rtc-rp5c01.c (7517B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Ricoh RP5C01 RTC Driver 4 * 5 * Copyright 2009 Geert Uytterhoeven 6 * 7 * Based on the A3000 TOD code in arch/m68k/amiga/config.c 8 * Copyright (C) 1993 Hamish Macdonald 9 */ 10 11#include <linux/io.h> 12#include <linux/kernel.h> 13#include <linux/module.h> 14#include <linux/platform_device.h> 15#include <linux/rtc.h> 16#include <linux/slab.h> 17 18 19enum { 20 RP5C01_1_SECOND = 0x0, /* MODE 00 */ 21 RP5C01_10_SECOND = 0x1, /* MODE 00 */ 22 RP5C01_1_MINUTE = 0x2, /* MODE 00 and MODE 01 */ 23 RP5C01_10_MINUTE = 0x3, /* MODE 00 and MODE 01 */ 24 RP5C01_1_HOUR = 0x4, /* MODE 00 and MODE 01 */ 25 RP5C01_10_HOUR = 0x5, /* MODE 00 and MODE 01 */ 26 RP5C01_DAY_OF_WEEK = 0x6, /* MODE 00 and MODE 01 */ 27 RP5C01_1_DAY = 0x7, /* MODE 00 and MODE 01 */ 28 RP5C01_10_DAY = 0x8, /* MODE 00 and MODE 01 */ 29 RP5C01_1_MONTH = 0x9, /* MODE 00 */ 30 RP5C01_10_MONTH = 0xa, /* MODE 00 */ 31 RP5C01_1_YEAR = 0xb, /* MODE 00 */ 32 RP5C01_10_YEAR = 0xc, /* MODE 00 */ 33 34 RP5C01_12_24_SELECT = 0xa, /* MODE 01 */ 35 RP5C01_LEAP_YEAR = 0xb, /* MODE 01 */ 36 37 RP5C01_MODE = 0xd, /* all modes */ 38 RP5C01_TEST = 0xe, /* all modes */ 39 RP5C01_RESET = 0xf, /* all modes */ 40}; 41 42#define RP5C01_12_24_SELECT_12 (0 << 0) 43#define RP5C01_12_24_SELECT_24 (1 << 0) 44 45#define RP5C01_10_HOUR_AM (0 << 1) 46#define RP5C01_10_HOUR_PM (1 << 1) 47 48#define RP5C01_MODE_TIMER_EN (1 << 3) /* timer enable */ 49#define RP5C01_MODE_ALARM_EN (1 << 2) /* alarm enable */ 50 51#define RP5C01_MODE_MODE_MASK (3 << 0) 52#define RP5C01_MODE_MODE00 (0 << 0) /* time */ 53#define RP5C01_MODE_MODE01 (1 << 0) /* alarm, 12h/24h, leap year */ 54#define RP5C01_MODE_RAM_BLOCK10 (2 << 0) /* RAM 4 bits x 13 */ 55#define RP5C01_MODE_RAM_BLOCK11 (3 << 0) /* RAM 4 bits x 13 */ 56 57#define RP5C01_RESET_1HZ_PULSE (1 << 3) 58#define RP5C01_RESET_16HZ_PULSE (1 << 2) 59#define RP5C01_RESET_SECOND (1 << 1) /* reset divider stages for */ 60 /* seconds or smaller units */ 61#define RP5C01_RESET_ALARM (1 << 0) /* reset all alarm registers */ 62 63 64struct rp5c01_priv { 65 u32 __iomem *regs; 66 struct rtc_device *rtc; 67 spinlock_t lock; /* against concurrent RTC/NVRAM access */ 68}; 69 70static inline unsigned int rp5c01_read(struct rp5c01_priv *priv, 71 unsigned int reg) 72{ 73 return __raw_readl(&priv->regs[reg]) & 0xf; 74} 75 76static inline void rp5c01_write(struct rp5c01_priv *priv, unsigned int val, 77 unsigned int reg) 78{ 79 __raw_writel(val, &priv->regs[reg]); 80} 81 82static void rp5c01_lock(struct rp5c01_priv *priv) 83{ 84 rp5c01_write(priv, RP5C01_MODE_MODE00, RP5C01_MODE); 85} 86 87static void rp5c01_unlock(struct rp5c01_priv *priv) 88{ 89 rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, 90 RP5C01_MODE); 91} 92 93static int rp5c01_read_time(struct device *dev, struct rtc_time *tm) 94{ 95 struct rp5c01_priv *priv = dev_get_drvdata(dev); 96 97 spin_lock_irq(&priv->lock); 98 rp5c01_lock(priv); 99 100 tm->tm_sec = rp5c01_read(priv, RP5C01_10_SECOND) * 10 + 101 rp5c01_read(priv, RP5C01_1_SECOND); 102 tm->tm_min = rp5c01_read(priv, RP5C01_10_MINUTE) * 10 + 103 rp5c01_read(priv, RP5C01_1_MINUTE); 104 tm->tm_hour = rp5c01_read(priv, RP5C01_10_HOUR) * 10 + 105 rp5c01_read(priv, RP5C01_1_HOUR); 106 tm->tm_mday = rp5c01_read(priv, RP5C01_10_DAY) * 10 + 107 rp5c01_read(priv, RP5C01_1_DAY); 108 tm->tm_wday = rp5c01_read(priv, RP5C01_DAY_OF_WEEK); 109 tm->tm_mon = rp5c01_read(priv, RP5C01_10_MONTH) * 10 + 110 rp5c01_read(priv, RP5C01_1_MONTH) - 1; 111 tm->tm_year = rp5c01_read(priv, RP5C01_10_YEAR) * 10 + 112 rp5c01_read(priv, RP5C01_1_YEAR); 113 if (tm->tm_year <= 69) 114 tm->tm_year += 100; 115 116 rp5c01_unlock(priv); 117 spin_unlock_irq(&priv->lock); 118 119 return 0; 120} 121 122static int rp5c01_set_time(struct device *dev, struct rtc_time *tm) 123{ 124 struct rp5c01_priv *priv = dev_get_drvdata(dev); 125 126 spin_lock_irq(&priv->lock); 127 rp5c01_lock(priv); 128 129 rp5c01_write(priv, tm->tm_sec / 10, RP5C01_10_SECOND); 130 rp5c01_write(priv, tm->tm_sec % 10, RP5C01_1_SECOND); 131 rp5c01_write(priv, tm->tm_min / 10, RP5C01_10_MINUTE); 132 rp5c01_write(priv, tm->tm_min % 10, RP5C01_1_MINUTE); 133 rp5c01_write(priv, tm->tm_hour / 10, RP5C01_10_HOUR); 134 rp5c01_write(priv, tm->tm_hour % 10, RP5C01_1_HOUR); 135 rp5c01_write(priv, tm->tm_mday / 10, RP5C01_10_DAY); 136 rp5c01_write(priv, tm->tm_mday % 10, RP5C01_1_DAY); 137 if (tm->tm_wday != -1) 138 rp5c01_write(priv, tm->tm_wday, RP5C01_DAY_OF_WEEK); 139 rp5c01_write(priv, (tm->tm_mon + 1) / 10, RP5C01_10_MONTH); 140 rp5c01_write(priv, (tm->tm_mon + 1) % 10, RP5C01_1_MONTH); 141 if (tm->tm_year >= 100) 142 tm->tm_year -= 100; 143 rp5c01_write(priv, tm->tm_year / 10, RP5C01_10_YEAR); 144 rp5c01_write(priv, tm->tm_year % 10, RP5C01_1_YEAR); 145 146 rp5c01_unlock(priv); 147 spin_unlock_irq(&priv->lock); 148 return 0; 149} 150 151static const struct rtc_class_ops rp5c01_rtc_ops = { 152 .read_time = rp5c01_read_time, 153 .set_time = rp5c01_set_time, 154}; 155 156 157/* 158 * The NVRAM is organized as 2 blocks of 13 nibbles of 4 bits. 159 * We provide access to them like AmigaOS does: the high nibble of each 8-bit 160 * byte is stored in BLOCK10, the low nibble in BLOCK11. 161 */ 162 163static int rp5c01_nvram_read(void *_priv, unsigned int pos, void *val, 164 size_t bytes) 165{ 166 struct rp5c01_priv *priv = _priv; 167 u8 *buf = val; 168 169 spin_lock_irq(&priv->lock); 170 171 for (; bytes; bytes--) { 172 u8 data; 173 174 rp5c01_write(priv, 175 RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10, 176 RP5C01_MODE); 177 data = rp5c01_read(priv, pos) << 4; 178 rp5c01_write(priv, 179 RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11, 180 RP5C01_MODE); 181 data |= rp5c01_read(priv, pos++); 182 rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, 183 RP5C01_MODE); 184 *buf++ = data; 185 } 186 187 spin_unlock_irq(&priv->lock); 188 return 0; 189} 190 191static int rp5c01_nvram_write(void *_priv, unsigned int pos, void *val, 192 size_t bytes) 193{ 194 struct rp5c01_priv *priv = _priv; 195 u8 *buf = val; 196 197 spin_lock_irq(&priv->lock); 198 199 for (; bytes; bytes--) { 200 u8 data = *buf++; 201 202 rp5c01_write(priv, 203 RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10, 204 RP5C01_MODE); 205 rp5c01_write(priv, data >> 4, pos); 206 rp5c01_write(priv, 207 RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11, 208 RP5C01_MODE); 209 rp5c01_write(priv, data & 0xf, pos++); 210 rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, 211 RP5C01_MODE); 212 } 213 214 spin_unlock_irq(&priv->lock); 215 return 0; 216} 217 218static int __init rp5c01_rtc_probe(struct platform_device *dev) 219{ 220 struct resource *res; 221 struct rp5c01_priv *priv; 222 struct rtc_device *rtc; 223 int error; 224 struct nvmem_config nvmem_cfg = { 225 .name = "rp5c01_nvram", 226 .word_size = 1, 227 .stride = 1, 228 .size = RP5C01_MODE, 229 .reg_read = rp5c01_nvram_read, 230 .reg_write = rp5c01_nvram_write, 231 }; 232 233 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 234 if (!res) 235 return -ENODEV; 236 237 priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); 238 if (!priv) 239 return -ENOMEM; 240 241 priv->regs = devm_ioremap(&dev->dev, res->start, resource_size(res)); 242 if (!priv->regs) 243 return -ENOMEM; 244 245 spin_lock_init(&priv->lock); 246 247 platform_set_drvdata(dev, priv); 248 249 rtc = devm_rtc_allocate_device(&dev->dev); 250 if (IS_ERR(rtc)) 251 return PTR_ERR(rtc); 252 253 rtc->ops = &rp5c01_rtc_ops; 254 255 priv->rtc = rtc; 256 257 nvmem_cfg.priv = priv; 258 error = devm_rtc_nvmem_register(rtc, &nvmem_cfg); 259 if (error) 260 return error; 261 262 return devm_rtc_register_device(rtc); 263} 264 265static struct platform_driver rp5c01_rtc_driver = { 266 .driver = { 267 .name = "rtc-rp5c01", 268 }, 269}; 270 271module_platform_driver_probe(rp5c01_rtc_driver, rp5c01_rtc_probe); 272 273MODULE_AUTHOR("Geert Uytterhoeven <geert@linux-m68k.org>"); 274MODULE_LICENSE("GPL"); 275MODULE_DESCRIPTION("Ricoh RP5C01 RTC driver"); 276MODULE_ALIAS("platform:rtc-rp5c01");