cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rtc-ac100.c (17331B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * RTC Driver for X-Powers AC100
      4 *
      5 * Copyright (c) 2016 Chen-Yu Tsai
      6 *
      7 * Chen-Yu Tsai <wens@csie.org>
      8 */
      9
     10#include <linux/bcd.h>
     11#include <linux/clk-provider.h>
     12#include <linux/device.h>
     13#include <linux/interrupt.h>
     14#include <linux/kernel.h>
     15#include <linux/mfd/ac100.h>
     16#include <linux/module.h>
     17#include <linux/mutex.h>
     18#include <linux/of.h>
     19#include <linux/platform_device.h>
     20#include <linux/regmap.h>
     21#include <linux/rtc.h>
     22#include <linux/types.h>
     23
     24/* Control register */
     25#define AC100_RTC_CTRL_24HOUR	BIT(0)
     26
     27/* Clock output register bits */
     28#define AC100_CLKOUT_PRE_DIV_SHIFT	5
     29#define AC100_CLKOUT_PRE_DIV_WIDTH	3
     30#define AC100_CLKOUT_MUX_SHIFT		4
     31#define AC100_CLKOUT_MUX_WIDTH		1
     32#define AC100_CLKOUT_DIV_SHIFT		1
     33#define AC100_CLKOUT_DIV_WIDTH		3
     34#define AC100_CLKOUT_EN			BIT(0)
     35
     36/* RTC */
     37#define AC100_RTC_SEC_MASK	GENMASK(6, 0)
     38#define AC100_RTC_MIN_MASK	GENMASK(6, 0)
     39#define AC100_RTC_HOU_MASK	GENMASK(5, 0)
     40#define AC100_RTC_WEE_MASK	GENMASK(2, 0)
     41#define AC100_RTC_DAY_MASK	GENMASK(5, 0)
     42#define AC100_RTC_MON_MASK	GENMASK(4, 0)
     43#define AC100_RTC_YEA_MASK	GENMASK(7, 0)
     44#define AC100_RTC_YEA_LEAP	BIT(15)
     45#define AC100_RTC_UPD_TRIGGER	BIT(15)
     46
     47/* Alarm (wall clock) */
     48#define AC100_ALM_INT_ENABLE	BIT(0)
     49
     50#define AC100_ALM_SEC_MASK	GENMASK(6, 0)
     51#define AC100_ALM_MIN_MASK	GENMASK(6, 0)
     52#define AC100_ALM_HOU_MASK	GENMASK(5, 0)
     53#define AC100_ALM_WEE_MASK	GENMASK(2, 0)
     54#define AC100_ALM_DAY_MASK	GENMASK(5, 0)
     55#define AC100_ALM_MON_MASK	GENMASK(4, 0)
     56#define AC100_ALM_YEA_MASK	GENMASK(7, 0)
     57#define AC100_ALM_ENABLE_FLAG	BIT(15)
     58#define AC100_ALM_UPD_TRIGGER	BIT(15)
     59
     60/*
     61 * The year parameter passed to the driver is usually an offset relative to
     62 * the year 1900. This macro is used to convert this offset to another one
     63 * relative to the minimum year allowed by the hardware.
     64 *
     65 * The year range is 1970 - 2069. This range is selected to match Allwinner's
     66 * driver.
     67 */
     68#define AC100_YEAR_MIN				1970
     69#define AC100_YEAR_MAX				2069
     70#define AC100_YEAR_OFF				(AC100_YEAR_MIN - 1900)
     71
     72struct ac100_clkout {
     73	struct clk_hw hw;
     74	struct regmap *regmap;
     75	u8 offset;
     76};
     77
     78#define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
     79
     80#define AC100_RTC_32K_NAME	"ac100-rtc-32k"
     81#define AC100_RTC_32K_RATE	32768
     82#define AC100_CLKOUT_NUM	3
     83
     84static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
     85	"ac100-cko1-rtc",
     86	"ac100-cko2-rtc",
     87	"ac100-cko3-rtc",
     88};
     89
     90struct ac100_rtc_dev {
     91	struct rtc_device *rtc;
     92	struct device *dev;
     93	struct regmap *regmap;
     94	int irq;
     95	unsigned long alarm;
     96
     97	struct clk_hw *rtc_32k_clk;
     98	struct ac100_clkout clks[AC100_CLKOUT_NUM];
     99	struct clk_hw_onecell_data *clk_data;
    100};
    101
    102/**
    103 * Clock controls for 3 clock output pins
    104 */
    105
    106static const struct clk_div_table ac100_clkout_prediv[] = {
    107	{ .val = 0, .div = 1 },
    108	{ .val = 1, .div = 2 },
    109	{ .val = 2, .div = 4 },
    110	{ .val = 3, .div = 8 },
    111	{ .val = 4, .div = 16 },
    112	{ .val = 5, .div = 32 },
    113	{ .val = 6, .div = 64 },
    114	{ .val = 7, .div = 122 },
    115	{ },
    116};
    117
    118/* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
    119static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
    120					      unsigned long prate)
    121{
    122	struct ac100_clkout *clk = to_ac100_clkout(hw);
    123	unsigned int reg, div;
    124
    125	regmap_read(clk->regmap, clk->offset, &reg);
    126
    127	/* Handle pre-divider first */
    128	if (prate != AC100_RTC_32K_RATE) {
    129		div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
    130			((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
    131		prate = divider_recalc_rate(hw, prate, div,
    132					    ac100_clkout_prediv, 0,
    133					    AC100_CLKOUT_PRE_DIV_WIDTH);
    134	}
    135
    136	div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
    137		(BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
    138	return divider_recalc_rate(hw, prate, div, NULL,
    139				   CLK_DIVIDER_POWER_OF_TWO,
    140				   AC100_CLKOUT_DIV_WIDTH);
    141}
    142
    143static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
    144				    unsigned long prate)
    145{
    146	unsigned long best_rate = 0, tmp_rate, tmp_prate;
    147	int i;
    148
    149	if (prate == AC100_RTC_32K_RATE)
    150		return divider_round_rate(hw, rate, &prate, NULL,
    151					  AC100_CLKOUT_DIV_WIDTH,
    152					  CLK_DIVIDER_POWER_OF_TWO);
    153
    154	for (i = 0; ac100_clkout_prediv[i].div; i++) {
    155		tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
    156		tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
    157					      AC100_CLKOUT_DIV_WIDTH,
    158					      CLK_DIVIDER_POWER_OF_TWO);
    159
    160		if (tmp_rate > rate)
    161			continue;
    162		if (rate - tmp_rate < best_rate - tmp_rate)
    163			best_rate = tmp_rate;
    164	}
    165
    166	return best_rate;
    167}
    168
    169static int ac100_clkout_determine_rate(struct clk_hw *hw,
    170				       struct clk_rate_request *req)
    171{
    172	struct clk_hw *best_parent;
    173	unsigned long best = 0;
    174	int i, num_parents = clk_hw_get_num_parents(hw);
    175
    176	for (i = 0; i < num_parents; i++) {
    177		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
    178		unsigned long tmp, prate;
    179
    180		/*
    181		 * The clock has two parents, one is a fixed clock which is
    182		 * internally registered by the ac100 driver. The other parent
    183		 * is a clock from the codec side of the chip, which we
    184		 * properly declare and reference in the devicetree and is
    185		 * not implemented in any driver right now.
    186		 * If the clock core looks for the parent of that second
    187		 * missing clock, it can't find one that is registered and
    188		 * returns NULL.
    189		 * So we end up in a situation where clk_hw_get_num_parents
    190		 * returns the amount of clocks we can be parented to, but
    191		 * clk_hw_get_parent_by_index will not return the orphan
    192		 * clocks.
    193		 * Thus we need to check if the parent exists before
    194		 * we get the parent rate, so we could use the RTC
    195		 * without waiting for the codec to be supported.
    196		 */
    197		if (!parent)
    198			continue;
    199
    200		prate = clk_hw_get_rate(parent);
    201
    202		tmp = ac100_clkout_round_rate(hw, req->rate, prate);
    203
    204		if (tmp > req->rate)
    205			continue;
    206		if (req->rate - tmp < req->rate - best) {
    207			best = tmp;
    208			best_parent = parent;
    209		}
    210	}
    211
    212	if (!best)
    213		return -EINVAL;
    214
    215	req->best_parent_hw = best_parent;
    216	req->best_parent_rate = best;
    217	req->rate = best;
    218
    219	return 0;
    220}
    221
    222static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
    223				 unsigned long prate)
    224{
    225	struct ac100_clkout *clk = to_ac100_clkout(hw);
    226	int div = 0, pre_div = 0;
    227
    228	do {
    229		div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
    230				      prate, NULL, AC100_CLKOUT_DIV_WIDTH,
    231				      CLK_DIVIDER_POWER_OF_TWO);
    232		if (div >= 0)
    233			break;
    234	} while (prate != AC100_RTC_32K_RATE &&
    235		 ac100_clkout_prediv[++pre_div].div);
    236
    237	if (div < 0)
    238		return div;
    239
    240	pre_div = ac100_clkout_prediv[pre_div].val;
    241
    242	regmap_update_bits(clk->regmap, clk->offset,
    243			   ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
    244			   ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
    245			   (div - 1) << AC100_CLKOUT_DIV_SHIFT |
    246			   (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
    247
    248	return 0;
    249}
    250
    251static int ac100_clkout_prepare(struct clk_hw *hw)
    252{
    253	struct ac100_clkout *clk = to_ac100_clkout(hw);
    254
    255	return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
    256				  AC100_CLKOUT_EN);
    257}
    258
    259static void ac100_clkout_unprepare(struct clk_hw *hw)
    260{
    261	struct ac100_clkout *clk = to_ac100_clkout(hw);
    262
    263	regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
    264}
    265
    266static int ac100_clkout_is_prepared(struct clk_hw *hw)
    267{
    268	struct ac100_clkout *clk = to_ac100_clkout(hw);
    269	unsigned int reg;
    270
    271	regmap_read(clk->regmap, clk->offset, &reg);
    272
    273	return reg & AC100_CLKOUT_EN;
    274}
    275
    276static u8 ac100_clkout_get_parent(struct clk_hw *hw)
    277{
    278	struct ac100_clkout *clk = to_ac100_clkout(hw);
    279	unsigned int reg;
    280
    281	regmap_read(clk->regmap, clk->offset, &reg);
    282
    283	return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
    284}
    285
    286static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
    287{
    288	struct ac100_clkout *clk = to_ac100_clkout(hw);
    289
    290	return regmap_update_bits(clk->regmap, clk->offset,
    291				  BIT(AC100_CLKOUT_MUX_SHIFT),
    292				  index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
    293}
    294
    295static const struct clk_ops ac100_clkout_ops = {
    296	.prepare	= ac100_clkout_prepare,
    297	.unprepare	= ac100_clkout_unprepare,
    298	.is_prepared	= ac100_clkout_is_prepared,
    299	.recalc_rate	= ac100_clkout_recalc_rate,
    300	.determine_rate	= ac100_clkout_determine_rate,
    301	.get_parent	= ac100_clkout_get_parent,
    302	.set_parent	= ac100_clkout_set_parent,
    303	.set_rate	= ac100_clkout_set_rate,
    304};
    305
    306static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
    307{
    308	struct device_node *np = chip->dev->of_node;
    309	const char *parents[2] = {AC100_RTC_32K_NAME};
    310	int i, ret;
    311
    312	chip->clk_data = devm_kzalloc(chip->dev,
    313				      struct_size(chip->clk_data, hws,
    314						  AC100_CLKOUT_NUM),
    315				      GFP_KERNEL);
    316	if (!chip->clk_data)
    317		return -ENOMEM;
    318
    319	chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
    320						       AC100_RTC_32K_NAME,
    321						       NULL, 0,
    322						       AC100_RTC_32K_RATE);
    323	if (IS_ERR(chip->rtc_32k_clk)) {
    324		ret = PTR_ERR(chip->rtc_32k_clk);
    325		dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
    326			ret);
    327		return ret;
    328	}
    329
    330	parents[1] = of_clk_get_parent_name(np, 0);
    331	if (!parents[1]) {
    332		dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
    333		return -EINVAL;
    334	}
    335
    336	for (i = 0; i < AC100_CLKOUT_NUM; i++) {
    337		struct ac100_clkout *clk = &chip->clks[i];
    338		struct clk_init_data init = {
    339			.name = ac100_clkout_names[i],
    340			.ops = &ac100_clkout_ops,
    341			.parent_names = parents,
    342			.num_parents = ARRAY_SIZE(parents),
    343			.flags = 0,
    344		};
    345
    346		of_property_read_string_index(np, "clock-output-names",
    347					      i, &init.name);
    348		clk->regmap = chip->regmap;
    349		clk->offset = AC100_CLKOUT_CTRL1 + i;
    350		clk->hw.init = &init;
    351
    352		ret = devm_clk_hw_register(chip->dev, &clk->hw);
    353		if (ret) {
    354			dev_err(chip->dev, "Failed to register clk '%s': %d\n",
    355				init.name, ret);
    356			goto err_unregister_rtc_32k;
    357		}
    358
    359		chip->clk_data->hws[i] = &clk->hw;
    360	}
    361
    362	chip->clk_data->num = i;
    363	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
    364	if (ret)
    365		goto err_unregister_rtc_32k;
    366
    367	return 0;
    368
    369err_unregister_rtc_32k:
    370	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
    371
    372	return ret;
    373}
    374
    375static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
    376{
    377	of_clk_del_provider(chip->dev->of_node);
    378	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
    379}
    380
    381/**
    382 * RTC related bits
    383 */
    384static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
    385{
    386	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
    387	struct regmap *regmap = chip->regmap;
    388	u16 reg[7];
    389	int ret;
    390
    391	ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
    392	if (ret)
    393		return ret;
    394
    395	rtc_tm->tm_sec  = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
    396	rtc_tm->tm_min  = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
    397	rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
    398	rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
    399	rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
    400	rtc_tm->tm_mon  = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
    401	rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
    402			  AC100_YEAR_OFF;
    403
    404	return 0;
    405}
    406
    407static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
    408{
    409	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
    410	struct regmap *regmap = chip->regmap;
    411	int year;
    412	u16 reg[8];
    413
    414	/* our RTC has a limited year range... */
    415	year = rtc_tm->tm_year - AC100_YEAR_OFF;
    416	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
    417		dev_err(dev, "rtc only supports year in range %d - %d\n",
    418			AC100_YEAR_MIN, AC100_YEAR_MAX);
    419		return -EINVAL;
    420	}
    421
    422	/* convert to BCD */
    423	reg[0] = bin2bcd(rtc_tm->tm_sec)     & AC100_RTC_SEC_MASK;
    424	reg[1] = bin2bcd(rtc_tm->tm_min)     & AC100_RTC_MIN_MASK;
    425	reg[2] = bin2bcd(rtc_tm->tm_hour)    & AC100_RTC_HOU_MASK;
    426	reg[3] = bin2bcd(rtc_tm->tm_wday)    & AC100_RTC_WEE_MASK;
    427	reg[4] = bin2bcd(rtc_tm->tm_mday)    & AC100_RTC_DAY_MASK;
    428	reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
    429	reg[6] = bin2bcd(year)		     & AC100_RTC_YEA_MASK;
    430	/* trigger write */
    431	reg[7] = AC100_RTC_UPD_TRIGGER;
    432
    433	/* Is it a leap year? */
    434	if (is_leap_year(year + AC100_YEAR_OFF + 1900))
    435		reg[6] |= AC100_RTC_YEA_LEAP;
    436
    437	return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
    438}
    439
    440static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
    441{
    442	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
    443	struct regmap *regmap = chip->regmap;
    444	unsigned int val;
    445
    446	val = en ? AC100_ALM_INT_ENABLE : 0;
    447
    448	return regmap_write(regmap, AC100_ALM_INT_ENA, val);
    449}
    450
    451static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
    452{
    453	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
    454	struct regmap *regmap = chip->regmap;
    455	struct rtc_time *alrm_tm = &alrm->time;
    456	u16 reg[7];
    457	unsigned int val;
    458	int ret;
    459
    460	ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
    461	if (ret)
    462		return ret;
    463
    464	alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
    465
    466	ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
    467	if (ret)
    468		return ret;
    469
    470	alrm_tm->tm_sec  = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
    471	alrm_tm->tm_min  = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
    472	alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
    473	alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
    474	alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
    475	alrm_tm->tm_mon  = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
    476	alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
    477			   AC100_YEAR_OFF;
    478
    479	return 0;
    480}
    481
    482static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
    483{
    484	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
    485	struct regmap *regmap = chip->regmap;
    486	struct rtc_time *alrm_tm = &alrm->time;
    487	u16 reg[8];
    488	int year;
    489	int ret;
    490
    491	/* our alarm has a limited year range... */
    492	year = alrm_tm->tm_year - AC100_YEAR_OFF;
    493	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
    494		dev_err(dev, "alarm only supports year in range %d - %d\n",
    495			AC100_YEAR_MIN, AC100_YEAR_MAX);
    496		return -EINVAL;
    497	}
    498
    499	/* convert to BCD */
    500	reg[0] = (bin2bcd(alrm_tm->tm_sec)  & AC100_ALM_SEC_MASK) |
    501			AC100_ALM_ENABLE_FLAG;
    502	reg[1] = (bin2bcd(alrm_tm->tm_min)  & AC100_ALM_MIN_MASK) |
    503			AC100_ALM_ENABLE_FLAG;
    504	reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
    505			AC100_ALM_ENABLE_FLAG;
    506	/* Do not enable weekday alarm */
    507	reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
    508	reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
    509			AC100_ALM_ENABLE_FLAG;
    510	reg[5] = (bin2bcd(alrm_tm->tm_mon + 1)  & AC100_ALM_MON_MASK) |
    511			AC100_ALM_ENABLE_FLAG;
    512	reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
    513			AC100_ALM_ENABLE_FLAG;
    514	/* trigger write */
    515	reg[7] = AC100_ALM_UPD_TRIGGER;
    516
    517	ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
    518	if (ret)
    519		return ret;
    520
    521	return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
    522}
    523
    524static irqreturn_t ac100_rtc_irq(int irq, void *data)
    525{
    526	struct ac100_rtc_dev *chip = data;
    527	struct regmap *regmap = chip->regmap;
    528	unsigned int val = 0;
    529	int ret;
    530
    531	rtc_lock(chip->rtc);
    532
    533	/* read status */
    534	ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
    535	if (ret)
    536		goto out;
    537
    538	if (val & AC100_ALM_INT_ENABLE) {
    539		/* signal rtc framework */
    540		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
    541
    542		/* clear status */
    543		ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
    544		if (ret)
    545			goto out;
    546
    547		/* disable interrupt */
    548		ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
    549		if (ret)
    550			goto out;
    551	}
    552
    553out:
    554	rtc_unlock(chip->rtc);
    555	return IRQ_HANDLED;
    556}
    557
    558static const struct rtc_class_ops ac100_rtc_ops = {
    559	.read_time	  = ac100_rtc_get_time,
    560	.set_time	  = ac100_rtc_set_time,
    561	.read_alarm	  = ac100_rtc_get_alarm,
    562	.set_alarm	  = ac100_rtc_set_alarm,
    563	.alarm_irq_enable = ac100_rtc_alarm_irq_enable,
    564};
    565
    566static int ac100_rtc_probe(struct platform_device *pdev)
    567{
    568	struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
    569	struct ac100_rtc_dev *chip;
    570	int ret;
    571
    572	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
    573	if (!chip)
    574		return -ENOMEM;
    575
    576	platform_set_drvdata(pdev, chip);
    577	chip->dev = &pdev->dev;
    578	chip->regmap = ac100->regmap;
    579
    580	chip->irq = platform_get_irq(pdev, 0);
    581	if (chip->irq < 0)
    582		return chip->irq;
    583
    584	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
    585	if (IS_ERR(chip->rtc))
    586		return PTR_ERR(chip->rtc);
    587
    588	chip->rtc->ops = &ac100_rtc_ops;
    589
    590	ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
    591					ac100_rtc_irq,
    592					IRQF_SHARED | IRQF_ONESHOT,
    593					dev_name(&pdev->dev), chip);
    594	if (ret) {
    595		dev_err(&pdev->dev, "Could not request IRQ\n");
    596		return ret;
    597	}
    598
    599	/* always use 24 hour mode */
    600	regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
    601			  AC100_RTC_CTRL_24HOUR);
    602
    603	/* disable counter alarm interrupt */
    604	regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
    605
    606	/* clear counter alarm pending interrupts */
    607	regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
    608
    609	ret = ac100_rtc_register_clks(chip);
    610	if (ret)
    611		return ret;
    612
    613	return devm_rtc_register_device(chip->rtc);
    614}
    615
    616static int ac100_rtc_remove(struct platform_device *pdev)
    617{
    618	struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
    619
    620	ac100_rtc_unregister_clks(chip);
    621
    622	return 0;
    623}
    624
    625static const struct of_device_id ac100_rtc_match[] = {
    626	{ .compatible = "x-powers,ac100-rtc" },
    627	{ },
    628};
    629MODULE_DEVICE_TABLE(of, ac100_rtc_match);
    630
    631static struct platform_driver ac100_rtc_driver = {
    632	.probe		= ac100_rtc_probe,
    633	.remove		= ac100_rtc_remove,
    634	.driver		= {
    635		.name		= "ac100-rtc",
    636		.of_match_table	= of_match_ptr(ac100_rtc_match),
    637	},
    638};
    639module_platform_driver(ac100_rtc_driver);
    640
    641MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
    642MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
    643MODULE_LICENSE("GPL v2");