) {
   1592		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
   1593		goto err;
   1594	}
   1595
   1596	ret = ti_sci_proc_request(core->tsp);
   1597	if (ret < 0) {
   1598		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
   1599		goto err;
   1600	}
   1601
   1602	platform_set_drvdata(pdev, core);
   1603	devres_close_group(dev, k3_r5_core_of_init);
   1604
   1605	return 0;
   1606
   1607err:
   1608	devres_release_group(dev, k3_r5_core_of_init);
   1609	return ret;
   1610}
   1611
   1612/*
   1613 * free the resources explicitly since driver model is not being used
   1614 * for the child R5F devices
   1615 */
   1616static void k3_r5_core_of_exit(struct platform_device *pdev)
   1617{
   1618	struct k3_r5_core *core = platform_get_drvdata(pdev);
   1619	struct device *dev = &pdev->dev;
   1620	int ret;
   1621
   1622	ret = ti_sci_proc_release(core->tsp);
   1623	if (ret)
   1624		dev_err(dev, "failed to release proc, ret = %d\n", ret);
   1625
   1626	platform_set_drvdata(pdev, NULL);
   1627	devres_release_group(dev, k3_r5_core_of_init);
   1628}
   1629
   1630static void k3_r5_cluster_of_exit(void *data)
   1631{
   1632	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
   1633	struct platform_device *cpdev;
   1634	struct k3_r5_core *core, *temp;
   1635
   1636	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
   1637		list_del(&core->elem);
   1638		cpdev = to_platform_device(core->dev);
   1639		k3_r5_core_of_exit(cpdev);
   1640	}
   1641}
   1642
   1643static int k3_r5_cluster_of_init(struct platform_device *pdev)
   1644{
   1645	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
   1646	struct device *dev = &pdev->dev;
   1647	struct device_node *np = dev_of_node(dev);
   1648	struct platform_device *cpdev;
   1649	struct device_node *child;
   1650	struct k3_r5_core *core;
   1651	int ret;
   1652
   1653	for_each_available_child_of_node(np, child) {
   1654		cpdev = of_find_device_by_node(child);
   1655		if (!cpdev) {
   1656			ret = -ENODEV;
   1657			dev_err(dev, "could not get R5 core platform device\n");
   1658			goto fail;
   1659		}
   1660
   1661		ret = k3_r5_core_of_init(cpdev);
   1662		if (ret) {
   1663			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
   1664				ret);
   1665			put_device(&cpdev->dev);
   1666			goto fail;
   1667		}
   1668
   1669		core = platform_get_drvdata(cpdev);
   1670		put_device(&cpdev->dev);
   1671		list_add_tail(&core->elem, &cluster->cores);
   1672	}
   1673
   1674	return 0;
   1675
   1676fail:
   1677	k3_r5_cluster_of_exit(pdev);
   1678	return ret;
   1679}
   1680
   1681static int k3_r5_probe(struct platform_device *pdev)
   1682{
   1683	struct device *dev = &pdev->dev;
   1684	struct device_node *np = dev_of_node(dev);
   1685	struct k3_r5_cluster *cluster;
   1686	const struct k3_r5_soc_data *data;
   1687	int ret;
   1688	int num_cores;
   1689
   1690	data = of_device_get_match_data(&pdev->dev);
   1691	if (!data) {
   1692		dev_err(dev, "SoC-specific data is not defined\n");
   1693		return -ENODEV;
   1694	}
   1695
   1696	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
   1697	if (!cluster)
   1698		return -ENOMEM;
   1699
   1700	cluster->dev = dev;
   1701	/*
   1702	 * default to most common efuse configurations - Split-mode on AM64x
   1703	 * and LockStep-mode on all others
   1704	 */
   1705	cluster->mode = data->single_cpu_mode ?
   1706				CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
   1707	cluster->soc_data = data;
   1708	INIT_LIST_HEAD(&cluster->cores);
   1709
   1710	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
   1711	if (ret < 0 && ret != -EINVAL) {
   1712		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
   1713			ret);
   1714		return ret;
   1715	}
   1716
   1717	num_cores = of_get_available_child_count(np);
   1718	if (num_cores != 2) {
   1719		dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
   1720			num_cores);
   1721		return -ENODEV;
   1722	}
   1723
   1724	platform_set_drvdata(pdev, cluster);
   1725
   1726	ret = devm_of_platform_populate(dev);
   1727	if (ret) {
   1728		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
   1729			ret);
   1730		return ret;
   1731	}
   1732
   1733	ret = k3_r5_cluster_of_init(pdev);
   1734	if (ret) {
   1735		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
   1736		return ret;
   1737	}
   1738
   1739	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
   1740	if (ret)
   1741		return ret;
   1742
   1743	ret = k3_r5_cluster_rproc_init(pdev);
   1744	if (ret) {
   1745		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
   1746			ret);
   1747		return ret;
   1748	}
   1749
   1750	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
   1751	if (ret)
   1752		return ret;
   1753
   1754	return 0;
   1755}
   1756
   1757static const struct k3_r5_soc_data am65_j721e_soc_data = {
   1758	.tcm_is_double = false,
   1759	.tcm_ecc_autoinit = false,
   1760	.single_cpu_mode = false,
   1761};
   1762
   1763static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
   1764	.tcm_is_double = true,
   1765	.tcm_ecc_autoinit = true,
   1766	.single_cpu_mode = false,
   1767};
   1768
   1769static const struct k3_r5_soc_data am64_soc_data = {
   1770	.tcm_is_double = true,
   1771	.tcm_ecc_autoinit = true,
   1772	.single_cpu_mode = true,
   1773};
   1774
   1775static const struct of_device_id k3_r5_of_match[] = {
   1776	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
   1777	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
   1778	{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
   1779	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
   1780	{ .compatible = "ti,j721s2-r5fss",  .data = &j7200_j721s2_soc_data, },
   1781	{ /* sentinel */ },
   1782};
   1783MODULE_DEVICE_TABLE(of, k3_r5_of_match);
   1784
   1785static struct platform_driver k3_r5_rproc_driver = {
   1786	.probe = k3_r5_probe,
   1787	.driver = {
   1788		.name = "k3_r5_rproc",
   1789		.of_match_table = k3_r5_of_match,
   1790	},
   1791};
   1792
   1793module_platform_driver(k3_r5_rproc_driver);
   1794
   1795MODULE_LICENSE("GPL v2");
   1796MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
   1797MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");