cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rtc-sun6i.c (23835B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * An RTC driver for Allwinner A31/A23
      4 *
      5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
      6 *
      7 * based on rtc-sunxi.c
      8 *
      9 * An RTC driver for Allwinner A10/A20
     10 *
     11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
     12 */
     13
     14#include <linux/clk.h>
     15#include <linux/clk-provider.h>
     16#include <linux/clk/sunxi-ng.h>
     17#include <linux/delay.h>
     18#include <linux/err.h>
     19#include <linux/fs.h>
     20#include <linux/init.h>
     21#include <linux/interrupt.h>
     22#include <linux/io.h>
     23#include <linux/kernel.h>
     24#include <linux/module.h>
     25#include <linux/of.h>
     26#include <linux/of_address.h>
     27#include <linux/of_device.h>
     28#include <linux/platform_device.h>
     29#include <linux/rtc.h>
     30#include <linux/slab.h>
     31#include <linux/types.h>
     32
     33/* Control register */
     34#define SUN6I_LOSC_CTRL				0x0000
     35#define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
     36#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
     37#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
     38#define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
     39#define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
     40#define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
     41#define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
     42#define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
     43
     44#define SUN6I_LOSC_CLK_PRESCAL			0x0008
     45
     46/* RTC */
     47#define SUN6I_RTC_YMD				0x0010
     48#define SUN6I_RTC_HMS				0x0014
     49
     50/* Alarm 0 (counter) */
     51#define SUN6I_ALRM_COUNTER			0x0020
     52/* This holds the remaining alarm seconds on older SoCs (current value) */
     53#define SUN6I_ALRM_COUNTER_HMS			0x0024
     54#define SUN6I_ALRM_EN				0x0028
     55#define SUN6I_ALRM_EN_CNT_EN			BIT(0)
     56#define SUN6I_ALRM_IRQ_EN			0x002c
     57#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
     58#define SUN6I_ALRM_IRQ_STA			0x0030
     59#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
     60
     61/* Alarm 1 (wall clock) */
     62#define SUN6I_ALRM1_EN				0x0044
     63#define SUN6I_ALRM1_IRQ_EN			0x0048
     64#define SUN6I_ALRM1_IRQ_STA			0x004c
     65#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
     66
     67/* Alarm config */
     68#define SUN6I_ALARM_CONFIG			0x0050
     69#define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
     70
     71#define SUN6I_LOSC_OUT_GATING			0x0060
     72#define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0
     73
     74/* General-purpose data */
     75#define SUN6I_GP_DATA				0x0100
     76#define SUN6I_GP_DATA_SIZE			0x20
     77
     78/*
     79 * Get date values
     80 */
     81#define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
     82#define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
     83#define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
     84#define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
     85
     86/*
     87 * Get time values
     88 */
     89#define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
     90#define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
     91#define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
     92
     93/*
     94 * Set date values
     95 */
     96#define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
     97#define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
     98#define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
     99#define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
    100
    101/*
    102 * Set time values
    103 */
    104#define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
    105#define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
    106#define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
    107
    108/*
    109 * The year parameter passed to the driver is usually an offset relative to
    110 * the year 1900. This macro is used to convert this offset to another one
    111 * relative to the minimum year allowed by the hardware.
    112 *
    113 * The year range is 1970 - 2033. This range is selected to match Allwinner's
    114 * driver, even though it is somewhat limited.
    115 */
    116#define SUN6I_YEAR_MIN				1970
    117#define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
    118
    119#define SECS_PER_DAY				(24 * 3600ULL)
    120
    121/*
    122 * There are other differences between models, including:
    123 *
    124 *   - number of GPIO pins that can be configured to hold a certain level
    125 *   - crypto-key related registers (H5, H6)
    126 *   - boot process related (super standby, secondary processor entry address)
    127 *     registers (R40, H6)
    128 *   - SYS power domain controls (R40)
    129 *   - DCXO controls (H6)
    130 *   - RC oscillator calibration (H6)
    131 *
    132 * These functions are not covered by this driver.
    133 */
    134struct sun6i_rtc_clk_data {
    135	unsigned long rc_osc_rate;
    136	unsigned int fixed_prescaler : 16;
    137	unsigned int has_prescaler : 1;
    138	unsigned int has_out_clk : 1;
    139	unsigned int export_iosc : 1;
    140	unsigned int has_losc_en : 1;
    141	unsigned int has_auto_swt : 1;
    142};
    143
    144#define RTC_LINEAR_DAY	BIT(0)
    145
    146struct sun6i_rtc_dev {
    147	struct rtc_device *rtc;
    148	const struct sun6i_rtc_clk_data *data;
    149	void __iomem *base;
    150	int irq;
    151	time64_t alarm;
    152	unsigned long flags;
    153
    154	struct clk_hw hw;
    155	struct clk_hw *int_osc;
    156	struct clk *losc;
    157	struct clk *ext_losc;
    158
    159	spinlock_t lock;
    160};
    161
    162static struct sun6i_rtc_dev *sun6i_rtc;
    163
    164static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
    165					       unsigned long parent_rate)
    166{
    167	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
    168	u32 val = 0;
    169
    170	val = readl(rtc->base + SUN6I_LOSC_CTRL);
    171	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
    172		return parent_rate;
    173
    174	if (rtc->data->fixed_prescaler)
    175		parent_rate /= rtc->data->fixed_prescaler;
    176
    177	if (rtc->data->has_prescaler) {
    178		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
    179		val &= GENMASK(4, 0);
    180	}
    181
    182	return parent_rate / (val + 1);
    183}
    184
    185static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
    186{
    187	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
    188
    189	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
    190}
    191
    192static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
    193{
    194	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
    195	unsigned long flags;
    196	u32 val;
    197
    198	if (index > 1)
    199		return -EINVAL;
    200
    201	spin_lock_irqsave(&rtc->lock, flags);
    202	val = readl(rtc->base + SUN6I_LOSC_CTRL);
    203	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
    204	val |= SUN6I_LOSC_CTRL_KEY;
    205	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
    206	if (rtc->data->has_losc_en) {
    207		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
    208		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
    209	}
    210	writel(val, rtc->base + SUN6I_LOSC_CTRL);
    211	spin_unlock_irqrestore(&rtc->lock, flags);
    212
    213	return 0;
    214}
    215
    216static const struct clk_ops sun6i_rtc_osc_ops = {
    217	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
    218
    219	.get_parent	= sun6i_rtc_osc_get_parent,
    220	.set_parent	= sun6i_rtc_osc_set_parent,
    221};
    222
    223static void __init sun6i_rtc_clk_init(struct device_node *node,
    224				      const struct sun6i_rtc_clk_data *data)
    225{
    226	struct clk_hw_onecell_data *clk_data;
    227	struct sun6i_rtc_dev *rtc;
    228	struct clk_init_data init = {
    229		.ops		= &sun6i_rtc_osc_ops,
    230		.name		= "losc",
    231	};
    232	const char *iosc_name = "rtc-int-osc";
    233	const char *clkout_name = "osc32k-out";
    234	const char *parents[2];
    235	u32 reg;
    236
    237	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
    238	if (!rtc)
    239		return;
    240
    241	rtc->data = data;
    242	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
    243	if (!clk_data) {
    244		kfree(rtc);
    245		return;
    246	}
    247
    248	spin_lock_init(&rtc->lock);
    249
    250	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
    251	if (IS_ERR(rtc->base)) {
    252		pr_crit("Can't map RTC registers");
    253		goto err;
    254	}
    255
    256	reg = SUN6I_LOSC_CTRL_KEY;
    257	if (rtc->data->has_auto_swt) {
    258		/* Bypass auto-switch to int osc, on ext losc failure */
    259		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
    260		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
    261	}
    262
    263	/* Switch to the external, more precise, oscillator, if present */
    264	if (of_get_property(node, "clocks", NULL)) {
    265		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
    266		if (rtc->data->has_losc_en)
    267			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
    268	}
    269	writel(reg, rtc->base + SUN6I_LOSC_CTRL);
    270
    271	/* Yes, I know, this is ugly. */
    272	sun6i_rtc = rtc;
    273
    274	/* Only read IOSC name from device tree if it is exported */
    275	if (rtc->data->export_iosc)
    276		of_property_read_string_index(node, "clock-output-names", 2,
    277					      &iosc_name);
    278
    279	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
    280								iosc_name,
    281								NULL, 0,
    282								rtc->data->rc_osc_rate,
    283								300000000);
    284	if (IS_ERR(rtc->int_osc)) {
    285		pr_crit("Couldn't register the internal oscillator\n");
    286		goto err;
    287	}
    288
    289	parents[0] = clk_hw_get_name(rtc->int_osc);
    290	/* If there is no external oscillator, this will be NULL and ... */
    291	parents[1] = of_clk_get_parent_name(node, 0);
    292
    293	rtc->hw.init = &init;
    294
    295	init.parent_names = parents;
    296	/* ... number of clock parents will be 1. */
    297	init.num_parents = of_clk_get_parent_count(node) + 1;
    298	of_property_read_string_index(node, "clock-output-names", 0,
    299				      &init.name);
    300
    301	rtc->losc = clk_register(NULL, &rtc->hw);
    302	if (IS_ERR(rtc->losc)) {
    303		pr_crit("Couldn't register the LOSC clock\n");
    304		goto err_register;
    305	}
    306
    307	of_property_read_string_index(node, "clock-output-names", 1,
    308				      &clkout_name);
    309	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
    310					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
    311					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
    312					  &rtc->lock);
    313	if (IS_ERR(rtc->ext_losc)) {
    314		pr_crit("Couldn't register the LOSC external gate\n");
    315		goto err_register;
    316	}
    317
    318	clk_data->num = 2;
    319	clk_data->hws[0] = &rtc->hw;
    320	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
    321	if (rtc->data->export_iosc) {
    322		clk_data->hws[2] = rtc->int_osc;
    323		clk_data->num = 3;
    324	}
    325	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
    326	return;
    327
    328err_register:
    329	clk_hw_unregister_fixed_rate(rtc->int_osc);
    330err:
    331	kfree(clk_data);
    332}
    333
    334static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
    335	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
    336	.has_prescaler = 1,
    337};
    338
    339static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
    340{
    341	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
    342}
    343CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
    344		      sun6i_a31_rtc_clk_init);
    345
    346static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
    347	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
    348	.has_prescaler = 1,
    349	.has_out_clk = 1,
    350};
    351
    352static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
    353{
    354	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
    355}
    356CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
    357		      sun8i_a23_rtc_clk_init);
    358
    359static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
    360	.rc_osc_rate = 16000000,
    361	.fixed_prescaler = 32,
    362	.has_prescaler = 1,
    363	.has_out_clk = 1,
    364	.export_iosc = 1,
    365};
    366
    367static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
    368{
    369	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
    370}
    371CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
    372		      sun8i_h3_rtc_clk_init);
    373/* As far as we are concerned, clocks for H5 are the same as H3 */
    374CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
    375		      sun8i_h3_rtc_clk_init);
    376
    377static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
    378	.rc_osc_rate = 16000000,
    379	.fixed_prescaler = 32,
    380	.has_prescaler = 1,
    381	.has_out_clk = 1,
    382	.export_iosc = 1,
    383	.has_losc_en = 1,
    384	.has_auto_swt = 1,
    385};
    386
    387static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
    388{
    389	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
    390}
    391CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
    392		      sun50i_h6_rtc_clk_init);
    393
    394/*
    395 * The R40 user manual is self-conflicting on whether the prescaler is
    396 * fixed or configurable. The clock diagram shows it as fixed, but there
    397 * is also a configurable divider in the RTC block.
    398 */
    399static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
    400	.rc_osc_rate = 16000000,
    401	.fixed_prescaler = 512,
    402};
    403static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
    404{
    405	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
    406}
    407CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
    408		      sun8i_r40_rtc_clk_init);
    409
    410static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
    411	.rc_osc_rate = 32000,
    412	.has_out_clk = 1,
    413};
    414
    415static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
    416{
    417	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
    418}
    419CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
    420		      sun8i_v3_rtc_clk_init);
    421
    422static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
    423{
    424	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
    425	irqreturn_t ret = IRQ_NONE;
    426	u32 val;
    427
    428	spin_lock(&chip->lock);
    429	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
    430
    431	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
    432		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
    433		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
    434
    435		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
    436
    437		ret = IRQ_HANDLED;
    438	}
    439	spin_unlock(&chip->lock);
    440
    441	return ret;
    442}
    443
    444static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
    445{
    446	u32 alrm_val = 0;
    447	u32 alrm_irq_val = 0;
    448	u32 alrm_wake_val = 0;
    449	unsigned long flags;
    450
    451	if (to) {
    452		alrm_val = SUN6I_ALRM_EN_CNT_EN;
    453		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
    454		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
    455	} else {
    456		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
    457		       chip->base + SUN6I_ALRM_IRQ_STA);
    458	}
    459
    460	spin_lock_irqsave(&chip->lock, flags);
    461	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
    462	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
    463	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
    464	spin_unlock_irqrestore(&chip->lock, flags);
    465}
    466
    467static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
    468{
    469	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    470	u32 date, time;
    471
    472	/*
    473	 * read again in case it changes
    474	 */
    475	do {
    476		date = readl(chip->base + SUN6I_RTC_YMD);
    477		time = readl(chip->base + SUN6I_RTC_HMS);
    478	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
    479		 (time != readl(chip->base + SUN6I_RTC_HMS)));
    480
    481	if (chip->flags & RTC_LINEAR_DAY) {
    482		/*
    483		 * Newer chips store a linear day number, the manual
    484		 * does not mandate any epoch base. The BSP driver uses
    485		 * the UNIX epoch, let's just copy that, as it's the
    486		 * easiest anyway.
    487		 */
    488		rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
    489	} else {
    490		rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
    491		rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
    492		rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
    493
    494		/*
    495		 * switch from (data_year->min)-relative offset to
    496		 * a (1900)-relative one
    497		 */
    498		rtc_tm->tm_year += SUN6I_YEAR_OFF;
    499	}
    500
    501	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
    502	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
    503	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
    504
    505	return 0;
    506}
    507
    508static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
    509{
    510	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    511	unsigned long flags;
    512	u32 alrm_st;
    513	u32 alrm_en;
    514
    515	spin_lock_irqsave(&chip->lock, flags);
    516	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
    517	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
    518	spin_unlock_irqrestore(&chip->lock, flags);
    519
    520	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
    521	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
    522	rtc_time64_to_tm(chip->alarm, &wkalrm->time);
    523
    524	return 0;
    525}
    526
    527static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
    528{
    529	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    530	struct rtc_time *alrm_tm = &wkalrm->time;
    531	struct rtc_time tm_now;
    532	time64_t time_set;
    533	u32 counter_val, counter_val_hms;
    534	int ret;
    535
    536	time_set = rtc_tm_to_time64(alrm_tm);
    537
    538	if (chip->flags & RTC_LINEAR_DAY) {
    539		/*
    540		 * The alarm registers hold the actual alarm time, encoded
    541		 * in the same way (linear day + HMS) as the current time.
    542		 */
    543		counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
    544				  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
    545				  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
    546		/* The division will cut off the H:M:S part of alrm_tm. */
    547		counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
    548	} else {
    549		/* The alarm register holds the number of seconds left. */
    550		time64_t time_now;
    551
    552		ret = sun6i_rtc_gettime(dev, &tm_now);
    553		if (ret < 0) {
    554			dev_err(dev, "Error in getting time\n");
    555			return -EINVAL;
    556		}
    557
    558		time_now = rtc_tm_to_time64(&tm_now);
    559		if (time_set <= time_now) {
    560			dev_err(dev, "Date to set in the past\n");
    561			return -EINVAL;
    562		}
    563		if ((time_set - time_now) > U32_MAX) {
    564			dev_err(dev, "Date too far in the future\n");
    565			return -EINVAL;
    566		}
    567
    568		counter_val = time_set - time_now;
    569	}
    570
    571	sun6i_rtc_setaie(0, chip);
    572	writel(0, chip->base + SUN6I_ALRM_COUNTER);
    573	if (chip->flags & RTC_LINEAR_DAY)
    574		writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
    575	usleep_range(100, 300);
    576
    577	writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
    578	if (chip->flags & RTC_LINEAR_DAY)
    579		writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
    580	chip->alarm = time_set;
    581
    582	sun6i_rtc_setaie(wkalrm->enabled, chip);
    583
    584	return 0;
    585}
    586
    587static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
    588			  unsigned int mask, unsigned int ms_timeout)
    589{
    590	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
    591	u32 reg;
    592
    593	do {
    594		reg = readl(chip->base + offset);
    595		reg &= mask;
    596
    597		if (!reg)
    598			return 0;
    599
    600	} while (time_before(jiffies, timeout));
    601
    602	return -ETIMEDOUT;
    603}
    604
    605static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
    606{
    607	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    608	u32 date = 0;
    609	u32 time = 0;
    610
    611	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
    612		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
    613		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
    614
    615	if (chip->flags & RTC_LINEAR_DAY) {
    616		/* The division will cut off the H:M:S part of rtc_tm. */
    617		date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
    618	} else {
    619		rtc_tm->tm_year -= SUN6I_YEAR_OFF;
    620		rtc_tm->tm_mon += 1;
    621
    622		date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
    623			SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
    624			SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
    625
    626		if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
    627			date |= SUN6I_LEAP_SET_VALUE(1);
    628	}
    629
    630	/* Check whether registers are writable */
    631	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
    632			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
    633		dev_err(dev, "rtc is still busy.\n");
    634		return -EBUSY;
    635	}
    636
    637	writel(time, chip->base + SUN6I_RTC_HMS);
    638
    639	/*
    640	 * After writing the RTC HH-MM-SS register, the
    641	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
    642	 * be cleared until the real writing operation is finished
    643	 */
    644
    645	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
    646			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
    647		dev_err(dev, "Failed to set rtc time.\n");
    648		return -ETIMEDOUT;
    649	}
    650
    651	writel(date, chip->base + SUN6I_RTC_YMD);
    652
    653	/*
    654	 * After writing the RTC YY-MM-DD register, the
    655	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
    656	 * be cleared until the real writing operation is finished
    657	 */
    658
    659	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
    660			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
    661		dev_err(dev, "Failed to set rtc time.\n");
    662		return -ETIMEDOUT;
    663	}
    664
    665	return 0;
    666}
    667
    668static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
    669{
    670	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    671
    672	if (!enabled)
    673		sun6i_rtc_setaie(enabled, chip);
    674
    675	return 0;
    676}
    677
    678static const struct rtc_class_ops sun6i_rtc_ops = {
    679	.read_time		= sun6i_rtc_gettime,
    680	.set_time		= sun6i_rtc_settime,
    681	.read_alarm		= sun6i_rtc_getalarm,
    682	.set_alarm		= sun6i_rtc_setalarm,
    683	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
    684};
    685
    686static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
    687{
    688	struct sun6i_rtc_dev *chip = priv;
    689	u32 *val = _val;
    690	int i;
    691
    692	for (i = 0; i < bytes / 4; ++i)
    693		val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
    694
    695	return 0;
    696}
    697
    698static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
    699{
    700	struct sun6i_rtc_dev *chip = priv;
    701	u32 *val = _val;
    702	int i;
    703
    704	for (i = 0; i < bytes / 4; ++i)
    705		writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
    706
    707	return 0;
    708}
    709
    710static struct nvmem_config sun6i_rtc_nvmem_cfg = {
    711	.type		= NVMEM_TYPE_BATTERY_BACKED,
    712	.reg_read	= sun6i_rtc_nvmem_read,
    713	.reg_write	= sun6i_rtc_nvmem_write,
    714	.size		= SUN6I_GP_DATA_SIZE,
    715	.word_size	= 4,
    716	.stride		= 4,
    717};
    718
    719#ifdef CONFIG_PM_SLEEP
    720/* Enable IRQ wake on suspend, to wake up from RTC. */
    721static int sun6i_rtc_suspend(struct device *dev)
    722{
    723	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    724
    725	if (device_may_wakeup(dev))
    726		enable_irq_wake(chip->irq);
    727
    728	return 0;
    729}
    730
    731/* Disable IRQ wake on resume. */
    732static int sun6i_rtc_resume(struct device *dev)
    733{
    734	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
    735
    736	if (device_may_wakeup(dev))
    737		disable_irq_wake(chip->irq);
    738
    739	return 0;
    740}
    741#endif
    742
    743static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
    744	sun6i_rtc_suspend, sun6i_rtc_resume);
    745
    746static void sun6i_rtc_bus_clk_cleanup(void *data)
    747{
    748	struct clk *bus_clk = data;
    749
    750	clk_disable_unprepare(bus_clk);
    751}
    752
    753static int sun6i_rtc_probe(struct platform_device *pdev)
    754{
    755	struct sun6i_rtc_dev *chip = sun6i_rtc;
    756	struct device *dev = &pdev->dev;
    757	struct clk *bus_clk;
    758	int ret;
    759
    760	bus_clk = devm_clk_get_optional(dev, "bus");
    761	if (IS_ERR(bus_clk))
    762		return PTR_ERR(bus_clk);
    763
    764	if (bus_clk) {
    765		ret = clk_prepare_enable(bus_clk);
    766		if (ret)
    767			return ret;
    768
    769		ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
    770					       bus_clk);
    771		if (ret)
    772			return ret;
    773	}
    774
    775	if (!chip) {
    776		chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
    777		if (!chip)
    778			return -ENOMEM;
    779
    780		spin_lock_init(&chip->lock);
    781
    782		chip->base = devm_platform_ioremap_resource(pdev, 0);
    783		if (IS_ERR(chip->base))
    784			return PTR_ERR(chip->base);
    785
    786		if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
    787			ret = sun6i_rtc_ccu_probe(dev, chip->base);
    788			if (ret)
    789				return ret;
    790		}
    791	}
    792
    793	platform_set_drvdata(pdev, chip);
    794
    795	chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
    796
    797	chip->irq = platform_get_irq(pdev, 0);
    798	if (chip->irq < 0)
    799		return chip->irq;
    800
    801	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
    802			       0, dev_name(&pdev->dev), chip);
    803	if (ret) {
    804		dev_err(&pdev->dev, "Could not request IRQ\n");
    805		return ret;
    806	}
    807
    808	/* clear the alarm counter value */
    809	writel(0, chip->base + SUN6I_ALRM_COUNTER);
    810
    811	/* disable counter alarm */
    812	writel(0, chip->base + SUN6I_ALRM_EN);
    813
    814	/* disable counter alarm interrupt */
    815	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
    816
    817	/* disable week alarm */
    818	writel(0, chip->base + SUN6I_ALRM1_EN);
    819
    820	/* disable week alarm interrupt */
    821	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
    822
    823	/* clear counter alarm pending interrupts */
    824	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
    825	       chip->base + SUN6I_ALRM_IRQ_STA);
    826
    827	/* clear week alarm pending interrupts */
    828	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
    829	       chip->base + SUN6I_ALRM1_IRQ_STA);
    830
    831	/* disable alarm wakeup */
    832	writel(0, chip->base + SUN6I_ALARM_CONFIG);
    833
    834	clk_prepare_enable(chip->losc);
    835
    836	device_init_wakeup(&pdev->dev, 1);
    837
    838	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
    839	if (IS_ERR(chip->rtc))
    840		return PTR_ERR(chip->rtc);
    841
    842	chip->rtc->ops = &sun6i_rtc_ops;
    843	if (chip->flags & RTC_LINEAR_DAY)
    844		chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
    845	else
    846		chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
    847
    848	ret = devm_rtc_register_device(chip->rtc);
    849	if (ret)
    850		return ret;
    851
    852	sun6i_rtc_nvmem_cfg.priv = chip;
    853	ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
    854	if (ret)
    855		return ret;
    856
    857	dev_info(&pdev->dev, "RTC enabled\n");
    858
    859	return 0;
    860}
    861
    862/*
    863 * As far as RTC functionality goes, all models are the same. The
    864 * datasheets claim that different models have different number of
    865 * registers available for non-volatile storage, but experiments show
    866 * that all SoCs have 16 registers available for this purpose.
    867 */
    868static const struct of_device_id sun6i_rtc_dt_ids[] = {
    869	{ .compatible = "allwinner,sun6i-a31-rtc" },
    870	{ .compatible = "allwinner,sun8i-a23-rtc" },
    871	{ .compatible = "allwinner,sun8i-h3-rtc" },
    872	{ .compatible = "allwinner,sun8i-r40-rtc" },
    873	{ .compatible = "allwinner,sun8i-v3-rtc" },
    874	{ .compatible = "allwinner,sun50i-h5-rtc" },
    875	{ .compatible = "allwinner,sun50i-h6-rtc" },
    876	{ .compatible = "allwinner,sun50i-h616-rtc",
    877		.data = (void *)RTC_LINEAR_DAY },
    878	{ /* sentinel */ },
    879};
    880MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
    881
    882static struct platform_driver sun6i_rtc_driver = {
    883	.probe		= sun6i_rtc_probe,
    884	.driver		= {
    885		.name		= "sun6i-rtc",
    886		.of_match_table = sun6i_rtc_dt_ids,
    887		.pm = &sun6i_rtc_pm_ops,
    888	},
    889};
    890builtin_platform_driver(sun6i_rtc_driver);