cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dpcsup.c (12093B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *	Adaptec AAC series RAID controller driver
      4 *	(c) Copyright 2001 Red Hat Inc.
      5 *
      6 * based on the old aacraid driver that is..
      7 * Adaptec aacraid device driver for Linux.
      8 *
      9 * Copyright (c) 2000-2010 Adaptec, Inc.
     10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
     11 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
     12 *
     13 * Module Name:
     14 *  dpcsup.c
     15 *
     16 * Abstract: All DPC processing routines for the cyclone board occur here.
     17 */
     18
     19#include <linux/kernel.h>
     20#include <linux/init.h>
     21#include <linux/types.h>
     22#include <linux/spinlock.h>
     23#include <linux/slab.h>
     24#include <linux/completion.h>
     25#include <linux/blkdev.h>
     26
     27#include "aacraid.h"
     28
     29/**
     30 *	aac_response_normal	-	Handle command replies
     31 *	@q: Queue to read from
     32 *
     33 *	This DPC routine will be run when the adapter interrupts us to let us
     34 *	know there is a response on our normal priority queue. We will pull off
     35 *	all QE there are and wake up all the waiters before exiting. We will
     36 *	take a spinlock out on the queue before operating on it.
     37 */
     38
     39unsigned int aac_response_normal(struct aac_queue * q)
     40{
     41	struct aac_dev * dev = q->dev;
     42	struct aac_entry *entry;
     43	struct hw_fib * hwfib;
     44	struct fib * fib;
     45	int consumed = 0;
     46	unsigned long flags, mflags;
     47
     48	spin_lock_irqsave(q->lock, flags);
     49	/*
     50	 *	Keep pulling response QEs off the response queue and waking
     51	 *	up the waiters until there are no more QEs. We then return
     52	 *	back to the system. If no response was requested we just
     53	 *	deallocate the Fib here and continue.
     54	 */
     55	while(aac_consumer_get(dev, q, &entry))
     56	{
     57		int fast;
     58		u32 index = le32_to_cpu(entry->addr);
     59		fast = index & 0x01;
     60		fib = &dev->fibs[index >> 2];
     61		hwfib = fib->hw_fib_va;
     62		
     63		aac_consumer_free(dev, q, HostNormRespQueue);
     64		/*
     65		 *	Remove this fib from the Outstanding I/O queue.
     66		 *	But only if it has not already been timed out.
     67		 *
     68		 *	If the fib has been timed out already, then just 
     69		 *	continue. The caller has already been notified that
     70		 *	the fib timed out.
     71		 */
     72		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
     73
     74		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
     75			spin_unlock_irqrestore(q->lock, flags);
     76			aac_fib_complete(fib);
     77			aac_fib_free(fib);
     78			spin_lock_irqsave(q->lock, flags);
     79			continue;
     80		}
     81		spin_unlock_irqrestore(q->lock, flags);
     82
     83		if (fast) {
     84			/*
     85			 *	Doctor the fib
     86			 */
     87			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
     88			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
     89			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
     90		}
     91
     92		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
     93
     94		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
     95		{
     96			__le32 *pstatus = (__le32 *)hwfib->data;
     97			if (*pstatus & cpu_to_le32(0xffff0000))
     98				*pstatus = cpu_to_le32(ST_OK);
     99		}
    100		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
    101		{
    102			if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) {
    103				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
    104			} else {
    105				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
    106			}
    107			/*
    108			 *	NOTE:  we cannot touch the fib after this
    109			 *	    call, because it may have been deallocated.
    110			 */
    111			fib->callback(fib->callback_data, fib);
    112		} else {
    113			unsigned long flagv;
    114			spin_lock_irqsave(&fib->event_lock, flagv);
    115			if (!fib->done) {
    116				fib->done = 1;
    117				complete(&fib->event_wait);
    118			}
    119			spin_unlock_irqrestore(&fib->event_lock, flagv);
    120
    121			spin_lock_irqsave(&dev->manage_lock, mflags);
    122			dev->management_fib_count--;
    123			spin_unlock_irqrestore(&dev->manage_lock, mflags);
    124
    125			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
    126			if (fib->done == 2) {
    127				spin_lock_irqsave(&fib->event_lock, flagv);
    128				fib->done = 0;
    129				spin_unlock_irqrestore(&fib->event_lock, flagv);
    130				aac_fib_complete(fib);
    131				aac_fib_free(fib);
    132			}
    133		}
    134		consumed++;
    135		spin_lock_irqsave(q->lock, flags);
    136	}
    137
    138	if (consumed > aac_config.peak_fibs)
    139		aac_config.peak_fibs = consumed;
    140	if (consumed == 0) 
    141		aac_config.zero_fibs++;
    142
    143	spin_unlock_irqrestore(q->lock, flags);
    144	return 0;
    145}
    146
    147
    148/**
    149 *	aac_command_normal	-	handle commands
    150 *	@q: queue to process
    151 *
    152 *	This DPC routine will be queued when the adapter interrupts us to 
    153 *	let us know there is a command on our normal priority queue. We will 
    154 *	pull off all QE there are and wake up all the waiters before exiting.
    155 *	We will take a spinlock out on the queue before operating on it.
    156 */
    157 
    158unsigned int aac_command_normal(struct aac_queue *q)
    159{
    160	struct aac_dev * dev = q->dev;
    161	struct aac_entry *entry;
    162	unsigned long flags;
    163
    164	spin_lock_irqsave(q->lock, flags);
    165
    166	/*
    167	 *	Keep pulling response QEs off the response queue and waking
    168	 *	up the waiters until there are no more QEs. We then return
    169	 *	back to the system.
    170	 */
    171	while(aac_consumer_get(dev, q, &entry))
    172	{
    173		struct fib fibctx;
    174		struct hw_fib * hw_fib;
    175		u32 index;
    176		struct fib *fib = &fibctx;
    177		
    178		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
    179		hw_fib = &dev->aif_base_va[index];
    180		
    181		/*
    182		 *	Allocate a FIB at all costs. For non queued stuff
    183		 *	we can just use the stack so we are happy. We need
    184		 *	a fib object in order to manage the linked lists
    185		 */
    186		if (dev->aif_thread)
    187			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
    188				fib = &fibctx;
    189		
    190		memset(fib, 0, sizeof(struct fib));
    191		INIT_LIST_HEAD(&fib->fiblink);
    192		fib->type = FSAFS_NTC_FIB_CONTEXT;
    193		fib->size = sizeof(struct fib);
    194		fib->hw_fib_va = hw_fib;
    195		fib->data = hw_fib->data;
    196		fib->dev = dev;
    197		
    198				
    199		if (dev->aif_thread && fib != &fibctx) {
    200		        list_add_tail(&fib->fiblink, &q->cmdq);
    201	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
    202		        wake_up_interruptible(&q->cmdready);
    203		} else {
    204	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
    205			spin_unlock_irqrestore(q->lock, flags);
    206			/*
    207			 *	Set the status of this FIB
    208			 */
    209			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
    210			aac_fib_adapter_complete(fib, sizeof(u32));
    211			spin_lock_irqsave(q->lock, flags);
    212		}		
    213	}
    214	spin_unlock_irqrestore(q->lock, flags);
    215	return 0;
    216}
    217
    218/*
    219 *
    220 * aac_aif_callback
    221 * @context: the context set in the fib - here it is scsi cmd
    222 * @fibptr: pointer to the fib
    223 *
    224 * Handles the AIFs - new method (SRC)
    225 *
    226 */
    227
    228static void aac_aif_callback(void *context, struct fib * fibptr)
    229{
    230	struct fib *fibctx;
    231	struct aac_dev *dev;
    232	struct aac_aifcmd *cmd;
    233
    234	fibctx = (struct fib *)context;
    235	BUG_ON(fibptr == NULL);
    236	dev = fibptr->dev;
    237
    238	if ((fibptr->hw_fib_va->header.XferState &
    239	    cpu_to_le32(NoMoreAifDataAvailable)) ||
    240		dev->sa_firmware) {
    241		aac_fib_complete(fibptr);
    242		aac_fib_free(fibptr);
    243		return;
    244	}
    245
    246	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
    247
    248	aac_fib_init(fibctx);
    249	cmd = (struct aac_aifcmd *) fib_data(fibctx);
    250	cmd->command = cpu_to_le32(AifReqEvent);
    251
    252	aac_fib_send(AifRequest,
    253		fibctx,
    254		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
    255		FsaNormal,
    256		0, 1,
    257		(fib_callback)aac_aif_callback, fibctx);
    258}
    259
    260
    261/*
    262 *	aac_intr_normal	-	Handle command replies
    263 *	@dev: Device
    264 *	@index: completion reference
    265 *
    266 *	This DPC routine will be run when the adapter interrupts us to let us
    267 *	know there is a response on our normal priority queue. We will pull off
    268 *	all QE there are and wake up all the waiters before exiting.
    269 */
    270unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
    271	int isFastResponse, struct hw_fib *aif_fib)
    272{
    273	unsigned long mflags;
    274	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
    275	if (isAif == 1) {	/* AIF - common */
    276		struct hw_fib * hw_fib;
    277		struct fib * fib;
    278		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
    279		unsigned long flags;
    280
    281		/*
    282		 *	Allocate a FIB. For non queued stuff we can just use
    283		 * the stack so we are happy. We need a fib object in order to
    284		 * manage the linked lists.
    285		 */
    286		if ((!dev->aif_thread)
    287		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
    288			return 1;
    289		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
    290			kfree (fib);
    291			return 1;
    292		}
    293		if (dev->sa_firmware) {
    294			fib->hbacmd_size = index;	/* store event type */
    295		} else if (aif_fib != NULL) {
    296			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
    297		} else {
    298			memcpy(hw_fib, (struct hw_fib *)
    299				(((uintptr_t)(dev->regs.sa)) + index),
    300				sizeof(struct hw_fib));
    301		}
    302		INIT_LIST_HEAD(&fib->fiblink);
    303		fib->type = FSAFS_NTC_FIB_CONTEXT;
    304		fib->size = sizeof(struct fib);
    305		fib->hw_fib_va = hw_fib;
    306		fib->data = hw_fib->data;
    307		fib->dev = dev;
    308	
    309		spin_lock_irqsave(q->lock, flags);
    310		list_add_tail(&fib->fiblink, &q->cmdq);
    311	        wake_up_interruptible(&q->cmdready);
    312		spin_unlock_irqrestore(q->lock, flags);
    313		return 1;
    314	} else if (isAif == 2) {	/* AIF - new (SRC) */
    315		struct fib *fibctx;
    316		struct aac_aifcmd *cmd;
    317
    318		fibctx = aac_fib_alloc(dev);
    319		if (!fibctx)
    320			return 1;
    321		aac_fib_init(fibctx);
    322
    323		cmd = (struct aac_aifcmd *) fib_data(fibctx);
    324		cmd->command = cpu_to_le32(AifReqEvent);
    325
    326		return aac_fib_send(AifRequest,
    327			fibctx,
    328			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
    329			FsaNormal,
    330			0, 1,
    331			(fib_callback)aac_aif_callback, fibctx);
    332	} else {
    333		struct fib *fib = &dev->fibs[index];
    334		int start_callback = 0;
    335
    336		/*
    337		 *	Remove this fib from the Outstanding I/O queue.
    338		 *	But only if it has not already been timed out.
    339		 *
    340		 *	If the fib has been timed out already, then just 
    341		 *	continue. The caller has already been notified that
    342		 *	the fib timed out.
    343		 */
    344		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
    345
    346		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
    347			aac_fib_complete(fib);
    348			aac_fib_free(fib);
    349			return 0;
    350		}
    351
    352		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
    353
    354		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
    355
    356			if (isFastResponse)
    357				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
    358
    359			if (fib->callback) {
    360				start_callback = 1;
    361			} else {
    362				unsigned long flagv;
    363				int completed = 0;
    364
    365				dprintk((KERN_INFO "event_wait up\n"));
    366				spin_lock_irqsave(&fib->event_lock, flagv);
    367				if (fib->done == 2) {
    368					fib->done = 1;
    369					completed = 1;
    370				} else {
    371					fib->done = 1;
    372					complete(&fib->event_wait);
    373				}
    374				spin_unlock_irqrestore(&fib->event_lock, flagv);
    375
    376				spin_lock_irqsave(&dev->manage_lock, mflags);
    377				dev->management_fib_count--;
    378				spin_unlock_irqrestore(&dev->manage_lock,
    379					mflags);
    380
    381				FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
    382				if (completed)
    383					aac_fib_complete(fib);
    384			}
    385		} else {
    386			struct hw_fib *hwfib = fib->hw_fib_va;
    387
    388			if (isFastResponse) {
    389				/* Doctor the fib */
    390				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
    391				hwfib->header.XferState |=
    392					cpu_to_le32(AdapterProcessed);
    393				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
    394			}
    395
    396			if (hwfib->header.Command ==
    397				cpu_to_le16(NuFileSystem)) {
    398				__le32 *pstatus = (__le32 *)hwfib->data;
    399
    400				if (*pstatus & cpu_to_le32(0xffff0000))
    401					*pstatus = cpu_to_le32(ST_OK);
    402			}
    403			if (hwfib->header.XferState &
    404				cpu_to_le32(NoResponseExpected | Async)) {
    405				if (hwfib->header.XferState & cpu_to_le32(
    406					NoResponseExpected)) {
    407					FIB_COUNTER_INCREMENT(
    408						aac_config.NoResponseRecved);
    409				} else {
    410					FIB_COUNTER_INCREMENT(
    411						aac_config.AsyncRecved);
    412				}
    413				start_callback = 1;
    414			} else {
    415				unsigned long flagv;
    416				int completed = 0;
    417
    418				dprintk((KERN_INFO "event_wait up\n"));
    419				spin_lock_irqsave(&fib->event_lock, flagv);
    420				if (fib->done == 2) {
    421					fib->done = 1;
    422					completed = 1;
    423				} else {
    424					fib->done = 1;
    425					complete(&fib->event_wait);
    426				}
    427				spin_unlock_irqrestore(&fib->event_lock, flagv);
    428
    429				spin_lock_irqsave(&dev->manage_lock, mflags);
    430				dev->management_fib_count--;
    431				spin_unlock_irqrestore(&dev->manage_lock,
    432					mflags);
    433
    434				FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
    435				if (completed)
    436					aac_fib_complete(fib);
    437			}
    438		}
    439
    440
    441		if (start_callback) {
    442			/*
    443			 * NOTE:  we cannot touch the fib after this
    444			 *  call, because it may have been deallocated.
    445			 */
    446			if (likely(fib->callback && fib->callback_data)) {
    447				fib->callback(fib->callback_data, fib);
    448			} else {
    449				aac_fib_complete(fib);
    450				aac_fib_free(fib);
    451			}
    452
    453		}
    454		return 0;
    455	}
    456}