cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

commsup.c (69181B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *	Adaptec AAC series RAID controller driver
      4 *	(c) Copyright 2001 Red Hat Inc.
      5 *
      6 * based on the old aacraid driver that is..
      7 * Adaptec aacraid device driver for Linux.
      8 *
      9 * Copyright (c) 2000-2010 Adaptec, Inc.
     10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
     11 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
     12 *
     13 * Module Name:
     14 *  commsup.c
     15 *
     16 * Abstract: Contain all routines that are required for FSA host/adapter
     17 *    communication.
     18 */
     19
     20#include <linux/kernel.h>
     21#include <linux/init.h>
     22#include <linux/crash_dump.h>
     23#include <linux/types.h>
     24#include <linux/sched.h>
     25#include <linux/pci.h>
     26#include <linux/spinlock.h>
     27#include <linux/slab.h>
     28#include <linux/completion.h>
     29#include <linux/blkdev.h>
     30#include <linux/delay.h>
     31#include <linux/kthread.h>
     32#include <linux/interrupt.h>
     33#include <linux/bcd.h>
     34#include <scsi/scsi.h>
     35#include <scsi/scsi_host.h>
     36#include <scsi/scsi_device.h>
     37#include <scsi/scsi_cmnd.h>
     38
     39#include "aacraid.h"
     40
     41/**
     42 *	fib_map_alloc		-	allocate the fib objects
     43 *	@dev: Adapter to allocate for
     44 *
     45 *	Allocate and map the shared PCI space for the FIB blocks used to
     46 *	talk to the Adaptec firmware.
     47 */
     48
     49static int fib_map_alloc(struct aac_dev *dev)
     50{
     51	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
     52		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
     53	else
     54		dev->max_cmd_size = dev->max_fib_size;
     55	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
     56		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
     57	} else {
     58		dev->max_cmd_size = dev->max_fib_size;
     59	}
     60
     61	dprintk((KERN_INFO
     62	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
     63	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
     64	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
     65	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
     66		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
     67		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
     68		&dev->hw_fib_pa, GFP_KERNEL);
     69	if (dev->hw_fib_va == NULL)
     70		return -ENOMEM;
     71	return 0;
     72}
     73
     74/**
     75 *	aac_fib_map_free		-	free the fib objects
     76 *	@dev: Adapter to free
     77 *
     78 *	Free the PCI mappings and the memory allocated for FIB blocks
     79 *	on this adapter.
     80 */
     81
     82void aac_fib_map_free(struct aac_dev *dev)
     83{
     84	size_t alloc_size;
     85	size_t fib_size;
     86	int num_fibs;
     87
     88	if(!dev->hw_fib_va || !dev->max_cmd_size)
     89		return;
     90
     91	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
     92	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
     93	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
     94
     95	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
     96			  dev->hw_fib_pa);
     97
     98	dev->hw_fib_va = NULL;
     99	dev->hw_fib_pa = 0;
    100}
    101
    102void aac_fib_vector_assign(struct aac_dev *dev)
    103{
    104	u32 i = 0;
    105	u32 vector = 1;
    106	struct fib *fibptr = NULL;
    107
    108	for (i = 0, fibptr = &dev->fibs[i];
    109		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
    110		i++, fibptr++) {
    111		if ((dev->max_msix == 1) ||
    112		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
    113			- dev->vector_cap))) {
    114			fibptr->vector_no = 0;
    115		} else {
    116			fibptr->vector_no = vector;
    117			vector++;
    118			if (vector == dev->max_msix)
    119				vector = 1;
    120		}
    121	}
    122}
    123
    124/**
    125 *	aac_fib_setup	-	setup the fibs
    126 *	@dev: Adapter to set up
    127 *
    128 *	Allocate the PCI space for the fibs, map it and then initialise the
    129 *	fib area, the unmapped fib data and also the free list
    130 */
    131
    132int aac_fib_setup(struct aac_dev * dev)
    133{
    134	struct fib *fibptr;
    135	struct hw_fib *hw_fib;
    136	dma_addr_t hw_fib_pa;
    137	int i;
    138	u32 max_cmds;
    139
    140	while (((i = fib_map_alloc(dev)) == -ENOMEM)
    141	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
    142		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
    143		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
    144		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
    145			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
    146	}
    147	if (i<0)
    148		return -ENOMEM;
    149
    150	memset(dev->hw_fib_va, 0,
    151		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
    152		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
    153
    154	/* 32 byte alignment for PMC */
    155	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
    156	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
    157					(hw_fib_pa - dev->hw_fib_pa));
    158
    159	/* add Xport header */
    160	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
    161		sizeof(struct aac_fib_xporthdr));
    162	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
    163
    164	/*
    165	 *	Initialise the fibs
    166	 */
    167	for (i = 0, fibptr = &dev->fibs[i];
    168		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
    169		i++, fibptr++)
    170	{
    171		fibptr->flags = 0;
    172		fibptr->size = sizeof(struct fib);
    173		fibptr->dev = dev;
    174		fibptr->hw_fib_va = hw_fib;
    175		fibptr->data = (void *) fibptr->hw_fib_va->data;
    176		fibptr->next = fibptr+1;	/* Forward chain the fibs */
    177		init_completion(&fibptr->event_wait);
    178		spin_lock_init(&fibptr->event_lock);
    179		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
    180		hw_fib->header.SenderSize =
    181			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
    182		fibptr->hw_fib_pa = hw_fib_pa;
    183		fibptr->hw_sgl_pa = hw_fib_pa +
    184			offsetof(struct aac_hba_cmd_req, sge[2]);
    185		/*
    186		 * one element is for the ptr to the separate sg list,
    187		 * second element for 32 byte alignment
    188		 */
    189		fibptr->hw_error_pa = hw_fib_pa +
    190			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
    191
    192		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
    193			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
    194		hw_fib_pa = hw_fib_pa +
    195			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
    196	}
    197
    198	/*
    199	 *Assign vector numbers to fibs
    200	 */
    201	aac_fib_vector_assign(dev);
    202
    203	/*
    204	 *	Add the fib chain to the free list
    205	 */
    206	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
    207	/*
    208	*	Set 8 fibs aside for management tools
    209	*/
    210	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
    211	return 0;
    212}
    213
    214/**
    215 *	aac_fib_alloc_tag-allocate a fib using tags
    216 *	@dev: Adapter to allocate the fib for
    217 *	@scmd: SCSI command
    218 *
    219 *	Allocate a fib from the adapter fib pool using tags
    220 *	from the blk layer.
    221 */
    222
    223struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
    224{
    225	struct fib *fibptr;
    226
    227	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
    228	/*
    229	 *	Null out fields that depend on being zero at the start of
    230	 *	each I/O
    231	 */
    232	fibptr->hw_fib_va->header.XferState = 0;
    233	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
    234	fibptr->callback_data = NULL;
    235	fibptr->callback = NULL;
    236	fibptr->flags = 0;
    237
    238	return fibptr;
    239}
    240
    241/**
    242 *	aac_fib_alloc	-	allocate a fib
    243 *	@dev: Adapter to allocate the fib for
    244 *
    245 *	Allocate a fib from the adapter fib pool. If the pool is empty we
    246 *	return NULL.
    247 */
    248
    249struct fib *aac_fib_alloc(struct aac_dev *dev)
    250{
    251	struct fib * fibptr;
    252	unsigned long flags;
    253	spin_lock_irqsave(&dev->fib_lock, flags);
    254	fibptr = dev->free_fib;
    255	if(!fibptr){
    256		spin_unlock_irqrestore(&dev->fib_lock, flags);
    257		return fibptr;
    258	}
    259	dev->free_fib = fibptr->next;
    260	spin_unlock_irqrestore(&dev->fib_lock, flags);
    261	/*
    262	 *	Set the proper node type code and node byte size
    263	 */
    264	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
    265	fibptr->size = sizeof(struct fib);
    266	/*
    267	 *	Null out fields that depend on being zero at the start of
    268	 *	each I/O
    269	 */
    270	fibptr->hw_fib_va->header.XferState = 0;
    271	fibptr->flags = 0;
    272	fibptr->callback = NULL;
    273	fibptr->callback_data = NULL;
    274
    275	return fibptr;
    276}
    277
    278/**
    279 *	aac_fib_free	-	free a fib
    280 *	@fibptr: fib to free up
    281 *
    282 *	Frees up a fib and places it on the appropriate queue
    283 */
    284
    285void aac_fib_free(struct fib *fibptr)
    286{
    287	unsigned long flags;
    288
    289	if (fibptr->done == 2)
    290		return;
    291
    292	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
    293	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
    294		aac_config.fib_timeouts++;
    295	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
    296		fibptr->hw_fib_va->header.XferState != 0) {
    297		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
    298			 (void*)fibptr,
    299			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
    300	}
    301	fibptr->next = fibptr->dev->free_fib;
    302	fibptr->dev->free_fib = fibptr;
    303	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
    304}
    305
    306/**
    307 *	aac_fib_init	-	initialise a fib
    308 *	@fibptr: The fib to initialize
    309 *
    310 *	Set up the generic fib fields ready for use
    311 */
    312
    313void aac_fib_init(struct fib *fibptr)
    314{
    315	struct hw_fib *hw_fib = fibptr->hw_fib_va;
    316
    317	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
    318	hw_fib->header.StructType = FIB_MAGIC;
    319	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
    320	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
    321	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
    322	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
    323}
    324
    325/**
    326 *	fib_dealloc		-	deallocate a fib
    327 *	@fibptr: fib to deallocate
    328 *
    329 *	Will deallocate and return to the free pool the FIB pointed to by the
    330 *	caller.
    331 */
    332
    333static void fib_dealloc(struct fib * fibptr)
    334{
    335	struct hw_fib *hw_fib = fibptr->hw_fib_va;
    336	hw_fib->header.XferState = 0;
    337}
    338
    339/*
    340 *	Commuication primitives define and support the queuing method we use to
    341 *	support host to adapter commuication. All queue accesses happen through
    342 *	these routines and are the only routines which have a knowledge of the
    343 *	 how these queues are implemented.
    344 */
    345
    346/**
    347 *	aac_get_entry		-	get a queue entry
    348 *	@dev: Adapter
    349 *	@qid: Queue Number
    350 *	@entry: Entry return
    351 *	@index: Index return
    352 *	@nonotify: notification control
    353 *
    354 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
    355 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
    356 *	returned.
    357 */
    358
    359static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
    360{
    361	struct aac_queue * q;
    362	unsigned long idx;
    363
    364	/*
    365	 *	All of the queues wrap when they reach the end, so we check
    366	 *	to see if they have reached the end and if they have we just
    367	 *	set the index back to zero. This is a wrap. You could or off
    368	 *	the high bits in all updates but this is a bit faster I think.
    369	 */
    370
    371	q = &dev->queues->queue[qid];
    372
    373	idx = *index = le32_to_cpu(*(q->headers.producer));
    374	/* Interrupt Moderation, only interrupt for first two entries */
    375	if (idx != le32_to_cpu(*(q->headers.consumer))) {
    376		if (--idx == 0) {
    377			if (qid == AdapNormCmdQueue)
    378				idx = ADAP_NORM_CMD_ENTRIES;
    379			else
    380				idx = ADAP_NORM_RESP_ENTRIES;
    381		}
    382		if (idx != le32_to_cpu(*(q->headers.consumer)))
    383			*nonotify = 1;
    384	}
    385
    386	if (qid == AdapNormCmdQueue) {
    387		if (*index >= ADAP_NORM_CMD_ENTRIES)
    388			*index = 0; /* Wrap to front of the Producer Queue. */
    389	} else {
    390		if (*index >= ADAP_NORM_RESP_ENTRIES)
    391			*index = 0; /* Wrap to front of the Producer Queue. */
    392	}
    393
    394	/* Queue is full */
    395	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
    396		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
    397				qid, atomic_read(&q->numpending));
    398		return 0;
    399	} else {
    400		*entry = q->base + *index;
    401		return 1;
    402	}
    403}
    404
    405/**
    406 *	aac_queue_get		-	get the next free QE
    407 *	@dev: Adapter
    408 *	@index: Returned index
    409 *	@qid: Queue number
    410 *	@hw_fib: Fib to associate with the queue entry
    411 *	@wait: Wait if queue full
    412 *	@fibptr: Driver fib object to go with fib
    413 *	@nonotify: Don't notify the adapter
    414 *
    415 *	Gets the next free QE off the requested priorty adapter command
    416 *	queue and associates the Fib with the QE. The QE represented by
    417 *	index is ready to insert on the queue when this routine returns
    418 *	success.
    419 */
    420
    421int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
    422{
    423	struct aac_entry * entry = NULL;
    424	int map = 0;
    425
    426	if (qid == AdapNormCmdQueue) {
    427		/*  if no entries wait for some if caller wants to */
    428		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
    429			printk(KERN_ERR "GetEntries failed\n");
    430		}
    431		/*
    432		 *	Setup queue entry with a command, status and fib mapped
    433		 */
    434		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
    435		map = 1;
    436	} else {
    437		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
    438			/* if no entries wait for some if caller wants to */
    439		}
    440		/*
    441		 *	Setup queue entry with command, status and fib mapped
    442		 */
    443		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
    444		entry->addr = hw_fib->header.SenderFibAddress;
    445			/* Restore adapters pointer to the FIB */
    446		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
    447		map = 0;
    448	}
    449	/*
    450	 *	If MapFib is true than we need to map the Fib and put pointers
    451	 *	in the queue entry.
    452	 */
    453	if (map)
    454		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
    455	return 0;
    456}
    457
    458/*
    459 *	Define the highest level of host to adapter communication routines.
    460 *	These routines will support host to adapter FS commuication. These
    461 *	routines have no knowledge of the commuication method used. This level
    462 *	sends and receives FIBs. This level has no knowledge of how these FIBs
    463 *	get passed back and forth.
    464 */
    465
    466/**
    467 *	aac_fib_send	-	send a fib to the adapter
    468 *	@command: Command to send
    469 *	@fibptr: The fib
    470 *	@size: Size of fib data area
    471 *	@priority: Priority of Fib
    472 *	@wait: Async/sync select
    473 *	@reply: True if a reply is wanted
    474 *	@callback: Called with reply
    475 *	@callback_data: Passed to callback
    476 *
    477 *	Sends the requested FIB to the adapter and optionally will wait for a
    478 *	response FIB. If the caller does not wish to wait for a response than
    479 *	an event to wait on must be supplied. This event will be set when a
    480 *	response FIB is received from the adapter.
    481 */
    482
    483int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
    484		int priority, int wait, int reply, fib_callback callback,
    485		void *callback_data)
    486{
    487	struct aac_dev * dev = fibptr->dev;
    488	struct hw_fib * hw_fib = fibptr->hw_fib_va;
    489	unsigned long flags = 0;
    490	unsigned long mflags = 0;
    491	unsigned long sflags = 0;
    492
    493	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
    494		return -EBUSY;
    495
    496	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
    497		return -EINVAL;
    498
    499	/*
    500	 *	There are 5 cases with the wait and response requested flags.
    501	 *	The only invalid cases are if the caller requests to wait and
    502	 *	does not request a response and if the caller does not want a
    503	 *	response and the Fib is not allocated from pool. If a response
    504	 *	is not requested the Fib will just be deallocaed by the DPC
    505	 *	routine when the response comes back from the adapter. No
    506	 *	further processing will be done besides deleting the Fib. We
    507	 *	will have a debug mode where the adapter can notify the host
    508	 *	it had a problem and the host can log that fact.
    509	 */
    510	fibptr->flags = 0;
    511	if (wait && !reply) {
    512		return -EINVAL;
    513	} else if (!wait && reply) {
    514		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
    515		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
    516	} else if (!wait && !reply) {
    517		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
    518		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
    519	} else if (wait && reply) {
    520		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
    521		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
    522	}
    523	/*
    524	 *	Map the fib into 32bits by using the fib number
    525	 */
    526
    527	hw_fib->header.SenderFibAddress =
    528		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
    529
    530	/* use the same shifted value for handle to be compatible
    531	 * with the new native hba command handle
    532	 */
    533	hw_fib->header.Handle =
    534		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
    535
    536	/*
    537	 *	Set FIB state to indicate where it came from and if we want a
    538	 *	response from the adapter. Also load the command from the
    539	 *	caller.
    540	 *
    541	 *	Map the hw fib pointer as a 32bit value
    542	 */
    543	hw_fib->header.Command = cpu_to_le16(command);
    544	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
    545	/*
    546	 *	Set the size of the Fib we want to send to the adapter
    547	 */
    548	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
    549	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
    550		return -EMSGSIZE;
    551	}
    552	/*
    553	 *	Get a queue entry connect the FIB to it and send an notify
    554	 *	the adapter a command is ready.
    555	 */
    556	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
    557
    558	/*
    559	 *	Fill in the Callback and CallbackContext if we are not
    560	 *	going to wait.
    561	 */
    562	if (!wait) {
    563		fibptr->callback = callback;
    564		fibptr->callback_data = callback_data;
    565		fibptr->flags = FIB_CONTEXT_FLAG;
    566	}
    567
    568	fibptr->done = 0;
    569
    570	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
    571
    572	dprintk((KERN_DEBUG "Fib contents:.\n"));
    573	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
    574	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
    575	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
    576	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
    577	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
    578	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
    579
    580	if (!dev->queues)
    581		return -EBUSY;
    582
    583	if (wait) {
    584
    585		spin_lock_irqsave(&dev->manage_lock, mflags);
    586		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
    587			printk(KERN_INFO "No management Fibs Available:%d\n",
    588						dev->management_fib_count);
    589			spin_unlock_irqrestore(&dev->manage_lock, mflags);
    590			return -EBUSY;
    591		}
    592		dev->management_fib_count++;
    593		spin_unlock_irqrestore(&dev->manage_lock, mflags);
    594		spin_lock_irqsave(&fibptr->event_lock, flags);
    595	}
    596
    597	if (dev->sync_mode) {
    598		if (wait)
    599			spin_unlock_irqrestore(&fibptr->event_lock, flags);
    600		spin_lock_irqsave(&dev->sync_lock, sflags);
    601		if (dev->sync_fib) {
    602			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
    603			spin_unlock_irqrestore(&dev->sync_lock, sflags);
    604		} else {
    605			dev->sync_fib = fibptr;
    606			spin_unlock_irqrestore(&dev->sync_lock, sflags);
    607			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
    608				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
    609				NULL, NULL, NULL, NULL, NULL);
    610		}
    611		if (wait) {
    612			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
    613			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
    614				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
    615				return -EFAULT;
    616			}
    617			return 0;
    618		}
    619		return -EINPROGRESS;
    620	}
    621
    622	if (aac_adapter_deliver(fibptr) != 0) {
    623		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
    624		if (wait) {
    625			spin_unlock_irqrestore(&fibptr->event_lock, flags);
    626			spin_lock_irqsave(&dev->manage_lock, mflags);
    627			dev->management_fib_count--;
    628			spin_unlock_irqrestore(&dev->manage_lock, mflags);
    629		}
    630		return -EBUSY;
    631	}
    632
    633
    634	/*
    635	 *	If the caller wanted us to wait for response wait now.
    636	 */
    637
    638	if (wait) {
    639		spin_unlock_irqrestore(&fibptr->event_lock, flags);
    640		/* Only set for first known interruptable command */
    641		if (wait < 0) {
    642			/*
    643			 * *VERY* Dangerous to time out a command, the
    644			 * assumption is made that we have no hope of
    645			 * functioning because an interrupt routing or other
    646			 * hardware failure has occurred.
    647			 */
    648			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
    649			while (!try_wait_for_completion(&fibptr->event_wait)) {
    650				int blink;
    651				if (time_is_before_eq_jiffies(timeout)) {
    652					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
    653					atomic_dec(&q->numpending);
    654					if (wait == -1) {
    655	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
    656						  "Usually a result of a PCI interrupt routing problem;\n"
    657						  "update mother board BIOS or consider utilizing one of\n"
    658						  "the SAFE mode kernel options (acpi, apic etc)\n");
    659					}
    660					return -ETIMEDOUT;
    661				}
    662
    663				if (unlikely(aac_pci_offline(dev)))
    664					return -EFAULT;
    665
    666				if ((blink = aac_adapter_check_health(dev)) > 0) {
    667					if (wait == -1) {
    668	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
    669						  "Usually a result of a serious unrecoverable hardware problem\n",
    670						  blink);
    671					}
    672					return -EFAULT;
    673				}
    674				/*
    675				 * Allow other processes / CPUS to use core
    676				 */
    677				schedule();
    678			}
    679		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
    680			/* Do nothing ... satisfy
    681			 * wait_for_completion_interruptible must_check */
    682		}
    683
    684		spin_lock_irqsave(&fibptr->event_lock, flags);
    685		if (fibptr->done == 0) {
    686			fibptr->done = 2; /* Tell interrupt we aborted */
    687			spin_unlock_irqrestore(&fibptr->event_lock, flags);
    688			return -ERESTARTSYS;
    689		}
    690		spin_unlock_irqrestore(&fibptr->event_lock, flags);
    691		BUG_ON(fibptr->done == 0);
    692
    693		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
    694			return -ETIMEDOUT;
    695		return 0;
    696	}
    697	/*
    698	 *	If the user does not want a response than return success otherwise
    699	 *	return pending
    700	 */
    701	if (reply)
    702		return -EINPROGRESS;
    703	else
    704		return 0;
    705}
    706
    707int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
    708		void *callback_data)
    709{
    710	struct aac_dev *dev = fibptr->dev;
    711	int wait;
    712	unsigned long flags = 0;
    713	unsigned long mflags = 0;
    714	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
    715			fibptr->hw_fib_va;
    716
    717	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
    718	if (callback) {
    719		wait = 0;
    720		fibptr->callback = callback;
    721		fibptr->callback_data = callback_data;
    722	} else
    723		wait = 1;
    724
    725
    726	hbacmd->iu_type = command;
    727
    728	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
    729		/* bit1 of request_id must be 0 */
    730		hbacmd->request_id =
    731			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
    732		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
    733	} else
    734		return -EINVAL;
    735
    736
    737	if (wait) {
    738		spin_lock_irqsave(&dev->manage_lock, mflags);
    739		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
    740			spin_unlock_irqrestore(&dev->manage_lock, mflags);
    741			return -EBUSY;
    742		}
    743		dev->management_fib_count++;
    744		spin_unlock_irqrestore(&dev->manage_lock, mflags);
    745		spin_lock_irqsave(&fibptr->event_lock, flags);
    746	}
    747
    748	if (aac_adapter_deliver(fibptr) != 0) {
    749		if (wait) {
    750			spin_unlock_irqrestore(&fibptr->event_lock, flags);
    751			spin_lock_irqsave(&dev->manage_lock, mflags);
    752			dev->management_fib_count--;
    753			spin_unlock_irqrestore(&dev->manage_lock, mflags);
    754		}
    755		return -EBUSY;
    756	}
    757	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
    758
    759	if (wait) {
    760
    761		spin_unlock_irqrestore(&fibptr->event_lock, flags);
    762
    763		if (unlikely(aac_pci_offline(dev)))
    764			return -EFAULT;
    765
    766		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
    767		if (wait_for_completion_interruptible(&fibptr->event_wait))
    768			fibptr->done = 2;
    769		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
    770
    771		spin_lock_irqsave(&fibptr->event_lock, flags);
    772		if ((fibptr->done == 0) || (fibptr->done == 2)) {
    773			fibptr->done = 2; /* Tell interrupt we aborted */
    774			spin_unlock_irqrestore(&fibptr->event_lock, flags);
    775			return -ERESTARTSYS;
    776		}
    777		spin_unlock_irqrestore(&fibptr->event_lock, flags);
    778		WARN_ON(fibptr->done == 0);
    779
    780		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
    781			return -ETIMEDOUT;
    782
    783		return 0;
    784	}
    785
    786	return -EINPROGRESS;
    787}
    788
    789/**
    790 *	aac_consumer_get	-	get the top of the queue
    791 *	@dev: Adapter
    792 *	@q: Queue
    793 *	@entry: Return entry
    794 *
    795 *	Will return a pointer to the entry on the top of the queue requested that
    796 *	we are a consumer of, and return the address of the queue entry. It does
    797 *	not change the state of the queue.
    798 */
    799
    800int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
    801{
    802	u32 index;
    803	int status;
    804	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
    805		status = 0;
    806	} else {
    807		/*
    808		 *	The consumer index must be wrapped if we have reached
    809		 *	the end of the queue, else we just use the entry
    810		 *	pointed to by the header index
    811		 */
    812		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
    813			index = 0;
    814		else
    815			index = le32_to_cpu(*q->headers.consumer);
    816		*entry = q->base + index;
    817		status = 1;
    818	}
    819	return(status);
    820}
    821
    822/**
    823 *	aac_consumer_free	-	free consumer entry
    824 *	@dev: Adapter
    825 *	@q: Queue
    826 *	@qid: Queue ident
    827 *
    828 *	Frees up the current top of the queue we are a consumer of. If the
    829 *	queue was full notify the producer that the queue is no longer full.
    830 */
    831
    832void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
    833{
    834	int wasfull = 0;
    835	u32 notify;
    836
    837	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
    838		wasfull = 1;
    839
    840	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
    841		*q->headers.consumer = cpu_to_le32(1);
    842	else
    843		le32_add_cpu(q->headers.consumer, 1);
    844
    845	if (wasfull) {
    846		switch (qid) {
    847
    848		case HostNormCmdQueue:
    849			notify = HostNormCmdNotFull;
    850			break;
    851		case HostNormRespQueue:
    852			notify = HostNormRespNotFull;
    853			break;
    854		default:
    855			BUG();
    856			return;
    857		}
    858		aac_adapter_notify(dev, notify);
    859	}
    860}
    861
    862/**
    863 *	aac_fib_adapter_complete	-	complete adapter issued fib
    864 *	@fibptr: fib to complete
    865 *	@size: size of fib
    866 *
    867 *	Will do all necessary work to complete a FIB that was sent from
    868 *	the adapter.
    869 */
    870
    871int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
    872{
    873	struct hw_fib * hw_fib = fibptr->hw_fib_va;
    874	struct aac_dev * dev = fibptr->dev;
    875	struct aac_queue * q;
    876	unsigned long nointr = 0;
    877	unsigned long qflags;
    878
    879	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
    880		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
    881		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
    882		kfree(hw_fib);
    883		return 0;
    884	}
    885
    886	if (hw_fib->header.XferState == 0) {
    887		if (dev->comm_interface == AAC_COMM_MESSAGE)
    888			kfree(hw_fib);
    889		return 0;
    890	}
    891	/*
    892	 *	If we plan to do anything check the structure type first.
    893	 */
    894	if (hw_fib->header.StructType != FIB_MAGIC &&
    895	    hw_fib->header.StructType != FIB_MAGIC2 &&
    896	    hw_fib->header.StructType != FIB_MAGIC2_64) {
    897		if (dev->comm_interface == AAC_COMM_MESSAGE)
    898			kfree(hw_fib);
    899		return -EINVAL;
    900	}
    901	/*
    902	 *	This block handles the case where the adapter had sent us a
    903	 *	command and we have finished processing the command. We
    904	 *	call completeFib when we are done processing the command
    905	 *	and want to send a response back to the adapter. This will
    906	 *	send the completed cdb to the adapter.
    907	 */
    908	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
    909		if (dev->comm_interface == AAC_COMM_MESSAGE) {
    910			kfree (hw_fib);
    911		} else {
    912			u32 index;
    913			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
    914			if (size) {
    915				size += sizeof(struct aac_fibhdr);
    916				if (size > le16_to_cpu(hw_fib->header.SenderSize))
    917					return -EMSGSIZE;
    918				hw_fib->header.Size = cpu_to_le16(size);
    919			}
    920			q = &dev->queues->queue[AdapNormRespQueue];
    921			spin_lock_irqsave(q->lock, qflags);
    922			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
    923			*(q->headers.producer) = cpu_to_le32(index + 1);
    924			spin_unlock_irqrestore(q->lock, qflags);
    925			if (!(nointr & (int)aac_config.irq_mod))
    926				aac_adapter_notify(dev, AdapNormRespQueue);
    927		}
    928	} else {
    929		printk(KERN_WARNING "aac_fib_adapter_complete: "
    930			"Unknown xferstate detected.\n");
    931		BUG();
    932	}
    933	return 0;
    934}
    935
    936/**
    937 *	aac_fib_complete	-	fib completion handler
    938 *	@fibptr: FIB to complete
    939 *
    940 *	Will do all necessary work to complete a FIB.
    941 */
    942
    943int aac_fib_complete(struct fib *fibptr)
    944{
    945	struct hw_fib * hw_fib = fibptr->hw_fib_va;
    946
    947	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
    948		fib_dealloc(fibptr);
    949		return 0;
    950	}
    951
    952	/*
    953	 *	Check for a fib which has already been completed or with a
    954	 *	status wait timeout
    955	 */
    956
    957	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
    958		return 0;
    959	/*
    960	 *	If we plan to do anything check the structure type first.
    961	 */
    962
    963	if (hw_fib->header.StructType != FIB_MAGIC &&
    964	    hw_fib->header.StructType != FIB_MAGIC2 &&
    965	    hw_fib->header.StructType != FIB_MAGIC2_64)
    966		return -EINVAL;
    967	/*
    968	 *	This block completes a cdb which orginated on the host and we
    969	 *	just need to deallocate the cdb or reinit it. At this point the
    970	 *	command is complete that we had sent to the adapter and this
    971	 *	cdb could be reused.
    972	 */
    973
    974	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
    975		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
    976	{
    977		fib_dealloc(fibptr);
    978	}
    979	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
    980	{
    981		/*
    982		 *	This handles the case when the host has aborted the I/O
    983		 *	to the adapter because the adapter is not responding
    984		 */
    985		fib_dealloc(fibptr);
    986	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
    987		fib_dealloc(fibptr);
    988	} else {
    989		BUG();
    990	}
    991	return 0;
    992}
    993
    994/**
    995 *	aac_printf	-	handle printf from firmware
    996 *	@dev: Adapter
    997 *	@val: Message info
    998 *
    999 *	Print a message passed to us by the controller firmware on the
   1000 *	Adaptec board
   1001 */
   1002
   1003void aac_printf(struct aac_dev *dev, u32 val)
   1004{
   1005	char *cp = dev->printfbuf;
   1006	if (dev->printf_enabled)
   1007	{
   1008		int length = val & 0xffff;
   1009		int level = (val >> 16) & 0xffff;
   1010
   1011		/*
   1012		 *	The size of the printfbuf is set in port.c
   1013		 *	There is no variable or define for it
   1014		 */
   1015		if (length > 255)
   1016			length = 255;
   1017		if (cp[length] != 0)
   1018			cp[length] = 0;
   1019		if (level == LOG_AAC_HIGH_ERROR)
   1020			printk(KERN_WARNING "%s:%s", dev->name, cp);
   1021		else
   1022			printk(KERN_INFO "%s:%s", dev->name, cp);
   1023	}
   1024	memset(cp, 0, 256);
   1025}
   1026
   1027static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
   1028{
   1029	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
   1030}
   1031
   1032
   1033static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
   1034{
   1035	switch (aac_aif_data(aifcmd, 1)) {
   1036	case AifBuCacheDataLoss:
   1037		if (aac_aif_data(aifcmd, 2))
   1038			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
   1039			aac_aif_data(aifcmd, 2));
   1040		else
   1041			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
   1042		break;
   1043	case AifBuCacheDataRecover:
   1044		if (aac_aif_data(aifcmd, 2))
   1045			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
   1046			aac_aif_data(aifcmd, 2));
   1047		else
   1048			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
   1049		break;
   1050	}
   1051}
   1052
   1053#define AIF_SNIFF_TIMEOUT	(500*HZ)
   1054/**
   1055 *	aac_handle_aif		-	Handle a message from the firmware
   1056 *	@dev: Which adapter this fib is from
   1057 *	@fibptr: Pointer to fibptr from adapter
   1058 *
   1059 *	This routine handles a driver notify fib from the adapter and
   1060 *	dispatches it to the appropriate routine for handling.
   1061 */
   1062static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
   1063{
   1064	struct hw_fib * hw_fib = fibptr->hw_fib_va;
   1065	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
   1066	u32 channel, id, lun, container;
   1067	struct scsi_device *device;
   1068	enum {
   1069		NOTHING,
   1070		DELETE,
   1071		ADD,
   1072		CHANGE
   1073	} device_config_needed = NOTHING;
   1074
   1075	/* Sniff for container changes */
   1076
   1077	if (!dev || !dev->fsa_dev)
   1078		return;
   1079	container = channel = id = lun = (u32)-1;
   1080
   1081	/*
   1082	 *	We have set this up to try and minimize the number of
   1083	 * re-configures that take place. As a result of this when
   1084	 * certain AIF's come in we will set a flag waiting for another
   1085	 * type of AIF before setting the re-config flag.
   1086	 */
   1087	switch (le32_to_cpu(aifcmd->command)) {
   1088	case AifCmdDriverNotify:
   1089		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
   1090		case AifRawDeviceRemove:
   1091			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1092			if ((container >> 28)) {
   1093				container = (u32)-1;
   1094				break;
   1095			}
   1096			channel = (container >> 24) & 0xF;
   1097			if (channel >= dev->maximum_num_channels) {
   1098				container = (u32)-1;
   1099				break;
   1100			}
   1101			id = container & 0xFFFF;
   1102			if (id >= dev->maximum_num_physicals) {
   1103				container = (u32)-1;
   1104				break;
   1105			}
   1106			lun = (container >> 16) & 0xFF;
   1107			container = (u32)-1;
   1108			channel = aac_phys_to_logical(channel);
   1109			device_config_needed = DELETE;
   1110			break;
   1111
   1112		/*
   1113		 *	Morph or Expand complete
   1114		 */
   1115		case AifDenMorphComplete:
   1116		case AifDenVolumeExtendComplete:
   1117			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1118			if (container >= dev->maximum_num_containers)
   1119				break;
   1120
   1121			/*
   1122			 *	Find the scsi_device associated with the SCSI
   1123			 * address. Make sure we have the right array, and if
   1124			 * so set the flag to initiate a new re-config once we
   1125			 * see an AifEnConfigChange AIF come through.
   1126			 */
   1127
   1128			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
   1129				device = scsi_device_lookup(dev->scsi_host_ptr,
   1130					CONTAINER_TO_CHANNEL(container),
   1131					CONTAINER_TO_ID(container),
   1132					CONTAINER_TO_LUN(container));
   1133				if (device) {
   1134					dev->fsa_dev[container].config_needed = CHANGE;
   1135					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
   1136					dev->fsa_dev[container].config_waiting_stamp = jiffies;
   1137					scsi_device_put(device);
   1138				}
   1139			}
   1140		}
   1141
   1142		/*
   1143		 *	If we are waiting on something and this happens to be
   1144		 * that thing then set the re-configure flag.
   1145		 */
   1146		if (container != (u32)-1) {
   1147			if (container >= dev->maximum_num_containers)
   1148				break;
   1149			if ((dev->fsa_dev[container].config_waiting_on ==
   1150			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
   1151			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
   1152				dev->fsa_dev[container].config_waiting_on = 0;
   1153		} else for (container = 0;
   1154		    container < dev->maximum_num_containers; ++container) {
   1155			if ((dev->fsa_dev[container].config_waiting_on ==
   1156			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
   1157			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
   1158				dev->fsa_dev[container].config_waiting_on = 0;
   1159		}
   1160		break;
   1161
   1162	case AifCmdEventNotify:
   1163		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
   1164		case AifEnBatteryEvent:
   1165			dev->cache_protected =
   1166				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
   1167			break;
   1168		/*
   1169		 *	Add an Array.
   1170		 */
   1171		case AifEnAddContainer:
   1172			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1173			if (container >= dev->maximum_num_containers)
   1174				break;
   1175			dev->fsa_dev[container].config_needed = ADD;
   1176			dev->fsa_dev[container].config_waiting_on =
   1177				AifEnConfigChange;
   1178			dev->fsa_dev[container].config_waiting_stamp = jiffies;
   1179			break;
   1180
   1181		/*
   1182		 *	Delete an Array.
   1183		 */
   1184		case AifEnDeleteContainer:
   1185			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1186			if (container >= dev->maximum_num_containers)
   1187				break;
   1188			dev->fsa_dev[container].config_needed = DELETE;
   1189			dev->fsa_dev[container].config_waiting_on =
   1190				AifEnConfigChange;
   1191			dev->fsa_dev[container].config_waiting_stamp = jiffies;
   1192			break;
   1193
   1194		/*
   1195		 *	Container change detected. If we currently are not
   1196		 * waiting on something else, setup to wait on a Config Change.
   1197		 */
   1198		case AifEnContainerChange:
   1199			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1200			if (container >= dev->maximum_num_containers)
   1201				break;
   1202			if (dev->fsa_dev[container].config_waiting_on &&
   1203			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
   1204				break;
   1205			dev->fsa_dev[container].config_needed = CHANGE;
   1206			dev->fsa_dev[container].config_waiting_on =
   1207				AifEnConfigChange;
   1208			dev->fsa_dev[container].config_waiting_stamp = jiffies;
   1209			break;
   1210
   1211		case AifEnConfigChange:
   1212			break;
   1213
   1214		case AifEnAddJBOD:
   1215		case AifEnDeleteJBOD:
   1216			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
   1217			if ((container >> 28)) {
   1218				container = (u32)-1;
   1219				break;
   1220			}
   1221			channel = (container >> 24) & 0xF;
   1222			if (channel >= dev->maximum_num_channels) {
   1223				container = (u32)-1;
   1224				break;
   1225			}
   1226			id = container & 0xFFFF;
   1227			if (id >= dev->maximum_num_physicals) {
   1228				container = (u32)-1;
   1229				break;
   1230			}
   1231			lun = (container >> 16) & 0xFF;
   1232			container = (u32)-1;
   1233			channel = aac_phys_to_logical(channel);
   1234			device_config_needed =
   1235			  (((__le32 *)aifcmd->data)[0] ==
   1236			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
   1237			if (device_config_needed == ADD) {
   1238				device = scsi_device_lookup(dev->scsi_host_ptr,
   1239					channel,
   1240					id,
   1241					lun);
   1242				if (device) {
   1243					scsi_remove_device(device);
   1244					scsi_device_put(device);
   1245				}
   1246			}
   1247			break;
   1248
   1249		case AifEnEnclosureManagement:
   1250			/*
   1251			 * If in JBOD mode, automatic exposure of new
   1252			 * physical target to be suppressed until configured.
   1253			 */
   1254			if (dev->jbod)
   1255				break;
   1256			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
   1257			case EM_DRIVE_INSERTION:
   1258			case EM_DRIVE_REMOVAL:
   1259			case EM_SES_DRIVE_INSERTION:
   1260			case EM_SES_DRIVE_REMOVAL:
   1261				container = le32_to_cpu(
   1262					((__le32 *)aifcmd->data)[2]);
   1263				if ((container >> 28)) {
   1264					container = (u32)-1;
   1265					break;
   1266				}
   1267				channel = (container >> 24) & 0xF;
   1268				if (channel >= dev->maximum_num_channels) {
   1269					container = (u32)-1;
   1270					break;
   1271				}
   1272				id = container & 0xFFFF;
   1273				lun = (container >> 16) & 0xFF;
   1274				container = (u32)-1;
   1275				if (id >= dev->maximum_num_physicals) {
   1276					/* legacy dev_t ? */
   1277					if ((0x2000 <= id) || lun || channel ||
   1278					  ((channel = (id >> 7) & 0x3F) >=
   1279					  dev->maximum_num_channels))
   1280						break;
   1281					lun = (id >> 4) & 7;
   1282					id &= 0xF;
   1283				}
   1284				channel = aac_phys_to_logical(channel);
   1285				device_config_needed =
   1286				  ((((__le32 *)aifcmd->data)[3]
   1287				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
   1288				    (((__le32 *)aifcmd->data)[3]
   1289				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
   1290				  ADD : DELETE;
   1291				break;
   1292			}
   1293			break;
   1294		case AifBuManagerEvent:
   1295			aac_handle_aif_bu(dev, aifcmd);
   1296			break;
   1297		}
   1298
   1299		/*
   1300		 *	If we are waiting on something and this happens to be
   1301		 * that thing then set the re-configure flag.
   1302		 */
   1303		if (container != (u32)-1) {
   1304			if (container >= dev->maximum_num_containers)
   1305				break;
   1306			if ((dev->fsa_dev[container].config_waiting_on ==
   1307			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
   1308			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
   1309				dev->fsa_dev[container].config_waiting_on = 0;
   1310		} else for (container = 0;
   1311		    container < dev->maximum_num_containers; ++container) {
   1312			if ((dev->fsa_dev[container].config_waiting_on ==
   1313			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
   1314			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
   1315				dev->fsa_dev[container].config_waiting_on = 0;
   1316		}
   1317		break;
   1318
   1319	case AifCmdJobProgress:
   1320		/*
   1321		 *	These are job progress AIF's. When a Clear is being
   1322		 * done on a container it is initially created then hidden from
   1323		 * the OS. When the clear completes we don't get a config
   1324		 * change so we monitor the job status complete on a clear then
   1325		 * wait for a container change.
   1326		 */
   1327
   1328		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
   1329		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
   1330		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
   1331			for (container = 0;
   1332			    container < dev->maximum_num_containers;
   1333			    ++container) {
   1334				/*
   1335				 * Stomp on all config sequencing for all
   1336				 * containers?
   1337				 */
   1338				dev->fsa_dev[container].config_waiting_on =
   1339					AifEnContainerChange;
   1340				dev->fsa_dev[container].config_needed = ADD;
   1341				dev->fsa_dev[container].config_waiting_stamp =
   1342					jiffies;
   1343			}
   1344		}
   1345		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
   1346		    ((__le32 *)aifcmd->data)[6] == 0 &&
   1347		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
   1348			for (container = 0;
   1349			    container < dev->maximum_num_containers;
   1350			    ++container) {
   1351				/*
   1352				 * Stomp on all config sequencing for all
   1353				 * containers?
   1354				 */
   1355				dev->fsa_dev[container].config_waiting_on =
   1356					AifEnContainerChange;
   1357				dev->fsa_dev[container].config_needed = DELETE;
   1358				dev->fsa_dev[container].config_waiting_stamp =
   1359					jiffies;
   1360			}
   1361		}
   1362		break;
   1363	}
   1364
   1365	container = 0;
   1366retry_next:
   1367	if (device_config_needed == NOTHING) {
   1368		for (; container < dev->maximum_num_containers; ++container) {
   1369			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
   1370			    (dev->fsa_dev[container].config_needed != NOTHING) &&
   1371			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
   1372				device_config_needed =
   1373					dev->fsa_dev[container].config_needed;
   1374				dev->fsa_dev[container].config_needed = NOTHING;
   1375				channel = CONTAINER_TO_CHANNEL(container);
   1376				id = CONTAINER_TO_ID(container);
   1377				lun = CONTAINER_TO_LUN(container);
   1378				break;
   1379			}
   1380		}
   1381	}
   1382	if (device_config_needed == NOTHING)
   1383		return;
   1384
   1385	/*
   1386	 *	If we decided that a re-configuration needs to be done,
   1387	 * schedule it here on the way out the door, please close the door
   1388	 * behind you.
   1389	 */
   1390
   1391	/*
   1392	 *	Find the scsi_device associated with the SCSI address,
   1393	 * and mark it as changed, invalidating the cache. This deals
   1394	 * with changes to existing device IDs.
   1395	 */
   1396
   1397	if (!dev || !dev->scsi_host_ptr)
   1398		return;
   1399	/*
   1400	 * force reload of disk info via aac_probe_container
   1401	 */
   1402	if ((channel == CONTAINER_CHANNEL) &&
   1403	  (device_config_needed != NOTHING)) {
   1404		if (dev->fsa_dev[container].valid == 1)
   1405			dev->fsa_dev[container].valid = 2;
   1406		aac_probe_container(dev, container);
   1407	}
   1408	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
   1409	if (device) {
   1410		switch (device_config_needed) {
   1411		case DELETE:
   1412#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
   1413			scsi_remove_device(device);
   1414#else
   1415			if (scsi_device_online(device)) {
   1416				scsi_device_set_state(device, SDEV_OFFLINE);
   1417				sdev_printk(KERN_INFO, device,
   1418					"Device offlined - %s\n",
   1419					(channel == CONTAINER_CHANNEL) ?
   1420						"array deleted" :
   1421						"enclosure services event");
   1422			}
   1423#endif
   1424			break;
   1425		case ADD:
   1426			if (!scsi_device_online(device)) {
   1427				sdev_printk(KERN_INFO, device,
   1428					"Device online - %s\n",
   1429					(channel == CONTAINER_CHANNEL) ?
   1430						"array created" :
   1431						"enclosure services event");
   1432				scsi_device_set_state(device, SDEV_RUNNING);
   1433			}
   1434			fallthrough;
   1435		case CHANGE:
   1436			if ((channel == CONTAINER_CHANNEL)
   1437			 && (!dev->fsa_dev[container].valid)) {
   1438#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
   1439				scsi_remove_device(device);
   1440#else
   1441				if (!scsi_device_online(device))
   1442					break;
   1443				scsi_device_set_state(device, SDEV_OFFLINE);
   1444				sdev_printk(KERN_INFO, device,
   1445					"Device offlined - %s\n",
   1446					"array failed");
   1447#endif
   1448				break;
   1449			}
   1450			scsi_rescan_device(&device->sdev_gendev);
   1451			break;
   1452
   1453		default:
   1454			break;
   1455		}
   1456		scsi_device_put(device);
   1457		device_config_needed = NOTHING;
   1458	}
   1459	if (device_config_needed == ADD)
   1460		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
   1461	if (channel == CONTAINER_CHANNEL) {
   1462		container++;
   1463		device_config_needed = NOTHING;
   1464		goto retry_next;
   1465	}
   1466}
   1467
   1468static void aac_schedule_bus_scan(struct aac_dev *aac)
   1469{
   1470	if (aac->sa_firmware)
   1471		aac_schedule_safw_scan_worker(aac);
   1472	else
   1473		aac_schedule_src_reinit_aif_worker(aac);
   1474}
   1475
   1476static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
   1477{
   1478	int index, quirks;
   1479	int retval;
   1480	struct Scsi_Host *host = aac->scsi_host_ptr;
   1481	int jafo = 0;
   1482	int bled;
   1483	u64 dmamask;
   1484	int num_of_fibs = 0;
   1485
   1486	/*
   1487	 * Assumptions:
   1488	 *	- host is locked, unless called by the aacraid thread.
   1489	 *	  (a matter of convenience, due to legacy issues surrounding
   1490	 *	  eh_host_adapter_reset).
   1491	 *	- in_reset is asserted, so no new i/o is getting to the
   1492	 *	  card.
   1493	 *	- The card is dead, or will be very shortly ;-/ so no new
   1494	 *	  commands are completing in the interrupt service.
   1495	 */
   1496	aac_adapter_disable_int(aac);
   1497	if (aac->thread && aac->thread->pid != current->pid) {
   1498		spin_unlock_irq(host->host_lock);
   1499		kthread_stop(aac->thread);
   1500		aac->thread = NULL;
   1501		jafo = 1;
   1502	}
   1503
   1504	/*
   1505	 *	If a positive health, means in a known DEAD PANIC
   1506	 * state and the adapter could be reset to `try again'.
   1507	 */
   1508	bled = forced ? 0 : aac_adapter_check_health(aac);
   1509	retval = aac_adapter_restart(aac, bled, reset_type);
   1510
   1511	if (retval)
   1512		goto out;
   1513
   1514	/*
   1515	 *	Loop through the fibs, close the synchronous FIBS
   1516	 */
   1517	retval = 1;
   1518	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
   1519	for (index = 0; index <  num_of_fibs; index++) {
   1520
   1521		struct fib *fib = &aac->fibs[index];
   1522		__le32 XferState = fib->hw_fib_va->header.XferState;
   1523		bool is_response_expected = false;
   1524
   1525		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
   1526		   (XferState & cpu_to_le32(ResponseExpected)))
   1527			is_response_expected = true;
   1528
   1529		if (is_response_expected
   1530		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
   1531			unsigned long flagv;
   1532			spin_lock_irqsave(&fib->event_lock, flagv);
   1533			complete(&fib->event_wait);
   1534			spin_unlock_irqrestore(&fib->event_lock, flagv);
   1535			schedule();
   1536			retval = 0;
   1537		}
   1538	}
   1539	/* Give some extra time for ioctls to complete. */
   1540	if (retval == 0)
   1541		ssleep(2);
   1542	index = aac->cardtype;
   1543
   1544	/*
   1545	 * Re-initialize the adapter, first free resources, then carefully
   1546	 * apply the initialization sequence to come back again. Only risk
   1547	 * is a change in Firmware dropping cache, it is assumed the caller
   1548	 * will ensure that i/o is queisced and the card is flushed in that
   1549	 * case.
   1550	 */
   1551	aac_free_irq(aac);
   1552	aac_fib_map_free(aac);
   1553	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
   1554			  aac->comm_phys);
   1555	aac_adapter_ioremap(aac, 0);
   1556	aac->comm_addr = NULL;
   1557	aac->comm_phys = 0;
   1558	kfree(aac->queues);
   1559	aac->queues = NULL;
   1560	kfree(aac->fsa_dev);
   1561	aac->fsa_dev = NULL;
   1562
   1563	dmamask = DMA_BIT_MASK(32);
   1564	quirks = aac_get_driver_ident(index)->quirks;
   1565	if (quirks & AAC_QUIRK_31BIT)
   1566		retval = dma_set_mask(&aac->pdev->dev, dmamask);
   1567	else if (!(quirks & AAC_QUIRK_SRC))
   1568		retval = dma_set_mask(&aac->pdev->dev, dmamask);
   1569	else
   1570		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
   1571
   1572	if (quirks & AAC_QUIRK_31BIT && !retval) {
   1573		dmamask = DMA_BIT_MASK(31);
   1574		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
   1575	}
   1576
   1577	if (retval)
   1578		goto out;
   1579
   1580	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
   1581		goto out;
   1582
   1583	if (jafo) {
   1584		aac->thread = kthread_run(aac_command_thread, aac, "%s",
   1585					  aac->name);
   1586		if (IS_ERR(aac->thread)) {
   1587			retval = PTR_ERR(aac->thread);
   1588			aac->thread = NULL;
   1589			goto out;
   1590		}
   1591	}
   1592	(void)aac_get_adapter_info(aac);
   1593	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
   1594		host->sg_tablesize = 34;
   1595		host->max_sectors = (host->sg_tablesize * 8) + 112;
   1596	}
   1597	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
   1598		host->sg_tablesize = 17;
   1599		host->max_sectors = (host->sg_tablesize * 8) + 112;
   1600	}
   1601	aac_get_config_status(aac, 1);
   1602	aac_get_containers(aac);
   1603	/*
   1604	 * This is where the assumption that the Adapter is quiesced
   1605	 * is important.
   1606	 */
   1607	scsi_host_complete_all_commands(host, DID_RESET);
   1608
   1609	retval = 0;
   1610out:
   1611	aac->in_reset = 0;
   1612
   1613	/*
   1614	 * Issue bus rescan to catch any configuration that might have
   1615	 * occurred
   1616	 */
   1617	if (!retval && !is_kdump_kernel()) {
   1618		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
   1619		aac_schedule_bus_scan(aac);
   1620	}
   1621
   1622	if (jafo) {
   1623		spin_lock_irq(host->host_lock);
   1624	}
   1625	return retval;
   1626}
   1627
   1628int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
   1629{
   1630	unsigned long flagv = 0;
   1631	int retval, unblock_retval;
   1632	struct Scsi_Host *host = aac->scsi_host_ptr;
   1633	int bled;
   1634
   1635	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
   1636		return -EBUSY;
   1637
   1638	if (aac->in_reset) {
   1639		spin_unlock_irqrestore(&aac->fib_lock, flagv);
   1640		return -EBUSY;
   1641	}
   1642	aac->in_reset = 1;
   1643	spin_unlock_irqrestore(&aac->fib_lock, flagv);
   1644
   1645	/*
   1646	 * Wait for all commands to complete to this specific
   1647	 * target (block maximum 60 seconds). Although not necessary,
   1648	 * it does make us a good storage citizen.
   1649	 */
   1650	scsi_host_block(host);
   1651
   1652	/* Quiesce build, flush cache, write through mode */
   1653	if (forced < 2)
   1654		aac_send_shutdown(aac);
   1655	spin_lock_irqsave(host->host_lock, flagv);
   1656	bled = forced ? forced :
   1657			(aac_check_reset != 0 && aac_check_reset != 1);
   1658	retval = _aac_reset_adapter(aac, bled, reset_type);
   1659	spin_unlock_irqrestore(host->host_lock, flagv);
   1660
   1661	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
   1662	if (!retval)
   1663		retval = unblock_retval;
   1664	if ((forced < 2) && (retval == -ENODEV)) {
   1665		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
   1666		struct fib * fibctx = aac_fib_alloc(aac);
   1667		if (fibctx) {
   1668			struct aac_pause *cmd;
   1669			int status;
   1670
   1671			aac_fib_init(fibctx);
   1672
   1673			cmd = (struct aac_pause *) fib_data(fibctx);
   1674
   1675			cmd->command = cpu_to_le32(VM_ContainerConfig);
   1676			cmd->type = cpu_to_le32(CT_PAUSE_IO);
   1677			cmd->timeout = cpu_to_le32(1);
   1678			cmd->min = cpu_to_le32(1);
   1679			cmd->noRescan = cpu_to_le32(1);
   1680			cmd->count = cpu_to_le32(0);
   1681
   1682			status = aac_fib_send(ContainerCommand,
   1683			  fibctx,
   1684			  sizeof(struct aac_pause),
   1685			  FsaNormal,
   1686			  -2 /* Timeout silently */, 1,
   1687			  NULL, NULL);
   1688
   1689			if (status >= 0)
   1690				aac_fib_complete(fibctx);
   1691			/* FIB should be freed only after getting
   1692			 * the response from the F/W */
   1693			if (status != -ERESTARTSYS)
   1694				aac_fib_free(fibctx);
   1695		}
   1696	}
   1697
   1698	return retval;
   1699}
   1700
   1701int aac_check_health(struct aac_dev * aac)
   1702{
   1703	int BlinkLED;
   1704	unsigned long time_now, flagv = 0;
   1705	struct list_head * entry;
   1706
   1707	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
   1708	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
   1709		return 0;
   1710
   1711	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
   1712		spin_unlock_irqrestore(&aac->fib_lock, flagv);
   1713		return 0; /* OK */
   1714	}
   1715
   1716	aac->in_reset = 1;
   1717
   1718	/* Fake up an AIF:
   1719	 *	aac_aifcmd.command = AifCmdEventNotify = 1
   1720	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
   1721	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
   1722	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
   1723	 *	aac.aifcmd.data[2] = AifHighPriority = 3
   1724	 *	aac.aifcmd.data[3] = BlinkLED
   1725	 */
   1726
   1727	time_now = jiffies/HZ;
   1728	entry = aac->fib_list.next;
   1729
   1730	/*
   1731	 * For each Context that is on the
   1732	 * fibctxList, make a copy of the
   1733	 * fib, and then set the event to wake up the
   1734	 * thread that is waiting for it.
   1735	 */
   1736	while (entry != &aac->fib_list) {
   1737		/*
   1738		 * Extract the fibctx
   1739		 */
   1740		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
   1741		struct hw_fib * hw_fib;
   1742		struct fib * fib;
   1743		/*
   1744		 * Check if the queue is getting
   1745		 * backlogged
   1746		 */
   1747		if (fibctx->count > 20) {
   1748			/*
   1749			 * It's *not* jiffies folks,
   1750			 * but jiffies / HZ, so do not
   1751			 * panic ...
   1752			 */
   1753			u32 time_last = fibctx->jiffies;
   1754			/*
   1755			 * Has it been > 2 minutes
   1756			 * since the last read off
   1757			 * the queue?
   1758			 */
   1759			if ((time_now - time_last) > aif_timeout) {
   1760				entry = entry->next;
   1761				aac_close_fib_context(aac, fibctx);
   1762				continue;
   1763			}
   1764		}
   1765		/*
   1766		 * Warning: no sleep allowed while
   1767		 * holding spinlock
   1768		 */
   1769		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
   1770		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
   1771		if (fib && hw_fib) {
   1772			struct aac_aifcmd * aif;
   1773
   1774			fib->hw_fib_va = hw_fib;
   1775			fib->dev = aac;
   1776			aac_fib_init(fib);
   1777			fib->type = FSAFS_NTC_FIB_CONTEXT;
   1778			fib->size = sizeof (struct fib);
   1779			fib->data = hw_fib->data;
   1780			aif = (struct aac_aifcmd *)hw_fib->data;
   1781			aif->command = cpu_to_le32(AifCmdEventNotify);
   1782			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
   1783			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
   1784			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
   1785			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
   1786			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
   1787
   1788			/*
   1789			 * Put the FIB onto the
   1790			 * fibctx's fibs
   1791			 */
   1792			list_add_tail(&fib->fiblink, &fibctx->fib_list);
   1793			fibctx->count++;
   1794			/*
   1795			 * Set the event to wake up the
   1796			 * thread that will waiting.
   1797			 */
   1798			complete(&fibctx->completion);
   1799		} else {
   1800			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
   1801			kfree(fib);
   1802			kfree(hw_fib);
   1803		}
   1804		entry = entry->next;
   1805	}
   1806
   1807	spin_unlock_irqrestore(&aac->fib_lock, flagv);
   1808
   1809	if (BlinkLED < 0) {
   1810		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
   1811				aac->name, BlinkLED);
   1812		goto out;
   1813	}
   1814
   1815	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
   1816
   1817out:
   1818	aac->in_reset = 0;
   1819	return BlinkLED;
   1820}
   1821
   1822static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
   1823{
   1824	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
   1825}
   1826
   1827static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
   1828								int bus,
   1829								int target)
   1830{
   1831	if (bus != CONTAINER_CHANNEL)
   1832		bus = aac_phys_to_logical(bus);
   1833
   1834	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
   1835}
   1836
   1837static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
   1838{
   1839	if (bus != CONTAINER_CHANNEL)
   1840		bus = aac_phys_to_logical(bus);
   1841
   1842	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
   1843}
   1844
   1845static void aac_put_safw_scsi_device(struct scsi_device *sdev)
   1846{
   1847	if (sdev)
   1848		scsi_device_put(sdev);
   1849}
   1850
   1851static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
   1852{
   1853	struct scsi_device *sdev;
   1854
   1855	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
   1856	scsi_remove_device(sdev);
   1857	aac_put_safw_scsi_device(sdev);
   1858}
   1859
   1860static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
   1861	int bus, int target)
   1862{
   1863	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
   1864}
   1865
   1866static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
   1867{
   1868	if (is_safw_raid_volume(dev, bus, target))
   1869		return dev->fsa_dev[target].valid;
   1870	else
   1871		return aac_is_safw_scan_count_equal(dev, bus, target);
   1872}
   1873
   1874static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
   1875{
   1876	int is_exposed = 0;
   1877	struct scsi_device *sdev;
   1878
   1879	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
   1880	if (sdev)
   1881		is_exposed = 1;
   1882	aac_put_safw_scsi_device(sdev);
   1883
   1884	return is_exposed;
   1885}
   1886
   1887static int aac_update_safw_host_devices(struct aac_dev *dev)
   1888{
   1889	int i;
   1890	int bus;
   1891	int target;
   1892	int is_exposed = 0;
   1893	int rcode = 0;
   1894
   1895	rcode = aac_setup_safw_adapter(dev);
   1896	if (unlikely(rcode < 0)) {
   1897		goto out;
   1898	}
   1899
   1900	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
   1901
   1902		bus = get_bus_number(i);
   1903		target = get_target_number(i);
   1904
   1905		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
   1906
   1907		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
   1908			aac_add_safw_device(dev, bus, target);
   1909		else if (!aac_is_safw_target_valid(dev, bus, target) &&
   1910								is_exposed)
   1911			aac_remove_safw_device(dev, bus, target);
   1912	}
   1913out:
   1914	return rcode;
   1915}
   1916
   1917static int aac_scan_safw_host(struct aac_dev *dev)
   1918{
   1919	int rcode = 0;
   1920
   1921	rcode = aac_update_safw_host_devices(dev);
   1922	if (rcode)
   1923		aac_schedule_safw_scan_worker(dev);
   1924
   1925	return rcode;
   1926}
   1927
   1928int aac_scan_host(struct aac_dev *dev)
   1929{
   1930	int rcode = 0;
   1931
   1932	mutex_lock(&dev->scan_mutex);
   1933	if (dev->sa_firmware)
   1934		rcode = aac_scan_safw_host(dev);
   1935	else
   1936		scsi_scan_host(dev->scsi_host_ptr);
   1937	mutex_unlock(&dev->scan_mutex);
   1938
   1939	return rcode;
   1940}
   1941
   1942void aac_src_reinit_aif_worker(struct work_struct *work)
   1943{
   1944	struct aac_dev *dev = container_of(to_delayed_work(work),
   1945				struct aac_dev, src_reinit_aif_worker);
   1946
   1947	wait_event(dev->scsi_host_ptr->host_wait,
   1948			!scsi_host_in_recovery(dev->scsi_host_ptr));
   1949	aac_reinit_aif(dev, dev->cardtype);
   1950}
   1951
   1952/**
   1953 *	aac_handle_sa_aif -	Handle a message from the firmware
   1954 *	@dev: Which adapter this fib is from
   1955 *	@fibptr: Pointer to fibptr from adapter
   1956 *
   1957 *	This routine handles a driver notify fib from the adapter and
   1958 *	dispatches it to the appropriate routine for handling.
   1959 */
   1960static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
   1961{
   1962	int i;
   1963	u32 events = 0;
   1964
   1965	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
   1966		events = SA_AIF_HOTPLUG;
   1967	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
   1968		events = SA_AIF_HARDWARE;
   1969	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
   1970		events = SA_AIF_PDEV_CHANGE;
   1971	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
   1972		events = SA_AIF_LDEV_CHANGE;
   1973	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
   1974		events = SA_AIF_BPSTAT_CHANGE;
   1975	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
   1976		events = SA_AIF_BPCFG_CHANGE;
   1977
   1978	switch (events) {
   1979	case SA_AIF_HOTPLUG:
   1980	case SA_AIF_HARDWARE:
   1981	case SA_AIF_PDEV_CHANGE:
   1982	case SA_AIF_LDEV_CHANGE:
   1983	case SA_AIF_BPCFG_CHANGE:
   1984
   1985		aac_scan_host(dev);
   1986
   1987		break;
   1988
   1989	case SA_AIF_BPSTAT_CHANGE:
   1990		/* currently do nothing */
   1991		break;
   1992	}
   1993
   1994	for (i = 1; i <= 10; ++i) {
   1995		events = src_readl(dev, MUnit.IDR);
   1996		if (events & (1<<23)) {
   1997			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
   1998				i, 10);
   1999			ssleep(1);
   2000		}
   2001	}
   2002}
   2003
   2004static int get_fib_count(struct aac_dev *dev)
   2005{
   2006	unsigned int num = 0;
   2007	struct list_head *entry;
   2008	unsigned long flagv;
   2009
   2010	/*
   2011	 * Warning: no sleep allowed while
   2012	 * holding spinlock. We take the estimate
   2013	 * and pre-allocate a set of fibs outside the
   2014	 * lock.
   2015	 */
   2016	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
   2017			/ sizeof(struct hw_fib); /* some extra */
   2018	spin_lock_irqsave(&dev->fib_lock, flagv);
   2019	entry = dev->fib_list.next;
   2020	while (entry != &dev->fib_list) {
   2021		entry = entry->next;
   2022		++num;
   2023	}
   2024	spin_unlock_irqrestore(&dev->fib_lock, flagv);
   2025
   2026	return num;
   2027}
   2028
   2029static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
   2030						struct fib **fib_pool,
   2031						unsigned int num)
   2032{
   2033	struct hw_fib **hw_fib_p;
   2034	struct fib **fib_p;
   2035
   2036	hw_fib_p = hw_fib_pool;
   2037	fib_p = fib_pool;
   2038	while (hw_fib_p < &hw_fib_pool[num]) {
   2039		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
   2040		if (!(*(hw_fib_p++))) {
   2041			--hw_fib_p;
   2042			break;
   2043		}
   2044
   2045		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
   2046		if (!(*(fib_p++))) {
   2047			kfree(*(--hw_fib_p));
   2048			break;
   2049		}
   2050	}
   2051
   2052	/*
   2053	 * Get the actual number of allocated fibs
   2054	 */
   2055	num = hw_fib_p - hw_fib_pool;
   2056	return num;
   2057}
   2058
   2059static void wakeup_fibctx_threads(struct aac_dev *dev,
   2060						struct hw_fib **hw_fib_pool,
   2061						struct fib **fib_pool,
   2062						struct fib *fib,
   2063						struct hw_fib *hw_fib,
   2064						unsigned int num)
   2065{
   2066	unsigned long flagv;
   2067	struct list_head *entry;
   2068	struct hw_fib **hw_fib_p;
   2069	struct fib **fib_p;
   2070	u32 time_now, time_last;
   2071	struct hw_fib *hw_newfib;
   2072	struct fib *newfib;
   2073	struct aac_fib_context *fibctx;
   2074
   2075	time_now = jiffies/HZ;
   2076	spin_lock_irqsave(&dev->fib_lock, flagv);
   2077	entry = dev->fib_list.next;
   2078	/*
   2079	 * For each Context that is on the
   2080	 * fibctxList, make a copy of the
   2081	 * fib, and then set the event to wake up the
   2082	 * thread that is waiting for it.
   2083	 */
   2084
   2085	hw_fib_p = hw_fib_pool;
   2086	fib_p = fib_pool;
   2087	while (entry != &dev->fib_list) {
   2088		/*
   2089		 * Extract the fibctx
   2090		 */
   2091		fibctx = list_entry(entry, struct aac_fib_context,
   2092				next);
   2093		/*
   2094		 * Check if the queue is getting
   2095		 * backlogged
   2096		 */
   2097		if (fibctx->count > 20) {
   2098			/*
   2099			 * It's *not* jiffies folks,
   2100			 * but jiffies / HZ so do not
   2101			 * panic ...
   2102			 */
   2103			time_last = fibctx->jiffies;
   2104			/*
   2105			 * Has it been > 2 minutes
   2106			 * since the last read off
   2107			 * the queue?
   2108			 */
   2109			if ((time_now - time_last) > aif_timeout) {
   2110				entry = entry->next;
   2111				aac_close_fib_context(dev, fibctx);
   2112				continue;
   2113			}
   2114		}
   2115		/*
   2116		 * Warning: no sleep allowed while
   2117		 * holding spinlock
   2118		 */
   2119		if (hw_fib_p >= &hw_fib_pool[num]) {
   2120			pr_warn("aifd: didn't allocate NewFib\n");
   2121			entry = entry->next;
   2122			continue;
   2123		}
   2124
   2125		hw_newfib = *hw_fib_p;
   2126		*(hw_fib_p++) = NULL;
   2127		newfib = *fib_p;
   2128		*(fib_p++) = NULL;
   2129		/*
   2130		 * Make the copy of the FIB
   2131		 */
   2132		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
   2133		memcpy(newfib, fib, sizeof(struct fib));
   2134		newfib->hw_fib_va = hw_newfib;
   2135		/*
   2136		 * Put the FIB onto the
   2137		 * fibctx's fibs
   2138		 */
   2139		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
   2140		fibctx->count++;
   2141		/*
   2142		 * Set the event to wake up the
   2143		 * thread that is waiting.
   2144		 */
   2145		complete(&fibctx->completion);
   2146
   2147		entry = entry->next;
   2148	}
   2149	/*
   2150	 *	Set the status of this FIB
   2151	 */
   2152	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
   2153	aac_fib_adapter_complete(fib, sizeof(u32));
   2154	spin_unlock_irqrestore(&dev->fib_lock, flagv);
   2155
   2156}
   2157
   2158static void aac_process_events(struct aac_dev *dev)
   2159{
   2160	struct hw_fib *hw_fib;
   2161	struct fib *fib;
   2162	unsigned long flags;
   2163	spinlock_t *t_lock;
   2164
   2165	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
   2166	spin_lock_irqsave(t_lock, flags);
   2167
   2168	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
   2169		struct list_head *entry;
   2170		struct aac_aifcmd *aifcmd;
   2171		unsigned int  num;
   2172		struct hw_fib **hw_fib_pool, **hw_fib_p;
   2173		struct fib **fib_pool, **fib_p;
   2174
   2175		set_current_state(TASK_RUNNING);
   2176
   2177		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
   2178		list_del(entry);
   2179
   2180		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
   2181		spin_unlock_irqrestore(t_lock, flags);
   2182
   2183		fib = list_entry(entry, struct fib, fiblink);
   2184		hw_fib = fib->hw_fib_va;
   2185		if (dev->sa_firmware) {
   2186			/* Thor AIF */
   2187			aac_handle_sa_aif(dev, fib);
   2188			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
   2189			goto free_fib;
   2190		}
   2191		/*
   2192		 *	We will process the FIB here or pass it to a
   2193		 *	worker thread that is TBD. We Really can't
   2194		 *	do anything at this point since we don't have
   2195		 *	anything defined for this thread to do.
   2196		 */
   2197		memset(fib, 0, sizeof(struct fib));
   2198		fib->type = FSAFS_NTC_FIB_CONTEXT;
   2199		fib->size = sizeof(struct fib);
   2200		fib->hw_fib_va = hw_fib;
   2201		fib->data = hw_fib->data;
   2202		fib->dev = dev;
   2203		/*
   2204		 *	We only handle AifRequest fibs from the adapter.
   2205		 */
   2206
   2207		aifcmd = (struct aac_aifcmd *) hw_fib->data;
   2208		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
   2209			/* Handle Driver Notify Events */
   2210			aac_handle_aif(dev, fib);
   2211			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
   2212			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
   2213			goto free_fib;
   2214		}
   2215		/*
   2216		 * The u32 here is important and intended. We are using
   2217		 * 32bit wrapping time to fit the adapter field
   2218		 */
   2219
   2220		/* Sniff events */
   2221		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
   2222		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
   2223			aac_handle_aif(dev, fib);
   2224		}
   2225
   2226		/*
   2227		 * get number of fibs to process
   2228		 */
   2229		num = get_fib_count(dev);
   2230		if (!num)
   2231			goto free_fib;
   2232
   2233		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
   2234						GFP_KERNEL);
   2235		if (!hw_fib_pool)
   2236			goto free_fib;
   2237
   2238		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
   2239		if (!fib_pool)
   2240			goto free_hw_fib_pool;
   2241
   2242		/*
   2243		 * Fill up fib pointer pools with actual fibs
   2244		 * and hw_fibs
   2245		 */
   2246		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
   2247		if (!num)
   2248			goto free_mem;
   2249
   2250		/*
   2251		 * wakeup the thread that is waiting for
   2252		 * the response from fw (ioctl)
   2253		 */
   2254		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
   2255							    fib, hw_fib, num);
   2256
   2257free_mem:
   2258		/* Free up the remaining resources */
   2259		hw_fib_p = hw_fib_pool;
   2260		fib_p = fib_pool;
   2261		while (hw_fib_p < &hw_fib_pool[num]) {
   2262			kfree(*hw_fib_p);
   2263			kfree(*fib_p);
   2264			++fib_p;
   2265			++hw_fib_p;
   2266		}
   2267		kfree(fib_pool);
   2268free_hw_fib_pool:
   2269		kfree(hw_fib_pool);
   2270free_fib:
   2271		kfree(fib);
   2272		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
   2273		spin_lock_irqsave(t_lock, flags);
   2274	}
   2275	/*
   2276	 *	There are no more AIF's
   2277	 */
   2278	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
   2279	spin_unlock_irqrestore(t_lock, flags);
   2280}
   2281
   2282static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
   2283							u32 datasize)
   2284{
   2285	struct aac_srb *srbcmd;
   2286	struct sgmap64 *sg64;
   2287	dma_addr_t addr;
   2288	char *dma_buf;
   2289	struct fib *fibptr;
   2290	int ret = -ENOMEM;
   2291	u32 vbus, vid;
   2292
   2293	fibptr = aac_fib_alloc(dev);
   2294	if (!fibptr)
   2295		goto out;
   2296
   2297	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
   2298				     GFP_KERNEL);
   2299	if (!dma_buf)
   2300		goto fib_free_out;
   2301
   2302	aac_fib_init(fibptr);
   2303
   2304	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
   2305	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
   2306
   2307	srbcmd = (struct aac_srb *)fib_data(fibptr);
   2308
   2309	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
   2310	srbcmd->channel = cpu_to_le32(vbus);
   2311	srbcmd->id = cpu_to_le32(vid);
   2312	srbcmd->lun = 0;
   2313	srbcmd->flags = cpu_to_le32(SRB_DataOut);
   2314	srbcmd->timeout = cpu_to_le32(10);
   2315	srbcmd->retry_limit = 0;
   2316	srbcmd->cdb_size = cpu_to_le32(12);
   2317	srbcmd->count = cpu_to_le32(datasize);
   2318
   2319	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
   2320	srbcmd->cdb[0] = BMIC_OUT;
   2321	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
   2322	memcpy(dma_buf, (char *)wellness_str, datasize);
   2323
   2324	sg64 = (struct sgmap64 *)&srbcmd->sg;
   2325	sg64->count = cpu_to_le32(1);
   2326	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
   2327	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
   2328	sg64->sg[0].count = cpu_to_le32(datasize);
   2329
   2330	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
   2331				FsaNormal, 1, 1, NULL, NULL);
   2332
   2333	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
   2334
   2335	/*
   2336	 * Do not set XferState to zero unless
   2337	 * receives a response from F/W
   2338	 */
   2339	if (ret >= 0)
   2340		aac_fib_complete(fibptr);
   2341
   2342	/*
   2343	 * FIB should be freed only after
   2344	 * getting the response from the F/W
   2345	 */
   2346	if (ret != -ERESTARTSYS)
   2347		goto fib_free_out;
   2348
   2349out:
   2350	return ret;
   2351fib_free_out:
   2352	aac_fib_free(fibptr);
   2353	goto out;
   2354}
   2355
   2356static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
   2357{
   2358	struct tm cur_tm;
   2359	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
   2360	u32 datasize = sizeof(wellness_str);
   2361	time64_t local_time;
   2362	int ret = -ENODEV;
   2363
   2364	if (!dev->sa_firmware)
   2365		goto out;
   2366
   2367	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
   2368	time64_to_tm(local_time, 0, &cur_tm);
   2369	cur_tm.tm_mon += 1;
   2370	cur_tm.tm_year += 1900;
   2371	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
   2372	wellness_str[9] = bin2bcd(cur_tm.tm_min);
   2373	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
   2374	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
   2375	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
   2376	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
   2377	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
   2378
   2379	ret = aac_send_wellness_command(dev, wellness_str, datasize);
   2380
   2381out:
   2382	return ret;
   2383}
   2384
   2385static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
   2386{
   2387	int ret = -ENOMEM;
   2388	struct fib *fibptr;
   2389	__le32 *info;
   2390
   2391	fibptr = aac_fib_alloc(dev);
   2392	if (!fibptr)
   2393		goto out;
   2394
   2395	aac_fib_init(fibptr);
   2396	info = (__le32 *)fib_data(fibptr);
   2397	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
   2398	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
   2399					1, 1, NULL, NULL);
   2400
   2401	/*
   2402	 * Do not set XferState to zero unless
   2403	 * receives a response from F/W
   2404	 */
   2405	if (ret >= 0)
   2406		aac_fib_complete(fibptr);
   2407
   2408	/*
   2409	 * FIB should be freed only after
   2410	 * getting the response from the F/W
   2411	 */
   2412	if (ret != -ERESTARTSYS)
   2413		aac_fib_free(fibptr);
   2414
   2415out:
   2416	return ret;
   2417}
   2418
   2419/**
   2420 *	aac_command_thread	-	command processing thread
   2421 *	@data: Adapter to monitor
   2422 *
   2423 *	Waits on the commandready event in it's queue. When the event gets set
   2424 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
   2425 *	until the queue is empty. When the queue is empty it will wait for
   2426 *	more FIBs.
   2427 */
   2428
   2429int aac_command_thread(void *data)
   2430{
   2431	struct aac_dev *dev = data;
   2432	DECLARE_WAITQUEUE(wait, current);
   2433	unsigned long next_jiffies = jiffies + HZ;
   2434	unsigned long next_check_jiffies = next_jiffies;
   2435	long difference = HZ;
   2436
   2437	/*
   2438	 *	We can only have one thread per adapter for AIF's.
   2439	 */
   2440	if (dev->aif_thread)
   2441		return -EINVAL;
   2442
   2443	/*
   2444	 *	Let the DPC know it has a place to send the AIF's to.
   2445	 */
   2446	dev->aif_thread = 1;
   2447	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
   2448	set_current_state(TASK_INTERRUPTIBLE);
   2449	dprintk ((KERN_INFO "aac_command_thread start\n"));
   2450	while (1) {
   2451
   2452		aac_process_events(dev);
   2453
   2454		/*
   2455		 *	Background activity
   2456		 */
   2457		if ((time_before(next_check_jiffies,next_jiffies))
   2458		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
   2459			next_check_jiffies = next_jiffies;
   2460			if (aac_adapter_check_health(dev) == 0) {
   2461				difference = ((long)(unsigned)check_interval)
   2462					   * HZ;
   2463				next_check_jiffies = jiffies + difference;
   2464			} else if (!dev->queues)
   2465				break;
   2466		}
   2467		if (!time_before(next_check_jiffies,next_jiffies)
   2468		 && ((difference = next_jiffies - jiffies) <= 0)) {
   2469			struct timespec64 now;
   2470			int ret;
   2471
   2472			/* Don't even try to talk to adapter if its sick */
   2473			ret = aac_adapter_check_health(dev);
   2474			if (ret || !dev->queues)
   2475				break;
   2476			next_check_jiffies = jiffies
   2477					   + ((long)(unsigned)check_interval)
   2478					   * HZ;
   2479			ktime_get_real_ts64(&now);
   2480
   2481			/* Synchronize our watches */
   2482			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
   2483			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
   2484				difference = HZ + HZ / 2 -
   2485					     now.tv_nsec / (NSEC_PER_SEC / HZ);
   2486			else {
   2487				if (now.tv_nsec > NSEC_PER_SEC / 2)
   2488					++now.tv_sec;
   2489
   2490				if (dev->sa_firmware)
   2491					ret =
   2492					aac_send_safw_hostttime(dev, &now);
   2493				else
   2494					ret = aac_send_hosttime(dev, &now);
   2495
   2496				difference = (long)(unsigned)update_interval*HZ;
   2497			}
   2498			next_jiffies = jiffies + difference;
   2499			if (time_before(next_check_jiffies,next_jiffies))
   2500				difference = next_check_jiffies - jiffies;
   2501		}
   2502		if (difference <= 0)
   2503			difference = 1;
   2504		set_current_state(TASK_INTERRUPTIBLE);
   2505
   2506		if (kthread_should_stop())
   2507			break;
   2508
   2509		/*
   2510		 * we probably want usleep_range() here instead of the
   2511		 * jiffies computation
   2512		 */
   2513		schedule_timeout(difference);
   2514
   2515		if (kthread_should_stop())
   2516			break;
   2517	}
   2518	if (dev->queues)
   2519		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
   2520	dev->aif_thread = 0;
   2521	return 0;
   2522}
   2523
   2524int aac_acquire_irq(struct aac_dev *dev)
   2525{
   2526	int i;
   2527	int j;
   2528	int ret = 0;
   2529
   2530	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
   2531		for (i = 0; i < dev->max_msix; i++) {
   2532			dev->aac_msix[i].vector_no = i;
   2533			dev->aac_msix[i].dev = dev;
   2534			if (request_irq(pci_irq_vector(dev->pdev, i),
   2535					dev->a_ops.adapter_intr,
   2536					0, "aacraid", &(dev->aac_msix[i]))) {
   2537				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
   2538						dev->name, dev->id, i);
   2539				for (j = 0 ; j < i ; j++)
   2540					free_irq(pci_irq_vector(dev->pdev, j),
   2541						 &(dev->aac_msix[j]));
   2542				pci_disable_msix(dev->pdev);
   2543				ret = -1;
   2544			}
   2545		}
   2546	} else {
   2547		dev->aac_msix[0].vector_no = 0;
   2548		dev->aac_msix[0].dev = dev;
   2549
   2550		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
   2551			IRQF_SHARED, "aacraid",
   2552			&(dev->aac_msix[0])) < 0) {
   2553			if (dev->msi)
   2554				pci_disable_msi(dev->pdev);
   2555			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
   2556					dev->name, dev->id);
   2557			ret = -1;
   2558		}
   2559	}
   2560	return ret;
   2561}
   2562
   2563void aac_free_irq(struct aac_dev *dev)
   2564{
   2565	int i;
   2566
   2567	if (aac_is_src(dev)) {
   2568		if (dev->max_msix > 1) {
   2569			for (i = 0; i < dev->max_msix; i++)
   2570				free_irq(pci_irq_vector(dev->pdev, i),
   2571					 &(dev->aac_msix[i]));
   2572		} else {
   2573			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
   2574		}
   2575	} else {
   2576		free_irq(dev->pdev->irq, dev);
   2577	}
   2578	if (dev->msi)
   2579		pci_disable_msi(dev->pdev);
   2580	else if (dev->max_msix > 1)
   2581		pci_disable_msix(dev->pdev);
   2582}