cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

advansys.c (345336B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
      4 *
      5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
      6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
      7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
      8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
      9 * All Rights Reserved.
     10 */
     11
     12/*
     13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
     14 * changed its name to ConnectCom Solutions, Inc.
     15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
     16 */
     17
     18#include <linux/module.h>
     19#include <linux/string.h>
     20#include <linux/kernel.h>
     21#include <linux/types.h>
     22#include <linux/ioport.h>
     23#include <linux/interrupt.h>
     24#include <linux/delay.h>
     25#include <linux/slab.h>
     26#include <linux/mm.h>
     27#include <linux/proc_fs.h>
     28#include <linux/init.h>
     29#include <linux/blkdev.h>
     30#include <linux/isa.h>
     31#include <linux/eisa.h>
     32#include <linux/pci.h>
     33#include <linux/spinlock.h>
     34#include <linux/dma-mapping.h>
     35#include <linux/firmware.h>
     36#include <linux/dmapool.h>
     37
     38#include <asm/io.h>
     39#include <asm/dma.h>
     40
     41#include <scsi/scsi_cmnd.h>
     42#include <scsi/scsi_device.h>
     43#include <scsi/scsi_tcq.h>
     44#include <scsi/scsi.h>
     45#include <scsi/scsi_host.h>
     46
     47#define DRV_NAME "advansys"
     48#define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
     49
     50/* FIXME:
     51 *
     52 *  1. Use scsi_transport_spi
     53 *  2. advansys_info is not safe against multiple simultaneous callers
     54 *  3. Add module_param to override ISA/VLB ioport array
     55 */
     56
     57/* Enable driver /proc statistics. */
     58#define ADVANSYS_STATS
     59
     60/* Enable driver tracing. */
     61#undef ADVANSYS_DEBUG
     62
     63typedef unsigned char uchar;
     64
     65#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
     66
     67#define PCI_VENDOR_ID_ASP		0x10cd
     68#define PCI_DEVICE_ID_ASP_1200A		0x1100
     69#define PCI_DEVICE_ID_ASP_ABP940	0x1200
     70#define PCI_DEVICE_ID_ASP_ABP940U	0x1300
     71#define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
     72#define PCI_DEVICE_ID_38C0800_REV1	0x2500
     73#define PCI_DEVICE_ID_38C1600_REV1	0x2700
     74
     75#define PortAddr                 unsigned int	/* port address size  */
     76#define inp(port)                inb(port)
     77#define outp(port, byte)         outb((byte), (port))
     78
     79#define inpw(port)               inw(port)
     80#define outpw(port, word)        outw((word), (port))
     81
     82#define ASC_MAX_SG_QUEUE    7
     83#define ASC_MAX_SG_LIST     255
     84
     85#define ASC_CS_TYPE  unsigned short
     86
     87#define ASC_IS_EISA         (0x0002)
     88#define ASC_IS_PCI          (0x0004)
     89#define ASC_IS_PCI_ULTRA    (0x0104)
     90#define ASC_IS_PCMCIA       (0x0008)
     91#define ASC_IS_MCA          (0x0020)
     92#define ASC_IS_VL           (0x0040)
     93#define ASC_IS_WIDESCSI_16  (0x0100)
     94#define ASC_IS_WIDESCSI_32  (0x0200)
     95#define ASC_IS_BIG_ENDIAN   (0x8000)
     96
     97#define ASC_CHIP_MIN_VER_VL      (0x01)
     98#define ASC_CHIP_MAX_VER_VL      (0x07)
     99#define ASC_CHIP_MIN_VER_PCI     (0x09)
    100#define ASC_CHIP_MAX_VER_PCI     (0x0F)
    101#define ASC_CHIP_VER_PCI_BIT     (0x08)
    102#define ASC_CHIP_VER_ASYN_BUG    (0x21)
    103#define ASC_CHIP_VER_PCI             0x08
    104#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
    105#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
    106#define ASC_CHIP_MIN_VER_EISA (0x41)
    107#define ASC_CHIP_MAX_VER_EISA (0x47)
    108#define ASC_CHIP_VER_EISA_BIT (0x40)
    109#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
    110#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
    111#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
    112
    113#define ASC_SCSI_ID_BITS  3
    114#define ASC_SCSI_TIX_TYPE     uchar
    115#define ASC_ALL_DEVICE_BIT_SET  0xFF
    116#define ASC_SCSI_BIT_ID_TYPE  uchar
    117#define ASC_MAX_TID       7
    118#define ASC_MAX_LUN       7
    119#define ASC_SCSI_WIDTH_BIT_SET  0xFF
    120#define ASC_MAX_SENSE_LEN   32
    121#define ASC_MIN_SENSE_LEN   14
    122#define ASC_SCSI_RESET_HOLD_TIME_US  60
    123
    124/*
    125 * Narrow boards only support 12-byte commands, while wide boards
    126 * extend to 16-byte commands.
    127 */
    128#define ASC_MAX_CDB_LEN     12
    129#define ADV_MAX_CDB_LEN     16
    130
    131#define MS_SDTR_LEN    0x03
    132#define MS_WDTR_LEN    0x02
    133
    134#define ASC_SG_LIST_PER_Q   7
    135#define QS_FREE        0x00
    136#define QS_READY       0x01
    137#define QS_DISC1       0x02
    138#define QS_DISC2       0x04
    139#define QS_BUSY        0x08
    140#define QS_ABORTED     0x40
    141#define QS_DONE        0x80
    142#define QC_NO_CALLBACK   0x01
    143#define QC_SG_SWAP_QUEUE 0x02
    144#define QC_SG_HEAD       0x04
    145#define QC_DATA_IN       0x08
    146#define QC_DATA_OUT      0x10
    147#define QC_URGENT        0x20
    148#define QC_MSG_OUT       0x40
    149#define QC_REQ_SENSE     0x80
    150#define QCSG_SG_XFER_LIST  0x02
    151#define QCSG_SG_XFER_MORE  0x04
    152#define QCSG_SG_XFER_END   0x08
    153#define QD_IN_PROGRESS       0x00
    154#define QD_NO_ERROR          0x01
    155#define QD_ABORTED_BY_HOST   0x02
    156#define QD_WITH_ERROR        0x04
    157#define QD_INVALID_REQUEST   0x80
    158#define QD_INVALID_HOST_NUM  0x81
    159#define QD_INVALID_DEVICE    0x82
    160#define QD_ERR_INTERNAL      0xFF
    161#define QHSTA_NO_ERROR               0x00
    162#define QHSTA_M_SEL_TIMEOUT          0x11
    163#define QHSTA_M_DATA_OVER_RUN        0x12
    164#define QHSTA_M_DATA_UNDER_RUN       0x12
    165#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
    166#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
    167#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
    168#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
    169#define QHSTA_D_HOST_ABORT_FAILED       0x23
    170#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
    171#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
    172#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
    173#define QHSTA_M_WTM_TIMEOUT         0x41
    174#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
    175#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
    176#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
    177#define QHSTA_M_TARGET_STATUS_BUSY  0x45
    178#define QHSTA_M_BAD_TAG_CODE        0x46
    179#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
    180#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
    181#define QHSTA_D_LRAM_CMP_ERROR        0x81
    182#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
    183#define ASC_FLAG_SCSIQ_REQ        0x01
    184#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
    185#define ASC_FLAG_BIOS_ASYNC_IO    0x04
    186#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
    187#define ASC_FLAG_WIN16            0x10
    188#define ASC_FLAG_WIN32            0x20
    189#define ASC_FLAG_DOS_VM_CALLBACK  0x80
    190#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
    191#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
    192#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
    193#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
    194#define ASC_SCSIQ_CPY_BEG              4
    195#define ASC_SCSIQ_SGHD_CPY_BEG         2
    196#define ASC_SCSIQ_B_FWD                0
    197#define ASC_SCSIQ_B_BWD                1
    198#define ASC_SCSIQ_B_STATUS             2
    199#define ASC_SCSIQ_B_QNO                3
    200#define ASC_SCSIQ_B_CNTL               4
    201#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
    202#define ASC_SCSIQ_D_DATA_ADDR          8
    203#define ASC_SCSIQ_D_DATA_CNT          12
    204#define ASC_SCSIQ_B_SENSE_LEN         20
    205#define ASC_SCSIQ_DONE_INFO_BEG       22
    206#define ASC_SCSIQ_D_SRBPTR            22
    207#define ASC_SCSIQ_B_TARGET_IX         26
    208#define ASC_SCSIQ_B_CDB_LEN           28
    209#define ASC_SCSIQ_B_TAG_CODE          29
    210#define ASC_SCSIQ_W_VM_ID             30
    211#define ASC_SCSIQ_DONE_STATUS         32
    212#define ASC_SCSIQ_HOST_STATUS         33
    213#define ASC_SCSIQ_SCSI_STATUS         34
    214#define ASC_SCSIQ_CDB_BEG             36
    215#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
    216#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
    217#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
    218#define ASC_SCSIQ_B_SG_WK_QP          49
    219#define ASC_SCSIQ_B_SG_WK_IX          50
    220#define ASC_SCSIQ_W_ALT_DC1           52
    221#define ASC_SCSIQ_B_LIST_CNT          6
    222#define ASC_SCSIQ_B_CUR_LIST_CNT      7
    223#define ASC_SGQ_B_SG_CNTL             4
    224#define ASC_SGQ_B_SG_HEAD_QP          5
    225#define ASC_SGQ_B_SG_LIST_CNT         6
    226#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
    227#define ASC_SGQ_LIST_BEG              8
    228#define ASC_DEF_SCSI1_QNG    4
    229#define ASC_MAX_SCSI1_QNG    4
    230#define ASC_DEF_SCSI2_QNG    16
    231#define ASC_MAX_SCSI2_QNG    32
    232#define ASC_TAG_CODE_MASK    0x23
    233#define ASC_STOP_REQ_RISC_STOP      0x01
    234#define ASC_STOP_ACK_RISC_STOP      0x03
    235#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
    236#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
    237#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
    238#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
    239#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
    240#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
    241#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
    242#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
    243#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
    244#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
    245
    246typedef struct asc_scsiq_1 {
    247	uchar status;
    248	uchar q_no;
    249	uchar cntl;
    250	uchar sg_queue_cnt;
    251	uchar target_id;
    252	uchar target_lun;
    253	__le32 data_addr;
    254	__le32 data_cnt;
    255	__le32 sense_addr;
    256	uchar sense_len;
    257	uchar extra_bytes;
    258} ASC_SCSIQ_1;
    259
    260typedef struct asc_scsiq_2 {
    261	u32 srb_tag;
    262	uchar target_ix;
    263	uchar flag;
    264	uchar cdb_len;
    265	uchar tag_code;
    266	ushort vm_id;
    267} ASC_SCSIQ_2;
    268
    269typedef struct asc_scsiq_3 {
    270	uchar done_stat;
    271	uchar host_stat;
    272	uchar scsi_stat;
    273	uchar scsi_msg;
    274} ASC_SCSIQ_3;
    275
    276typedef struct asc_scsiq_4 {
    277	uchar cdb[ASC_MAX_CDB_LEN];
    278	uchar y_first_sg_list_qp;
    279	uchar y_working_sg_qp;
    280	uchar y_working_sg_ix;
    281	uchar y_res;
    282	ushort x_req_count;
    283	ushort x_reconnect_rtn;
    284	__le32 x_saved_data_addr;
    285	__le32 x_saved_data_cnt;
    286} ASC_SCSIQ_4;
    287
    288typedef struct asc_q_done_info {
    289	ASC_SCSIQ_2 d2;
    290	ASC_SCSIQ_3 d3;
    291	uchar q_status;
    292	uchar q_no;
    293	uchar cntl;
    294	uchar sense_len;
    295	uchar extra_bytes;
    296	uchar res;
    297	u32 remain_bytes;
    298} ASC_QDONE_INFO;
    299
    300typedef struct asc_sg_list {
    301	__le32 addr;
    302	__le32 bytes;
    303} ASC_SG_LIST;
    304
    305typedef struct asc_sg_head {
    306	ushort entry_cnt;
    307	ushort queue_cnt;
    308	ushort entry_to_copy;
    309	ushort res;
    310	ASC_SG_LIST sg_list[];
    311} ASC_SG_HEAD;
    312
    313typedef struct asc_scsi_q {
    314	ASC_SCSIQ_1 q1;
    315	ASC_SCSIQ_2 q2;
    316	uchar *cdbptr;
    317	ASC_SG_HEAD *sg_head;
    318	ushort remain_sg_entry_cnt;
    319	ushort next_sg_index;
    320} ASC_SCSI_Q;
    321
    322typedef struct asc_scsi_bios_req_q {
    323	ASC_SCSIQ_1 r1;
    324	ASC_SCSIQ_2 r2;
    325	uchar *cdbptr;
    326	ASC_SG_HEAD *sg_head;
    327	uchar *sense_ptr;
    328	ASC_SCSIQ_3 r3;
    329	uchar cdb[ASC_MAX_CDB_LEN];
    330	uchar sense[ASC_MIN_SENSE_LEN];
    331} ASC_SCSI_BIOS_REQ_Q;
    332
    333typedef struct asc_risc_q {
    334	uchar fwd;
    335	uchar bwd;
    336	ASC_SCSIQ_1 i1;
    337	ASC_SCSIQ_2 i2;
    338	ASC_SCSIQ_3 i3;
    339	ASC_SCSIQ_4 i4;
    340} ASC_RISC_Q;
    341
    342typedef struct asc_sg_list_q {
    343	uchar seq_no;
    344	uchar q_no;
    345	uchar cntl;
    346	uchar sg_head_qp;
    347	uchar sg_list_cnt;
    348	uchar sg_cur_list_cnt;
    349} ASC_SG_LIST_Q;
    350
    351typedef struct asc_risc_sg_list_q {
    352	uchar fwd;
    353	uchar bwd;
    354	ASC_SG_LIST_Q sg;
    355	ASC_SG_LIST sg_list[7];
    356} ASC_RISC_SG_LIST_Q;
    357
    358#define ASCQ_ERR_Q_STATUS             0x0D
    359#define ASCQ_ERR_CUR_QNG              0x17
    360#define ASCQ_ERR_SG_Q_LINKS           0x18
    361#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
    362#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
    363#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
    364
    365/*
    366 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
    367 */
    368#define ASC_WARN_NO_ERROR             0x0000
    369#define ASC_WARN_IO_PORT_ROTATE       0x0001
    370#define ASC_WARN_EEPROM_CHKSUM        0x0002
    371#define ASC_WARN_IRQ_MODIFIED         0x0004
    372#define ASC_WARN_AUTO_CONFIG          0x0008
    373#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
    374#define ASC_WARN_EEPROM_RECOVER       0x0020
    375#define ASC_WARN_CFG_MSW_RECOVER      0x0040
    376
    377/*
    378 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
    379 */
    380#define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
    381#define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
    382#define ASC_IERR_SET_PC_ADDR		0x0004
    383#define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
    384#define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
    385#define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
    386#define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
    387#define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
    388#define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
    389#define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
    390#define ASC_IERR_NO_BUS_TYPE		0x0400
    391#define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
    392#define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
    393#define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
    394
    395#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
    396#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
    397#define ASC_MIN_FREE_Q        (0x02)
    398#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
    399#define ASC_MAX_TOTAL_QNG 240
    400#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
    401#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
    402#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
    403#define ASC_MAX_INRAM_TAG_QNG   16
    404#define ASC_IOADR_GAP   0x10
    405#define ASC_SYN_MAX_OFFSET         0x0F
    406#define ASC_DEF_SDTR_OFFSET        0x0F
    407#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
    408#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
    409
    410/* The narrow chip only supports a limited selection of transfer rates.
    411 * These are encoded in the range 0..7 or 0..15 depending whether the chip
    412 * is Ultra-capable or not.  These tables let us convert from one to the other.
    413 */
    414static const unsigned char asc_syn_xfer_period[8] = {
    415	25, 30, 35, 40, 50, 60, 70, 85
    416};
    417
    418static const unsigned char asc_syn_ultra_xfer_period[16] = {
    419	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
    420};
    421
    422typedef struct ext_msg {
    423	uchar msg_type;
    424	uchar msg_len;
    425	uchar msg_req;
    426	union {
    427		struct {
    428			uchar sdtr_xfer_period;
    429			uchar sdtr_req_ack_offset;
    430		} sdtr;
    431		struct {
    432			uchar wdtr_width;
    433		} wdtr;
    434		struct {
    435			uchar mdp_b3;
    436			uchar mdp_b2;
    437			uchar mdp_b1;
    438			uchar mdp_b0;
    439		} mdp;
    440	} u_ext_msg;
    441	uchar res;
    442} EXT_MSG;
    443
    444#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
    445#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
    446#define wdtr_width      u_ext_msg.wdtr.wdtr_width
    447#define mdp_b3          u_ext_msg.mdp_b3
    448#define mdp_b2          u_ext_msg.mdp_b2
    449#define mdp_b1          u_ext_msg.mdp_b1
    450#define mdp_b0          u_ext_msg.mdp_b0
    451
    452typedef struct asc_dvc_cfg {
    453	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
    454	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
    455	ASC_SCSI_BIT_ID_TYPE disc_enable;
    456	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
    457	uchar chip_scsi_id;
    458	uchar chip_version;
    459	ushort mcode_date;
    460	ushort mcode_version;
    461	uchar max_tag_qng[ASC_MAX_TID + 1];
    462	uchar sdtr_period_offset[ASC_MAX_TID + 1];
    463	uchar adapter_info[6];
    464} ASC_DVC_CFG;
    465
    466#define ASC_DEF_DVC_CNTL       0xFFFF
    467#define ASC_DEF_CHIP_SCSI_ID   7
    468#define ASC_DEF_ISA_DMA_SPEED  4
    469#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
    470#define ASC_INIT_STATE_END_GET_CFG   0x0002
    471#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
    472#define ASC_INIT_STATE_END_SET_CFG   0x0008
    473#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
    474#define ASC_INIT_STATE_END_LOAD_MC   0x0020
    475#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
    476#define ASC_INIT_STATE_END_INQUIRY   0x0080
    477#define ASC_INIT_RESET_SCSI_DONE     0x0100
    478#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
    479#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
    480#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
    481#define ASC_MIN_TAGGED_CMD  7
    482#define ASC_MAX_SCSI_RESET_WAIT      30
    483#define ASC_OVERRUN_BSIZE		64
    484
    485struct asc_dvc_var;		/* Forward Declaration. */
    486
    487typedef struct asc_dvc_var {
    488	PortAddr iop_base;
    489	ushort err_code;
    490	ushort dvc_cntl;
    491	ushort bug_fix_cntl;
    492	ushort bus_type;
    493	ASC_SCSI_BIT_ID_TYPE init_sdtr;
    494	ASC_SCSI_BIT_ID_TYPE sdtr_done;
    495	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
    496	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
    497	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
    498	ASC_SCSI_BIT_ID_TYPE start_motor;
    499	uchar *overrun_buf;
    500	dma_addr_t overrun_dma;
    501	uchar scsi_reset_wait;
    502	uchar chip_no;
    503	bool is_in_int;
    504	uchar max_total_qng;
    505	uchar cur_total_qng;
    506	uchar in_critical_cnt;
    507	uchar last_q_shortage;
    508	ushort init_state;
    509	uchar cur_dvc_qng[ASC_MAX_TID + 1];
    510	uchar max_dvc_qng[ASC_MAX_TID + 1];
    511	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
    512	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
    513	const uchar *sdtr_period_tbl;
    514	ASC_DVC_CFG *cfg;
    515	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
    516	char redo_scam;
    517	ushort res2;
    518	uchar dos_int13_table[ASC_MAX_TID + 1];
    519	unsigned int max_dma_count;
    520	ASC_SCSI_BIT_ID_TYPE no_scam;
    521	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
    522	uchar min_sdtr_index;
    523	uchar max_sdtr_index;
    524	struct asc_board *drv_ptr;
    525	unsigned int uc_break;
    526} ASC_DVC_VAR;
    527
    528typedef struct asc_dvc_inq_info {
    529	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
    530} ASC_DVC_INQ_INFO;
    531
    532typedef struct asc_cap_info {
    533	u32 lba;
    534	u32 blk_size;
    535} ASC_CAP_INFO;
    536
    537typedef struct asc_cap_info_array {
    538	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
    539} ASC_CAP_INFO_ARRAY;
    540
    541#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
    542#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
    543#define ASC_CNTL_INITIATOR         (ushort)0x0001
    544#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
    545#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
    546#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
    547#define ASC_CNTL_NO_SCAM           (ushort)0x0010
    548#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
    549#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
    550#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
    551#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
    552#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
    553#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
    554#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
    555#define ASC_CNTL_BURST_MODE        (ushort)0x2000
    556#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
    557#define ASC_EEP_DVC_CFG_BEG_VL    2
    558#define ASC_EEP_MAX_DVC_ADDR_VL   15
    559#define ASC_EEP_DVC_CFG_BEG      32
    560#define ASC_EEP_MAX_DVC_ADDR     45
    561#define ASC_EEP_MAX_RETRY        20
    562
    563/*
    564 * These macros keep the chip SCSI id  bitfields in board order. C bitfields
    565 * aren't portable between big and little-endian platforms so they are not used.
    566 */
    567
    568#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
    569#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
    570#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
    571   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
    572#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
    573   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
    574
    575typedef struct asceep_config {
    576	ushort cfg_lsw;
    577	ushort cfg_msw;
    578	uchar init_sdtr;
    579	uchar disc_enable;
    580	uchar use_cmd_qng;
    581	uchar start_motor;
    582	uchar max_total_qng;
    583	uchar max_tag_qng;
    584	uchar bios_scan;
    585	uchar power_up_wait;
    586	uchar no_scam;
    587	uchar id_speed;		/* low order 4 bits is chip scsi id */
    588	/* high order 4 bits is isa dma speed */
    589	uchar dos_int13_table[ASC_MAX_TID + 1];
    590	uchar adapter_info[6];
    591	ushort cntl;
    592	ushort chksum;
    593} ASCEEP_CONFIG;
    594
    595#define ASC_EEP_CMD_READ          0x80
    596#define ASC_EEP_CMD_WRITE         0x40
    597#define ASC_EEP_CMD_WRITE_ABLE    0x30
    598#define ASC_EEP_CMD_WRITE_DISABLE 0x00
    599#define ASCV_MSGOUT_BEG         0x0000
    600#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
    601#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
    602#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
    603#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
    604#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
    605#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
    606#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
    607#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
    608#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
    609#define ASCV_BREAK_ADDR           (ushort)0x0028
    610#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
    611#define ASCV_BREAK_CONTROL        (ushort)0x002C
    612#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
    613
    614#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
    615#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
    616#define ASCV_MCODE_SIZE_W     (ushort)0x0034
    617#define ASCV_STOP_CODE_B      (ushort)0x0036
    618#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
    619#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
    620#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
    621#define ASCV_HALTCODE_W       (ushort)0x0040
    622#define ASCV_CHKSUM_W         (ushort)0x0042
    623#define ASCV_MC_DATE_W        (ushort)0x0044
    624#define ASCV_MC_VER_W         (ushort)0x0046
    625#define ASCV_NEXTRDY_B        (ushort)0x0048
    626#define ASCV_DONENEXT_B       (ushort)0x0049
    627#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
    628#define ASCV_SCSIBUSY_B       (ushort)0x004B
    629#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
    630#define ASCV_CURCDB_B         (ushort)0x004D
    631#define ASCV_RCLUN_B          (ushort)0x004E
    632#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
    633#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
    634#define ASCV_DISC_ENABLE_B    (ushort)0x0052
    635#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
    636#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
    637#define ASCV_MCODE_CNTL_B     (ushort)0x0056
    638#define ASCV_NULL_TARGET_B    (ushort)0x0057
    639#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
    640#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
    641#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
    642#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
    643#define ASCV_HOST_FLAG_B      (ushort)0x005D
    644#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
    645#define ASCV_VER_SERIAL_B     (ushort)0x0065
    646#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
    647#define ASCV_WTM_FLAG_B       (ushort)0x0068
    648#define ASCV_RISC_FLAG_B      (ushort)0x006A
    649#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
    650#define ASC_HOST_FLAG_IN_ISR        0x01
    651#define ASC_HOST_FLAG_ACK_INT       0x02
    652#define ASC_RISC_FLAG_GEN_INT      0x01
    653#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
    654#define IOP_CTRL         (0x0F)
    655#define IOP_STATUS       (0x0E)
    656#define IOP_INT_ACK      IOP_STATUS
    657#define IOP_REG_IFC      (0x0D)
    658#define IOP_SYN_OFFSET    (0x0B)
    659#define IOP_EXTRA_CONTROL (0x0D)
    660#define IOP_REG_PC        (0x0C)
    661#define IOP_RAM_ADDR      (0x0A)
    662#define IOP_RAM_DATA      (0x08)
    663#define IOP_EEP_DATA      (0x06)
    664#define IOP_EEP_CMD       (0x07)
    665#define IOP_VERSION       (0x03)
    666#define IOP_CONFIG_HIGH   (0x04)
    667#define IOP_CONFIG_LOW    (0x02)
    668#define IOP_SIG_BYTE      (0x01)
    669#define IOP_SIG_WORD      (0x00)
    670#define IOP_REG_DC1      (0x0E)
    671#define IOP_REG_DC0      (0x0C)
    672#define IOP_REG_SB       (0x0B)
    673#define IOP_REG_DA1      (0x0A)
    674#define IOP_REG_DA0      (0x08)
    675#define IOP_REG_SC       (0x09)
    676#define IOP_DMA_SPEED    (0x07)
    677#define IOP_REG_FLAG     (0x07)
    678#define IOP_FIFO_H       (0x06)
    679#define IOP_FIFO_L       (0x04)
    680#define IOP_REG_ID       (0x05)
    681#define IOP_REG_QP       (0x03)
    682#define IOP_REG_IH       (0x02)
    683#define IOP_REG_IX       (0x01)
    684#define IOP_REG_AX       (0x00)
    685#define IFC_REG_LOCK      (0x00)
    686#define IFC_REG_UNLOCK    (0x09)
    687#define IFC_WR_EN_FILTER  (0x10)
    688#define IFC_RD_NO_EEPROM  (0x10)
    689#define IFC_SLEW_RATE     (0x20)
    690#define IFC_ACT_NEG       (0x40)
    691#define IFC_INP_FILTER    (0x80)
    692#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
    693#define SC_SEL   (uchar)(0x80)
    694#define SC_BSY   (uchar)(0x40)
    695#define SC_ACK   (uchar)(0x20)
    696#define SC_REQ   (uchar)(0x10)
    697#define SC_ATN   (uchar)(0x08)
    698#define SC_IO    (uchar)(0x04)
    699#define SC_CD    (uchar)(0x02)
    700#define SC_MSG   (uchar)(0x01)
    701#define SEC_SCSI_CTL         (uchar)(0x80)
    702#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
    703#define SEC_SLEW_RATE        (uchar)(0x20)
    704#define SEC_ENABLE_FILTER    (uchar)(0x10)
    705#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
    706#define ASC_HALT_CHK_CONDITION (ushort)0x8100
    707#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
    708#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
    709#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
    710#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
    711#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
    712#define ASC_MAX_QNO        0xF8
    713#define ASC_DATA_SEC_BEG   (ushort)0x0080
    714#define ASC_DATA_SEC_END   (ushort)0x0080
    715#define ASC_CODE_SEC_BEG   (ushort)0x0080
    716#define ASC_CODE_SEC_END   (ushort)0x0080
    717#define ASC_QADR_BEG       (0x4000)
    718#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
    719#define ASC_QADR_END       (ushort)0x7FFF
    720#define ASC_QLAST_ADR      (ushort)0x7FC0
    721#define ASC_QBLK_SIZE      0x40
    722#define ASC_BIOS_DATA_QBEG 0xF8
    723#define ASC_MIN_ACTIVE_QNO 0x01
    724#define ASC_QLINK_END      0xFF
    725#define ASC_EEPROM_WORDS   0x10
    726#define ASC_MAX_MGS_LEN    0x10
    727#define ASC_BIOS_ADDR_DEF  0xDC00
    728#define ASC_BIOS_SIZE      0x3800
    729#define ASC_BIOS_RAM_OFF   0x3800
    730#define ASC_BIOS_RAM_SIZE  0x800
    731#define ASC_BIOS_MIN_ADDR  0xC000
    732#define ASC_BIOS_MAX_ADDR  0xEC00
    733#define ASC_BIOS_BANK_SIZE 0x0400
    734#define ASC_MCODE_START_ADDR  0x0080
    735#define ASC_CFG0_HOST_INT_ON    0x0020
    736#define ASC_CFG0_BIOS_ON        0x0040
    737#define ASC_CFG0_VERA_BURST_ON  0x0080
    738#define ASC_CFG0_SCSI_PARITY_ON 0x0800
    739#define ASC_CFG1_SCSI_TARGET_ON 0x0080
    740#define ASC_CFG1_LRAM_8BITS_ON  0x0800
    741#define ASC_CFG_MSW_CLR_MASK    0x3080
    742#define CSW_TEST1             (ASC_CS_TYPE)0x8000
    743#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
    744#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
    745#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
    746#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
    747#define CSW_TEST2             (ASC_CS_TYPE)0x0400
    748#define CSW_TEST3             (ASC_CS_TYPE)0x0200
    749#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
    750#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
    751#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
    752#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
    753#define CSW_HALTED            (ASC_CS_TYPE)0x0010
    754#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
    755#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
    756#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
    757#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
    758#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
    759#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
    760#define CIW_TEST1        (ASC_CS_TYPE)0x0200
    761#define CIW_TEST2        (ASC_CS_TYPE)0x0400
    762#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
    763#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
    764#define CC_CHIP_RESET   (uchar)0x80
    765#define CC_SCSI_RESET   (uchar)0x40
    766#define CC_HALT         (uchar)0x20
    767#define CC_SINGLE_STEP  (uchar)0x10
    768#define CC_DMA_ABLE     (uchar)0x08
    769#define CC_TEST         (uchar)0x04
    770#define CC_BANK_ONE     (uchar)0x02
    771#define CC_DIAG         (uchar)0x01
    772#define ASC_1000_ID0W      0x04C1
    773#define ASC_1000_ID0W_FIX  0x00C1
    774#define ASC_1000_ID1B      0x25
    775#define ASC_EISA_REV_IOP_MASK  (0x0C83)
    776#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
    777#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
    778#define INS_HALTINT        (ushort)0x6281
    779#define INS_HALT           (ushort)0x6280
    780#define INS_SINT           (ushort)0x6200
    781#define INS_RFLAG_WTM      (ushort)0x7380
    782#define ASC_MC_SAVE_CODE_WSIZE  0x500
    783#define ASC_MC_SAVE_DATA_WSIZE  0x40
    784
    785typedef struct asc_mc_saved {
    786	ushort data[ASC_MC_SAVE_DATA_WSIZE];
    787	ushort code[ASC_MC_SAVE_CODE_WSIZE];
    788} ASC_MC_SAVED;
    789
    790#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
    791#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
    792#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
    793#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
    794#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
    795#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
    796#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
    797#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
    798#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
    799#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
    800#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
    801#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
    802#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
    803#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
    804#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
    805#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
    806#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
    807#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
    808#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
    809#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
    810#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
    811#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
    812#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
    813#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
    814#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
    815#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
    816#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
    817#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
    818#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
    819#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
    820#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
    821#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
    822#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
    823#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
    824#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
    825#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
    826#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
    827#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
    828#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
    829#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
    830#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
    831#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
    832#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
    833#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
    834#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
    835#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
    836#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
    837#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
    838#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
    839#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
    840#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
    841#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
    842#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
    843#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
    844#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
    845#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
    846#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
    847#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
    848#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
    849#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
    850#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
    851#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
    852#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
    853#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
    854#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
    855#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
    856#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
    857
    858#define AdvPortAddr  void __iomem *	/* Virtual memory address size */
    859
    860/*
    861 * Define Adv Library required memory access macros.
    862 */
    863#define ADV_MEM_READB(addr) readb(addr)
    864#define ADV_MEM_READW(addr) readw(addr)
    865#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
    866#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
    867#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
    868
    869/*
    870 * Define total number of simultaneous maximum element scatter-gather
    871 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
    872 * maximum number of outstanding commands per wide host adapter. Each
    873 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
    874 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
    875 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
    876 * structures or 255 scatter-gather elements.
    877 */
    878#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
    879
    880/*
    881 * Define maximum number of scatter-gather elements per request.
    882 */
    883#define ADV_MAX_SG_LIST         255
    884#define NO_OF_SG_PER_BLOCK              15
    885
    886#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
    887#define ADV_EEP_DVC_CFG_END             (0x15)
    888#define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
    889#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
    890
    891#define ADV_EEP_DELAY_MS                100
    892
    893#define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
    894#define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
    895/*
    896 * For the ASC3550 Bit 13 is Termination Polarity control bit.
    897 * For later ICs Bit 13 controls whether the CIS (Card Information
    898 * Service Section) is loaded from EEPROM.
    899 */
    900#define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
    901#define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
    902/*
    903 * ASC38C1600 Bit 11
    904 *
    905 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
    906 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
    907 * Function 0 will specify INT B.
    908 *
    909 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
    910 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
    911 * Function 1 will specify INT A.
    912 */
    913#define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
    914
    915typedef struct adveep_3550_config {
    916	/* Word Offset, Description */
    917
    918	ushort cfg_lsw;		/* 00 power up initialization */
    919	/*  bit 13 set - Term Polarity Control */
    920	/*  bit 14 set - BIOS Enable */
    921	/*  bit 15 set - Big Endian Mode */
    922	ushort cfg_msw;		/* 01 unused      */
    923	ushort disc_enable;	/* 02 disconnect enable */
    924	ushort wdtr_able;	/* 03 Wide DTR able */
    925	ushort sdtr_able;	/* 04 Synchronous DTR able */
    926	ushort start_motor;	/* 05 send start up motor */
    927	ushort tagqng_able;	/* 06 tag queuing able */
    928	ushort bios_scan;	/* 07 BIOS device control */
    929	ushort scam_tolerant;	/* 08 no scam */
    930
    931	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
    932	uchar bios_boot_delay;	/*    power up wait */
    933
    934	uchar scsi_reset_delay;	/* 10 reset delay */
    935	uchar bios_id_lun;	/*    first boot device scsi id & lun */
    936	/*    high nibble is lun */
    937	/*    low nibble is scsi id */
    938
    939	uchar termination;	/* 11 0 - automatic */
    940	/*    1 - low off / high off */
    941	/*    2 - low off / high on */
    942	/*    3 - low on  / high on */
    943	/*    There is no low on  / high off */
    944
    945	uchar reserved1;	/*    reserved byte (not used) */
    946
    947	ushort bios_ctrl;	/* 12 BIOS control bits */
    948	/*  bit 0  BIOS don't act as initiator. */
    949	/*  bit 1  BIOS > 1 GB support */
    950	/*  bit 2  BIOS > 2 Disk Support */
    951	/*  bit 3  BIOS don't support removables */
    952	/*  bit 4  BIOS support bootable CD */
    953	/*  bit 5  BIOS scan enabled */
    954	/*  bit 6  BIOS support multiple LUNs */
    955	/*  bit 7  BIOS display of message */
    956	/*  bit 8  SCAM disabled */
    957	/*  bit 9  Reset SCSI bus during init. */
    958	/*  bit 10 */
    959	/*  bit 11 No verbose initialization. */
    960	/*  bit 12 SCSI parity enabled */
    961	/*  bit 13 */
    962	/*  bit 14 */
    963	/*  bit 15 */
    964	ushort ultra_able;	/* 13 ULTRA speed able */
    965	ushort reserved2;	/* 14 reserved */
    966	uchar max_host_qng;	/* 15 maximum host queuing */
    967	uchar max_dvc_qng;	/*    maximum per device queuing */
    968	ushort dvc_cntl;	/* 16 control bit for driver */
    969	ushort bug_fix;		/* 17 control bit for bug fix */
    970	ushort serial_number_word1;	/* 18 Board serial number word 1 */
    971	ushort serial_number_word2;	/* 19 Board serial number word 2 */
    972	ushort serial_number_word3;	/* 20 Board serial number word 3 */
    973	ushort check_sum;	/* 21 EEP check sum */
    974	uchar oem_name[16];	/* 22 OEM name */
    975	ushort dvc_err_code;	/* 30 last device driver error code */
    976	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
    977	ushort adv_err_addr;	/* 32 last uc error address */
    978	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
    979	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
    980	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
    981	ushort num_of_err;	/* 36 number of error */
    982} ADVEEP_3550_CONFIG;
    983
    984typedef struct adveep_38C0800_config {
    985	/* Word Offset, Description */
    986
    987	ushort cfg_lsw;		/* 00 power up initialization */
    988	/*  bit 13 set - Load CIS */
    989	/*  bit 14 set - BIOS Enable */
    990	/*  bit 15 set - Big Endian Mode */
    991	ushort cfg_msw;		/* 01 unused      */
    992	ushort disc_enable;	/* 02 disconnect enable */
    993	ushort wdtr_able;	/* 03 Wide DTR able */
    994	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
    995	ushort start_motor;	/* 05 send start up motor */
    996	ushort tagqng_able;	/* 06 tag queuing able */
    997	ushort bios_scan;	/* 07 BIOS device control */
    998	ushort scam_tolerant;	/* 08 no scam */
    999
   1000	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
   1001	uchar bios_boot_delay;	/*    power up wait */
   1002
   1003	uchar scsi_reset_delay;	/* 10 reset delay */
   1004	uchar bios_id_lun;	/*    first boot device scsi id & lun */
   1005	/*    high nibble is lun */
   1006	/*    low nibble is scsi id */
   1007
   1008	uchar termination_se;	/* 11 0 - automatic */
   1009	/*    1 - low off / high off */
   1010	/*    2 - low off / high on */
   1011	/*    3 - low on  / high on */
   1012	/*    There is no low on  / high off */
   1013
   1014	uchar termination_lvd;	/* 11 0 - automatic */
   1015	/*    1 - low off / high off */
   1016	/*    2 - low off / high on */
   1017	/*    3 - low on  / high on */
   1018	/*    There is no low on  / high off */
   1019
   1020	ushort bios_ctrl;	/* 12 BIOS control bits */
   1021	/*  bit 0  BIOS don't act as initiator. */
   1022	/*  bit 1  BIOS > 1 GB support */
   1023	/*  bit 2  BIOS > 2 Disk Support */
   1024	/*  bit 3  BIOS don't support removables */
   1025	/*  bit 4  BIOS support bootable CD */
   1026	/*  bit 5  BIOS scan enabled */
   1027	/*  bit 6  BIOS support multiple LUNs */
   1028	/*  bit 7  BIOS display of message */
   1029	/*  bit 8  SCAM disabled */
   1030	/*  bit 9  Reset SCSI bus during init. */
   1031	/*  bit 10 */
   1032	/*  bit 11 No verbose initialization. */
   1033	/*  bit 12 SCSI parity enabled */
   1034	/*  bit 13 */
   1035	/*  bit 14 */
   1036	/*  bit 15 */
   1037	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
   1038	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
   1039	uchar max_host_qng;	/* 15 maximum host queueing */
   1040	uchar max_dvc_qng;	/*    maximum per device queuing */
   1041	ushort dvc_cntl;	/* 16 control bit for driver */
   1042	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
   1043	ushort serial_number_word1;	/* 18 Board serial number word 1 */
   1044	ushort serial_number_word2;	/* 19 Board serial number word 2 */
   1045	ushort serial_number_word3;	/* 20 Board serial number word 3 */
   1046	ushort check_sum;	/* 21 EEP check sum */
   1047	uchar oem_name[16];	/* 22 OEM name */
   1048	ushort dvc_err_code;	/* 30 last device driver error code */
   1049	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
   1050	ushort adv_err_addr;	/* 32 last uc error address */
   1051	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
   1052	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
   1053	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
   1054	ushort reserved36;	/* 36 reserved */
   1055	ushort reserved37;	/* 37 reserved */
   1056	ushort reserved38;	/* 38 reserved */
   1057	ushort reserved39;	/* 39 reserved */
   1058	ushort reserved40;	/* 40 reserved */
   1059	ushort reserved41;	/* 41 reserved */
   1060	ushort reserved42;	/* 42 reserved */
   1061	ushort reserved43;	/* 43 reserved */
   1062	ushort reserved44;	/* 44 reserved */
   1063	ushort reserved45;	/* 45 reserved */
   1064	ushort reserved46;	/* 46 reserved */
   1065	ushort reserved47;	/* 47 reserved */
   1066	ushort reserved48;	/* 48 reserved */
   1067	ushort reserved49;	/* 49 reserved */
   1068	ushort reserved50;	/* 50 reserved */
   1069	ushort reserved51;	/* 51 reserved */
   1070	ushort reserved52;	/* 52 reserved */
   1071	ushort reserved53;	/* 53 reserved */
   1072	ushort reserved54;	/* 54 reserved */
   1073	ushort reserved55;	/* 55 reserved */
   1074	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
   1075	ushort cisprt_msw;	/* 57 CIS PTR MSW */
   1076	ushort subsysvid;	/* 58 SubSystem Vendor ID */
   1077	ushort subsysid;	/* 59 SubSystem ID */
   1078	ushort reserved60;	/* 60 reserved */
   1079	ushort reserved61;	/* 61 reserved */
   1080	ushort reserved62;	/* 62 reserved */
   1081	ushort reserved63;	/* 63 reserved */
   1082} ADVEEP_38C0800_CONFIG;
   1083
   1084typedef struct adveep_38C1600_config {
   1085	/* Word Offset, Description */
   1086
   1087	ushort cfg_lsw;		/* 00 power up initialization */
   1088	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
   1089	/*       clear - Func. 0 INTA, Func. 1 INTB */
   1090	/*  bit 13 set - Load CIS */
   1091	/*  bit 14 set - BIOS Enable */
   1092	/*  bit 15 set - Big Endian Mode */
   1093	ushort cfg_msw;		/* 01 unused */
   1094	ushort disc_enable;	/* 02 disconnect enable */
   1095	ushort wdtr_able;	/* 03 Wide DTR able */
   1096	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
   1097	ushort start_motor;	/* 05 send start up motor */
   1098	ushort tagqng_able;	/* 06 tag queuing able */
   1099	ushort bios_scan;	/* 07 BIOS device control */
   1100	ushort scam_tolerant;	/* 08 no scam */
   1101
   1102	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
   1103	uchar bios_boot_delay;	/*    power up wait */
   1104
   1105	uchar scsi_reset_delay;	/* 10 reset delay */
   1106	uchar bios_id_lun;	/*    first boot device scsi id & lun */
   1107	/*    high nibble is lun */
   1108	/*    low nibble is scsi id */
   1109
   1110	uchar termination_se;	/* 11 0 - automatic */
   1111	/*    1 - low off / high off */
   1112	/*    2 - low off / high on */
   1113	/*    3 - low on  / high on */
   1114	/*    There is no low on  / high off */
   1115
   1116	uchar termination_lvd;	/* 11 0 - automatic */
   1117	/*    1 - low off / high off */
   1118	/*    2 - low off / high on */
   1119	/*    3 - low on  / high on */
   1120	/*    There is no low on  / high off */
   1121
   1122	ushort bios_ctrl;	/* 12 BIOS control bits */
   1123	/*  bit 0  BIOS don't act as initiator. */
   1124	/*  bit 1  BIOS > 1 GB support */
   1125	/*  bit 2  BIOS > 2 Disk Support */
   1126	/*  bit 3  BIOS don't support removables */
   1127	/*  bit 4  BIOS support bootable CD */
   1128	/*  bit 5  BIOS scan enabled */
   1129	/*  bit 6  BIOS support multiple LUNs */
   1130	/*  bit 7  BIOS display of message */
   1131	/*  bit 8  SCAM disabled */
   1132	/*  bit 9  Reset SCSI bus during init. */
   1133	/*  bit 10 Basic Integrity Checking disabled */
   1134	/*  bit 11 No verbose initialization. */
   1135	/*  bit 12 SCSI parity enabled */
   1136	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
   1137	/*  bit 14 */
   1138	/*  bit 15 */
   1139	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
   1140	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
   1141	uchar max_host_qng;	/* 15 maximum host queueing */
   1142	uchar max_dvc_qng;	/*    maximum per device queuing */
   1143	ushort dvc_cntl;	/* 16 control bit for driver */
   1144	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
   1145	ushort serial_number_word1;	/* 18 Board serial number word 1 */
   1146	ushort serial_number_word2;	/* 19 Board serial number word 2 */
   1147	ushort serial_number_word3;	/* 20 Board serial number word 3 */
   1148	ushort check_sum;	/* 21 EEP check sum */
   1149	uchar oem_name[16];	/* 22 OEM name */
   1150	ushort dvc_err_code;	/* 30 last device driver error code */
   1151	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
   1152	ushort adv_err_addr;	/* 32 last uc error address */
   1153	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
   1154	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
   1155	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
   1156	ushort reserved36;	/* 36 reserved */
   1157	ushort reserved37;	/* 37 reserved */
   1158	ushort reserved38;	/* 38 reserved */
   1159	ushort reserved39;	/* 39 reserved */
   1160	ushort reserved40;	/* 40 reserved */
   1161	ushort reserved41;	/* 41 reserved */
   1162	ushort reserved42;	/* 42 reserved */
   1163	ushort reserved43;	/* 43 reserved */
   1164	ushort reserved44;	/* 44 reserved */
   1165	ushort reserved45;	/* 45 reserved */
   1166	ushort reserved46;	/* 46 reserved */
   1167	ushort reserved47;	/* 47 reserved */
   1168	ushort reserved48;	/* 48 reserved */
   1169	ushort reserved49;	/* 49 reserved */
   1170	ushort reserved50;	/* 50 reserved */
   1171	ushort reserved51;	/* 51 reserved */
   1172	ushort reserved52;	/* 52 reserved */
   1173	ushort reserved53;	/* 53 reserved */
   1174	ushort reserved54;	/* 54 reserved */
   1175	ushort reserved55;	/* 55 reserved */
   1176	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
   1177	ushort cisprt_msw;	/* 57 CIS PTR MSW */
   1178	ushort subsysvid;	/* 58 SubSystem Vendor ID */
   1179	ushort subsysid;	/* 59 SubSystem ID */
   1180	ushort reserved60;	/* 60 reserved */
   1181	ushort reserved61;	/* 61 reserved */
   1182	ushort reserved62;	/* 62 reserved */
   1183	ushort reserved63;	/* 63 reserved */
   1184} ADVEEP_38C1600_CONFIG;
   1185
   1186/*
   1187 * EEPROM Commands
   1188 */
   1189#define ASC_EEP_CMD_DONE             0x0200
   1190
   1191/* bios_ctrl */
   1192#define BIOS_CTRL_BIOS               0x0001
   1193#define BIOS_CTRL_EXTENDED_XLAT      0x0002
   1194#define BIOS_CTRL_GT_2_DISK          0x0004
   1195#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
   1196#define BIOS_CTRL_BOOTABLE_CD        0x0010
   1197#define BIOS_CTRL_MULTIPLE_LUN       0x0040
   1198#define BIOS_CTRL_DISPLAY_MSG        0x0080
   1199#define BIOS_CTRL_NO_SCAM            0x0100
   1200#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
   1201#define BIOS_CTRL_INIT_VERBOSE       0x0800
   1202#define BIOS_CTRL_SCSI_PARITY        0x1000
   1203#define BIOS_CTRL_AIPP_DIS           0x2000
   1204
   1205#define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
   1206
   1207#define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
   1208
   1209/*
   1210 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
   1211 * a special 16K Adv Library and Microcode version. After the issue is
   1212 * resolved, should restore 32K support.
   1213 *
   1214 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
   1215 */
   1216#define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
   1217
   1218/*
   1219 * Byte I/O register address from base of 'iop_base'.
   1220 */
   1221#define IOPB_INTR_STATUS_REG    0x00
   1222#define IOPB_CHIP_ID_1          0x01
   1223#define IOPB_INTR_ENABLES       0x02
   1224#define IOPB_CHIP_TYPE_REV      0x03
   1225#define IOPB_RES_ADDR_4         0x04
   1226#define IOPB_RES_ADDR_5         0x05
   1227#define IOPB_RAM_DATA           0x06
   1228#define IOPB_RES_ADDR_7         0x07
   1229#define IOPB_FLAG_REG           0x08
   1230#define IOPB_RES_ADDR_9         0x09
   1231#define IOPB_RISC_CSR           0x0A
   1232#define IOPB_RES_ADDR_B         0x0B
   1233#define IOPB_RES_ADDR_C         0x0C
   1234#define IOPB_RES_ADDR_D         0x0D
   1235#define IOPB_SOFT_OVER_WR       0x0E
   1236#define IOPB_RES_ADDR_F         0x0F
   1237#define IOPB_MEM_CFG            0x10
   1238#define IOPB_RES_ADDR_11        0x11
   1239#define IOPB_GPIO_DATA          0x12
   1240#define IOPB_RES_ADDR_13        0x13
   1241#define IOPB_FLASH_PAGE         0x14
   1242#define IOPB_RES_ADDR_15        0x15
   1243#define IOPB_GPIO_CNTL          0x16
   1244#define IOPB_RES_ADDR_17        0x17
   1245#define IOPB_FLASH_DATA         0x18
   1246#define IOPB_RES_ADDR_19        0x19
   1247#define IOPB_RES_ADDR_1A        0x1A
   1248#define IOPB_RES_ADDR_1B        0x1B
   1249#define IOPB_RES_ADDR_1C        0x1C
   1250#define IOPB_RES_ADDR_1D        0x1D
   1251#define IOPB_RES_ADDR_1E        0x1E
   1252#define IOPB_RES_ADDR_1F        0x1F
   1253#define IOPB_DMA_CFG0           0x20
   1254#define IOPB_DMA_CFG1           0x21
   1255#define IOPB_TICKLE             0x22
   1256#define IOPB_DMA_REG_WR         0x23
   1257#define IOPB_SDMA_STATUS        0x24
   1258#define IOPB_SCSI_BYTE_CNT      0x25
   1259#define IOPB_HOST_BYTE_CNT      0x26
   1260#define IOPB_BYTE_LEFT_TO_XFER  0x27
   1261#define IOPB_BYTE_TO_XFER_0     0x28
   1262#define IOPB_BYTE_TO_XFER_1     0x29
   1263#define IOPB_BYTE_TO_XFER_2     0x2A
   1264#define IOPB_BYTE_TO_XFER_3     0x2B
   1265#define IOPB_ACC_GRP            0x2C
   1266#define IOPB_RES_ADDR_2D        0x2D
   1267#define IOPB_DEV_ID             0x2E
   1268#define IOPB_RES_ADDR_2F        0x2F
   1269#define IOPB_SCSI_DATA          0x30
   1270#define IOPB_RES_ADDR_31        0x31
   1271#define IOPB_RES_ADDR_32        0x32
   1272#define IOPB_SCSI_DATA_HSHK     0x33
   1273#define IOPB_SCSI_CTRL          0x34
   1274#define IOPB_RES_ADDR_35        0x35
   1275#define IOPB_RES_ADDR_36        0x36
   1276#define IOPB_RES_ADDR_37        0x37
   1277#define IOPB_RAM_BIST           0x38
   1278#define IOPB_PLL_TEST           0x39
   1279#define IOPB_PCI_INT_CFG        0x3A
   1280#define IOPB_RES_ADDR_3B        0x3B
   1281#define IOPB_RFIFO_CNT          0x3C
   1282#define IOPB_RES_ADDR_3D        0x3D
   1283#define IOPB_RES_ADDR_3E        0x3E
   1284#define IOPB_RES_ADDR_3F        0x3F
   1285
   1286/*
   1287 * Word I/O register address from base of 'iop_base'.
   1288 */
   1289#define IOPW_CHIP_ID_0          0x00	/* CID0  */
   1290#define IOPW_CTRL_REG           0x02	/* CC    */
   1291#define IOPW_RAM_ADDR           0x04	/* LA    */
   1292#define IOPW_RAM_DATA           0x06	/* LD    */
   1293#define IOPW_RES_ADDR_08        0x08
   1294#define IOPW_RISC_CSR           0x0A	/* CSR   */
   1295#define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
   1296#define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
   1297#define IOPW_RES_ADDR_10        0x10
   1298#define IOPW_SEL_MASK           0x12	/* SM    */
   1299#define IOPW_RES_ADDR_14        0x14
   1300#define IOPW_FLASH_ADDR         0x16	/* FA    */
   1301#define IOPW_RES_ADDR_18        0x18
   1302#define IOPW_EE_CMD             0x1A	/* EC    */
   1303#define IOPW_EE_DATA            0x1C	/* ED    */
   1304#define IOPW_SFIFO_CNT          0x1E	/* SFC   */
   1305#define IOPW_RES_ADDR_20        0x20
   1306#define IOPW_Q_BASE             0x22	/* QB    */
   1307#define IOPW_QP                 0x24	/* QP    */
   1308#define IOPW_IX                 0x26	/* IX    */
   1309#define IOPW_SP                 0x28	/* SP    */
   1310#define IOPW_PC                 0x2A	/* PC    */
   1311#define IOPW_RES_ADDR_2C        0x2C
   1312#define IOPW_RES_ADDR_2E        0x2E
   1313#define IOPW_SCSI_DATA          0x30	/* SD    */
   1314#define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
   1315#define IOPW_SCSI_CTRL          0x34	/* SC    */
   1316#define IOPW_HSHK_CFG           0x36	/* HCFG  */
   1317#define IOPW_SXFR_STATUS        0x36	/* SXS   */
   1318#define IOPW_SXFR_CNTL          0x38	/* SXL   */
   1319#define IOPW_SXFR_CNTH          0x3A	/* SXH   */
   1320#define IOPW_RES_ADDR_3C        0x3C
   1321#define IOPW_RFIFO_DATA         0x3E	/* RFD   */
   1322
   1323/*
   1324 * Doubleword I/O register address from base of 'iop_base'.
   1325 */
   1326#define IOPDW_RES_ADDR_0         0x00
   1327#define IOPDW_RAM_DATA           0x04
   1328#define IOPDW_RES_ADDR_8         0x08
   1329#define IOPDW_RES_ADDR_C         0x0C
   1330#define IOPDW_RES_ADDR_10        0x10
   1331#define IOPDW_COMMA              0x14
   1332#define IOPDW_COMMB              0x18
   1333#define IOPDW_RES_ADDR_1C        0x1C
   1334#define IOPDW_SDMA_ADDR0         0x20
   1335#define IOPDW_SDMA_ADDR1         0x24
   1336#define IOPDW_SDMA_COUNT         0x28
   1337#define IOPDW_SDMA_ERROR         0x2C
   1338#define IOPDW_RDMA_ADDR0         0x30
   1339#define IOPDW_RDMA_ADDR1         0x34
   1340#define IOPDW_RDMA_COUNT         0x38
   1341#define IOPDW_RDMA_ERROR         0x3C
   1342
   1343#define ADV_CHIP_ID_BYTE         0x25
   1344#define ADV_CHIP_ID_WORD         0x04C1
   1345
   1346#define ADV_INTR_ENABLE_HOST_INTR                   0x01
   1347#define ADV_INTR_ENABLE_SEL_INTR                    0x02
   1348#define ADV_INTR_ENABLE_DPR_INTR                    0x04
   1349#define ADV_INTR_ENABLE_RTA_INTR                    0x08
   1350#define ADV_INTR_ENABLE_RMA_INTR                    0x10
   1351#define ADV_INTR_ENABLE_RST_INTR                    0x20
   1352#define ADV_INTR_ENABLE_DPE_INTR                    0x40
   1353#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
   1354
   1355#define ADV_INTR_STATUS_INTRA            0x01
   1356#define ADV_INTR_STATUS_INTRB            0x02
   1357#define ADV_INTR_STATUS_INTRC            0x04
   1358
   1359#define ADV_RISC_CSR_STOP           (0x0000)
   1360#define ADV_RISC_TEST_COND          (0x2000)
   1361#define ADV_RISC_CSR_RUN            (0x4000)
   1362#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
   1363
   1364#define ADV_CTRL_REG_HOST_INTR      0x0100
   1365#define ADV_CTRL_REG_SEL_INTR       0x0200
   1366#define ADV_CTRL_REG_DPR_INTR       0x0400
   1367#define ADV_CTRL_REG_RTA_INTR       0x0800
   1368#define ADV_CTRL_REG_RMA_INTR       0x1000
   1369#define ADV_CTRL_REG_RES_BIT14      0x2000
   1370#define ADV_CTRL_REG_DPE_INTR       0x4000
   1371#define ADV_CTRL_REG_POWER_DONE     0x8000
   1372#define ADV_CTRL_REG_ANY_INTR       0xFF00
   1373
   1374#define ADV_CTRL_REG_CMD_RESET             0x00C6
   1375#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
   1376#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
   1377#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
   1378#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
   1379
   1380#define ADV_TICKLE_NOP                      0x00
   1381#define ADV_TICKLE_A                        0x01
   1382#define ADV_TICKLE_B                        0x02
   1383#define ADV_TICKLE_C                        0x03
   1384
   1385#define AdvIsIntPending(port) \
   1386    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
   1387
   1388/*
   1389 * SCSI_CFG0 Register bit definitions
   1390 */
   1391#define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
   1392#define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
   1393#define EVEN_PARITY     0x1000	/* Select Even Parity */
   1394#define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
   1395#define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
   1396#define PRIM_MODE       0x0100	/* Primitive SCSI mode */
   1397#define SCAM_EN         0x0080	/* Enable SCAM selection */
   1398#define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
   1399#define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
   1400#define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
   1401#define OUR_ID          0x000F	/* SCSI ID */
   1402
   1403/*
   1404 * SCSI_CFG1 Register bit definitions
   1405 */
   1406#define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
   1407#define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
   1408#define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
   1409#define FILTER_SEL      0x0C00	/* Filter Period Selection */
   1410#define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
   1411#define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
   1412#define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
   1413#define ACTIVE_DBL      0x0200	/* Disable Active Negation */
   1414#define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
   1415#define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
   1416#define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
   1417#define TERM_CTL        0x0030	/* External SCSI Termination Bits */
   1418#define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
   1419#define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
   1420#define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
   1421
   1422/*
   1423 * Addendum for ASC-38C0800 Chip
   1424 *
   1425 * The ASC-38C1600 Chip uses the same definitions except that the
   1426 * bus mode override bits [12:10] have been moved to byte register
   1427 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
   1428 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
   1429 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
   1430 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
   1431 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
   1432 */
   1433#define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
   1434#define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
   1435#define  HVD             0x1000	/* HVD Device Detect */
   1436#define  LVD             0x0800	/* LVD Device Detect */
   1437#define  SE              0x0400	/* SE Device Detect */
   1438#define TERM_LVD        0x00C0	/* LVD Termination Bits */
   1439#define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
   1440#define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
   1441#define TERM_SE         0x0030	/* SE Termination Bits */
   1442#define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
   1443#define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
   1444#define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
   1445#define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
   1446#define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
   1447#define C_DET_SE        0x0003	/* SE Cable Detect Bits */
   1448#define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
   1449#define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
   1450
   1451#define CABLE_ILLEGAL_A 0x7
   1452    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
   1453
   1454#define CABLE_ILLEGAL_B 0xB
   1455    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
   1456
   1457/*
   1458 * MEM_CFG Register bit definitions
   1459 */
   1460#define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
   1461#define FAST_EE_CLK     0x20	/* Diagnostic Bit */
   1462#define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
   1463#define  RAM_SZ_2KB      0x00	/* 2 KB */
   1464#define  RAM_SZ_4KB      0x04	/* 4 KB */
   1465#define  RAM_SZ_8KB      0x08	/* 8 KB */
   1466#define  RAM_SZ_16KB     0x0C	/* 16 KB */
   1467#define  RAM_SZ_32KB     0x10	/* 32 KB */
   1468#define  RAM_SZ_64KB     0x14	/* 64 KB */
   1469
   1470/*
   1471 * DMA_CFG0 Register bit definitions
   1472 *
   1473 * This register is only accessible to the host.
   1474 */
   1475#define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
   1476#define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
   1477#define  FIFO_THRESH_16B  0x00	/* 16 bytes */
   1478#define  FIFO_THRESH_32B  0x20	/* 32 bytes */
   1479#define  FIFO_THRESH_48B  0x30	/* 48 bytes */
   1480#define  FIFO_THRESH_64B  0x40	/* 64 bytes */
   1481#define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
   1482#define  FIFO_THRESH_96B  0x60	/* 96 bytes */
   1483#define  FIFO_THRESH_112B 0x70	/* 112 bytes */
   1484#define START_CTL       0x0C	/* DMA start conditions */
   1485#define  START_CTL_TH    0x00	/* Wait threshold level (default) */
   1486#define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
   1487#define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
   1488#define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
   1489#define READ_CMD        0x03	/* Memory Read Method */
   1490#define  READ_CMD_MR     0x00	/* Memory Read */
   1491#define  READ_CMD_MRL    0x02	/* Memory Read Long */
   1492#define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
   1493
   1494/*
   1495 * ASC-38C0800 RAM BIST Register bit definitions
   1496 */
   1497#define RAM_TEST_MODE         0x80
   1498#define PRE_TEST_MODE         0x40
   1499#define NORMAL_MODE           0x00
   1500#define RAM_TEST_DONE         0x10
   1501#define RAM_TEST_STATUS       0x0F
   1502#define  RAM_TEST_HOST_ERROR   0x08
   1503#define  RAM_TEST_INTRAM_ERROR 0x04
   1504#define  RAM_TEST_RISC_ERROR   0x02
   1505#define  RAM_TEST_SCSI_ERROR   0x01
   1506#define  RAM_TEST_SUCCESS      0x00
   1507#define PRE_TEST_VALUE        0x05
   1508#define NORMAL_VALUE          0x00
   1509
   1510/*
   1511 * ASC38C1600 Definitions
   1512 *
   1513 * IOPB_PCI_INT_CFG Bit Field Definitions
   1514 */
   1515
   1516#define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
   1517
   1518/*
   1519 * Bit 1 can be set to change the interrupt for the Function to operate in
   1520 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
   1521 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
   1522 * mode, otherwise the operating mode is undefined.
   1523 */
   1524#define TOTEMPOLE       0x02
   1525
   1526/*
   1527 * Bit 0 can be used to change the Int Pin for the Function. The value is
   1528 * 0 by default for both Functions with Function 0 using INT A and Function
   1529 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
   1530 * INT A is used.
   1531 *
   1532 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
   1533 * value specified in the PCI Configuration Space.
   1534 */
   1535#define INTAB           0x01
   1536
   1537/*
   1538 * Adv Library Status Definitions
   1539 */
   1540#define ADV_TRUE        1
   1541#define ADV_FALSE       0
   1542#define ADV_SUCCESS     1
   1543#define ADV_BUSY        0
   1544#define ADV_ERROR       (-1)
   1545
   1546/*
   1547 * ADV_DVC_VAR 'warn_code' values
   1548 */
   1549#define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
   1550#define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
   1551#define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
   1552#define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
   1553
   1554#define ADV_MAX_TID                     15	/* max. target identifier */
   1555#define ADV_MAX_LUN                     7	/* max. logical unit number */
   1556
   1557/*
   1558 * Fixed locations of microcode operating variables.
   1559 */
   1560#define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
   1561#define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
   1562#define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
   1563#define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
   1564#define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
   1565#define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
   1566#define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
   1567#define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
   1568#define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
   1569#define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
   1570#define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
   1571#define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
   1572#define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
   1573#define ASC_MC_CHIP_TYPE                0x009A
   1574#define ASC_MC_INTRB_CODE               0x009B
   1575#define ASC_MC_WDTR_ABLE                0x009C
   1576#define ASC_MC_SDTR_ABLE                0x009E
   1577#define ASC_MC_TAGQNG_ABLE              0x00A0
   1578#define ASC_MC_DISC_ENABLE              0x00A2
   1579#define ASC_MC_IDLE_CMD_STATUS          0x00A4
   1580#define ASC_MC_IDLE_CMD                 0x00A6
   1581#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
   1582#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
   1583#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
   1584#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
   1585#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
   1586#define ASC_MC_SDTR_DONE                0x00B6
   1587#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
   1588#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
   1589#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
   1590#define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
   1591#define ASC_MC_WDTR_DONE                0x0124
   1592#define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
   1593#define ASC_MC_ICQ                      0x0160
   1594#define ASC_MC_IRQ                      0x0164
   1595#define ASC_MC_PPR_ABLE                 0x017A
   1596
   1597/*
   1598 * BIOS LRAM variable absolute offsets.
   1599 */
   1600#define BIOS_CODESEG    0x54
   1601#define BIOS_CODELEN    0x56
   1602#define BIOS_SIGNATURE  0x58
   1603#define BIOS_VERSION    0x5A
   1604
   1605/*
   1606 * Microcode Control Flags
   1607 *
   1608 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
   1609 * and handled by the microcode.
   1610 */
   1611#define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
   1612#define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
   1613
   1614/*
   1615 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
   1616 */
   1617#define HSHK_CFG_WIDE_XFR       0x8000
   1618#define HSHK_CFG_RATE           0x0F00
   1619#define HSHK_CFG_OFFSET         0x001F
   1620
   1621#define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
   1622#define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
   1623#define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
   1624#define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
   1625
   1626#define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
   1627#define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
   1628#define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
   1629#define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
   1630#define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
   1631
   1632#define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
   1633#define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
   1634#define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
   1635#define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
   1636#define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
   1637/*
   1638 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
   1639 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
   1640 */
   1641#define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
   1642#define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
   1643
   1644/*
   1645 * All fields here are accessed by the board microcode and need to be
   1646 * little-endian.
   1647 */
   1648typedef struct adv_carr_t {
   1649	__le32 carr_va;	/* Carrier Virtual Address */
   1650	__le32 carr_pa;	/* Carrier Physical Address */
   1651	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
   1652	/*
   1653	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
   1654	 *
   1655	 * next_vpa [3:1]             Reserved Bits
   1656	 * next_vpa [0]               Done Flag set in Response Queue.
   1657	 */
   1658	__le32 next_vpa;
   1659} ADV_CARR_T;
   1660
   1661/*
   1662 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
   1663 */
   1664#define ADV_NEXT_VPA_MASK       0xFFFFFFF0
   1665
   1666#define ADV_RQ_DONE             0x00000001
   1667#define ADV_RQ_GOOD             0x00000002
   1668#define ADV_CQ_STOPPER          0x00000000
   1669
   1670#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
   1671
   1672/*
   1673 * Each carrier is 64 bytes, and we need three additional
   1674 * carrier for icq, irq, and the termination carrier.
   1675 */
   1676#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
   1677
   1678#define ADV_CARRIER_BUFSIZE \
   1679	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
   1680
   1681#define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
   1682#define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
   1683#define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
   1684
   1685/*
   1686 * Adapter temporary configuration structure
   1687 *
   1688 * This structure can be discarded after initialization. Don't add
   1689 * fields here needed after initialization.
   1690 *
   1691 * Field naming convention:
   1692 *
   1693 *  *_enable indicates the field enables or disables a feature. The
   1694 *  value of the field is never reset.
   1695 */
   1696typedef struct adv_dvc_cfg {
   1697	ushort disc_enable;	/* enable disconnection */
   1698	uchar chip_version;	/* chip version */
   1699	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
   1700	ushort control_flag;	/* Microcode Control Flag */
   1701	ushort mcode_date;	/* Microcode date */
   1702	ushort mcode_version;	/* Microcode version */
   1703	ushort serial1;		/* EEPROM serial number word 1 */
   1704	ushort serial2;		/* EEPROM serial number word 2 */
   1705	ushort serial3;		/* EEPROM serial number word 3 */
   1706} ADV_DVC_CFG;
   1707
   1708struct adv_dvc_var;
   1709struct adv_scsi_req_q;
   1710
   1711typedef struct adv_sg_block {
   1712	uchar reserved1;
   1713	uchar reserved2;
   1714	uchar reserved3;
   1715	uchar sg_cnt;		/* Valid entries in block. */
   1716	__le32 sg_ptr;	/* Pointer to next sg block. */
   1717	struct {
   1718		__le32 sg_addr;	/* SG element address. */
   1719		__le32 sg_count;	/* SG element count. */
   1720	} sg_list[NO_OF_SG_PER_BLOCK];
   1721} ADV_SG_BLOCK;
   1722
   1723/*
   1724 * ADV_SCSI_REQ_Q - microcode request structure
   1725 *
   1726 * All fields in this structure up to byte 60 are used by the microcode.
   1727 * The microcode makes assumptions about the size and ordering of fields
   1728 * in this structure. Do not change the structure definition here without
   1729 * coordinating the change with the microcode.
   1730 *
   1731 * All fields accessed by microcode must be maintained in little_endian
   1732 * order.
   1733 */
   1734typedef struct adv_scsi_req_q {
   1735	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
   1736	uchar target_cmd;
   1737	uchar target_id;	/* Device target identifier. */
   1738	uchar target_lun;	/* Device target logical unit number. */
   1739	__le32 data_addr;	/* Data buffer physical address. */
   1740	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
   1741	__le32 sense_addr;
   1742	__le32 carr_pa;
   1743	uchar mflag;
   1744	uchar sense_len;
   1745	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
   1746	uchar scsi_cntl;
   1747	uchar done_status;	/* Completion status. */
   1748	uchar scsi_status;	/* SCSI status byte. */
   1749	uchar host_status;	/* Ucode host status. */
   1750	uchar sg_working_ix;
   1751	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
   1752	__le32 sg_real_addr;	/* SG list physical address. */
   1753	__le32 scsiq_rptr;
   1754	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
   1755	__le32 scsiq_ptr;
   1756	__le32 carr_va;
   1757	/*
   1758	 * End of microcode structure - 60 bytes. The rest of the structure
   1759	 * is used by the Adv Library and ignored by the microcode.
   1760	 */
   1761	u32 srb_tag;
   1762	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
   1763} ADV_SCSI_REQ_Q;
   1764
   1765/*
   1766 * The following two structures are used to process Wide Board requests.
   1767 *
   1768 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
   1769 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
   1770 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
   1771 * to the Mid-Level SCSI request structure.
   1772 *
   1773 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
   1774 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
   1775 * up to 255 scatter-gather elements may be used per request or
   1776 * ADV_SCSI_REQ_Q.
   1777 *
   1778 * Both structures must be 32 byte aligned.
   1779 */
   1780typedef struct adv_sgblk {
   1781	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
   1782	dma_addr_t sg_addr;	/* Physical address */
   1783	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
   1784} adv_sgblk_t;
   1785
   1786typedef struct adv_req {
   1787	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
   1788	uchar align[24];	/* Request structure padding. */
   1789	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
   1790	dma_addr_t req_addr;
   1791	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
   1792} adv_req_t __aligned(32);
   1793
   1794/*
   1795 * Adapter operation variable structure.
   1796 *
   1797 * One structure is required per host adapter.
   1798 *
   1799 * Field naming convention:
   1800 *
   1801 *  *_able indicates both whether a feature should be enabled or disabled
   1802 *  and whether a device is capable of the feature. At initialization
   1803 *  this field may be set, but later if a device is found to be incapable
   1804 *  of the feature, the field is cleared.
   1805 */
   1806typedef struct adv_dvc_var {
   1807	AdvPortAddr iop_base;	/* I/O port address */
   1808	ushort err_code;	/* fatal error code */
   1809	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
   1810	ushort wdtr_able;	/* try WDTR for a device */
   1811	ushort sdtr_able;	/* try SDTR for a device */
   1812	ushort ultra_able;	/* try SDTR Ultra speed for a device */
   1813	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
   1814	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
   1815	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
   1816	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
   1817	ushort tagqng_able;	/* try tagged queuing with a device */
   1818	ushort ppr_able;	/* PPR message capable per TID bitmask. */
   1819	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
   1820	ushort start_motor;	/* start motor command allowed */
   1821	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
   1822	uchar chip_no;		/* should be assigned by caller */
   1823	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
   1824	ushort no_scam;		/* scam_tolerant of EEPROM */
   1825	struct asc_board *drv_ptr;	/* driver pointer to private structure */
   1826	uchar chip_scsi_id;	/* chip SCSI target ID */
   1827	uchar chip_type;
   1828	uchar bist_err_code;
   1829	ADV_CARR_T *carrier;
   1830	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
   1831	dma_addr_t carrier_addr;
   1832	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
   1833	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
   1834	ushort carr_pending_cnt;	/* Count of pending carriers. */
   1835	/*
   1836	 * Note: The following fields will not be used after initialization. The
   1837	 * driver may discard the buffer after initialization is done.
   1838	 */
   1839	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
   1840} ADV_DVC_VAR;
   1841
   1842/*
   1843 * Microcode idle loop commands
   1844 */
   1845#define IDLE_CMD_COMPLETED           0
   1846#define IDLE_CMD_STOP_CHIP           0x0001
   1847#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
   1848#define IDLE_CMD_SEND_INT            0x0004
   1849#define IDLE_CMD_ABORT               0x0008
   1850#define IDLE_CMD_DEVICE_RESET        0x0010
   1851#define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
   1852#define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
   1853#define IDLE_CMD_SCSIREQ             0x0080
   1854
   1855#define IDLE_CMD_STATUS_SUCCESS      0x0001
   1856#define IDLE_CMD_STATUS_FAILURE      0x0002
   1857
   1858/*
   1859 * AdvSendIdleCmd() flag definitions.
   1860 */
   1861#define ADV_NOWAIT     0x01
   1862
   1863/*
   1864 * Wait loop time out values.
   1865 */
   1866#define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
   1867#define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
   1868#define SCSI_MAX_RETRY               10	/* retry count */
   1869
   1870#define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
   1871#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
   1872#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
   1873#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
   1874
   1875#define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
   1876
   1877/* Read byte from a register. */
   1878#define AdvReadByteRegister(iop_base, reg_off) \
   1879     (ADV_MEM_READB((iop_base) + (reg_off)))
   1880
   1881/* Write byte to a register. */
   1882#define AdvWriteByteRegister(iop_base, reg_off, byte) \
   1883     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
   1884
   1885/* Read word (2 bytes) from a register. */
   1886#define AdvReadWordRegister(iop_base, reg_off) \
   1887     (ADV_MEM_READW((iop_base) + (reg_off)))
   1888
   1889/* Write word (2 bytes) to a register. */
   1890#define AdvWriteWordRegister(iop_base, reg_off, word) \
   1891     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
   1892
   1893/* Write dword (4 bytes) to a register. */
   1894#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
   1895     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
   1896
   1897/* Read byte from LRAM. */
   1898#define AdvReadByteLram(iop_base, addr, byte) \
   1899do { \
   1900    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
   1901    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
   1902} while (0)
   1903
   1904/* Write byte to LRAM. */
   1905#define AdvWriteByteLram(iop_base, addr, byte) \
   1906    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
   1907     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
   1908
   1909/* Read word (2 bytes) from LRAM. */
   1910#define AdvReadWordLram(iop_base, addr, word) \
   1911do { \
   1912    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
   1913    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
   1914} while (0)
   1915
   1916/* Write word (2 bytes) to LRAM. */
   1917#define AdvWriteWordLram(iop_base, addr, word) \
   1918    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
   1919     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
   1920
   1921/* Write little-endian double word (4 bytes) to LRAM */
   1922/* Because of unspecified C language ordering don't use auto-increment. */
   1923#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
   1924    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
   1925      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
   1926                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
   1927     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
   1928      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
   1929                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
   1930
   1931/* Read word (2 bytes) from LRAM assuming that the address is already set. */
   1932#define AdvReadWordAutoIncLram(iop_base) \
   1933     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
   1934
   1935/* Write word (2 bytes) to LRAM assuming that the address is already set. */
   1936#define AdvWriteWordAutoIncLram(iop_base, word) \
   1937     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
   1938
   1939/*
   1940 * Define macro to check for Condor signature.
   1941 *
   1942 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
   1943 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
   1944 */
   1945#define AdvFindSignature(iop_base) \
   1946    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
   1947    ADV_CHIP_ID_BYTE) && \
   1948     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
   1949    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
   1950
   1951/*
   1952 * Define macro to Return the version number of the chip at 'iop_base'.
   1953 *
   1954 * The second parameter 'bus_type' is currently unused.
   1955 */
   1956#define AdvGetChipVersion(iop_base, bus_type) \
   1957    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
   1958
   1959/*
   1960 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
   1961 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
   1962 *
   1963 * If the request has not yet been sent to the device it will simply be
   1964 * aborted from RISC memory. If the request is disconnected it will be
   1965 * aborted on reselection by sending an Abort Message to the target ID.
   1966 *
   1967 * Return value:
   1968 *      ADV_TRUE(1) - Queue was successfully aborted.
   1969 *      ADV_FALSE(0) - Queue was not found on the active queue list.
   1970 */
   1971#define AdvAbortQueue(asc_dvc, srb_tag) \
   1972     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
   1973		    (ADV_DCNT) (srb_tag))
   1974
   1975/*
   1976 * Send a Bus Device Reset Message to the specified target ID.
   1977 *
   1978 * All outstanding commands will be purged if sending the
   1979 * Bus Device Reset Message is successful.
   1980 *
   1981 * Return Value:
   1982 *      ADV_TRUE(1) - All requests on the target are purged.
   1983 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
   1984 *                     are not purged.
   1985 */
   1986#define AdvResetDevice(asc_dvc, target_id) \
   1987     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
   1988		    (ADV_DCNT) (target_id))
   1989
   1990/*
   1991 * SCSI Wide Type definition.
   1992 */
   1993#define ADV_SCSI_BIT_ID_TYPE   ushort
   1994
   1995/*
   1996 * AdvInitScsiTarget() 'cntl_flag' options.
   1997 */
   1998#define ADV_SCAN_LUN           0x01
   1999#define ADV_CAPINFO_NOLUN      0x02
   2000
   2001/*
   2002 * Convert target id to target id bit mask.
   2003 */
   2004#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
   2005
   2006/*
   2007 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
   2008 */
   2009
   2010#define QD_NO_STATUS         0x00	/* Request not completed yet. */
   2011#define QD_NO_ERROR          0x01
   2012#define QD_ABORTED_BY_HOST   0x02
   2013#define QD_WITH_ERROR        0x04
   2014
   2015#define QHSTA_NO_ERROR              0x00
   2016#define QHSTA_M_SEL_TIMEOUT         0x11
   2017#define QHSTA_M_DATA_OVER_RUN       0x12
   2018#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
   2019#define QHSTA_M_QUEUE_ABORTED       0x15
   2020#define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
   2021#define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
   2022#define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
   2023#define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
   2024#define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
   2025#define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
   2026#define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
   2027/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
   2028#define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
   2029#define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
   2030#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
   2031#define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
   2032#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
   2033#define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
   2034#define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
   2035#define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
   2036#define QHSTA_M_WTM_TIMEOUT         0x41
   2037#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
   2038#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
   2039#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
   2040#define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
   2041#define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
   2042#define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
   2043
   2044/* Return the address that is aligned at the next doubleword >= to 'addr'. */
   2045#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
   2046
   2047/*
   2048 * Total contiguous memory needed for driver SG blocks.
   2049 *
   2050 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
   2051 * number of scatter-gather elements the driver supports in a
   2052 * single request.
   2053 */
   2054
   2055#define ADV_SG_LIST_MAX_BYTE_SIZE \
   2056         (sizeof(ADV_SG_BLOCK) * \
   2057          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
   2058
   2059/* struct asc_board flags */
   2060#define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
   2061
   2062#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
   2063
   2064#define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
   2065
   2066#define ASC_INFO_SIZE           128	/* advansys_info() line size */
   2067
   2068/* Asc Library return codes */
   2069#define ASC_TRUE        1
   2070#define ASC_FALSE       0
   2071#define ASC_NOERROR     1
   2072#define ASC_BUSY        0
   2073#define ASC_ERROR       (-1)
   2074
   2075#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
   2076#ifndef ADVANSYS_STATS
   2077#define ASC_STATS_ADD(shost, counter, count)
   2078#else /* ADVANSYS_STATS */
   2079#define ASC_STATS_ADD(shost, counter, count) \
   2080	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
   2081#endif /* ADVANSYS_STATS */
   2082
   2083/* If the result wraps when calculating tenths, return 0. */
   2084#define ASC_TENTHS(num, den) \
   2085    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
   2086    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
   2087
   2088/*
   2089 * Display a message to the console.
   2090 */
   2091#define ASC_PRINT(s) \
   2092    { \
   2093        printk("advansys: "); \
   2094        printk(s); \
   2095    }
   2096
   2097#define ASC_PRINT1(s, a1) \
   2098    { \
   2099        printk("advansys: "); \
   2100        printk((s), (a1)); \
   2101    }
   2102
   2103#define ASC_PRINT2(s, a1, a2) \
   2104    { \
   2105        printk("advansys: "); \
   2106        printk((s), (a1), (a2)); \
   2107    }
   2108
   2109#define ASC_PRINT3(s, a1, a2, a3) \
   2110    { \
   2111        printk("advansys: "); \
   2112        printk((s), (a1), (a2), (a3)); \
   2113    }
   2114
   2115#define ASC_PRINT4(s, a1, a2, a3, a4) \
   2116    { \
   2117        printk("advansys: "); \
   2118        printk((s), (a1), (a2), (a3), (a4)); \
   2119    }
   2120
   2121#ifndef ADVANSYS_DEBUG
   2122
   2123#define ASC_DBG(lvl, s...)
   2124#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
   2125#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
   2126#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
   2127#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
   2128#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
   2129#define ASC_DBG_PRT_HEX(lvl, name, start, length)
   2130#define ASC_DBG_PRT_CDB(lvl, cdb, len)
   2131#define ASC_DBG_PRT_SENSE(lvl, sense, len)
   2132#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
   2133
   2134#else /* ADVANSYS_DEBUG */
   2135
   2136/*
   2137 * Debugging Message Levels:
   2138 * 0: Errors Only
   2139 * 1: High-Level Tracing
   2140 * 2-N: Verbose Tracing
   2141 */
   2142
   2143#define ASC_DBG(lvl, format, arg...) {					\
   2144	if (asc_dbglvl >= (lvl))					\
   2145		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
   2146			__func__ , ## arg);				\
   2147}
   2148
   2149#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
   2150    { \
   2151        if (asc_dbglvl >= (lvl)) { \
   2152            asc_prt_scsi_host(s); \
   2153        } \
   2154    }
   2155
   2156#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
   2157    { \
   2158        if (asc_dbglvl >= (lvl)) { \
   2159            asc_prt_asc_scsi_q(scsiqp); \
   2160        } \
   2161    }
   2162
   2163#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
   2164    { \
   2165        if (asc_dbglvl >= (lvl)) { \
   2166            asc_prt_asc_qdone_info(qdone); \
   2167        } \
   2168    }
   2169
   2170#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
   2171    { \
   2172        if (asc_dbglvl >= (lvl)) { \
   2173            asc_prt_adv_scsi_req_q(scsiqp); \
   2174        } \
   2175    }
   2176
   2177#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
   2178    { \
   2179        if (asc_dbglvl >= (lvl)) { \
   2180            asc_prt_hex((name), (start), (length)); \
   2181        } \
   2182    }
   2183
   2184#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
   2185        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
   2186
   2187#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
   2188        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
   2189
   2190#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
   2191        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
   2192#endif /* ADVANSYS_DEBUG */
   2193
   2194#ifdef ADVANSYS_STATS
   2195
   2196/* Per board statistics structure */
   2197struct asc_stats {
   2198	/* Driver Entrypoint Statistics */
   2199	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
   2200	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
   2201	unsigned int biosparam;	/* # calls to advansys_biosparam() */
   2202	unsigned int interrupt;	/* # advansys_interrupt() calls */
   2203	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
   2204	unsigned int done;		/* # calls to request's scsi_done function */
   2205	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
   2206	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
   2207	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
   2208	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
   2209	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
   2210	unsigned int exe_busy;	/* # ASC_BUSY returns. */
   2211	unsigned int exe_error;	/* # ASC_ERROR returns. */
   2212	unsigned int exe_unknown;	/* # unknown returns. */
   2213	/* Data Transfer Statistics */
   2214	unsigned int xfer_cnt;	/* # I/O requests received */
   2215	unsigned int xfer_elem;	/* # scatter-gather elements */
   2216	unsigned int xfer_sect;	/* # 512-byte blocks */
   2217};
   2218#endif /* ADVANSYS_STATS */
   2219
   2220/*
   2221 * Structure allocated for each board.
   2222 *
   2223 * This structure is allocated by scsi_host_alloc() at the end
   2224 * of the 'Scsi_Host' structure starting at the 'hostdata'
   2225 * field. It is guaranteed to be allocated from DMA-able memory.
   2226 */
   2227struct asc_board {
   2228	struct device *dev;
   2229	struct Scsi_Host *shost;
   2230	uint flags;		/* Board flags */
   2231	unsigned int irq;
   2232	union {
   2233		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
   2234		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
   2235	} dvc_var;
   2236	union {
   2237		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
   2238		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
   2239	} dvc_cfg;
   2240	ushort asc_n_io_port;	/* Number I/O ports. */
   2241	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
   2242	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
   2243	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
   2244	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
   2245	union {
   2246		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
   2247		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
   2248		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
   2249		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
   2250	} eep_config;
   2251	/* /proc/scsi/advansys/[0...] */
   2252#ifdef ADVANSYS_STATS
   2253	struct asc_stats asc_stats;	/* Board statistics */
   2254#endif				/* ADVANSYS_STATS */
   2255	/*
   2256	 * The following fields are used only for Narrow Boards.
   2257	 */
   2258	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
   2259	/*
   2260	 * The following fields are used only for Wide Boards.
   2261	 */
   2262	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
   2263	ushort ioport;		/* I/O Port address. */
   2264	adv_req_t *adv_reqp;	/* Request structures. */
   2265	dma_addr_t adv_reqp_addr;
   2266	size_t adv_reqp_size;
   2267	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
   2268	ushort bios_signature;	/* BIOS Signature. */
   2269	ushort bios_version;	/* BIOS Version. */
   2270	ushort bios_codeseg;	/* BIOS Code Segment. */
   2271	ushort bios_codelen;	/* BIOS Code Segment Length. */
   2272};
   2273
   2274#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
   2275							dvc_var.asc_dvc_var)
   2276#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
   2277							dvc_var.adv_dvc_var)
   2278#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
   2279
   2280struct advansys_cmd {
   2281	dma_addr_t dma_handle;
   2282};
   2283
   2284static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd)
   2285{
   2286	return scsi_cmd_priv(cmd);
   2287}
   2288
   2289#ifdef ADVANSYS_DEBUG
   2290static int asc_dbglvl = 3;
   2291
   2292/*
   2293 * asc_prt_asc_dvc_var()
   2294 */
   2295static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
   2296{
   2297	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
   2298
   2299	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
   2300	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
   2301
   2302	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
   2303		(unsigned)h->init_sdtr);
   2304
   2305	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
   2306	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
   2307	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
   2308	       (unsigned)h->chip_no);
   2309
   2310	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
   2311	       "%u,\n", (unsigned)h->queue_full_or_busy,
   2312	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
   2313
   2314	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
   2315	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
   2316	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
   2317	       (unsigned)h->in_critical_cnt);
   2318
   2319	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
   2320	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
   2321	       (unsigned)h->init_state, (unsigned)h->no_scam,
   2322	       (unsigned)h->pci_fix_asyn_xfer);
   2323
   2324	printk(" cfg 0x%lx\n", (ulong)h->cfg);
   2325}
   2326
   2327/*
   2328 * asc_prt_asc_dvc_cfg()
   2329 */
   2330static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
   2331{
   2332	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
   2333
   2334	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
   2335	       h->can_tagged_qng, h->cmd_qng_enabled);
   2336	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
   2337	       h->disc_enable, h->sdtr_enable);
   2338
   2339	printk(" chip_scsi_id %d, chip_version %d,\n",
   2340	       h->chip_scsi_id, h->chip_version);
   2341
   2342	printk(" mcode_date 0x%x, mcode_version %d\n",
   2343		h->mcode_date, h->mcode_version);
   2344}
   2345
   2346/*
   2347 * asc_prt_adv_dvc_var()
   2348 *
   2349 * Display an ADV_DVC_VAR structure.
   2350 */
   2351static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
   2352{
   2353	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
   2354
   2355	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
   2356	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
   2357
   2358	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
   2359	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
   2360
   2361	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
   2362	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
   2363
   2364	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
   2365	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
   2366	       h->carr_freelist);
   2367
   2368	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
   2369
   2370	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
   2371	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
   2372
   2373	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
   2374	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
   2375}
   2376
   2377/*
   2378 * asc_prt_adv_dvc_cfg()
   2379 *
   2380 * Display an ADV_DVC_CFG structure.
   2381 */
   2382static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
   2383{
   2384	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
   2385
   2386	printk("  disc_enable 0x%x, termination 0x%x\n",
   2387	       h->disc_enable, h->termination);
   2388
   2389	printk("  chip_version 0x%x, mcode_date 0x%x\n",
   2390	       h->chip_version, h->mcode_date);
   2391
   2392	printk("  mcode_version 0x%x, control_flag 0x%x\n",
   2393	       h->mcode_version, h->control_flag);
   2394}
   2395
   2396/*
   2397 * asc_prt_scsi_host()
   2398 */
   2399static void asc_prt_scsi_host(struct Scsi_Host *s)
   2400{
   2401	struct asc_board *boardp = shost_priv(s);
   2402
   2403	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
   2404	printk(" host_busy %d, host_no %d,\n",
   2405	       scsi_host_busy(s), s->host_no);
   2406
   2407	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
   2408	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
   2409
   2410	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
   2411	       s->dma_channel, s->this_id, s->can_queue);
   2412
   2413	printk(" cmd_per_lun %d, sg_tablesize %d\n",
   2414	       s->cmd_per_lun, s->sg_tablesize);
   2415
   2416	if (ASC_NARROW_BOARD(boardp)) {
   2417		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
   2418		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
   2419	} else {
   2420		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
   2421		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
   2422	}
   2423}
   2424
   2425/*
   2426 * asc_prt_hex()
   2427 *
   2428 * Print hexadecimal output in 4 byte groupings 32 bytes
   2429 * or 8 double-words per line.
   2430 */
   2431static void asc_prt_hex(char *f, uchar *s, int l)
   2432{
   2433	int i;
   2434	int j;
   2435	int k;
   2436	int m;
   2437
   2438	printk("%s: (%d bytes)\n", f, l);
   2439
   2440	for (i = 0; i < l; i += 32) {
   2441
   2442		/* Display a maximum of 8 double-words per line. */
   2443		if ((k = (l - i) / 4) >= 8) {
   2444			k = 8;
   2445			m = 0;
   2446		} else {
   2447			m = (l - i) % 4;
   2448		}
   2449
   2450		for (j = 0; j < k; j++) {
   2451			printk(" %2.2X%2.2X%2.2X%2.2X",
   2452			       (unsigned)s[i + (j * 4)],
   2453			       (unsigned)s[i + (j * 4) + 1],
   2454			       (unsigned)s[i + (j * 4) + 2],
   2455			       (unsigned)s[i + (j * 4) + 3]);
   2456		}
   2457
   2458		switch (m) {
   2459		case 0:
   2460		default:
   2461			break;
   2462		case 1:
   2463			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
   2464			break;
   2465		case 2:
   2466			printk(" %2.2X%2.2X",
   2467			       (unsigned)s[i + (j * 4)],
   2468			       (unsigned)s[i + (j * 4) + 1]);
   2469			break;
   2470		case 3:
   2471			printk(" %2.2X%2.2X%2.2X",
   2472			       (unsigned)s[i + (j * 4) + 1],
   2473			       (unsigned)s[i + (j * 4) + 2],
   2474			       (unsigned)s[i + (j * 4) + 3]);
   2475			break;
   2476		}
   2477
   2478		printk("\n");
   2479	}
   2480}
   2481
   2482/*
   2483 * asc_prt_asc_scsi_q()
   2484 */
   2485static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
   2486{
   2487	ASC_SG_HEAD *sgp;
   2488	int i;
   2489
   2490	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
   2491
   2492	printk
   2493	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
   2494	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
   2495	     q->q2.tag_code);
   2496
   2497	printk
   2498	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
   2499	     (ulong)le32_to_cpu(q->q1.data_addr),
   2500	     (ulong)le32_to_cpu(q->q1.data_cnt),
   2501	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
   2502
   2503	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
   2504	       (ulong)q->cdbptr, q->q2.cdb_len,
   2505	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
   2506
   2507	if (q->sg_head) {
   2508		sgp = q->sg_head;
   2509		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
   2510		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
   2511		       sgp->queue_cnt);
   2512		for (i = 0; i < sgp->entry_cnt; i++) {
   2513			printk(" [%u]: addr 0x%lx, bytes %lu\n",
   2514			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
   2515			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
   2516		}
   2517
   2518	}
   2519}
   2520
   2521/*
   2522 * asc_prt_asc_qdone_info()
   2523 */
   2524static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
   2525{
   2526	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
   2527	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
   2528	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
   2529	       q->d2.tag_code);
   2530	printk
   2531	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
   2532	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
   2533}
   2534
   2535/*
   2536 * asc_prt_adv_sgblock()
   2537 *
   2538 * Display an ADV_SG_BLOCK structure.
   2539 */
   2540static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
   2541{
   2542	int i;
   2543
   2544	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
   2545	       (ulong)b, sgblockno);
   2546	printk("  sg_cnt %u, sg_ptr 0x%x\n",
   2547	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
   2548	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
   2549	if (b->sg_ptr != 0)
   2550		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
   2551	for (i = 0; i < b->sg_cnt; i++) {
   2552		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
   2553		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
   2554		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
   2555	}
   2556}
   2557
   2558/*
   2559 * asc_prt_adv_scsi_req_q()
   2560 *
   2561 * Display an ADV_SCSI_REQ_Q structure.
   2562 */
   2563static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
   2564{
   2565	int sg_blk_cnt;
   2566	struct adv_sg_block *sg_ptr;
   2567	adv_sgblk_t *sgblkp;
   2568
   2569	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
   2570
   2571	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
   2572	       q->target_id, q->target_lun, q->srb_tag);
   2573
   2574	printk("  cntl 0x%x, data_addr 0x%lx\n",
   2575	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
   2576
   2577	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
   2578	       (ulong)le32_to_cpu(q->data_cnt),
   2579	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
   2580
   2581	printk
   2582	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
   2583	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
   2584
   2585	printk("  sg_working_ix 0x%x, target_cmd %u\n",
   2586	       q->sg_working_ix, q->target_cmd);
   2587
   2588	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
   2589	       (ulong)le32_to_cpu(q->scsiq_rptr),
   2590	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
   2591
   2592	/* Display the request's ADV_SG_BLOCK structures. */
   2593	if (q->sg_list_ptr != NULL) {
   2594		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
   2595		sg_blk_cnt = 0;
   2596		while (sgblkp) {
   2597			sg_ptr = &sgblkp->sg_block;
   2598			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
   2599			if (sg_ptr->sg_ptr == 0) {
   2600				break;
   2601			}
   2602			sgblkp = sgblkp->next_sgblkp;
   2603			sg_blk_cnt++;
   2604		}
   2605	}
   2606}
   2607#endif /* ADVANSYS_DEBUG */
   2608
   2609/*
   2610 * advansys_info()
   2611 *
   2612 * Return suitable for printing on the console with the argument
   2613 * adapter's configuration information.
   2614 *
   2615 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
   2616 * otherwise the static 'info' array will be overrun.
   2617 */
   2618static const char *advansys_info(struct Scsi_Host *shost)
   2619{
   2620	static char info[ASC_INFO_SIZE];
   2621	struct asc_board *boardp = shost_priv(shost);
   2622	ASC_DVC_VAR *asc_dvc_varp;
   2623	ADV_DVC_VAR *adv_dvc_varp;
   2624	char *busname;
   2625	char *widename = NULL;
   2626
   2627	if (ASC_NARROW_BOARD(boardp)) {
   2628		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
   2629		ASC_DBG(1, "begin\n");
   2630
   2631		if (asc_dvc_varp->bus_type & ASC_IS_VL) {
   2632			busname = "VL";
   2633		} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
   2634			busname = "EISA";
   2635		} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
   2636			if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
   2637			    == ASC_IS_PCI_ULTRA) {
   2638				busname = "PCI Ultra";
   2639			} else {
   2640				busname = "PCI";
   2641			}
   2642		} else {
   2643			busname = "?";
   2644			shost_printk(KERN_ERR, shost, "unknown bus "
   2645				"type %d\n", asc_dvc_varp->bus_type);
   2646		}
   2647		sprintf(info,
   2648			"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
   2649			ASC_VERSION, busname, (ulong)shost->io_port,
   2650			(ulong)shost->io_port + ASC_IOADR_GAP - 1,
   2651			boardp->irq);
   2652	} else {
   2653		/*
   2654		 * Wide Adapter Information
   2655		 *
   2656		 * Memory-mapped I/O is used instead of I/O space to access
   2657		 * the adapter, but display the I/O Port range. The Memory
   2658		 * I/O address is displayed through the driver /proc file.
   2659		 */
   2660		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
   2661		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   2662			widename = "Ultra-Wide";
   2663		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   2664			widename = "Ultra2-Wide";
   2665		} else {
   2666			widename = "Ultra3-Wide";
   2667		}
   2668		sprintf(info,
   2669			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
   2670			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
   2671			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
   2672	}
   2673	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
   2674	ASC_DBG(1, "end\n");
   2675	return info;
   2676}
   2677
   2678#ifdef CONFIG_PROC_FS
   2679
   2680/*
   2681 * asc_prt_board_devices()
   2682 *
   2683 * Print driver information for devices attached to the board.
   2684 */
   2685static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
   2686{
   2687	struct asc_board *boardp = shost_priv(shost);
   2688	int chip_scsi_id;
   2689	int i;
   2690
   2691	seq_printf(m,
   2692		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
   2693		   shost->host_no);
   2694
   2695	if (ASC_NARROW_BOARD(boardp)) {
   2696		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
   2697	} else {
   2698		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
   2699	}
   2700
   2701	seq_puts(m, "Target IDs Detected:");
   2702	for (i = 0; i <= ADV_MAX_TID; i++) {
   2703		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
   2704			seq_printf(m, " %X,", i);
   2705	}
   2706	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
   2707}
   2708
   2709/*
   2710 * Display Wide Board BIOS Information.
   2711 */
   2712static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
   2713{
   2714	struct asc_board *boardp = shost_priv(shost);
   2715	ushort major, minor, letter;
   2716
   2717	seq_puts(m, "\nROM BIOS Version: ");
   2718
   2719	/*
   2720	 * If the BIOS saved a valid signature, then fill in
   2721	 * the BIOS code segment base address.
   2722	 */
   2723	if (boardp->bios_signature != 0x55AA) {
   2724		seq_puts(m, "Disabled or Pre-3.1\n"
   2725			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
   2726			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
   2727	} else {
   2728		major = (boardp->bios_version >> 12) & 0xF;
   2729		minor = (boardp->bios_version >> 8) & 0xF;
   2730		letter = (boardp->bios_version & 0xFF);
   2731
   2732		seq_printf(m, "%d.%d%c\n",
   2733				   major, minor,
   2734				   letter >= 26 ? '?' : letter + 'A');
   2735		/*
   2736		 * Current available ROM BIOS release is 3.1I for UW
   2737		 * and 3.2I for U2W. This code doesn't differentiate
   2738		 * UW and U2W boards.
   2739		 */
   2740		if (major < 3 || (major <= 3 && minor < 1) ||
   2741		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
   2742			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
   2743				"ftp://ftp.connectcom.net/pub\n");
   2744		}
   2745	}
   2746}
   2747
   2748/*
   2749 * Add serial number to information bar if signature AAh
   2750 * is found in at bit 15-9 (7 bits) of word 1.
   2751 *
   2752 * Serial Number consists fo 12 alpha-numeric digits.
   2753 *
   2754 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
   2755 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
   2756 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
   2757 *       5 - Product revision (A-J)    Word0:  "         "
   2758 *
   2759 *           Signature                 Word1: 15-9 (7 bits)
   2760 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
   2761 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
   2762 *
   2763 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
   2764 *
   2765 * Note 1: Only production cards will have a serial number.
   2766 *
   2767 * Note 2: Signature is most significant 7 bits (0xFE).
   2768 *
   2769 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
   2770 */
   2771static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
   2772{
   2773	ushort w, num;
   2774
   2775	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
   2776		return ASC_FALSE;
   2777	} else {
   2778		/*
   2779		 * First word - 6 digits.
   2780		 */
   2781		w = serialnum[0];
   2782
   2783		/* Product type - 1st digit. */
   2784		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
   2785			/* Product type is P=Prototype */
   2786			*cp += 0x8;
   2787		}
   2788		cp++;
   2789
   2790		/* Manufacturing location - 2nd digit. */
   2791		*cp++ = 'A' + ((w & 0x1C00) >> 10);
   2792
   2793		/* Product ID - 3rd, 4th digits. */
   2794		num = w & 0x3FF;
   2795		*cp++ = '0' + (num / 100);
   2796		num %= 100;
   2797		*cp++ = '0' + (num / 10);
   2798
   2799		/* Product revision - 5th digit. */
   2800		*cp++ = 'A' + (num % 10);
   2801
   2802		/*
   2803		 * Second word
   2804		 */
   2805		w = serialnum[1];
   2806
   2807		/*
   2808		 * Year - 6th digit.
   2809		 *
   2810		 * If bit 15 of third word is set, then the
   2811		 * last digit of the year is greater than 7.
   2812		 */
   2813		if (serialnum[2] & 0x8000) {
   2814			*cp++ = '8' + ((w & 0x1C0) >> 6);
   2815		} else {
   2816			*cp++ = '0' + ((w & 0x1C0) >> 6);
   2817		}
   2818
   2819		/* Week of year - 7th, 8th digits. */
   2820		num = w & 0x003F;
   2821		*cp++ = '0' + num / 10;
   2822		num %= 10;
   2823		*cp++ = '0' + num;
   2824
   2825		/*
   2826		 * Third word
   2827		 */
   2828		w = serialnum[2] & 0x7FFF;
   2829
   2830		/* Serial number - 9th digit. */
   2831		*cp++ = 'A' + (w / 1000);
   2832
   2833		/* 10th, 11th, 12th digits. */
   2834		num = w % 1000;
   2835		*cp++ = '0' + num / 100;
   2836		num %= 100;
   2837		*cp++ = '0' + num / 10;
   2838		num %= 10;
   2839		*cp++ = '0' + num;
   2840
   2841		*cp = '\0';	/* Null Terminate the string. */
   2842		return ASC_TRUE;
   2843	}
   2844}
   2845
   2846/*
   2847 * asc_prt_asc_board_eeprom()
   2848 *
   2849 * Print board EEPROM configuration.
   2850 */
   2851static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
   2852{
   2853	struct asc_board *boardp = shost_priv(shost);
   2854	ASCEEP_CONFIG *ep;
   2855	int i;
   2856	uchar serialstr[13];
   2857
   2858	ep = &boardp->eep_config.asc_eep;
   2859
   2860	seq_printf(m,
   2861		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
   2862		   shost->host_no);
   2863
   2864	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
   2865	    == ASC_TRUE)
   2866		seq_printf(m, " Serial Number: %s\n", serialstr);
   2867	else if (ep->adapter_info[5] == 0xBB)
   2868		seq_puts(m,
   2869			 " Default Settings Used for EEPROM-less Adapter.\n");
   2870	else
   2871		seq_puts(m, " Serial Number Signature Not Present.\n");
   2872
   2873	seq_printf(m,
   2874		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
   2875		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
   2876		   ep->max_tag_qng);
   2877
   2878	seq_printf(m,
   2879		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
   2880
   2881	seq_puts(m, " Target ID:           ");
   2882	for (i = 0; i <= ASC_MAX_TID; i++)
   2883		seq_printf(m, " %d", i);
   2884
   2885	seq_puts(m, "\n Disconnects:         ");
   2886	for (i = 0; i <= ASC_MAX_TID; i++)
   2887		seq_printf(m, " %c",
   2888			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   2889
   2890	seq_puts(m, "\n Command Queuing:     ");
   2891	for (i = 0; i <= ASC_MAX_TID; i++)
   2892		seq_printf(m, " %c",
   2893			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   2894
   2895	seq_puts(m, "\n Start Motor:         ");
   2896	for (i = 0; i <= ASC_MAX_TID; i++)
   2897		seq_printf(m, " %c",
   2898			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   2899
   2900	seq_puts(m, "\n Synchronous Transfer:");
   2901	for (i = 0; i <= ASC_MAX_TID; i++)
   2902		seq_printf(m, " %c",
   2903			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   2904	seq_putc(m, '\n');
   2905}
   2906
   2907/*
   2908 * asc_prt_adv_board_eeprom()
   2909 *
   2910 * Print board EEPROM configuration.
   2911 */
   2912static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
   2913{
   2914	struct asc_board *boardp = shost_priv(shost);
   2915	ADV_DVC_VAR *adv_dvc_varp;
   2916	int i;
   2917	char *termstr;
   2918	uchar serialstr[13];
   2919	ADVEEP_3550_CONFIG *ep_3550 = NULL;
   2920	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
   2921	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
   2922	ushort word;
   2923	ushort *wordp;
   2924	ushort sdtr_speed = 0;
   2925
   2926	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
   2927	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   2928		ep_3550 = &boardp->eep_config.adv_3550_eep;
   2929	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   2930		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
   2931	} else {
   2932		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
   2933	}
   2934
   2935	seq_printf(m,
   2936		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
   2937		   shost->host_no);
   2938
   2939	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   2940		wordp = &ep_3550->serial_number_word1;
   2941	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   2942		wordp = &ep_38C0800->serial_number_word1;
   2943	} else {
   2944		wordp = &ep_38C1600->serial_number_word1;
   2945	}
   2946
   2947	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
   2948		seq_printf(m, " Serial Number: %s\n", serialstr);
   2949	else
   2950		seq_puts(m, " Serial Number Signature Not Present.\n");
   2951
   2952	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
   2953		seq_printf(m,
   2954			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
   2955			   ep_3550->adapter_scsi_id,
   2956			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
   2957	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
   2958		seq_printf(m,
   2959			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
   2960			   ep_38C0800->adapter_scsi_id,
   2961			   ep_38C0800->max_host_qng,
   2962			   ep_38C0800->max_dvc_qng);
   2963	else
   2964		seq_printf(m,
   2965			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
   2966			   ep_38C1600->adapter_scsi_id,
   2967			   ep_38C1600->max_host_qng,
   2968			   ep_38C1600->max_dvc_qng);
   2969	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   2970		word = ep_3550->termination;
   2971	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   2972		word = ep_38C0800->termination_lvd;
   2973	} else {
   2974		word = ep_38C1600->termination_lvd;
   2975	}
   2976	switch (word) {
   2977	case 1:
   2978		termstr = "Low Off/High Off";
   2979		break;
   2980	case 2:
   2981		termstr = "Low Off/High On";
   2982		break;
   2983	case 3:
   2984		termstr = "Low On/High On";
   2985		break;
   2986	default:
   2987	case 0:
   2988		termstr = "Automatic";
   2989		break;
   2990	}
   2991
   2992	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
   2993		seq_printf(m,
   2994			   " termination: %u (%s), bios_ctrl: 0x%x\n",
   2995			   ep_3550->termination, termstr,
   2996			   ep_3550->bios_ctrl);
   2997	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
   2998		seq_printf(m,
   2999			   " termination: %u (%s), bios_ctrl: 0x%x\n",
   3000			   ep_38C0800->termination_lvd, termstr,
   3001			   ep_38C0800->bios_ctrl);
   3002	else
   3003		seq_printf(m,
   3004			   " termination: %u (%s), bios_ctrl: 0x%x\n",
   3005			   ep_38C1600->termination_lvd, termstr,
   3006			   ep_38C1600->bios_ctrl);
   3007
   3008	seq_puts(m, " Target ID:           ");
   3009	for (i = 0; i <= ADV_MAX_TID; i++)
   3010		seq_printf(m, " %X", i);
   3011	seq_putc(m, '\n');
   3012
   3013	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3014		word = ep_3550->disc_enable;
   3015	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   3016		word = ep_38C0800->disc_enable;
   3017	} else {
   3018		word = ep_38C1600->disc_enable;
   3019	}
   3020	seq_puts(m, " Disconnects:         ");
   3021	for (i = 0; i <= ADV_MAX_TID; i++)
   3022		seq_printf(m, " %c",
   3023			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3024	seq_putc(m, '\n');
   3025
   3026	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3027		word = ep_3550->tagqng_able;
   3028	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   3029		word = ep_38C0800->tagqng_able;
   3030	} else {
   3031		word = ep_38C1600->tagqng_able;
   3032	}
   3033	seq_puts(m, " Command Queuing:     ");
   3034	for (i = 0; i <= ADV_MAX_TID; i++)
   3035		seq_printf(m, " %c",
   3036			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3037	seq_putc(m, '\n');
   3038
   3039	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3040		word = ep_3550->start_motor;
   3041	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   3042		word = ep_38C0800->start_motor;
   3043	} else {
   3044		word = ep_38C1600->start_motor;
   3045	}
   3046	seq_puts(m, " Start Motor:         ");
   3047	for (i = 0; i <= ADV_MAX_TID; i++)
   3048		seq_printf(m, " %c",
   3049			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3050	seq_putc(m, '\n');
   3051
   3052	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3053		seq_puts(m, " Synchronous Transfer:");
   3054		for (i = 0; i <= ADV_MAX_TID; i++)
   3055			seq_printf(m, " %c",
   3056				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
   3057				   'Y' : 'N');
   3058		seq_putc(m, '\n');
   3059	}
   3060
   3061	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3062		seq_puts(m, " Ultra Transfer:      ");
   3063		for (i = 0; i <= ADV_MAX_TID; i++)
   3064			seq_printf(m, " %c",
   3065				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
   3066				   ? 'Y' : 'N');
   3067		seq_putc(m, '\n');
   3068	}
   3069
   3070	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
   3071		word = ep_3550->wdtr_able;
   3072	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
   3073		word = ep_38C0800->wdtr_able;
   3074	} else {
   3075		word = ep_38C1600->wdtr_able;
   3076	}
   3077	seq_puts(m, " Wide Transfer:       ");
   3078	for (i = 0; i <= ADV_MAX_TID; i++)
   3079		seq_printf(m, " %c",
   3080			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3081	seq_putc(m, '\n');
   3082
   3083	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
   3084	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
   3085		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
   3086		for (i = 0; i <= ADV_MAX_TID; i++) {
   3087			char *speed_str;
   3088
   3089			if (i == 0) {
   3090				sdtr_speed = adv_dvc_varp->sdtr_speed1;
   3091			} else if (i == 4) {
   3092				sdtr_speed = adv_dvc_varp->sdtr_speed2;
   3093			} else if (i == 8) {
   3094				sdtr_speed = adv_dvc_varp->sdtr_speed3;
   3095			} else if (i == 12) {
   3096				sdtr_speed = adv_dvc_varp->sdtr_speed4;
   3097			}
   3098			switch (sdtr_speed & ADV_MAX_TID) {
   3099			case 0:
   3100				speed_str = "Off";
   3101				break;
   3102			case 1:
   3103				speed_str = "  5";
   3104				break;
   3105			case 2:
   3106				speed_str = " 10";
   3107				break;
   3108			case 3:
   3109				speed_str = " 20";
   3110				break;
   3111			case 4:
   3112				speed_str = " 40";
   3113				break;
   3114			case 5:
   3115				speed_str = " 80";
   3116				break;
   3117			default:
   3118				speed_str = "Unk";
   3119				break;
   3120			}
   3121			seq_printf(m, "%X:%s ", i, speed_str);
   3122			if (i == 7)
   3123				seq_puts(m, "\n  ");
   3124			sdtr_speed >>= 4;
   3125		}
   3126		seq_putc(m, '\n');
   3127	}
   3128}
   3129
   3130/*
   3131 * asc_prt_driver_conf()
   3132 */
   3133static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
   3134{
   3135	struct asc_board *boardp = shost_priv(shost);
   3136
   3137	seq_printf(m,
   3138		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
   3139		shost->host_no);
   3140
   3141	seq_printf(m,
   3142		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
   3143		   scsi_host_busy(shost), shost->max_id,
   3144		   shost->max_lun, shost->max_channel);
   3145
   3146	seq_printf(m,
   3147		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
   3148		   shost->unique_id, shost->can_queue, shost->this_id,
   3149		   shost->sg_tablesize, shost->cmd_per_lun);
   3150
   3151	seq_printf(m,
   3152		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
   3153		   boardp->flags, shost->last_reset, jiffies,
   3154		   boardp->asc_n_io_port);
   3155
   3156	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
   3157}
   3158
   3159/*
   3160 * asc_prt_asc_board_info()
   3161 *
   3162 * Print dynamic board configuration information.
   3163 */
   3164static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
   3165{
   3166	struct asc_board *boardp = shost_priv(shost);
   3167	int chip_scsi_id;
   3168	ASC_DVC_VAR *v;
   3169	ASC_DVC_CFG *c;
   3170	int i;
   3171	int renegotiate = 0;
   3172
   3173	v = &boardp->dvc_var.asc_dvc_var;
   3174	c = &boardp->dvc_cfg.asc_dvc_cfg;
   3175	chip_scsi_id = c->chip_scsi_id;
   3176
   3177	seq_printf(m,
   3178		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
   3179		   shost->host_no);
   3180
   3181	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
   3182		   "mcode_version 0x%x, err_code %u\n",
   3183		   c->chip_version, c->mcode_date, c->mcode_version,
   3184		   v->err_code);
   3185
   3186	/* Current number of commands waiting for the host. */
   3187	seq_printf(m,
   3188		   " Total Command Pending: %d\n", v->cur_total_qng);
   3189
   3190	seq_puts(m, " Command Queuing:");
   3191	for (i = 0; i <= ASC_MAX_TID; i++) {
   3192		if ((chip_scsi_id == i) ||
   3193		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3194			continue;
   3195		}
   3196		seq_printf(m, " %X:%c",
   3197			   i,
   3198			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3199	}
   3200
   3201	/* Current number of commands waiting for a device. */
   3202	seq_puts(m, "\n Command Queue Pending:");
   3203	for (i = 0; i <= ASC_MAX_TID; i++) {
   3204		if ((chip_scsi_id == i) ||
   3205		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3206			continue;
   3207		}
   3208		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
   3209	}
   3210
   3211	/* Current limit on number of commands that can be sent to a device. */
   3212	seq_puts(m, "\n Command Queue Limit:");
   3213	for (i = 0; i <= ASC_MAX_TID; i++) {
   3214		if ((chip_scsi_id == i) ||
   3215		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3216			continue;
   3217		}
   3218		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
   3219	}
   3220
   3221	/* Indicate whether the device has returned queue full status. */
   3222	seq_puts(m, "\n Command Queue Full:");
   3223	for (i = 0; i <= ASC_MAX_TID; i++) {
   3224		if ((chip_scsi_id == i) ||
   3225		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3226			continue;
   3227		}
   3228		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
   3229			seq_printf(m, " %X:Y-%d",
   3230				   i, boardp->queue_full_cnt[i]);
   3231		else
   3232			seq_printf(m, " %X:N", i);
   3233	}
   3234
   3235	seq_puts(m, "\n Synchronous Transfer:");
   3236	for (i = 0; i <= ASC_MAX_TID; i++) {
   3237		if ((chip_scsi_id == i) ||
   3238		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3239			continue;
   3240		}
   3241		seq_printf(m, " %X:%c",
   3242			   i,
   3243			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3244	}
   3245	seq_putc(m, '\n');
   3246
   3247	for (i = 0; i <= ASC_MAX_TID; i++) {
   3248		uchar syn_period_ix;
   3249
   3250		if ((chip_scsi_id == i) ||
   3251		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
   3252		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3253			continue;
   3254		}
   3255
   3256		seq_printf(m, "  %X:", i);
   3257
   3258		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
   3259			seq_puts(m, " Asynchronous");
   3260		} else {
   3261			syn_period_ix =
   3262			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
   3263							   1);
   3264
   3265			seq_printf(m,
   3266				   " Transfer Period Factor: %d (%d.%d Mhz),",
   3267				   v->sdtr_period_tbl[syn_period_ix],
   3268				   250 / v->sdtr_period_tbl[syn_period_ix],
   3269				   ASC_TENTHS(250,
   3270					      v->sdtr_period_tbl[syn_period_ix]));
   3271
   3272			seq_printf(m, " REQ/ACK Offset: %d",
   3273				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
   3274		}
   3275
   3276		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
   3277			seq_puts(m, "*\n");
   3278			renegotiate = 1;
   3279		} else {
   3280			seq_putc(m, '\n');
   3281		}
   3282	}
   3283
   3284	if (renegotiate) {
   3285		seq_puts(m, " * = Re-negotiation pending before next command.\n");
   3286	}
   3287}
   3288
   3289/*
   3290 * asc_prt_adv_board_info()
   3291 *
   3292 * Print dynamic board configuration information.
   3293 */
   3294static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
   3295{
   3296	struct asc_board *boardp = shost_priv(shost);
   3297	int i;
   3298	ADV_DVC_VAR *v;
   3299	ADV_DVC_CFG *c;
   3300	AdvPortAddr iop_base;
   3301	ushort chip_scsi_id;
   3302	ushort lramword;
   3303	uchar lrambyte;
   3304	ushort tagqng_able;
   3305	ushort sdtr_able, wdtr_able;
   3306	ushort wdtr_done, sdtr_done;
   3307	ushort period = 0;
   3308	int renegotiate = 0;
   3309
   3310	v = &boardp->dvc_var.adv_dvc_var;
   3311	c = &boardp->dvc_cfg.adv_dvc_cfg;
   3312	iop_base = v->iop_base;
   3313	chip_scsi_id = v->chip_scsi_id;
   3314
   3315	seq_printf(m,
   3316		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
   3317		   shost->host_no);
   3318
   3319	seq_printf(m,
   3320		   " iop_base 0x%p, cable_detect: %X, err_code %u\n",
   3321		   v->iop_base,
   3322		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
   3323		   v->err_code);
   3324
   3325	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
   3326		   "mcode_version 0x%x\n", c->chip_version,
   3327		   c->mcode_date, c->mcode_version);
   3328
   3329	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   3330	seq_puts(m, " Queuing Enabled:");
   3331	for (i = 0; i <= ADV_MAX_TID; i++) {
   3332		if ((chip_scsi_id == i) ||
   3333		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3334			continue;
   3335		}
   3336
   3337		seq_printf(m, " %X:%c",
   3338			   i,
   3339			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3340	}
   3341
   3342	seq_puts(m, "\n Queue Limit:");
   3343	for (i = 0; i <= ADV_MAX_TID; i++) {
   3344		if ((chip_scsi_id == i) ||
   3345		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3346			continue;
   3347		}
   3348
   3349		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
   3350				lrambyte);
   3351
   3352		seq_printf(m, " %X:%d", i, lrambyte);
   3353	}
   3354
   3355	seq_puts(m, "\n Command Pending:");
   3356	for (i = 0; i <= ADV_MAX_TID; i++) {
   3357		if ((chip_scsi_id == i) ||
   3358		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3359			continue;
   3360		}
   3361
   3362		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
   3363				lrambyte);
   3364
   3365		seq_printf(m, " %X:%d", i, lrambyte);
   3366	}
   3367	seq_putc(m, '\n');
   3368
   3369	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   3370	seq_puts(m, " Wide Enabled:");
   3371	for (i = 0; i <= ADV_MAX_TID; i++) {
   3372		if ((chip_scsi_id == i) ||
   3373		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3374			continue;
   3375		}
   3376
   3377		seq_printf(m, " %X:%c",
   3378			   i,
   3379			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3380	}
   3381	seq_putc(m, '\n');
   3382
   3383	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
   3384	seq_puts(m, " Transfer Bit Width:");
   3385	for (i = 0; i <= ADV_MAX_TID; i++) {
   3386		if ((chip_scsi_id == i) ||
   3387		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3388			continue;
   3389		}
   3390
   3391		AdvReadWordLram(iop_base,
   3392				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
   3393				lramword);
   3394
   3395		seq_printf(m, " %X:%d",
   3396			   i, (lramword & 0x8000) ? 16 : 8);
   3397
   3398		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
   3399		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
   3400			seq_putc(m, '*');
   3401			renegotiate = 1;
   3402		}
   3403	}
   3404	seq_putc(m, '\n');
   3405
   3406	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   3407	seq_puts(m, " Synchronous Enabled:");
   3408	for (i = 0; i <= ADV_MAX_TID; i++) {
   3409		if ((chip_scsi_id == i) ||
   3410		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3411			continue;
   3412		}
   3413
   3414		seq_printf(m, " %X:%c",
   3415			   i,
   3416			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
   3417	}
   3418	seq_putc(m, '\n');
   3419
   3420	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
   3421	for (i = 0; i <= ADV_MAX_TID; i++) {
   3422
   3423		AdvReadWordLram(iop_base,
   3424				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
   3425				lramword);
   3426		lramword &= ~0x8000;
   3427
   3428		if ((chip_scsi_id == i) ||
   3429		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
   3430		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
   3431			continue;
   3432		}
   3433
   3434		seq_printf(m, "  %X:", i);
   3435
   3436		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
   3437			seq_puts(m, " Asynchronous");
   3438		} else {
   3439			seq_puts(m, " Transfer Period Factor: ");
   3440
   3441			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
   3442				seq_puts(m, "9 (80.0 Mhz),");
   3443			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
   3444				seq_puts(m, "10 (40.0 Mhz),");
   3445			} else {	/* 20 Mhz or below. */
   3446
   3447				period = (((lramword >> 8) * 25) + 50) / 4;
   3448
   3449				if (period == 0) {	/* Should never happen. */
   3450					seq_printf(m, "%d (? Mhz), ", period);
   3451				} else {
   3452					seq_printf(m,
   3453						   "%d (%d.%d Mhz),",
   3454						   period, 250 / period,
   3455						   ASC_TENTHS(250, period));
   3456				}
   3457			}
   3458
   3459			seq_printf(m, " REQ/ACK Offset: %d",
   3460				   lramword & 0x1F);
   3461		}
   3462
   3463		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
   3464			seq_puts(m, "*\n");
   3465			renegotiate = 1;
   3466		} else {
   3467			seq_putc(m, '\n');
   3468		}
   3469	}
   3470
   3471	if (renegotiate) {
   3472		seq_puts(m, " * = Re-negotiation pending before next command.\n");
   3473	}
   3474}
   3475
   3476#ifdef ADVANSYS_STATS
   3477/*
   3478 * asc_prt_board_stats()
   3479 */
   3480static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
   3481{
   3482	struct asc_board *boardp = shost_priv(shost);
   3483	struct asc_stats *s = &boardp->asc_stats;
   3484
   3485	seq_printf(m,
   3486		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
   3487		   shost->host_no);
   3488
   3489	seq_printf(m,
   3490		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
   3491		   s->queuecommand, s->reset, s->biosparam,
   3492		   s->interrupt);
   3493
   3494	seq_printf(m,
   3495		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
   3496		   s->callback, s->done, s->build_error,
   3497		   s->adv_build_noreq, s->adv_build_nosg);
   3498
   3499	seq_printf(m,
   3500		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
   3501		   s->exe_noerror, s->exe_busy, s->exe_error,
   3502		   s->exe_unknown);
   3503
   3504	/*
   3505	 * Display data transfer statistics.
   3506	 */
   3507	if (s->xfer_cnt > 0) {
   3508		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
   3509			   s->xfer_cnt, s->xfer_elem);
   3510
   3511		seq_printf(m, "xfer_bytes %u.%01u kb\n",
   3512			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
   3513
   3514		/* Scatter gather transfer statistics */
   3515		seq_printf(m, " avg_num_elem %u.%01u, ",
   3516			   s->xfer_elem / s->xfer_cnt,
   3517			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
   3518
   3519		seq_printf(m, "avg_elem_size %u.%01u kb, ",
   3520			   (s->xfer_sect / 2) / s->xfer_elem,
   3521			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
   3522
   3523		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
   3524			   (s->xfer_sect / 2) / s->xfer_cnt,
   3525			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
   3526	}
   3527}
   3528#endif /* ADVANSYS_STATS */
   3529
   3530/*
   3531 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
   3532 *
   3533 * m: seq_file to print into
   3534 * shost: Scsi_Host
   3535 *
   3536 * Return the number of bytes read from or written to a
   3537 * /proc/scsi/advansys/[0...] file.
   3538 */
   3539static int
   3540advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
   3541{
   3542	struct asc_board *boardp = shost_priv(shost);
   3543
   3544	ASC_DBG(1, "begin\n");
   3545
   3546	/*
   3547	 * User read of /proc/scsi/advansys/[0...] file.
   3548	 */
   3549
   3550	/*
   3551	 * Get board configuration information.
   3552	 *
   3553	 * advansys_info() returns the board string from its own static buffer.
   3554	 */
   3555	/* Copy board information. */
   3556	seq_printf(m, "%s\n", (char *)advansys_info(shost));
   3557	/*
   3558	 * Display Wide Board BIOS Information.
   3559	 */
   3560	if (!ASC_NARROW_BOARD(boardp))
   3561		asc_prt_adv_bios(m, shost);
   3562
   3563	/*
   3564	 * Display driver information for each device attached to the board.
   3565	 */
   3566	asc_prt_board_devices(m, shost);
   3567
   3568	/*
   3569	 * Display EEPROM configuration for the board.
   3570	 */
   3571	if (ASC_NARROW_BOARD(boardp))
   3572		asc_prt_asc_board_eeprom(m, shost);
   3573	else
   3574		asc_prt_adv_board_eeprom(m, shost);
   3575
   3576	/*
   3577	 * Display driver configuration and information for the board.
   3578	 */
   3579	asc_prt_driver_conf(m, shost);
   3580
   3581#ifdef ADVANSYS_STATS
   3582	/*
   3583	 * Display driver statistics for the board.
   3584	 */
   3585	asc_prt_board_stats(m, shost);
   3586#endif /* ADVANSYS_STATS */
   3587
   3588	/*
   3589	 * Display Asc Library dynamic configuration information
   3590	 * for the board.
   3591	 */
   3592	if (ASC_NARROW_BOARD(boardp))
   3593		asc_prt_asc_board_info(m, shost);
   3594	else
   3595		asc_prt_adv_board_info(m, shost);
   3596	return 0;
   3597}
   3598#endif /* CONFIG_PROC_FS */
   3599
   3600static void asc_scsi_done(struct scsi_cmnd *scp)
   3601{
   3602	scsi_dma_unmap(scp);
   3603	ASC_STATS(scp->device->host, done);
   3604	scsi_done(scp);
   3605}
   3606
   3607static void AscSetBank(PortAddr iop_base, uchar bank)
   3608{
   3609	uchar val;
   3610
   3611	val = AscGetChipControl(iop_base) &
   3612	    (~
   3613	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
   3614	      CC_CHIP_RESET));
   3615	if (bank == 1) {
   3616		val |= CC_BANK_ONE;
   3617	} else if (bank == 2) {
   3618		val |= CC_DIAG | CC_BANK_ONE;
   3619	} else {
   3620		val &= ~CC_BANK_ONE;
   3621	}
   3622	AscSetChipControl(iop_base, val);
   3623}
   3624
   3625static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
   3626{
   3627	AscSetBank(iop_base, 1);
   3628	AscWriteChipIH(iop_base, ins_code);
   3629	AscSetBank(iop_base, 0);
   3630}
   3631
   3632static int AscStartChip(PortAddr iop_base)
   3633{
   3634	AscSetChipControl(iop_base, 0);
   3635	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
   3636		return (0);
   3637	}
   3638	return (1);
   3639}
   3640
   3641static bool AscStopChip(PortAddr iop_base)
   3642{
   3643	uchar cc_val;
   3644
   3645	cc_val =
   3646	    AscGetChipControl(iop_base) &
   3647	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
   3648	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
   3649	AscSetChipIH(iop_base, INS_HALT);
   3650	AscSetChipIH(iop_base, INS_RFLAG_WTM);
   3651	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
   3652		return false;
   3653	}
   3654	return true;
   3655}
   3656
   3657static bool AscIsChipHalted(PortAddr iop_base)
   3658{
   3659	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
   3660		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
   3661			return true;
   3662		}
   3663	}
   3664	return false;
   3665}
   3666
   3667static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
   3668{
   3669	PortAddr iop_base;
   3670	int i = 10;
   3671
   3672	iop_base = asc_dvc->iop_base;
   3673	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
   3674	       && (i-- > 0)) {
   3675		mdelay(100);
   3676	}
   3677	AscStopChip(iop_base);
   3678	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
   3679	udelay(60);
   3680	AscSetChipIH(iop_base, INS_RFLAG_WTM);
   3681	AscSetChipIH(iop_base, INS_HALT);
   3682	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
   3683	AscSetChipControl(iop_base, CC_HALT);
   3684	mdelay(200);
   3685	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
   3686	AscSetChipStatus(iop_base, 0);
   3687	return (AscIsChipHalted(iop_base));
   3688}
   3689
   3690static int AscFindSignature(PortAddr iop_base)
   3691{
   3692	ushort sig_word;
   3693
   3694	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
   3695		 iop_base, AscGetChipSignatureByte(iop_base));
   3696	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
   3697		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
   3698			 iop_base, AscGetChipSignatureWord(iop_base));
   3699		sig_word = AscGetChipSignatureWord(iop_base);
   3700		if ((sig_word == (ushort)ASC_1000_ID0W) ||
   3701		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
   3702			return (1);
   3703		}
   3704	}
   3705	return (0);
   3706}
   3707
   3708static void AscEnableInterrupt(PortAddr iop_base)
   3709{
   3710	ushort cfg;
   3711
   3712	cfg = AscGetChipCfgLsw(iop_base);
   3713	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
   3714}
   3715
   3716static void AscDisableInterrupt(PortAddr iop_base)
   3717{
   3718	ushort cfg;
   3719
   3720	cfg = AscGetChipCfgLsw(iop_base);
   3721	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
   3722}
   3723
   3724static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
   3725{
   3726	unsigned char byte_data;
   3727	unsigned short word_data;
   3728
   3729	if (isodd_word(addr)) {
   3730		AscSetChipLramAddr(iop_base, addr - 1);
   3731		word_data = AscGetChipLramData(iop_base);
   3732		byte_data = (word_data >> 8) & 0xFF;
   3733	} else {
   3734		AscSetChipLramAddr(iop_base, addr);
   3735		word_data = AscGetChipLramData(iop_base);
   3736		byte_data = word_data & 0xFF;
   3737	}
   3738	return byte_data;
   3739}
   3740
   3741static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
   3742{
   3743	ushort word_data;
   3744
   3745	AscSetChipLramAddr(iop_base, addr);
   3746	word_data = AscGetChipLramData(iop_base);
   3747	return (word_data);
   3748}
   3749
   3750static void
   3751AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
   3752{
   3753	int i;
   3754
   3755	AscSetChipLramAddr(iop_base, s_addr);
   3756	for (i = 0; i < words; i++) {
   3757		AscSetChipLramData(iop_base, set_wval);
   3758	}
   3759}
   3760
   3761static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
   3762{
   3763	AscSetChipLramAddr(iop_base, addr);
   3764	AscSetChipLramData(iop_base, word_val);
   3765}
   3766
   3767static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
   3768{
   3769	ushort word_data;
   3770
   3771	if (isodd_word(addr)) {
   3772		addr--;
   3773		word_data = AscReadLramWord(iop_base, addr);
   3774		word_data &= 0x00FF;
   3775		word_data |= (((ushort)byte_val << 8) & 0xFF00);
   3776	} else {
   3777		word_data = AscReadLramWord(iop_base, addr);
   3778		word_data &= 0xFF00;
   3779		word_data |= ((ushort)byte_val & 0x00FF);
   3780	}
   3781	AscWriteLramWord(iop_base, addr, word_data);
   3782}
   3783
   3784/*
   3785 * Copy 2 bytes to LRAM.
   3786 *
   3787 * The source data is assumed to be in little-endian order in memory
   3788 * and is maintained in little-endian order when written to LRAM.
   3789 */
   3790static void
   3791AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
   3792			const uchar *s_buffer, int words)
   3793{
   3794	int i;
   3795
   3796	AscSetChipLramAddr(iop_base, s_addr);
   3797	for (i = 0; i < 2 * words; i += 2) {
   3798		/*
   3799		 * On a little-endian system the second argument below
   3800		 * produces a little-endian ushort which is written to
   3801		 * LRAM in little-endian order. On a big-endian system
   3802		 * the second argument produces a big-endian ushort which
   3803		 * is "transparently" byte-swapped by outpw() and written
   3804		 * in little-endian order to LRAM.
   3805		 */
   3806		outpw(iop_base + IOP_RAM_DATA,
   3807		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
   3808	}
   3809}
   3810
   3811/*
   3812 * Copy 4 bytes to LRAM.
   3813 *
   3814 * The source data is assumed to be in little-endian order in memory
   3815 * and is maintained in little-endian order when written to LRAM.
   3816 */
   3817static void
   3818AscMemDWordCopyPtrToLram(PortAddr iop_base,
   3819			 ushort s_addr, uchar *s_buffer, int dwords)
   3820{
   3821	int i;
   3822
   3823	AscSetChipLramAddr(iop_base, s_addr);
   3824	for (i = 0; i < 4 * dwords; i += 4) {
   3825		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
   3826		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
   3827	}
   3828}
   3829
   3830/*
   3831 * Copy 2 bytes from LRAM.
   3832 *
   3833 * The source data is assumed to be in little-endian order in LRAM
   3834 * and is maintained in little-endian order when written to memory.
   3835 */
   3836static void
   3837AscMemWordCopyPtrFromLram(PortAddr iop_base,
   3838			  ushort s_addr, uchar *d_buffer, int words)
   3839{
   3840	int i;
   3841	ushort word;
   3842
   3843	AscSetChipLramAddr(iop_base, s_addr);
   3844	for (i = 0; i < 2 * words; i += 2) {
   3845		word = inpw(iop_base + IOP_RAM_DATA);
   3846		d_buffer[i] = word & 0xff;
   3847		d_buffer[i + 1] = (word >> 8) & 0xff;
   3848	}
   3849}
   3850
   3851static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
   3852{
   3853	u32 sum = 0;
   3854	int i;
   3855
   3856	for (i = 0; i < words; i++, s_addr += 2) {
   3857		sum += AscReadLramWord(iop_base, s_addr);
   3858	}
   3859	return (sum);
   3860}
   3861
   3862static void AscInitLram(ASC_DVC_VAR *asc_dvc)
   3863{
   3864	uchar i;
   3865	ushort s_addr;
   3866	PortAddr iop_base;
   3867
   3868	iop_base = asc_dvc->iop_base;
   3869	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
   3870			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
   3871				    64) >> 1));
   3872	i = ASC_MIN_ACTIVE_QNO;
   3873	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
   3874	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
   3875			 (uchar)(i + 1));
   3876	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
   3877			 (uchar)(asc_dvc->max_total_qng));
   3878	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
   3879			 (uchar)i);
   3880	i++;
   3881	s_addr += ASC_QBLK_SIZE;
   3882	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
   3883		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
   3884				 (uchar)(i + 1));
   3885		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
   3886				 (uchar)(i - 1));
   3887		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
   3888				 (uchar)i);
   3889	}
   3890	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
   3891			 (uchar)ASC_QLINK_END);
   3892	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
   3893			 (uchar)(asc_dvc->max_total_qng - 1));
   3894	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
   3895			 (uchar)asc_dvc->max_total_qng);
   3896	i++;
   3897	s_addr += ASC_QBLK_SIZE;
   3898	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
   3899	     i++, s_addr += ASC_QBLK_SIZE) {
   3900		AscWriteLramByte(iop_base,
   3901				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
   3902		AscWriteLramByte(iop_base,
   3903				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
   3904		AscWriteLramByte(iop_base,
   3905				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
   3906	}
   3907}
   3908
   3909static u32
   3910AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
   3911		 const uchar *mcode_buf, ushort mcode_size)
   3912{
   3913	u32 chksum;
   3914	ushort mcode_word_size;
   3915	ushort mcode_chksum;
   3916
   3917	/* Write the microcode buffer starting at LRAM address 0. */
   3918	mcode_word_size = (ushort)(mcode_size >> 1);
   3919	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
   3920	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
   3921
   3922	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
   3923	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
   3924	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
   3925						 (ushort)ASC_CODE_SEC_BEG,
   3926						 (ushort)((mcode_size -
   3927							   s_addr - (ushort)
   3928							   ASC_CODE_SEC_BEG) /
   3929							  2));
   3930	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
   3931	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
   3932	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
   3933	return chksum;
   3934}
   3935
   3936static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
   3937{
   3938	PortAddr iop_base;
   3939	int i;
   3940	ushort lram_addr;
   3941
   3942	iop_base = asc_dvc->iop_base;
   3943	AscPutRiscVarFreeQHead(iop_base, 1);
   3944	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
   3945	AscPutVarFreeQHead(iop_base, 1);
   3946	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
   3947	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
   3948			 (uchar)((int)asc_dvc->max_total_qng + 1));
   3949	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
   3950			 (uchar)((int)asc_dvc->max_total_qng + 2));
   3951	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
   3952			 asc_dvc->max_total_qng);
   3953	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
   3954	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   3955	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
   3956	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
   3957	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
   3958	AscPutQDoneInProgress(iop_base, 0);
   3959	lram_addr = ASC_QADR_BEG;
   3960	for (i = 0; i < 32; i++, lram_addr += 2) {
   3961		AscWriteLramWord(iop_base, lram_addr, 0);
   3962	}
   3963}
   3964
   3965static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
   3966{
   3967	int i;
   3968	int warn_code;
   3969	PortAddr iop_base;
   3970	__le32 phy_addr;
   3971	__le32 phy_size;
   3972	struct asc_board *board = asc_dvc_to_board(asc_dvc);
   3973
   3974	iop_base = asc_dvc->iop_base;
   3975	warn_code = 0;
   3976	for (i = 0; i <= ASC_MAX_TID; i++) {
   3977		AscPutMCodeInitSDTRAtID(iop_base, i,
   3978					asc_dvc->cfg->sdtr_period_offset[i]);
   3979	}
   3980
   3981	AscInitQLinkVar(asc_dvc);
   3982	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
   3983			 asc_dvc->cfg->disc_enable);
   3984	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
   3985			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
   3986
   3987	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
   3988	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
   3989	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
   3990					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
   3991	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
   3992		warn_code = -ENOMEM;
   3993		goto err_dma_map;
   3994	}
   3995	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
   3996	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
   3997				 (uchar *)&phy_addr, 1);
   3998	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
   3999	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
   4000				 (uchar *)&phy_size, 1);
   4001
   4002	asc_dvc->cfg->mcode_date =
   4003	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
   4004	asc_dvc->cfg->mcode_version =
   4005	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
   4006
   4007	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
   4008	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
   4009		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
   4010		warn_code = -EINVAL;
   4011		goto err_mcode_start;
   4012	}
   4013	if (AscStartChip(iop_base) != 1) {
   4014		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
   4015		warn_code = -EIO;
   4016		goto err_mcode_start;
   4017	}
   4018
   4019	return warn_code;
   4020
   4021err_mcode_start:
   4022	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
   4023			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
   4024err_dma_map:
   4025	asc_dvc->overrun_dma = 0;
   4026	return warn_code;
   4027}
   4028
   4029static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
   4030{
   4031	const struct firmware *fw;
   4032	const char fwname[] = "advansys/mcode.bin";
   4033	int err;
   4034	unsigned long chksum;
   4035	int warn_code;
   4036	PortAddr iop_base;
   4037
   4038	iop_base = asc_dvc->iop_base;
   4039	warn_code = 0;
   4040	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
   4041	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
   4042		AscResetChipAndScsiBus(asc_dvc);
   4043		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
   4044	}
   4045	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
   4046	if (asc_dvc->err_code != 0)
   4047		return ASC_ERROR;
   4048	if (!AscFindSignature(asc_dvc->iop_base)) {
   4049		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
   4050		return warn_code;
   4051	}
   4052	AscDisableInterrupt(iop_base);
   4053	AscInitLram(asc_dvc);
   4054
   4055	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
   4056	if (err) {
   4057		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
   4058		       fwname, err);
   4059		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
   4060		return err;
   4061	}
   4062	if (fw->size < 4) {
   4063		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
   4064		       fw->size, fwname);
   4065		release_firmware(fw);
   4066		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
   4067		return -EINVAL;
   4068	}
   4069	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
   4070		 (fw->data[1] << 8) | fw->data[0];
   4071	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
   4072	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
   4073			     fw->size - 4) != chksum) {
   4074		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
   4075		release_firmware(fw);
   4076		return warn_code;
   4077	}
   4078	release_firmware(fw);
   4079	warn_code |= AscInitMicroCodeVar(asc_dvc);
   4080	if (!asc_dvc->overrun_dma)
   4081		return warn_code;
   4082	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
   4083	AscEnableInterrupt(iop_base);
   4084	return warn_code;
   4085}
   4086
   4087/*
   4088 * Load the Microcode
   4089 *
   4090 * Write the microcode image to RISC memory starting at address 0.
   4091 *
   4092 * The microcode is stored compressed in the following format:
   4093 *
   4094 *  254 word (508 byte) table indexed by byte code followed
   4095 *  by the following byte codes:
   4096 *
   4097 *    1-Byte Code:
   4098 *      00: Emit word 0 in table.
   4099 *      01: Emit word 1 in table.
   4100 *      .
   4101 *      FD: Emit word 253 in table.
   4102 *
   4103 *    Multi-Byte Code:
   4104 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   4105 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   4106 *
   4107 * Returns 0 or an error if the checksum doesn't match
   4108 */
   4109static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
   4110			    int size, int memsize, int chksum)
   4111{
   4112	int i, j, end, len = 0;
   4113	u32 sum;
   4114
   4115	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
   4116
   4117	for (i = 253 * 2; i < size; i++) {
   4118		if (buf[i] == 0xff) {
   4119			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
   4120			for (j = 0; j < buf[i + 1]; j++) {
   4121				AdvWriteWordAutoIncLram(iop_base, word);
   4122				len += 2;
   4123			}
   4124			i += 3;
   4125		} else if (buf[i] == 0xfe) {
   4126			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
   4127			AdvWriteWordAutoIncLram(iop_base, word);
   4128			i += 2;
   4129			len += 2;
   4130		} else {
   4131			unsigned int off = buf[i] * 2;
   4132			unsigned short word = (buf[off + 1] << 8) | buf[off];
   4133			AdvWriteWordAutoIncLram(iop_base, word);
   4134			len += 2;
   4135		}
   4136	}
   4137
   4138	end = len;
   4139
   4140	while (len < memsize) {
   4141		AdvWriteWordAutoIncLram(iop_base, 0);
   4142		len += 2;
   4143	}
   4144
   4145	/* Verify the microcode checksum. */
   4146	sum = 0;
   4147	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
   4148
   4149	for (len = 0; len < end; len += 2) {
   4150		sum += AdvReadWordAutoIncLram(iop_base);
   4151	}
   4152
   4153	if (sum != chksum)
   4154		return ASC_IERR_MCODE_CHKSUM;
   4155
   4156	return 0;
   4157}
   4158
   4159static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
   4160{
   4161	off_t carr_offset = 0, next_offset;
   4162	dma_addr_t carr_paddr;
   4163	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
   4164
   4165	for (i = 0; i < carr_num; i++) {
   4166		carr_offset = i * sizeof(ADV_CARR_T);
   4167		/* Get physical address of the carrier 'carrp'. */
   4168		carr_paddr = adv_dvc->carrier_addr + carr_offset;
   4169
   4170		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
   4171		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
   4172		adv_dvc->carrier[i].areq_vpa = 0;
   4173		next_offset = carr_offset + sizeof(ADV_CARR_T);
   4174		if (i == carr_num)
   4175			next_offset = ~0;
   4176		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
   4177	}
   4178	/*
   4179	 * We cannot have a carrier with 'carr_va' of '0', as
   4180	 * a reference to this carrier would be interpreted as
   4181	 * list termination.
   4182	 * So start at carrier 1 with the freelist.
   4183	 */
   4184	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
   4185}
   4186
   4187static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
   4188{
   4189	int index;
   4190
   4191	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
   4192
   4193	index = offset / sizeof(ADV_CARR_T);
   4194	return &adv_dvc->carrier[index];
   4195}
   4196
   4197static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
   4198{
   4199	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
   4200	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
   4201
   4202	if (next_vpa == 0 || next_vpa == ~0) {
   4203		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
   4204		return NULL;
   4205	}
   4206
   4207	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
   4208	/*
   4209	 * insert stopper carrier to terminate list
   4210	 */
   4211	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
   4212
   4213	return carrp;
   4214}
   4215
   4216/*
   4217 * 'offset' is the index in the request pointer array
   4218 */
   4219static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
   4220{
   4221	struct asc_board *boardp = adv_dvc->drv_ptr;
   4222
   4223	BUG_ON(offset > adv_dvc->max_host_qng);
   4224	return &boardp->adv_reqp[offset];
   4225}
   4226
   4227/*
   4228 * Send an idle command to the chip and wait for completion.
   4229 *
   4230 * Command completion is polled for once per microsecond.
   4231 *
   4232 * The function can be called from anywhere including an interrupt handler.
   4233 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
   4234 * functions to prevent reentrancy.
   4235 *
   4236 * Return Values:
   4237 *   ADV_TRUE - command completed successfully
   4238 *   ADV_FALSE - command failed
   4239 *   ADV_ERROR - command timed out
   4240 */
   4241static int
   4242AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
   4243	       ushort idle_cmd, u32 idle_cmd_parameter)
   4244{
   4245	int result, i, j;
   4246	AdvPortAddr iop_base;
   4247
   4248	iop_base = asc_dvc->iop_base;
   4249
   4250	/*
   4251	 * Clear the idle command status which is set by the microcode
   4252	 * to a non-zero value to indicate when the command is completed.
   4253	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
   4254	 */
   4255	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
   4256
   4257	/*
   4258	 * Write the idle command value after the idle command parameter
   4259	 * has been written to avoid a race condition. If the order is not
   4260	 * followed, the microcode may process the idle command before the
   4261	 * parameters have been written to LRAM.
   4262	 */
   4263	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
   4264				cpu_to_le32(idle_cmd_parameter));
   4265	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
   4266
   4267	/*
   4268	 * Tickle the RISC to tell it to process the idle command.
   4269	 */
   4270	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
   4271	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
   4272		/*
   4273		 * Clear the tickle value. In the ASC-3550 the RISC flag
   4274		 * command 'clr_tickle_b' does not work unless the host
   4275		 * value is cleared.
   4276		 */
   4277		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
   4278	}
   4279
   4280	/* Wait for up to 100 millisecond for the idle command to timeout. */
   4281	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   4282		/* Poll once each microsecond for command completion. */
   4283		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   4284			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
   4285					result);
   4286			if (result != 0)
   4287				return result;
   4288			udelay(1);
   4289		}
   4290	}
   4291
   4292	BUG();		/* The idle command should never timeout. */
   4293	return ADV_ERROR;
   4294}
   4295
   4296/*
   4297 * Reset SCSI Bus and purge all outstanding requests.
   4298 *
   4299 * Return Value:
   4300 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   4301 *      ADV_FALSE(0) -  Microcode command failed.
   4302 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
   4303 *                      may be hung which requires driver recovery.
   4304 */
   4305static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
   4306{
   4307	int status;
   4308
   4309	/*
   4310	 * Send the SCSI Bus Reset idle start idle command which asserts
   4311	 * the SCSI Bus Reset signal.
   4312	 */
   4313	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
   4314	if (status != ADV_TRUE) {
   4315		return status;
   4316	}
   4317
   4318	/*
   4319	 * Delay for the specified SCSI Bus Reset hold time.
   4320	 *
   4321	 * The hold time delay is done on the host because the RISC has no
   4322	 * microsecond accurate timer.
   4323	 */
   4324	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
   4325
   4326	/*
   4327	 * Send the SCSI Bus Reset end idle command which de-asserts
   4328	 * the SCSI Bus Reset signal and purges any pending requests.
   4329	 */
   4330	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
   4331	if (status != ADV_TRUE) {
   4332		return status;
   4333	}
   4334
   4335	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
   4336
   4337	return status;
   4338}
   4339
   4340/*
   4341 * Initialize the ASC-3550.
   4342 *
   4343 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
   4344 *
   4345 * For a non-fatal error return a warning code. If there are no warnings
   4346 * then 0 is returned.
   4347 *
   4348 * Needed after initialization for error recovery.
   4349 */
   4350static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
   4351{
   4352	const struct firmware *fw;
   4353	const char fwname[] = "advansys/3550.bin";
   4354	AdvPortAddr iop_base;
   4355	ushort warn_code;
   4356	int begin_addr;
   4357	int end_addr;
   4358	ushort code_sum;
   4359	int word;
   4360	int i;
   4361	int err;
   4362	unsigned long chksum;
   4363	ushort scsi_cfg1;
   4364	uchar tid;
   4365	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
   4366	ushort wdtr_able = 0, sdtr_able, tagqng_able;
   4367	uchar max_cmd[ADV_MAX_TID + 1];
   4368
   4369	/* If there is already an error, don't continue. */
   4370	if (asc_dvc->err_code != 0)
   4371		return ADV_ERROR;
   4372
   4373	/*
   4374	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
   4375	 */
   4376	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
   4377		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
   4378		return ADV_ERROR;
   4379	}
   4380
   4381	warn_code = 0;
   4382	iop_base = asc_dvc->iop_base;
   4383
   4384	/*
   4385	 * Save the RISC memory BIOS region before writing the microcode.
   4386	 * The BIOS may already be loaded and using its RISC LRAM region
   4387	 * so its region must be saved and restored.
   4388	 *
   4389	 * Note: This code makes the assumption, which is currently true,
   4390	 * that a chip reset does not clear RISC LRAM.
   4391	 */
   4392	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   4393		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   4394				bios_mem[i]);
   4395	}
   4396
   4397	/*
   4398	 * Save current per TID negotiated values.
   4399	 */
   4400	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
   4401		ushort bios_version, major, minor;
   4402
   4403		bios_version =
   4404		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
   4405		major = (bios_version >> 12) & 0xF;
   4406		minor = (bios_version >> 8) & 0xF;
   4407		if (major < 3 || (major == 3 && minor == 1)) {
   4408			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
   4409			AdvReadWordLram(iop_base, 0x120, wdtr_able);
   4410		} else {
   4411			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   4412		}
   4413	}
   4414	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   4415	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   4416	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   4417		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   4418				max_cmd[tid]);
   4419	}
   4420
   4421	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
   4422	if (err) {
   4423		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
   4424		       fwname, err);
   4425		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   4426		return err;
   4427	}
   4428	if (fw->size < 4) {
   4429		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
   4430		       fw->size, fwname);
   4431		release_firmware(fw);
   4432		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   4433		return -EINVAL;
   4434	}
   4435	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
   4436		 (fw->data[1] << 8) | fw->data[0];
   4437	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
   4438					     fw->size - 4, ADV_3550_MEMSIZE,
   4439					     chksum);
   4440	release_firmware(fw);
   4441	if (asc_dvc->err_code)
   4442		return ADV_ERROR;
   4443
   4444	/*
   4445	 * Restore the RISC memory BIOS region.
   4446	 */
   4447	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   4448		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   4449				 bios_mem[i]);
   4450	}
   4451
   4452	/*
   4453	 * Calculate and write the microcode code checksum to the microcode
   4454	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   4455	 */
   4456	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   4457	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
   4458	code_sum = 0;
   4459	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
   4460	for (word = begin_addr; word < end_addr; word += 2) {
   4461		code_sum += AdvReadWordAutoIncLram(iop_base);
   4462	}
   4463	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
   4464
   4465	/*
   4466	 * Read and save microcode version and date.
   4467	 */
   4468	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
   4469			asc_dvc->cfg->mcode_date);
   4470	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
   4471			asc_dvc->cfg->mcode_version);
   4472
   4473	/*
   4474	 * Set the chip type to indicate the ASC3550.
   4475	 */
   4476	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
   4477
   4478	/*
   4479	 * If the PCI Configuration Command Register "Parity Error Response
   4480	 * Control" Bit was clear (0), then set the microcode variable
   4481	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   4482	 * to ignore DMA parity errors.
   4483	 */
   4484	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
   4485		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   4486		word |= CONTROL_FLAG_IGNORE_PERR;
   4487		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   4488	}
   4489
   4490	/*
   4491	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
   4492	 * threshold of 128 bytes. This register is only accessible to the host.
   4493	 */
   4494	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
   4495			     START_CTL_EMFU | READ_CMD_MRM);
   4496
   4497	/*
   4498	 * Microcode operating variables for WDTR, SDTR, and command tag
   4499	 * queuing will be set in slave_configure() based on what a
   4500	 * device reports it is capable of in Inquiry byte 7.
   4501	 *
   4502	 * If SCSI Bus Resets have been disabled, then directly set
   4503	 * SDTR and WDTR from the EEPROM configuration. This will allow
   4504	 * the BIOS and warm boot to work without a SCSI bus hang on
   4505	 * the Inquiry caused by host and target mismatched DTR values.
   4506	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   4507	 * be assumed to be in Asynchronous, Narrow mode.
   4508	 */
   4509	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   4510		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
   4511				 asc_dvc->wdtr_able);
   4512		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
   4513				 asc_dvc->sdtr_able);
   4514	}
   4515
   4516	/*
   4517	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
   4518	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
   4519	 * bitmask. These values determine the maximum SDTR speed negotiated
   4520	 * with a device.
   4521	 *
   4522	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   4523	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   4524	 * without determining here whether the device supports SDTR.
   4525	 *
   4526	 * 4-bit speed  SDTR speed name
   4527	 * ===========  ===============
   4528	 * 0000b (0x0)  SDTR disabled
   4529	 * 0001b (0x1)  5 Mhz
   4530	 * 0010b (0x2)  10 Mhz
   4531	 * 0011b (0x3)  20 Mhz (Ultra)
   4532	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
   4533	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
   4534	 * 0110b (0x6)  Undefined
   4535	 * .
   4536	 * 1111b (0xF)  Undefined
   4537	 */
   4538	word = 0;
   4539	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   4540		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
   4541			/* Set Ultra speed for TID 'tid'. */
   4542			word |= (0x3 << (4 * (tid % 4)));
   4543		} else {
   4544			/* Set Fast speed for TID 'tid'. */
   4545			word |= (0x2 << (4 * (tid % 4)));
   4546		}
   4547		if (tid == 3) {	/* Check if done with sdtr_speed1. */
   4548			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
   4549			word = 0;
   4550		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
   4551			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
   4552			word = 0;
   4553		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
   4554			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
   4555			word = 0;
   4556		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
   4557			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
   4558			/* End of loop. */
   4559		}
   4560	}
   4561
   4562	/*
   4563	 * Set microcode operating variable for the disconnect per TID bitmask.
   4564	 */
   4565	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
   4566			 asc_dvc->cfg->disc_enable);
   4567
   4568	/*
   4569	 * Set SCSI_CFG0 Microcode Default Value.
   4570	 *
   4571	 * The microcode will set the SCSI_CFG0 register using this value
   4572	 * after it is started below.
   4573	 */
   4574	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
   4575			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
   4576			 asc_dvc->chip_scsi_id);
   4577
   4578	/*
   4579	 * Determine SCSI_CFG1 Microcode Default Value.
   4580	 *
   4581	 * The microcode will set the SCSI_CFG1 register using this value
   4582	 * after it is started below.
   4583	 */
   4584
   4585	/* Read current SCSI_CFG1 Register value. */
   4586	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
   4587
   4588	/*
   4589	 * If all three connectors are in use, return an error.
   4590	 */
   4591	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   4592	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   4593		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
   4594		return ADV_ERROR;
   4595	}
   4596
   4597	/*
   4598	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   4599	 * register signals will be set. Check for and return an error if
   4600	 * this condition is found.
   4601	 */
   4602	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
   4603		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
   4604		return ADV_ERROR;
   4605	}
   4606
   4607	/*
   4608	 * If this is a differential board and a single-ended device
   4609	 * is attached to one of the connectors, return an error.
   4610	 */
   4611	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
   4612		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
   4613		return ADV_ERROR;
   4614	}
   4615
   4616	/*
   4617	 * If automatic termination control is enabled, then set the
   4618	 * termination value based on a table listed in a_condor.h.
   4619	 *
   4620	 * If manual termination was specified with an EEPROM setting
   4621	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
   4622	 * is ready to be 'ored' into SCSI_CFG1.
   4623	 */
   4624	if (asc_dvc->cfg->termination == 0) {
   4625		/*
   4626		 * The software always controls termination by setting TERM_CTL_SEL.
   4627		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
   4628		 */
   4629		asc_dvc->cfg->termination |= TERM_CTL_SEL;
   4630
   4631		switch (scsi_cfg1 & CABLE_DETECT) {
   4632			/* TERM_CTL_H: on, TERM_CTL_L: on */
   4633		case 0x3:
   4634		case 0x7:
   4635		case 0xB:
   4636		case 0xD:
   4637		case 0xE:
   4638		case 0xF:
   4639			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
   4640			break;
   4641
   4642			/* TERM_CTL_H: on, TERM_CTL_L: off */
   4643		case 0x1:
   4644		case 0x5:
   4645		case 0x9:
   4646		case 0xA:
   4647		case 0xC:
   4648			asc_dvc->cfg->termination |= TERM_CTL_H;
   4649			break;
   4650
   4651			/* TERM_CTL_H: off, TERM_CTL_L: off */
   4652		case 0x2:
   4653		case 0x6:
   4654			break;
   4655		}
   4656	}
   4657
   4658	/*
   4659	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   4660	 */
   4661	scsi_cfg1 &= ~TERM_CTL;
   4662
   4663	/*
   4664	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   4665	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   4666	 * referenced, because the hardware internally inverts
   4667	 * the Termination High and Low bits if TERM_POL is set.
   4668	 */
   4669	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
   4670
   4671	/*
   4672	 * Set SCSI_CFG1 Microcode Default Value
   4673	 *
   4674	 * Set filter value and possibly modified termination control
   4675	 * bits in the Microcode SCSI_CFG1 Register Value.
   4676	 *
   4677	 * The microcode will set the SCSI_CFG1 register using this value
   4678	 * after it is started below.
   4679	 */
   4680	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
   4681			 FLTR_DISABLE | scsi_cfg1);
   4682
   4683	/*
   4684	 * Set MEM_CFG Microcode Default Value
   4685	 *
   4686	 * The microcode will set the MEM_CFG register using this value
   4687	 * after it is started below.
   4688	 *
   4689	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   4690	 * are defined.
   4691	 *
   4692	 * ASC-3550 has 8KB internal memory.
   4693	 */
   4694	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
   4695			 BIOS_EN | RAM_SZ_8KB);
   4696
   4697	/*
   4698	 * Set SEL_MASK Microcode Default Value
   4699	 *
   4700	 * The microcode will set the SEL_MASK register using this value
   4701	 * after it is started below.
   4702	 */
   4703	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
   4704			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
   4705
   4706	AdvBuildCarrierFreelist(asc_dvc);
   4707
   4708	/*
   4709	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   4710	 */
   4711
   4712	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
   4713	if (!asc_dvc->icq_sp) {
   4714		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   4715		return ADV_ERROR;
   4716	}
   4717
   4718	/*
   4719	 * Set RISC ICQ physical address start value.
   4720	 */
   4721	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
   4722
   4723	/*
   4724	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   4725	 */
   4726	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
   4727	if (!asc_dvc->irq_sp) {
   4728		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   4729		return ADV_ERROR;
   4730	}
   4731
   4732	/*
   4733	 * Set RISC IRQ physical address start value.
   4734	 */
   4735	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
   4736	asc_dvc->carr_pending_cnt = 0;
   4737
   4738	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
   4739			     (ADV_INTR_ENABLE_HOST_INTR |
   4740			      ADV_INTR_ENABLE_GLOBAL_INTR));
   4741
   4742	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
   4743	AdvWriteWordRegister(iop_base, IOPW_PC, word);
   4744
   4745	/* finally, finally, gentlemen, start your engine */
   4746	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
   4747
   4748	/*
   4749	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   4750	 * Resets should be performed. The RISC has to be running
   4751	 * to issue a SCSI Bus Reset.
   4752	 */
   4753	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   4754		/*
   4755		 * If the BIOS Signature is present in memory, restore the
   4756		 * BIOS Handshake Configuration Table and do not perform
   4757		 * a SCSI Bus Reset.
   4758		 */
   4759		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
   4760		    0x55AA) {
   4761			/*
   4762			 * Restore per TID negotiated values.
   4763			 */
   4764			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   4765			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   4766			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
   4767					 tagqng_able);
   4768			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   4769				AdvWriteByteLram(iop_base,
   4770						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
   4771						 max_cmd[tid]);
   4772			}
   4773		} else {
   4774			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
   4775				warn_code = ASC_WARN_BUSRESET_ERROR;
   4776			}
   4777		}
   4778	}
   4779
   4780	return warn_code;
   4781}
   4782
   4783/*
   4784 * Initialize the ASC-38C0800.
   4785 *
   4786 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
   4787 *
   4788 * For a non-fatal error return a warning code. If there are no warnings
   4789 * then 0 is returned.
   4790 *
   4791 * Needed after initialization for error recovery.
   4792 */
   4793static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
   4794{
   4795	const struct firmware *fw;
   4796	const char fwname[] = "advansys/38C0800.bin";
   4797	AdvPortAddr iop_base;
   4798	ushort warn_code;
   4799	int begin_addr;
   4800	int end_addr;
   4801	ushort code_sum;
   4802	int word;
   4803	int i;
   4804	int err;
   4805	unsigned long chksum;
   4806	ushort scsi_cfg1;
   4807	uchar byte;
   4808	uchar tid;
   4809	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
   4810	ushort wdtr_able, sdtr_able, tagqng_able;
   4811	uchar max_cmd[ADV_MAX_TID + 1];
   4812
   4813	/* If there is already an error, don't continue. */
   4814	if (asc_dvc->err_code != 0)
   4815		return ADV_ERROR;
   4816
   4817	/*
   4818	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
   4819	 */
   4820	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
   4821		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
   4822		return ADV_ERROR;
   4823	}
   4824
   4825	warn_code = 0;
   4826	iop_base = asc_dvc->iop_base;
   4827
   4828	/*
   4829	 * Save the RISC memory BIOS region before writing the microcode.
   4830	 * The BIOS may already be loaded and using its RISC LRAM region
   4831	 * so its region must be saved and restored.
   4832	 *
   4833	 * Note: This code makes the assumption, which is currently true,
   4834	 * that a chip reset does not clear RISC LRAM.
   4835	 */
   4836	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   4837		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   4838				bios_mem[i]);
   4839	}
   4840
   4841	/*
   4842	 * Save current per TID negotiated values.
   4843	 */
   4844	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   4845	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   4846	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   4847	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   4848		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   4849				max_cmd[tid]);
   4850	}
   4851
   4852	/*
   4853	 * RAM BIST (RAM Built-In Self Test)
   4854	 *
   4855	 * Address : I/O base + offset 0x38h register (byte).
   4856	 * Function: Bit 7-6(RW) : RAM mode
   4857	 *                          Normal Mode   : 0x00
   4858	 *                          Pre-test Mode : 0x40
   4859	 *                          RAM Test Mode : 0x80
   4860	 *           Bit 5       : unused
   4861	 *           Bit 4(RO)   : Done bit
   4862	 *           Bit 3-0(RO) : Status
   4863	 *                          Host Error    : 0x08
   4864	 *                          Int_RAM Error : 0x04
   4865	 *                          RISC Error    : 0x02
   4866	 *                          SCSI Error    : 0x01
   4867	 *                          No Error      : 0x00
   4868	 *
   4869	 * Note: RAM BIST code should be put right here, before loading the
   4870	 * microcode and after saving the RISC memory BIOS region.
   4871	 */
   4872
   4873	/*
   4874	 * LRAM Pre-test
   4875	 *
   4876	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   4877	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   4878	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   4879	 * to NORMAL_MODE, return an error too.
   4880	 */
   4881	for (i = 0; i < 2; i++) {
   4882		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
   4883		mdelay(10);	/* Wait for 10ms before reading back. */
   4884		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
   4885		if ((byte & RAM_TEST_DONE) == 0
   4886		    || (byte & 0x0F) != PRE_TEST_VALUE) {
   4887			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
   4888			return ADV_ERROR;
   4889		}
   4890
   4891		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
   4892		mdelay(10);	/* Wait for 10ms before reading back. */
   4893		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
   4894		    != NORMAL_VALUE) {
   4895			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
   4896			return ADV_ERROR;
   4897		}
   4898	}
   4899
   4900	/*
   4901	 * LRAM Test - It takes about 1.5 ms to run through the test.
   4902	 *
   4903	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   4904	 * If Done bit not set or Status not 0, save register byte, set the
   4905	 * err_code, and return an error.
   4906	 */
   4907	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
   4908	mdelay(10);	/* Wait for 10ms before checking status. */
   4909
   4910	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
   4911	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   4912		/* Get here if Done bit not set or Status not 0. */
   4913		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
   4914		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
   4915		return ADV_ERROR;
   4916	}
   4917
   4918	/* We need to reset back to normal mode after LRAM test passes. */
   4919	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
   4920
   4921	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
   4922	if (err) {
   4923		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
   4924		       fwname, err);
   4925		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   4926		return err;
   4927	}
   4928	if (fw->size < 4) {
   4929		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
   4930		       fw->size, fwname);
   4931		release_firmware(fw);
   4932		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   4933		return -EINVAL;
   4934	}
   4935	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
   4936		 (fw->data[1] << 8) | fw->data[0];
   4937	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
   4938					     fw->size - 4, ADV_38C0800_MEMSIZE,
   4939					     chksum);
   4940	release_firmware(fw);
   4941	if (asc_dvc->err_code)
   4942		return ADV_ERROR;
   4943
   4944	/*
   4945	 * Restore the RISC memory BIOS region.
   4946	 */
   4947	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   4948		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   4949				 bios_mem[i]);
   4950	}
   4951
   4952	/*
   4953	 * Calculate and write the microcode code checksum to the microcode
   4954	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   4955	 */
   4956	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   4957	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
   4958	code_sum = 0;
   4959	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
   4960	for (word = begin_addr; word < end_addr; word += 2) {
   4961		code_sum += AdvReadWordAutoIncLram(iop_base);
   4962	}
   4963	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
   4964
   4965	/*
   4966	 * Read microcode version and date.
   4967	 */
   4968	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
   4969			asc_dvc->cfg->mcode_date);
   4970	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
   4971			asc_dvc->cfg->mcode_version);
   4972
   4973	/*
   4974	 * Set the chip type to indicate the ASC38C0800.
   4975	 */
   4976	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
   4977
   4978	/*
   4979	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   4980	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   4981	 * cable detection and then we are able to read C_DET[3:0].
   4982	 *
   4983	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   4984	 * Microcode Default Value' section below.
   4985	 */
   4986	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
   4987	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
   4988			     scsi_cfg1 | DIS_TERM_DRV);
   4989
   4990	/*
   4991	 * If the PCI Configuration Command Register "Parity Error Response
   4992	 * Control" Bit was clear (0), then set the microcode variable
   4993	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   4994	 * to ignore DMA parity errors.
   4995	 */
   4996	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
   4997		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   4998		word |= CONTROL_FLAG_IGNORE_PERR;
   4999		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   5000	}
   5001
   5002	/*
   5003	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
   5004	 * bits for the default FIFO threshold.
   5005	 *
   5006	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   5007	 *
   5008	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   5009	 */
   5010	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
   5011			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
   5012			     READ_CMD_MRM);
   5013
   5014	/*
   5015	 * Microcode operating variables for WDTR, SDTR, and command tag
   5016	 * queuing will be set in slave_configure() based on what a
   5017	 * device reports it is capable of in Inquiry byte 7.
   5018	 *
   5019	 * If SCSI Bus Resets have been disabled, then directly set
   5020	 * SDTR and WDTR from the EEPROM configuration. This will allow
   5021	 * the BIOS and warm boot to work without a SCSI bus hang on
   5022	 * the Inquiry caused by host and target mismatched DTR values.
   5023	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   5024	 * be assumed to be in Asynchronous, Narrow mode.
   5025	 */
   5026	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   5027		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
   5028				 asc_dvc->wdtr_able);
   5029		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
   5030				 asc_dvc->sdtr_able);
   5031	}
   5032
   5033	/*
   5034	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   5035	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   5036	 * configuration values.
   5037	 *
   5038	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   5039	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   5040	 * without determining here whether the device supports SDTR.
   5041	 */
   5042	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
   5043			 asc_dvc->cfg->disc_enable);
   5044	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
   5045	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
   5046	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
   5047	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
   5048
   5049	/*
   5050	 * Set SCSI_CFG0 Microcode Default Value.
   5051	 *
   5052	 * The microcode will set the SCSI_CFG0 register using this value
   5053	 * after it is started below.
   5054	 */
   5055	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
   5056			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
   5057			 asc_dvc->chip_scsi_id);
   5058
   5059	/*
   5060	 * Determine SCSI_CFG1 Microcode Default Value.
   5061	 *
   5062	 * The microcode will set the SCSI_CFG1 register using this value
   5063	 * after it is started below.
   5064	 */
   5065
   5066	/* Read current SCSI_CFG1 Register value. */
   5067	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
   5068
   5069	/*
   5070	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   5071	 * register signals will be set. Check for and return an error if
   5072	 * this condition is found.
   5073	 */
   5074	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
   5075		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
   5076		return ADV_ERROR;
   5077	}
   5078
   5079	/*
   5080	 * All kind of combinations of devices attached to one of four
   5081	 * connectors are acceptable except HVD device attached. For example,
   5082	 * LVD device can be attached to SE connector while SE device attached
   5083	 * to LVD connector.  If LVD device attached to SE connector, it only
   5084	 * runs up to Ultra speed.
   5085	 *
   5086	 * If an HVD device is attached to one of LVD connectors, return an
   5087	 * error.  However, there is no way to detect HVD device attached to
   5088	 * SE connectors.
   5089	 */
   5090	if (scsi_cfg1 & HVD) {
   5091		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
   5092		return ADV_ERROR;
   5093	}
   5094
   5095	/*
   5096	 * If either SE or LVD automatic termination control is enabled, then
   5097	 * set the termination value based on a table listed in a_condor.h.
   5098	 *
   5099	 * If manual termination was specified with an EEPROM setting then
   5100	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
   5101	 * to be 'ored' into SCSI_CFG1.
   5102	 */
   5103	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
   5104		/* SE automatic termination control is enabled. */
   5105		switch (scsi_cfg1 & C_DET_SE) {
   5106			/* TERM_SE_HI: on, TERM_SE_LO: on */
   5107		case 0x1:
   5108		case 0x2:
   5109		case 0x3:
   5110			asc_dvc->cfg->termination |= TERM_SE;
   5111			break;
   5112
   5113			/* TERM_SE_HI: on, TERM_SE_LO: off */
   5114		case 0x0:
   5115			asc_dvc->cfg->termination |= TERM_SE_HI;
   5116			break;
   5117		}
   5118	}
   5119
   5120	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
   5121		/* LVD automatic termination control is enabled. */
   5122		switch (scsi_cfg1 & C_DET_LVD) {
   5123			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   5124		case 0x4:
   5125		case 0x8:
   5126		case 0xC:
   5127			asc_dvc->cfg->termination |= TERM_LVD;
   5128			break;
   5129
   5130			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   5131		case 0x0:
   5132			break;
   5133		}
   5134	}
   5135
   5136	/*
   5137	 * Clear any set TERM_SE and TERM_LVD bits.
   5138	 */
   5139	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
   5140
   5141	/*
   5142	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   5143	 */
   5144	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
   5145
   5146	/*
   5147	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
   5148	 * bits and set possibly modified termination control bits in the
   5149	 * Microcode SCSI_CFG1 Register Value.
   5150	 */
   5151	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
   5152
   5153	/*
   5154	 * Set SCSI_CFG1 Microcode Default Value
   5155	 *
   5156	 * Set possibly modified termination control and reset DIS_TERM_DRV
   5157	 * bits in the Microcode SCSI_CFG1 Register Value.
   5158	 *
   5159	 * The microcode will set the SCSI_CFG1 register using this value
   5160	 * after it is started below.
   5161	 */
   5162	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   5163
   5164	/*
   5165	 * Set MEM_CFG Microcode Default Value
   5166	 *
   5167	 * The microcode will set the MEM_CFG register using this value
   5168	 * after it is started below.
   5169	 *
   5170	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   5171	 * are defined.
   5172	 *
   5173	 * ASC-38C0800 has 16KB internal memory.
   5174	 */
   5175	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
   5176			 BIOS_EN | RAM_SZ_16KB);
   5177
   5178	/*
   5179	 * Set SEL_MASK Microcode Default Value
   5180	 *
   5181	 * The microcode will set the SEL_MASK register using this value
   5182	 * after it is started below.
   5183	 */
   5184	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
   5185			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
   5186
   5187	AdvBuildCarrierFreelist(asc_dvc);
   5188
   5189	/*
   5190	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   5191	 */
   5192
   5193	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
   5194	if (!asc_dvc->icq_sp) {
   5195		ASC_DBG(0, "Failed to get ICQ carrier\n");
   5196		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   5197		return ADV_ERROR;
   5198	}
   5199
   5200	/*
   5201	 * Set RISC ICQ physical address start value.
   5202	 * carr_pa is LE, must be native before write
   5203	 */
   5204	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
   5205
   5206	/*
   5207	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   5208	 */
   5209	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
   5210	if (!asc_dvc->irq_sp) {
   5211		ASC_DBG(0, "Failed to get IRQ carrier\n");
   5212		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   5213		return ADV_ERROR;
   5214	}
   5215
   5216	/*
   5217	 * Set RISC IRQ physical address start value.
   5218	 *
   5219	 * carr_pa is LE, must be native before write *
   5220	 */
   5221	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
   5222	asc_dvc->carr_pending_cnt = 0;
   5223
   5224	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
   5225			     (ADV_INTR_ENABLE_HOST_INTR |
   5226			      ADV_INTR_ENABLE_GLOBAL_INTR));
   5227
   5228	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
   5229	AdvWriteWordRegister(iop_base, IOPW_PC, word);
   5230
   5231	/* finally, finally, gentlemen, start your engine */
   5232	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
   5233
   5234	/*
   5235	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   5236	 * Resets should be performed. The RISC has to be running
   5237	 * to issue a SCSI Bus Reset.
   5238	 */
   5239	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   5240		/*
   5241		 * If the BIOS Signature is present in memory, restore the
   5242		 * BIOS Handshake Configuration Table and do not perform
   5243		 * a SCSI Bus Reset.
   5244		 */
   5245		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
   5246		    0x55AA) {
   5247			/*
   5248			 * Restore per TID negotiated values.
   5249			 */
   5250			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   5251			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   5252			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
   5253					 tagqng_able);
   5254			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   5255				AdvWriteByteLram(iop_base,
   5256						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
   5257						 max_cmd[tid]);
   5258			}
   5259		} else {
   5260			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
   5261				warn_code = ASC_WARN_BUSRESET_ERROR;
   5262			}
   5263		}
   5264	}
   5265
   5266	return warn_code;
   5267}
   5268
   5269/*
   5270 * Initialize the ASC-38C1600.
   5271 *
   5272 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   5273 *
   5274 * For a non-fatal error return a warning code. If there are no warnings
   5275 * then 0 is returned.
   5276 *
   5277 * Needed after initialization for error recovery.
   5278 */
   5279static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
   5280{
   5281	const struct firmware *fw;
   5282	const char fwname[] = "advansys/38C1600.bin";
   5283	AdvPortAddr iop_base;
   5284	ushort warn_code;
   5285	int begin_addr;
   5286	int end_addr;
   5287	ushort code_sum;
   5288	long word;
   5289	int i;
   5290	int err;
   5291	unsigned long chksum;
   5292	ushort scsi_cfg1;
   5293	uchar byte;
   5294	uchar tid;
   5295	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
   5296	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
   5297	uchar max_cmd[ASC_MAX_TID + 1];
   5298
   5299	/* If there is already an error, don't continue. */
   5300	if (asc_dvc->err_code != 0) {
   5301		return ADV_ERROR;
   5302	}
   5303
   5304	/*
   5305	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
   5306	 */
   5307	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
   5308		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
   5309		return ADV_ERROR;
   5310	}
   5311
   5312	warn_code = 0;
   5313	iop_base = asc_dvc->iop_base;
   5314
   5315	/*
   5316	 * Save the RISC memory BIOS region before writing the microcode.
   5317	 * The BIOS may already be loaded and using its RISC LRAM region
   5318	 * so its region must be saved and restored.
   5319	 *
   5320	 * Note: This code makes the assumption, which is currently true,
   5321	 * that a chip reset does not clear RISC LRAM.
   5322	 */
   5323	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   5324		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   5325				bios_mem[i]);
   5326	}
   5327
   5328	/*
   5329	 * Save current per TID negotiated values.
   5330	 */
   5331	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   5332	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   5333	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
   5334	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   5335	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
   5336		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   5337				max_cmd[tid]);
   5338	}
   5339
   5340	/*
   5341	 * RAM BIST (Built-In Self Test)
   5342	 *
   5343	 * Address : I/O base + offset 0x38h register (byte).
   5344	 * Function: Bit 7-6(RW) : RAM mode
   5345	 *                          Normal Mode   : 0x00
   5346	 *                          Pre-test Mode : 0x40
   5347	 *                          RAM Test Mode : 0x80
   5348	 *           Bit 5       : unused
   5349	 *           Bit 4(RO)   : Done bit
   5350	 *           Bit 3-0(RO) : Status
   5351	 *                          Host Error    : 0x08
   5352	 *                          Int_RAM Error : 0x04
   5353	 *                          RISC Error    : 0x02
   5354	 *                          SCSI Error    : 0x01
   5355	 *                          No Error      : 0x00
   5356	 *
   5357	 * Note: RAM BIST code should be put right here, before loading the
   5358	 * microcode and after saving the RISC memory BIOS region.
   5359	 */
   5360
   5361	/*
   5362	 * LRAM Pre-test
   5363	 *
   5364	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   5365	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   5366	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   5367	 * to NORMAL_MODE, return an error too.
   5368	 */
   5369	for (i = 0; i < 2; i++) {
   5370		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
   5371		mdelay(10);	/* Wait for 10ms before reading back. */
   5372		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
   5373		if ((byte & RAM_TEST_DONE) == 0
   5374		    || (byte & 0x0F) != PRE_TEST_VALUE) {
   5375			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
   5376			return ADV_ERROR;
   5377		}
   5378
   5379		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
   5380		mdelay(10);	/* Wait for 10ms before reading back. */
   5381		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
   5382		    != NORMAL_VALUE) {
   5383			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
   5384			return ADV_ERROR;
   5385		}
   5386	}
   5387
   5388	/*
   5389	 * LRAM Test - It takes about 1.5 ms to run through the test.
   5390	 *
   5391	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   5392	 * If Done bit not set or Status not 0, save register byte, set the
   5393	 * err_code, and return an error.
   5394	 */
   5395	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
   5396	mdelay(10);	/* Wait for 10ms before checking status. */
   5397
   5398	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
   5399	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   5400		/* Get here if Done bit not set or Status not 0. */
   5401		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
   5402		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
   5403		return ADV_ERROR;
   5404	}
   5405
   5406	/* We need to reset back to normal mode after LRAM test passes. */
   5407	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
   5408
   5409	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
   5410	if (err) {
   5411		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
   5412		       fwname, err);
   5413		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   5414		return err;
   5415	}
   5416	if (fw->size < 4) {
   5417		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
   5418		       fw->size, fwname);
   5419		release_firmware(fw);
   5420		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
   5421		return -EINVAL;
   5422	}
   5423	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
   5424		 (fw->data[1] << 8) | fw->data[0];
   5425	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
   5426					     fw->size - 4, ADV_38C1600_MEMSIZE,
   5427					     chksum);
   5428	release_firmware(fw);
   5429	if (asc_dvc->err_code)
   5430		return ADV_ERROR;
   5431
   5432	/*
   5433	 * Restore the RISC memory BIOS region.
   5434	 */
   5435	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
   5436		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
   5437				 bios_mem[i]);
   5438	}
   5439
   5440	/*
   5441	 * Calculate and write the microcode code checksum to the microcode
   5442	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   5443	 */
   5444	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   5445	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
   5446	code_sum = 0;
   5447	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
   5448	for (word = begin_addr; word < end_addr; word += 2) {
   5449		code_sum += AdvReadWordAutoIncLram(iop_base);
   5450	}
   5451	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
   5452
   5453	/*
   5454	 * Read microcode version and date.
   5455	 */
   5456	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
   5457			asc_dvc->cfg->mcode_date);
   5458	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
   5459			asc_dvc->cfg->mcode_version);
   5460
   5461	/*
   5462	 * Set the chip type to indicate the ASC38C1600.
   5463	 */
   5464	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
   5465
   5466	/*
   5467	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   5468	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   5469	 * cable detection and then we are able to read C_DET[3:0].
   5470	 *
   5471	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   5472	 * Microcode Default Value' section below.
   5473	 */
   5474	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
   5475	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
   5476			     scsi_cfg1 | DIS_TERM_DRV);
   5477
   5478	/*
   5479	 * If the PCI Configuration Command Register "Parity Error Response
   5480	 * Control" Bit was clear (0), then set the microcode variable
   5481	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   5482	 * to ignore DMA parity errors.
   5483	 */
   5484	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
   5485		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   5486		word |= CONTROL_FLAG_IGNORE_PERR;
   5487		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   5488	}
   5489
   5490	/*
   5491	 * If the BIOS control flag AIPP (Asynchronous Information
   5492	 * Phase Protection) disable bit is not set, then set the firmware
   5493	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   5494	 * AIPP checking and encoding.
   5495	 */
   5496	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   5497		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   5498		word |= CONTROL_FLAG_ENABLE_AIPP;
   5499		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
   5500	}
   5501
   5502	/*
   5503	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   5504	 * and START_CTL_TH [3:2].
   5505	 */
   5506	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
   5507			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   5508
   5509	/*
   5510	 * Microcode operating variables for WDTR, SDTR, and command tag
   5511	 * queuing will be set in slave_configure() based on what a
   5512	 * device reports it is capable of in Inquiry byte 7.
   5513	 *
   5514	 * If SCSI Bus Resets have been disabled, then directly set
   5515	 * SDTR and WDTR from the EEPROM configuration. This will allow
   5516	 * the BIOS and warm boot to work without a SCSI bus hang on
   5517	 * the Inquiry caused by host and target mismatched DTR values.
   5518	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   5519	 * be assumed to be in Asynchronous, Narrow mode.
   5520	 */
   5521	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   5522		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
   5523				 asc_dvc->wdtr_able);
   5524		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
   5525				 asc_dvc->sdtr_able);
   5526	}
   5527
   5528	/*
   5529	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   5530	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   5531	 * configuration values.
   5532	 *
   5533	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   5534	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   5535	 * without determining here whether the device supports SDTR.
   5536	 */
   5537	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
   5538			 asc_dvc->cfg->disc_enable);
   5539	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
   5540	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
   5541	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
   5542	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
   5543
   5544	/*
   5545	 * Set SCSI_CFG0 Microcode Default Value.
   5546	 *
   5547	 * The microcode will set the SCSI_CFG0 register using this value
   5548	 * after it is started below.
   5549	 */
   5550	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
   5551			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
   5552			 asc_dvc->chip_scsi_id);
   5553
   5554	/*
   5555	 * Calculate SCSI_CFG1 Microcode Default Value.
   5556	 *
   5557	 * The microcode will set the SCSI_CFG1 register using this value
   5558	 * after it is started below.
   5559	 *
   5560	 * Each ASC-38C1600 function has only two cable detect bits.
   5561	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   5562	 */
   5563	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
   5564
   5565	/*
   5566	 * If the cable is reversed all of the SCSI_CTRL register signals
   5567	 * will be set. Check for and return an error if this condition is
   5568	 * found.
   5569	 */
   5570	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
   5571		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
   5572		return ADV_ERROR;
   5573	}
   5574
   5575	/*
   5576	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   5577	 * can not be connected to either connector. An LVD device or SE device
   5578	 * may be connected to either connecor. If an SE device is connected,
   5579	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   5580	 *
   5581	 * If an HVD device is attached, return an error.
   5582	 */
   5583	if (scsi_cfg1 & HVD) {
   5584		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
   5585		return ADV_ERROR;
   5586	}
   5587
   5588	/*
   5589	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   5590	 * termination because there are two connectors for each function. Each
   5591	 * function may use either LVD or SE mode. Corresponding the SE automatic
   5592	 * termination control EEPROM bits are used for each function. Each
   5593	 * function has its own EEPROM. If SE automatic control is enabled for
   5594	 * the function, then set the termination value based on a table listed
   5595	 * in a_condor.h.
   5596	 *
   5597	 * If manual termination is specified in the EEPROM for the function,
   5598	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   5599	 * ready to be 'ored' into SCSI_CFG1.
   5600	 */
   5601	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
   5602		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
   5603		/* SE automatic termination control is enabled. */
   5604		switch (scsi_cfg1 & C_DET_SE) {
   5605			/* TERM_SE_HI: on, TERM_SE_LO: on */
   5606		case 0x1:
   5607		case 0x2:
   5608		case 0x3:
   5609			asc_dvc->cfg->termination |= TERM_SE;
   5610			break;
   5611
   5612		case 0x0:
   5613			if (PCI_FUNC(pdev->devfn) == 0) {
   5614				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   5615			} else {
   5616				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   5617				asc_dvc->cfg->termination |= TERM_SE_HI;
   5618			}
   5619			break;
   5620		}
   5621	}
   5622
   5623	/*
   5624	 * Clear any set TERM_SE bits.
   5625	 */
   5626	scsi_cfg1 &= ~TERM_SE;
   5627
   5628	/*
   5629	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   5630	 */
   5631	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
   5632
   5633	/*
   5634	 * Clear Big Endian and Terminator Polarity bits and set possibly
   5635	 * modified termination control bits in the Microcode SCSI_CFG1
   5636	 * Register Value.
   5637	 *
   5638	 * Big Endian bit is not used even on big endian machines.
   5639	 */
   5640	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
   5641
   5642	/*
   5643	 * Set SCSI_CFG1 Microcode Default Value
   5644	 *
   5645	 * Set possibly modified termination control bits in the Microcode
   5646	 * SCSI_CFG1 Register Value.
   5647	 *
   5648	 * The microcode will set the SCSI_CFG1 register using this value
   5649	 * after it is started below.
   5650	 */
   5651	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   5652
   5653	/*
   5654	 * Set MEM_CFG Microcode Default Value
   5655	 *
   5656	 * The microcode will set the MEM_CFG register using this value
   5657	 * after it is started below.
   5658	 *
   5659	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   5660	 * are defined.
   5661	 *
   5662	 * ASC-38C1600 has 32KB internal memory.
   5663	 *
   5664	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
   5665	 * out a special 16K Adv Library and Microcode version. After the issue
   5666	 * resolved, we should turn back to the 32K support. Both a_condor.h and
   5667	 * mcode.sas files also need to be updated.
   5668	 *
   5669	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
   5670	 *  BIOS_EN | RAM_SZ_32KB);
   5671	 */
   5672	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
   5673			 BIOS_EN | RAM_SZ_16KB);
   5674
   5675	/*
   5676	 * Set SEL_MASK Microcode Default Value
   5677	 *
   5678	 * The microcode will set the SEL_MASK register using this value
   5679	 * after it is started below.
   5680	 */
   5681	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
   5682			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
   5683
   5684	AdvBuildCarrierFreelist(asc_dvc);
   5685
   5686	/*
   5687	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   5688	 */
   5689	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
   5690	if (!asc_dvc->icq_sp) {
   5691		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   5692		return ADV_ERROR;
   5693	}
   5694
   5695	/*
   5696	 * Set RISC ICQ physical address start value. Initialize the
   5697	 * COMMA register to the same value otherwise the RISC will
   5698	 * prematurely detect a command is available.
   5699	 */
   5700	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
   5701	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
   5702			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
   5703
   5704	/*
   5705	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   5706	 */
   5707	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
   5708	if (!asc_dvc->irq_sp) {
   5709		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
   5710		return ADV_ERROR;
   5711	}
   5712
   5713	/*
   5714	 * Set RISC IRQ physical address start value.
   5715	 */
   5716	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
   5717	asc_dvc->carr_pending_cnt = 0;
   5718
   5719	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
   5720			     (ADV_INTR_ENABLE_HOST_INTR |
   5721			      ADV_INTR_ENABLE_GLOBAL_INTR));
   5722	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
   5723	AdvWriteWordRegister(iop_base, IOPW_PC, word);
   5724
   5725	/* finally, finally, gentlemen, start your engine */
   5726	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
   5727
   5728	/*
   5729	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   5730	 * Resets should be performed. The RISC has to be running
   5731	 * to issue a SCSI Bus Reset.
   5732	 */
   5733	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   5734		/*
   5735		 * If the BIOS Signature is present in memory, restore the
   5736		 * per TID microcode operating variables.
   5737		 */
   5738		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
   5739		    0x55AA) {
   5740			/*
   5741			 * Restore per TID negotiated values.
   5742			 */
   5743			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   5744			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   5745			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
   5746			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
   5747					 tagqng_able);
   5748			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
   5749				AdvWriteByteLram(iop_base,
   5750						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
   5751						 max_cmd[tid]);
   5752			}
   5753		} else {
   5754			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
   5755				warn_code = ASC_WARN_BUSRESET_ERROR;
   5756			}
   5757		}
   5758	}
   5759
   5760	return warn_code;
   5761}
   5762
   5763/*
   5764 * Reset chip and SCSI Bus.
   5765 *
   5766 * Return Value:
   5767 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   5768 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   5769 */
   5770static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
   5771{
   5772	int status;
   5773	ushort wdtr_able, sdtr_able, tagqng_able;
   5774	ushort ppr_able = 0;
   5775	uchar tid, max_cmd[ADV_MAX_TID + 1];
   5776	AdvPortAddr iop_base;
   5777	ushort bios_sig;
   5778
   5779	iop_base = asc_dvc->iop_base;
   5780
   5781	/*
   5782	 * Save current per TID negotiated values.
   5783	 */
   5784	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   5785	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   5786	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
   5787		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
   5788	}
   5789	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   5790	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   5791		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   5792				max_cmd[tid]);
   5793	}
   5794
   5795	/*
   5796	 * Force the AdvInitAsc3550/38C0800Driver() function to
   5797	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   5798	 * The initialization functions assumes a SCSI Bus Reset is not
   5799	 * needed if the BIOS signature word is present.
   5800	 */
   5801	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
   5802	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
   5803
   5804	/*
   5805	 * Stop chip and reset it.
   5806	 */
   5807	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
   5808	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
   5809	mdelay(100);
   5810	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
   5811			     ADV_CTRL_REG_CMD_WR_IO_REG);
   5812
   5813	/*
   5814	 * Reset Adv Library error code, if any, and try
   5815	 * re-initializing the chip.
   5816	 */
   5817	asc_dvc->err_code = 0;
   5818	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
   5819		status = AdvInitAsc38C1600Driver(asc_dvc);
   5820	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
   5821		status = AdvInitAsc38C0800Driver(asc_dvc);
   5822	} else {
   5823		status = AdvInitAsc3550Driver(asc_dvc);
   5824	}
   5825
   5826	/* Translate initialization return value to status value. */
   5827	if (status == 0) {
   5828		status = ADV_TRUE;
   5829	} else {
   5830		status = ADV_FALSE;
   5831	}
   5832
   5833	/*
   5834	 * Restore the BIOS signature word.
   5835	 */
   5836	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
   5837
   5838	/*
   5839	 * Restore per TID negotiated values.
   5840	 */
   5841	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
   5842	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
   5843	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
   5844		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
   5845	}
   5846	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
   5847	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
   5848		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   5849				 max_cmd[tid]);
   5850	}
   5851
   5852	return status;
   5853}
   5854
   5855/*
   5856 * adv_async_callback() - Adv Library asynchronous event callback function.
   5857 */
   5858static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
   5859{
   5860	switch (code) {
   5861	case ADV_ASYNC_SCSI_BUS_RESET_DET:
   5862		/*
   5863		 * The firmware detected a SCSI Bus reset.
   5864		 */
   5865		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
   5866		break;
   5867
   5868	case ADV_ASYNC_RDMA_FAILURE:
   5869		/*
   5870		 * Handle RDMA failure by resetting the SCSI Bus and
   5871		 * possibly the chip if it is unresponsive. Log the error
   5872		 * with a unique code.
   5873		 */
   5874		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
   5875		AdvResetChipAndSB(adv_dvc_varp);
   5876		break;
   5877
   5878	case ADV_HOST_SCSI_BUS_RESET:
   5879		/*
   5880		 * Host generated SCSI bus reset occurred.
   5881		 */
   5882		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
   5883		break;
   5884
   5885	default:
   5886		ASC_DBG(0, "unknown code 0x%x\n", code);
   5887		break;
   5888	}
   5889}
   5890
   5891/*
   5892 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
   5893 *
   5894 * Callback function for the Wide SCSI Adv Library.
   5895 */
   5896static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
   5897{
   5898	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
   5899	adv_req_t *reqp;
   5900	adv_sgblk_t *sgblkp;
   5901	struct scsi_cmnd *scp;
   5902	u32 resid_cnt;
   5903	dma_addr_t sense_addr;
   5904
   5905	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
   5906		adv_dvc_varp, scsiqp);
   5907	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
   5908
   5909	/*
   5910	 * Get the adv_req_t structure for the command that has been
   5911	 * completed. The adv_req_t structure actually contains the
   5912	 * completed ADV_SCSI_REQ_Q structure.
   5913	 */
   5914	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
   5915
   5916	ASC_DBG(1, "scp 0x%p\n", scp);
   5917	if (scp == NULL) {
   5918		ASC_PRINT
   5919		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
   5920		return;
   5921	}
   5922	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
   5923
   5924	reqp = (adv_req_t *)scp->host_scribble;
   5925	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
   5926	if (reqp == NULL) {
   5927		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
   5928		return;
   5929	}
   5930	/*
   5931	 * Remove backreferences to avoid duplicate
   5932	 * command completions.
   5933	 */
   5934	scp->host_scribble = NULL;
   5935	reqp->cmndp = NULL;
   5936
   5937	ASC_STATS(boardp->shost, callback);
   5938	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
   5939
   5940	sense_addr = le32_to_cpu(scsiqp->sense_addr);
   5941	dma_unmap_single(boardp->dev, sense_addr,
   5942			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
   5943
   5944	/*
   5945	 * 'done_status' contains the command's ending status.
   5946	 */
   5947	scp->result = 0;
   5948	switch (scsiqp->done_status) {
   5949	case QD_NO_ERROR:
   5950		ASC_DBG(2, "QD_NO_ERROR\n");
   5951
   5952		/*
   5953		 * Check for an underrun condition.
   5954		 *
   5955		 * If there was no error and an underrun condition, then
   5956		 * then return the number of underrun bytes.
   5957		 */
   5958		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
   5959		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
   5960		    resid_cnt <= scsi_bufflen(scp)) {
   5961			ASC_DBG(1, "underrun condition %lu bytes\n",
   5962				 (ulong)resid_cnt);
   5963			scsi_set_resid(scp, resid_cnt);
   5964		}
   5965		break;
   5966
   5967	case QD_WITH_ERROR:
   5968		ASC_DBG(2, "QD_WITH_ERROR\n");
   5969		switch (scsiqp->host_status) {
   5970		case QHSTA_NO_ERROR:
   5971			set_status_byte(scp, scsiqp->scsi_status);
   5972			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
   5973				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
   5974				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
   5975						  SCSI_SENSE_BUFFERSIZE);
   5976			}
   5977			break;
   5978
   5979		default:
   5980			/* Some other QHSTA error occurred. */
   5981			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
   5982			set_host_byte(scp, DID_BAD_TARGET);
   5983			break;
   5984		}
   5985		break;
   5986
   5987	case QD_ABORTED_BY_HOST:
   5988		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
   5989		set_status_byte(scp, scsiqp->scsi_status);
   5990		set_host_byte(scp, DID_ABORT);
   5991		break;
   5992
   5993	default:
   5994		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
   5995		set_status_byte(scp, scsiqp->scsi_status);
   5996		set_host_byte(scp, DID_ERROR);
   5997		break;
   5998	}
   5999
   6000	/*
   6001	 * If the 'init_tidmask' bit isn't already set for the target and the
   6002	 * current request finished normally, then set the bit for the target
   6003	 * to indicate that a device is present.
   6004	 */
   6005	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
   6006	    scsiqp->done_status == QD_NO_ERROR &&
   6007	    scsiqp->host_status == QHSTA_NO_ERROR) {
   6008		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
   6009	}
   6010
   6011	asc_scsi_done(scp);
   6012
   6013	/*
   6014	 * Free all 'adv_sgblk_t' structures allocated for the request.
   6015	 */
   6016	while ((sgblkp = reqp->sgblkp) != NULL) {
   6017		/* Remove 'sgblkp' from the request list. */
   6018		reqp->sgblkp = sgblkp->next_sgblkp;
   6019
   6020		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
   6021			      sgblkp->sg_addr);
   6022	}
   6023
   6024	ASC_DBG(1, "done\n");
   6025}
   6026
   6027/*
   6028 * Adv Library Interrupt Service Routine
   6029 *
   6030 *  This function is called by a driver's interrupt service routine.
   6031 *  The function disables and re-enables interrupts.
   6032 *
   6033 *  When a microcode idle command is completed, the ADV_DVC_VAR
   6034 *  'idle_cmd_done' field is set to ADV_TRUE.
   6035 *
   6036 *  Note: AdvISR() can be called when interrupts are disabled or even
   6037 *  when there is no hardware interrupt condition present. It will
   6038 *  always check for completed idle commands and microcode requests.
   6039 *  This is an important feature that shouldn't be changed because it
   6040 *  allows commands to be completed from polling mode loops.
   6041 *
   6042 * Return:
   6043 *   ADV_TRUE(1) - interrupt was pending
   6044 *   ADV_FALSE(0) - no interrupt was pending
   6045 */
   6046static int AdvISR(ADV_DVC_VAR *asc_dvc)
   6047{
   6048	AdvPortAddr iop_base;
   6049	uchar int_stat;
   6050	ADV_CARR_T *free_carrp;
   6051	__le32 irq_next_vpa;
   6052	ADV_SCSI_REQ_Q *scsiq;
   6053	adv_req_t *reqp;
   6054
   6055	iop_base = asc_dvc->iop_base;
   6056
   6057	/* Reading the register clears the interrupt. */
   6058	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
   6059
   6060	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
   6061			 ADV_INTR_STATUS_INTRC)) == 0) {
   6062		return ADV_FALSE;
   6063	}
   6064
   6065	/*
   6066	 * Notify the driver of an asynchronous microcode condition by
   6067	 * calling the adv_async_callback function. The function
   6068	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
   6069	 */
   6070	if (int_stat & ADV_INTR_STATUS_INTRB) {
   6071		uchar intrb_code;
   6072
   6073		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
   6074
   6075		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
   6076		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
   6077			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   6078			    asc_dvc->carr_pending_cnt != 0) {
   6079				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
   6080						     ADV_TICKLE_A);
   6081				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
   6082					AdvWriteByteRegister(iop_base,
   6083							     IOPB_TICKLE,
   6084							     ADV_TICKLE_NOP);
   6085				}
   6086			}
   6087		}
   6088
   6089		adv_async_callback(asc_dvc, intrb_code);
   6090	}
   6091
   6092	/*
   6093	 * Check if the IRQ stopper carrier contains a completed request.
   6094	 */
   6095	while (((irq_next_vpa =
   6096		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
   6097		/*
   6098		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
   6099		 * The RISC will have set 'areq_vpa' to a virtual address.
   6100		 *
   6101		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
   6102		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
   6103		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
   6104		 * in AdvExeScsiQueue().
   6105		 */
   6106		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
   6107		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
   6108			asc_dvc->irq_sp, pa_offset);
   6109		reqp = adv_get_reqp(asc_dvc, pa_offset);
   6110		scsiq = &reqp->scsi_req_q;
   6111
   6112		/*
   6113		 * Request finished with good status and the queue was not
   6114		 * DMAed to host memory by the firmware. Set all status fields
   6115		 * to indicate good status.
   6116		 */
   6117		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
   6118			scsiq->done_status = QD_NO_ERROR;
   6119			scsiq->host_status = scsiq->scsi_status = 0;
   6120			scsiq->data_cnt = 0L;
   6121		}
   6122
   6123		/*
   6124		 * Advance the stopper pointer to the next carrier
   6125		 * ignoring the lower four bits. Free the previous
   6126		 * stopper carrier.
   6127		 */
   6128		free_carrp = asc_dvc->irq_sp;
   6129		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
   6130						  ADV_GET_CARRP(irq_next_vpa));
   6131
   6132		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
   6133		asc_dvc->carr_freelist = free_carrp;
   6134		asc_dvc->carr_pending_cnt--;
   6135
   6136		/*
   6137		 * Clear request microcode control flag.
   6138		 */
   6139		scsiq->cntl = 0;
   6140
   6141		/*
   6142		 * Notify the driver of the completed request by passing
   6143		 * the ADV_SCSI_REQ_Q pointer to its callback function.
   6144		 */
   6145		adv_isr_callback(asc_dvc, scsiq);
   6146		/*
   6147		 * Note: After the driver callback function is called, 'scsiq'
   6148		 * can no longer be referenced.
   6149		 *
   6150		 * Fall through and continue processing other completed
   6151		 * requests...
   6152		 */
   6153	}
   6154	return ADV_TRUE;
   6155}
   6156
   6157static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
   6158{
   6159	if (asc_dvc->err_code == 0) {
   6160		asc_dvc->err_code = err_code;
   6161		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
   6162				 err_code);
   6163	}
   6164	return err_code;
   6165}
   6166
   6167static void AscAckInterrupt(PortAddr iop_base)
   6168{
   6169	uchar host_flag;
   6170	uchar risc_flag;
   6171	ushort loop;
   6172
   6173	loop = 0;
   6174	do {
   6175		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
   6176		if (loop++ > 0x7FFF) {
   6177			break;
   6178		}
   6179	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
   6180	host_flag =
   6181	    AscReadLramByte(iop_base,
   6182			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
   6183	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
   6184			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
   6185	AscSetChipStatus(iop_base, CIW_INT_ACK);
   6186	loop = 0;
   6187	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
   6188		AscSetChipStatus(iop_base, CIW_INT_ACK);
   6189		if (loop++ > 3) {
   6190			break;
   6191		}
   6192	}
   6193	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
   6194}
   6195
   6196static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
   6197{
   6198	const uchar *period_table;
   6199	int max_index;
   6200	int min_index;
   6201	int i;
   6202
   6203	period_table = asc_dvc->sdtr_period_tbl;
   6204	max_index = (int)asc_dvc->max_sdtr_index;
   6205	min_index = (int)asc_dvc->min_sdtr_index;
   6206	if ((syn_time <= period_table[max_index])) {
   6207		for (i = min_index; i < (max_index - 1); i++) {
   6208			if (syn_time <= period_table[i]) {
   6209				return (uchar)i;
   6210			}
   6211		}
   6212		return (uchar)max_index;
   6213	} else {
   6214		return (uchar)(max_index + 1);
   6215	}
   6216}
   6217
   6218static uchar
   6219AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
   6220{
   6221	PortAddr iop_base = asc_dvc->iop_base;
   6222	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
   6223	EXT_MSG sdtr_buf = {
   6224		.msg_type = EXTENDED_MESSAGE,
   6225		.msg_len = MS_SDTR_LEN,
   6226		.msg_req = EXTENDED_SDTR,
   6227		.xfer_period = sdtr_period,
   6228		.req_ack_offset = sdtr_offset,
   6229	};
   6230	sdtr_offset &= ASC_SYN_MAX_OFFSET;
   6231
   6232	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
   6233		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
   6234					(uchar *)&sdtr_buf,
   6235					sizeof(EXT_MSG) >> 1);
   6236		return ((sdtr_period_index << 4) | sdtr_offset);
   6237	} else {
   6238		sdtr_buf.req_ack_offset = 0;
   6239		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
   6240					(uchar *)&sdtr_buf,
   6241					sizeof(EXT_MSG) >> 1);
   6242		return 0;
   6243	}
   6244}
   6245
   6246static uchar
   6247AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
   6248{
   6249	uchar byte;
   6250	uchar sdtr_period_ix;
   6251
   6252	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
   6253	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
   6254		return 0xFF;
   6255	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
   6256	return byte;
   6257}
   6258
   6259static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
   6260{
   6261	ASC_SCSI_BIT_ID_TYPE org_id;
   6262	int i;
   6263	bool sta = true;
   6264
   6265	AscSetBank(iop_base, 1);
   6266	org_id = AscReadChipDvcID(iop_base);
   6267	for (i = 0; i <= ASC_MAX_TID; i++) {
   6268		if (org_id == (0x01 << i))
   6269			break;
   6270	}
   6271	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
   6272	AscWriteChipDvcID(iop_base, id);
   6273	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
   6274		AscSetBank(iop_base, 0);
   6275		AscSetChipSyn(iop_base, sdtr_data);
   6276		if (AscGetChipSyn(iop_base) != sdtr_data) {
   6277			sta = false;
   6278		}
   6279	} else {
   6280		sta = false;
   6281	}
   6282	AscSetBank(iop_base, 1);
   6283	AscWriteChipDvcID(iop_base, org_id);
   6284	AscSetBank(iop_base, 0);
   6285	return (sta);
   6286}
   6287
   6288static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
   6289{
   6290	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
   6291	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
   6292}
   6293
   6294static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
   6295{
   6296	EXT_MSG ext_msg;
   6297	EXT_MSG out_msg;
   6298	ushort halt_q_addr;
   6299	bool sdtr_accept;
   6300	ushort int_halt_code;
   6301	ASC_SCSI_BIT_ID_TYPE scsi_busy;
   6302	ASC_SCSI_BIT_ID_TYPE target_id;
   6303	PortAddr iop_base;
   6304	uchar tag_code;
   6305	uchar q_status;
   6306	uchar halt_qp;
   6307	uchar sdtr_data;
   6308	uchar target_ix;
   6309	uchar q_cntl, tid_no;
   6310	uchar cur_dvc_qng;
   6311	uchar asyn_sdtr;
   6312	uchar scsi_status;
   6313	struct asc_board *boardp;
   6314
   6315	BUG_ON(!asc_dvc->drv_ptr);
   6316	boardp = asc_dvc->drv_ptr;
   6317
   6318	iop_base = asc_dvc->iop_base;
   6319	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
   6320
   6321	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
   6322	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
   6323	target_ix = AscReadLramByte(iop_base,
   6324				    (ushort)(halt_q_addr +
   6325					     (ushort)ASC_SCSIQ_B_TARGET_IX));
   6326	q_cntl = AscReadLramByte(iop_base,
   6327			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
   6328	tid_no = ASC_TIX_TO_TID(target_ix);
   6329	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
   6330	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
   6331		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
   6332	} else {
   6333		asyn_sdtr = 0;
   6334	}
   6335	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
   6336		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
   6337			AscSetChipSDTR(iop_base, 0, tid_no);
   6338			boardp->sdtr_data[tid_no] = 0;
   6339		}
   6340		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6341		return;
   6342	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
   6343		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
   6344			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
   6345			boardp->sdtr_data[tid_no] = asyn_sdtr;
   6346		}
   6347		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6348		return;
   6349	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
   6350		AscMemWordCopyPtrFromLram(iop_base,
   6351					  ASCV_MSGIN_BEG,
   6352					  (uchar *)&ext_msg,
   6353					  sizeof(EXT_MSG) >> 1);
   6354
   6355		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
   6356		    ext_msg.msg_req == EXTENDED_SDTR &&
   6357		    ext_msg.msg_len == MS_SDTR_LEN) {
   6358			sdtr_accept = true;
   6359			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
   6360
   6361				sdtr_accept = false;
   6362				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
   6363			}
   6364			if ((ext_msg.xfer_period <
   6365			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
   6366			    || (ext_msg.xfer_period >
   6367				asc_dvc->sdtr_period_tbl[asc_dvc->
   6368							 max_sdtr_index])) {
   6369				sdtr_accept = false;
   6370				ext_msg.xfer_period =
   6371				    asc_dvc->sdtr_period_tbl[asc_dvc->
   6372							     min_sdtr_index];
   6373			}
   6374			if (sdtr_accept) {
   6375				sdtr_data =
   6376				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
   6377						   ext_msg.req_ack_offset);
   6378				if (sdtr_data == 0xFF) {
   6379
   6380					q_cntl |= QC_MSG_OUT;
   6381					asc_dvc->init_sdtr &= ~target_id;
   6382					asc_dvc->sdtr_done &= ~target_id;
   6383					AscSetChipSDTR(iop_base, asyn_sdtr,
   6384						       tid_no);
   6385					boardp->sdtr_data[tid_no] = asyn_sdtr;
   6386				}
   6387			}
   6388			if (ext_msg.req_ack_offset == 0) {
   6389
   6390				q_cntl &= ~QC_MSG_OUT;
   6391				asc_dvc->init_sdtr &= ~target_id;
   6392				asc_dvc->sdtr_done &= ~target_id;
   6393				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
   6394			} else {
   6395				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
   6396					q_cntl &= ~QC_MSG_OUT;
   6397					asc_dvc->sdtr_done |= target_id;
   6398					asc_dvc->init_sdtr |= target_id;
   6399					asc_dvc->pci_fix_asyn_xfer &=
   6400					    ~target_id;
   6401					sdtr_data =
   6402					    AscCalSDTRData(asc_dvc,
   6403							   ext_msg.xfer_period,
   6404							   ext_msg.
   6405							   req_ack_offset);
   6406					AscSetChipSDTR(iop_base, sdtr_data,
   6407						       tid_no);
   6408					boardp->sdtr_data[tid_no] = sdtr_data;
   6409				} else {
   6410					q_cntl |= QC_MSG_OUT;
   6411					AscMsgOutSDTR(asc_dvc,
   6412						      ext_msg.xfer_period,
   6413						      ext_msg.req_ack_offset);
   6414					asc_dvc->pci_fix_asyn_xfer &=
   6415					    ~target_id;
   6416					sdtr_data =
   6417					    AscCalSDTRData(asc_dvc,
   6418							   ext_msg.xfer_period,
   6419							   ext_msg.
   6420							   req_ack_offset);
   6421					AscSetChipSDTR(iop_base, sdtr_data,
   6422						       tid_no);
   6423					boardp->sdtr_data[tid_no] = sdtr_data;
   6424					asc_dvc->sdtr_done |= target_id;
   6425					asc_dvc->init_sdtr |= target_id;
   6426				}
   6427			}
   6428
   6429			AscWriteLramByte(iop_base,
   6430					 (ushort)(halt_q_addr +
   6431						  (ushort)ASC_SCSIQ_B_CNTL),
   6432					 q_cntl);
   6433			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6434			return;
   6435		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
   6436			   ext_msg.msg_req == EXTENDED_WDTR &&
   6437			   ext_msg.msg_len == MS_WDTR_LEN) {
   6438
   6439			ext_msg.wdtr_width = 0;
   6440			AscMemWordCopyPtrToLram(iop_base,
   6441						ASCV_MSGOUT_BEG,
   6442						(uchar *)&ext_msg,
   6443						sizeof(EXT_MSG) >> 1);
   6444			q_cntl |= QC_MSG_OUT;
   6445			AscWriteLramByte(iop_base,
   6446					 (ushort)(halt_q_addr +
   6447						  (ushort)ASC_SCSIQ_B_CNTL),
   6448					 q_cntl);
   6449			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6450			return;
   6451		} else {
   6452
   6453			ext_msg.msg_type = MESSAGE_REJECT;
   6454			AscMemWordCopyPtrToLram(iop_base,
   6455						ASCV_MSGOUT_BEG,
   6456						(uchar *)&ext_msg,
   6457						sizeof(EXT_MSG) >> 1);
   6458			q_cntl |= QC_MSG_OUT;
   6459			AscWriteLramByte(iop_base,
   6460					 (ushort)(halt_q_addr +
   6461						  (ushort)ASC_SCSIQ_B_CNTL),
   6462					 q_cntl);
   6463			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6464			return;
   6465		}
   6466	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
   6467
   6468		q_cntl |= QC_REQ_SENSE;
   6469
   6470		if ((asc_dvc->init_sdtr & target_id) != 0) {
   6471
   6472			asc_dvc->sdtr_done &= ~target_id;
   6473
   6474			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
   6475			q_cntl |= QC_MSG_OUT;
   6476			AscMsgOutSDTR(asc_dvc,
   6477				      asc_dvc->
   6478				      sdtr_period_tbl[(sdtr_data >> 4) &
   6479						      (uchar)(asc_dvc->
   6480							      max_sdtr_index -
   6481							      1)],
   6482				      (uchar)(sdtr_data & (uchar)
   6483					      ASC_SYN_MAX_OFFSET));
   6484		}
   6485
   6486		AscWriteLramByte(iop_base,
   6487				 (ushort)(halt_q_addr +
   6488					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
   6489
   6490		tag_code = AscReadLramByte(iop_base,
   6491					   (ushort)(halt_q_addr + (ushort)
   6492						    ASC_SCSIQ_B_TAG_CODE));
   6493		tag_code &= 0xDC;
   6494		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
   6495		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
   6496		    ) {
   6497
   6498			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
   6499				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
   6500
   6501		}
   6502		AscWriteLramByte(iop_base,
   6503				 (ushort)(halt_q_addr +
   6504					  (ushort)ASC_SCSIQ_B_TAG_CODE),
   6505				 tag_code);
   6506
   6507		q_status = AscReadLramByte(iop_base,
   6508					   (ushort)(halt_q_addr + (ushort)
   6509						    ASC_SCSIQ_B_STATUS));
   6510		q_status |= (QS_READY | QS_BUSY);
   6511		AscWriteLramByte(iop_base,
   6512				 (ushort)(halt_q_addr +
   6513					  (ushort)ASC_SCSIQ_B_STATUS),
   6514				 q_status);
   6515
   6516		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
   6517		scsi_busy &= ~target_id;
   6518		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
   6519
   6520		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6521		return;
   6522	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
   6523
   6524		AscMemWordCopyPtrFromLram(iop_base,
   6525					  ASCV_MSGOUT_BEG,
   6526					  (uchar *)&out_msg,
   6527					  sizeof(EXT_MSG) >> 1);
   6528
   6529		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
   6530		    (out_msg.msg_len == MS_SDTR_LEN) &&
   6531		    (out_msg.msg_req == EXTENDED_SDTR)) {
   6532
   6533			asc_dvc->init_sdtr &= ~target_id;
   6534			asc_dvc->sdtr_done &= ~target_id;
   6535			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
   6536			boardp->sdtr_data[tid_no] = asyn_sdtr;
   6537		}
   6538		q_cntl &= ~QC_MSG_OUT;
   6539		AscWriteLramByte(iop_base,
   6540				 (ushort)(halt_q_addr +
   6541					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
   6542		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6543		return;
   6544	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
   6545
   6546		scsi_status = AscReadLramByte(iop_base,
   6547					      (ushort)((ushort)halt_q_addr +
   6548						       (ushort)
   6549						       ASC_SCSIQ_SCSI_STATUS));
   6550		cur_dvc_qng =
   6551		    AscReadLramByte(iop_base,
   6552				    (ushort)((ushort)ASC_QADR_BEG +
   6553					     (ushort)target_ix));
   6554		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
   6555
   6556			scsi_busy = AscReadLramByte(iop_base,
   6557						    (ushort)ASCV_SCSIBUSY_B);
   6558			scsi_busy |= target_id;
   6559			AscWriteLramByte(iop_base,
   6560					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
   6561			asc_dvc->queue_full_or_busy |= target_id;
   6562
   6563			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
   6564				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
   6565					cur_dvc_qng -= 1;
   6566					asc_dvc->max_dvc_qng[tid_no] =
   6567					    cur_dvc_qng;
   6568
   6569					AscWriteLramByte(iop_base,
   6570							 (ushort)((ushort)
   6571								  ASCV_MAX_DVC_QNG_BEG
   6572								  + (ushort)
   6573								  tid_no),
   6574							 cur_dvc_qng);
   6575
   6576					/*
   6577					 * Set the device queue depth to the
   6578					 * number of active requests when the
   6579					 * QUEUE FULL condition was encountered.
   6580					 */
   6581					boardp->queue_full |= target_id;
   6582					boardp->queue_full_cnt[tid_no] =
   6583					    cur_dvc_qng;
   6584				}
   6585			}
   6586		}
   6587		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
   6588		return;
   6589	}
   6590	return;
   6591}
   6592
   6593/*
   6594 * void
   6595 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
   6596 *
   6597 * Calling/Exit State:
   6598 *    none
   6599 *
   6600 * Description:
   6601 *     Input an ASC_QDONE_INFO structure from the chip
   6602 */
   6603static void
   6604DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
   6605{
   6606	int i;
   6607	ushort word;
   6608
   6609	AscSetChipLramAddr(iop_base, s_addr);
   6610	for (i = 0; i < 2 * words; i += 2) {
   6611		if (i == 10) {
   6612			continue;
   6613		}
   6614		word = inpw(iop_base + IOP_RAM_DATA);
   6615		inbuf[i] = word & 0xff;
   6616		inbuf[i + 1] = (word >> 8) & 0xff;
   6617	}
   6618	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
   6619}
   6620
   6621static uchar
   6622_AscCopyLramScsiDoneQ(PortAddr iop_base,
   6623		      ushort q_addr,
   6624		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
   6625{
   6626	ushort _val;
   6627	uchar sg_queue_cnt;
   6628
   6629	DvcGetQinfo(iop_base,
   6630		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
   6631		    (uchar *)scsiq,
   6632		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
   6633
   6634	_val = AscReadLramWord(iop_base,
   6635			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
   6636	scsiq->q_status = (uchar)_val;
   6637	scsiq->q_no = (uchar)(_val >> 8);
   6638	_val = AscReadLramWord(iop_base,
   6639			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
   6640	scsiq->cntl = (uchar)_val;
   6641	sg_queue_cnt = (uchar)(_val >> 8);
   6642	_val = AscReadLramWord(iop_base,
   6643			       (ushort)(q_addr +
   6644					(ushort)ASC_SCSIQ_B_SENSE_LEN));
   6645	scsiq->sense_len = (uchar)_val;
   6646	scsiq->extra_bytes = (uchar)(_val >> 8);
   6647
   6648	/*
   6649	 * Read high word of remain bytes from alternate location.
   6650	 */
   6651	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
   6652						     (ushort)(q_addr +
   6653							      (ushort)
   6654							      ASC_SCSIQ_W_ALT_DC1)))
   6655			       << 16);
   6656	/*
   6657	 * Read low word of remain bytes from original location.
   6658	 */
   6659	scsiq->remain_bytes += AscReadLramWord(iop_base,
   6660					       (ushort)(q_addr + (ushort)
   6661							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
   6662
   6663	scsiq->remain_bytes &= max_dma_count;
   6664	return sg_queue_cnt;
   6665}
   6666
   6667/*
   6668 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
   6669 *
   6670 * Interrupt callback function for the Narrow SCSI Asc Library.
   6671 */
   6672static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
   6673{
   6674	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
   6675	u32 srb_tag;
   6676	struct scsi_cmnd *scp;
   6677
   6678	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
   6679	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
   6680
   6681	/*
   6682	 * Decrease the srb_tag by 1 to find the SCSI command
   6683	 */
   6684	srb_tag = qdonep->d2.srb_tag - 1;
   6685	scp = scsi_host_find_tag(boardp->shost, srb_tag);
   6686	if (!scp)
   6687		return;
   6688
   6689	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
   6690
   6691	ASC_STATS(boardp->shost, callback);
   6692
   6693	dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle,
   6694			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
   6695	/*
   6696	 * 'qdonep' contains the command's ending status.
   6697	 */
   6698	scp->result = 0;
   6699	switch (qdonep->d3.done_stat) {
   6700	case QD_NO_ERROR:
   6701		ASC_DBG(2, "QD_NO_ERROR\n");
   6702
   6703		/*
   6704		 * Check for an underrun condition.
   6705		 *
   6706		 * If there was no error and an underrun condition, then
   6707		 * return the number of underrun bytes.
   6708		 */
   6709		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
   6710		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
   6711			ASC_DBG(1, "underrun condition %u bytes\n",
   6712				 (unsigned)qdonep->remain_bytes);
   6713			scsi_set_resid(scp, qdonep->remain_bytes);
   6714		}
   6715		break;
   6716
   6717	case QD_WITH_ERROR:
   6718		ASC_DBG(2, "QD_WITH_ERROR\n");
   6719		switch (qdonep->d3.host_stat) {
   6720		case QHSTA_NO_ERROR:
   6721			set_status_byte(scp, qdonep->d3.scsi_stat);
   6722			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
   6723				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
   6724				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
   6725						  SCSI_SENSE_BUFFERSIZE);
   6726			}
   6727			break;
   6728
   6729		default:
   6730			/* QHSTA error occurred */
   6731			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
   6732			set_host_byte(scp, DID_BAD_TARGET);
   6733			break;
   6734		}
   6735		break;
   6736
   6737	case QD_ABORTED_BY_HOST:
   6738		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
   6739		set_status_byte(scp, qdonep->d3.scsi_stat);
   6740		set_host_byte(scp, DID_ABORT);
   6741		break;
   6742
   6743	default:
   6744		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
   6745		set_status_byte(scp, qdonep->d3.scsi_stat);
   6746		set_host_byte(scp, DID_ERROR);
   6747		break;
   6748	}
   6749
   6750	/*
   6751	 * If the 'init_tidmask' bit isn't already set for the target and the
   6752	 * current request finished normally, then set the bit for the target
   6753	 * to indicate that a device is present.
   6754	 */
   6755	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
   6756	    qdonep->d3.done_stat == QD_NO_ERROR &&
   6757	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
   6758		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
   6759	}
   6760
   6761	asc_scsi_done(scp);
   6762}
   6763
   6764static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
   6765{
   6766	uchar next_qp;
   6767	uchar n_q_used;
   6768	uchar sg_list_qp;
   6769	uchar sg_queue_cnt;
   6770	uchar q_cnt;
   6771	uchar done_q_tail;
   6772	uchar tid_no;
   6773	ASC_SCSI_BIT_ID_TYPE scsi_busy;
   6774	ASC_SCSI_BIT_ID_TYPE target_id;
   6775	PortAddr iop_base;
   6776	ushort q_addr;
   6777	ushort sg_q_addr;
   6778	uchar cur_target_qng;
   6779	ASC_QDONE_INFO scsiq_buf;
   6780	ASC_QDONE_INFO *scsiq;
   6781	bool false_overrun;
   6782
   6783	iop_base = asc_dvc->iop_base;
   6784	n_q_used = 1;
   6785	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
   6786	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
   6787	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
   6788	next_qp = AscReadLramByte(iop_base,
   6789				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
   6790	if (next_qp != ASC_QLINK_END) {
   6791		AscPutVarDoneQTail(iop_base, next_qp);
   6792		q_addr = ASC_QNO_TO_QADDR(next_qp);
   6793		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
   6794						     asc_dvc->max_dma_count);
   6795		AscWriteLramByte(iop_base,
   6796				 (ushort)(q_addr +
   6797					  (ushort)ASC_SCSIQ_B_STATUS),
   6798				 (uchar)(scsiq->
   6799					 q_status & (uchar)~(QS_READY |
   6800							     QS_ABORTED)));
   6801		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
   6802		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
   6803		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
   6804			sg_q_addr = q_addr;
   6805			sg_list_qp = next_qp;
   6806			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
   6807				sg_list_qp = AscReadLramByte(iop_base,
   6808							     (ushort)(sg_q_addr
   6809								      + (ushort)
   6810								      ASC_SCSIQ_B_FWD));
   6811				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
   6812				if (sg_list_qp == ASC_QLINK_END) {
   6813					AscSetLibErrorCode(asc_dvc,
   6814							   ASCQ_ERR_SG_Q_LINKS);
   6815					scsiq->d3.done_stat = QD_WITH_ERROR;
   6816					scsiq->d3.host_stat =
   6817					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
   6818					goto FATAL_ERR_QDONE;
   6819				}
   6820				AscWriteLramByte(iop_base,
   6821						 (ushort)(sg_q_addr + (ushort)
   6822							  ASC_SCSIQ_B_STATUS),
   6823						 QS_FREE);
   6824			}
   6825			n_q_used = sg_queue_cnt + 1;
   6826			AscPutVarDoneQTail(iop_base, sg_list_qp);
   6827		}
   6828		if (asc_dvc->queue_full_or_busy & target_id) {
   6829			cur_target_qng = AscReadLramByte(iop_base,
   6830							 (ushort)((ushort)
   6831								  ASC_QADR_BEG
   6832								  + (ushort)
   6833								  scsiq->d2.
   6834								  target_ix));
   6835			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
   6836				scsi_busy = AscReadLramByte(iop_base, (ushort)
   6837							    ASCV_SCSIBUSY_B);
   6838				scsi_busy &= ~target_id;
   6839				AscWriteLramByte(iop_base,
   6840						 (ushort)ASCV_SCSIBUSY_B,
   6841						 scsi_busy);
   6842				asc_dvc->queue_full_or_busy &= ~target_id;
   6843			}
   6844		}
   6845		if (asc_dvc->cur_total_qng >= n_q_used) {
   6846			asc_dvc->cur_total_qng -= n_q_used;
   6847			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
   6848				asc_dvc->cur_dvc_qng[tid_no]--;
   6849			}
   6850		} else {
   6851			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
   6852			scsiq->d3.done_stat = QD_WITH_ERROR;
   6853			goto FATAL_ERR_QDONE;
   6854		}
   6855		if ((scsiq->d2.srb_tag == 0UL) ||
   6856		    ((scsiq->q_status & QS_ABORTED) != 0)) {
   6857			return (0x11);
   6858		} else if (scsiq->q_status == QS_DONE) {
   6859			/*
   6860			 * This is also curious.
   6861			 * false_overrun will _always_ be set to 'false'
   6862			 */
   6863			false_overrun = false;
   6864			if (scsiq->extra_bytes != 0) {
   6865				scsiq->remain_bytes += scsiq->extra_bytes;
   6866			}
   6867			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
   6868				if (scsiq->d3.host_stat ==
   6869				    QHSTA_M_DATA_OVER_RUN) {
   6870					if ((scsiq->
   6871					     cntl & (QC_DATA_IN | QC_DATA_OUT))
   6872					    == 0) {
   6873						scsiq->d3.done_stat =
   6874						    QD_NO_ERROR;
   6875						scsiq->d3.host_stat =
   6876						    QHSTA_NO_ERROR;
   6877					} else if (false_overrun) {
   6878						scsiq->d3.done_stat =
   6879						    QD_NO_ERROR;
   6880						scsiq->d3.host_stat =
   6881						    QHSTA_NO_ERROR;
   6882					}
   6883				} else if (scsiq->d3.host_stat ==
   6884					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
   6885					AscStopChip(iop_base);
   6886					AscSetChipControl(iop_base,
   6887							  (uchar)(CC_SCSI_RESET
   6888								  | CC_HALT));
   6889					udelay(60);
   6890					AscSetChipControl(iop_base, CC_HALT);
   6891					AscSetChipStatus(iop_base,
   6892							 CIW_CLR_SCSI_RESET_INT);
   6893					AscSetChipStatus(iop_base, 0);
   6894					AscSetChipControl(iop_base, 0);
   6895				}
   6896			}
   6897			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
   6898				asc_isr_callback(asc_dvc, scsiq);
   6899			} else {
   6900				if ((AscReadLramByte(iop_base,
   6901						     (ushort)(q_addr + (ushort)
   6902							      ASC_SCSIQ_CDB_BEG))
   6903				     == START_STOP)) {
   6904					asc_dvc->unit_not_ready &= ~target_id;
   6905					if (scsiq->d3.done_stat != QD_NO_ERROR) {
   6906						asc_dvc->start_motor &=
   6907						    ~target_id;
   6908					}
   6909				}
   6910			}
   6911			return (1);
   6912		} else {
   6913			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
   6914 FATAL_ERR_QDONE:
   6915			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
   6916				asc_isr_callback(asc_dvc, scsiq);
   6917			}
   6918			return (0x80);
   6919		}
   6920	}
   6921	return (0);
   6922}
   6923
   6924static int AscISR(ASC_DVC_VAR *asc_dvc)
   6925{
   6926	ASC_CS_TYPE chipstat;
   6927	PortAddr iop_base;
   6928	ushort saved_ram_addr;
   6929	uchar ctrl_reg;
   6930	uchar saved_ctrl_reg;
   6931	int int_pending;
   6932	int status;
   6933	uchar host_flag;
   6934
   6935	iop_base = asc_dvc->iop_base;
   6936	int_pending = ASC_FALSE;
   6937
   6938	if (AscIsIntPending(iop_base) == 0)
   6939		return int_pending;
   6940
   6941	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
   6942		return ASC_ERROR;
   6943	}
   6944	if (asc_dvc->in_critical_cnt != 0) {
   6945		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
   6946		return ASC_ERROR;
   6947	}
   6948	if (asc_dvc->is_in_int) {
   6949		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
   6950		return ASC_ERROR;
   6951	}
   6952	asc_dvc->is_in_int = true;
   6953	ctrl_reg = AscGetChipControl(iop_base);
   6954	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
   6955				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
   6956	chipstat = AscGetChipStatus(iop_base);
   6957	if (chipstat & CSW_SCSI_RESET_LATCH) {
   6958		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
   6959			int i = 10;
   6960			int_pending = ASC_TRUE;
   6961			asc_dvc->sdtr_done = 0;
   6962			saved_ctrl_reg &= (uchar)(~CC_HALT);
   6963			while ((AscGetChipStatus(iop_base) &
   6964				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
   6965				mdelay(100);
   6966			}
   6967			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
   6968			AscSetChipControl(iop_base, CC_HALT);
   6969			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
   6970			AscSetChipStatus(iop_base, 0);
   6971			chipstat = AscGetChipStatus(iop_base);
   6972		}
   6973	}
   6974	saved_ram_addr = AscGetChipLramAddr(iop_base);
   6975	host_flag = AscReadLramByte(iop_base,
   6976				    ASCV_HOST_FLAG_B) &
   6977	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
   6978	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
   6979			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
   6980	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
   6981		AscAckInterrupt(iop_base);
   6982		int_pending = ASC_TRUE;
   6983		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
   6984			AscIsrChipHalted(asc_dvc);
   6985			saved_ctrl_reg &= (uchar)(~CC_HALT);
   6986		} else {
   6987			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
   6988				while (((status =
   6989					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
   6990				}
   6991			} else {
   6992				do {
   6993					if ((status =
   6994					     AscIsrQDone(asc_dvc)) == 1) {
   6995						break;
   6996					}
   6997				} while (status == 0x11);
   6998			}
   6999			if ((status & 0x80) != 0)
   7000				int_pending = ASC_ERROR;
   7001		}
   7002	}
   7003	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
   7004	AscSetChipLramAddr(iop_base, saved_ram_addr);
   7005	AscSetChipControl(iop_base, saved_ctrl_reg);
   7006	asc_dvc->is_in_int = false;
   7007	return int_pending;
   7008}
   7009
   7010/*
   7011 * advansys_reset()
   7012 *
   7013 * Reset the host associated with the command 'scp'.
   7014 *
   7015 * This function runs its own thread. Interrupts must be blocked but
   7016 * sleeping is allowed and no locking other than for host structures is
   7017 * required. Returns SUCCESS or FAILED.
   7018 */
   7019static int advansys_reset(struct scsi_cmnd *scp)
   7020{
   7021	struct Scsi_Host *shost = scp->device->host;
   7022	struct asc_board *boardp = shost_priv(shost);
   7023	unsigned long flags;
   7024	int status;
   7025	int ret = SUCCESS;
   7026
   7027	ASC_DBG(1, "0x%p\n", scp);
   7028
   7029	ASC_STATS(shost, reset);
   7030
   7031	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
   7032
   7033	if (ASC_NARROW_BOARD(boardp)) {
   7034		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
   7035
   7036		/* Reset the chip and SCSI bus. */
   7037		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
   7038		status = AscInitAsc1000Driver(asc_dvc);
   7039
   7040		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
   7041		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
   7042			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
   7043				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
   7044				    status);
   7045			ret = FAILED;
   7046		} else if (status) {
   7047			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
   7048				    "0x%x\n", status);
   7049		} else {
   7050			scmd_printk(KERN_INFO, scp, "SCSI host reset "
   7051				    "successful\n");
   7052		}
   7053
   7054		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
   7055	} else {
   7056		/*
   7057		 * If the suggest reset bus flags are set, then reset the bus.
   7058		 * Otherwise only reset the device.
   7059		 */
   7060		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
   7061
   7062		/*
   7063		 * Reset the chip and SCSI bus.
   7064		 */
   7065		ASC_DBG(1, "before AdvResetChipAndSB()\n");
   7066		switch (AdvResetChipAndSB(adv_dvc)) {
   7067		case ASC_TRUE:
   7068			scmd_printk(KERN_INFO, scp, "SCSI host reset "
   7069				    "successful\n");
   7070			break;
   7071		case ASC_FALSE:
   7072		default:
   7073			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
   7074			ret = FAILED;
   7075			break;
   7076		}
   7077		spin_lock_irqsave(shost->host_lock, flags);
   7078		AdvISR(adv_dvc);
   7079		spin_unlock_irqrestore(shost->host_lock, flags);
   7080	}
   7081
   7082	ASC_DBG(1, "ret %d\n", ret);
   7083
   7084	return ret;
   7085}
   7086
   7087/*
   7088 * advansys_biosparam()
   7089 *
   7090 * Translate disk drive geometry if the "BIOS greater than 1 GB"
   7091 * support is enabled for a drive.
   7092 *
   7093 * ip (information pointer) is an int array with the following definition:
   7094 * ip[0]: heads
   7095 * ip[1]: sectors
   7096 * ip[2]: cylinders
   7097 */
   7098static int
   7099advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
   7100		   sector_t capacity, int ip[])
   7101{
   7102	struct asc_board *boardp = shost_priv(sdev->host);
   7103
   7104	ASC_DBG(1, "begin\n");
   7105	ASC_STATS(sdev->host, biosparam);
   7106	if (ASC_NARROW_BOARD(boardp)) {
   7107		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
   7108		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
   7109			ip[0] = 255;
   7110			ip[1] = 63;
   7111		} else {
   7112			ip[0] = 64;
   7113			ip[1] = 32;
   7114		}
   7115	} else {
   7116		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
   7117		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
   7118			ip[0] = 255;
   7119			ip[1] = 63;
   7120		} else {
   7121			ip[0] = 64;
   7122			ip[1] = 32;
   7123		}
   7124	}
   7125	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
   7126	ASC_DBG(1, "end\n");
   7127	return 0;
   7128}
   7129
   7130/*
   7131 * First-level interrupt handler.
   7132 *
   7133 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
   7134 */
   7135static irqreturn_t advansys_interrupt(int irq, void *dev_id)
   7136{
   7137	struct Scsi_Host *shost = dev_id;
   7138	struct asc_board *boardp = shost_priv(shost);
   7139	irqreturn_t result = IRQ_NONE;
   7140	unsigned long flags;
   7141
   7142	ASC_DBG(2, "boardp 0x%p\n", boardp);
   7143	spin_lock_irqsave(shost->host_lock, flags);
   7144	if (ASC_NARROW_BOARD(boardp)) {
   7145		if (AscIsIntPending(shost->io_port)) {
   7146			result = IRQ_HANDLED;
   7147			ASC_STATS(shost, interrupt);
   7148			ASC_DBG(1, "before AscISR()\n");
   7149			AscISR(&boardp->dvc_var.asc_dvc_var);
   7150		}
   7151	} else {
   7152		ASC_DBG(1, "before AdvISR()\n");
   7153		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
   7154			result = IRQ_HANDLED;
   7155			ASC_STATS(shost, interrupt);
   7156		}
   7157	}
   7158	spin_unlock_irqrestore(shost->host_lock, flags);
   7159
   7160	ASC_DBG(1, "end\n");
   7161	return result;
   7162}
   7163
   7164static bool AscHostReqRiscHalt(PortAddr iop_base)
   7165{
   7166	int count = 0;
   7167	bool sta = false;
   7168	uchar saved_stop_code;
   7169
   7170	if (AscIsChipHalted(iop_base))
   7171		return true;
   7172	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
   7173	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
   7174			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
   7175	do {
   7176		if (AscIsChipHalted(iop_base)) {
   7177			sta = true;
   7178			break;
   7179		}
   7180		mdelay(100);
   7181	} while (count++ < 20);
   7182	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
   7183	return sta;
   7184}
   7185
   7186static bool
   7187AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
   7188{
   7189	bool sta = false;
   7190
   7191	if (AscHostReqRiscHalt(iop_base)) {
   7192		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
   7193		AscStartChip(iop_base);
   7194	}
   7195	return sta;
   7196}
   7197
   7198static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
   7199{
   7200	char type = sdev->type;
   7201	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
   7202
   7203	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
   7204		return;
   7205	if (asc_dvc->init_sdtr & tid_bits)
   7206		return;
   7207
   7208	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
   7209		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
   7210
   7211	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
   7212	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
   7213	    (type == TYPE_ROM) || (type == TYPE_TAPE))
   7214		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
   7215
   7216	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
   7217		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
   7218					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
   7219}
   7220
   7221static void
   7222advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
   7223{
   7224	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
   7225	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
   7226
   7227	if (sdev->lun == 0) {
   7228		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
   7229		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
   7230			asc_dvc->init_sdtr |= tid_bit;
   7231		} else {
   7232			asc_dvc->init_sdtr &= ~tid_bit;
   7233		}
   7234
   7235		if (orig_init_sdtr != asc_dvc->init_sdtr)
   7236			AscAsyncFix(asc_dvc, sdev);
   7237	}
   7238
   7239	if (sdev->tagged_supported) {
   7240		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
   7241			if (sdev->lun == 0) {
   7242				asc_dvc->cfg->can_tagged_qng |= tid_bit;
   7243				asc_dvc->use_tagged_qng |= tid_bit;
   7244			}
   7245			scsi_change_queue_depth(sdev, 
   7246						asc_dvc->max_dvc_qng[sdev->id]);
   7247		}
   7248	} else {
   7249		if (sdev->lun == 0) {
   7250			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
   7251			asc_dvc->use_tagged_qng &= ~tid_bit;
   7252		}
   7253	}
   7254
   7255	if ((sdev->lun == 0) &&
   7256	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
   7257		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
   7258				 asc_dvc->cfg->disc_enable);
   7259		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
   7260				 asc_dvc->use_tagged_qng);
   7261		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
   7262				 asc_dvc->cfg->can_tagged_qng);
   7263
   7264		asc_dvc->max_dvc_qng[sdev->id] =
   7265					asc_dvc->cfg->max_tag_qng[sdev->id];
   7266		AscWriteLramByte(asc_dvc->iop_base,
   7267				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
   7268				 asc_dvc->max_dvc_qng[sdev->id]);
   7269	}
   7270}
   7271
   7272/*
   7273 * Wide Transfers
   7274 *
   7275 * If the EEPROM enabled WDTR for the device and the device supports wide
   7276 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
   7277 * write the new value to the microcode.
   7278 */
   7279static void
   7280advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
   7281{
   7282	unsigned short cfg_word;
   7283	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
   7284	if ((cfg_word & tidmask) != 0)
   7285		return;
   7286
   7287	cfg_word |= tidmask;
   7288	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
   7289
   7290	/*
   7291	 * Clear the microcode SDTR and WDTR negotiation done indicators for
   7292	 * the target to cause it to negotiate with the new setting set above.
   7293	 * WDTR when accepted causes the target to enter asynchronous mode, so
   7294	 * SDTR must be negotiated.
   7295	 */
   7296	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
   7297	cfg_word &= ~tidmask;
   7298	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
   7299	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
   7300	cfg_word &= ~tidmask;
   7301	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
   7302}
   7303
   7304/*
   7305 * Synchronous Transfers
   7306 *
   7307 * If the EEPROM enabled SDTR for the device and the device
   7308 * supports synchronous transfers, then turn on the device's
   7309 * 'sdtr_able' bit. Write the new value to the microcode.
   7310 */
   7311static void
   7312advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
   7313{
   7314	unsigned short cfg_word;
   7315	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
   7316	if ((cfg_word & tidmask) != 0)
   7317		return;
   7318
   7319	cfg_word |= tidmask;
   7320	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
   7321
   7322	/*
   7323	 * Clear the microcode "SDTR negotiation" done indicator for the
   7324	 * target to cause it to negotiate with the new setting set above.
   7325	 */
   7326	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
   7327	cfg_word &= ~tidmask;
   7328	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
   7329}
   7330
   7331/*
   7332 * PPR (Parallel Protocol Request) Capable
   7333 *
   7334 * If the device supports DT mode, then it must be PPR capable.
   7335 * The PPR message will be used in place of the SDTR and WDTR
   7336 * messages to negotiate synchronous speed and offset, transfer
   7337 * width, and protocol options.
   7338 */
   7339static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
   7340				AdvPortAddr iop_base, unsigned short tidmask)
   7341{
   7342	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
   7343	adv_dvc->ppr_able |= tidmask;
   7344	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
   7345}
   7346
   7347static void
   7348advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
   7349{
   7350	AdvPortAddr iop_base = adv_dvc->iop_base;
   7351	unsigned short tidmask = 1 << sdev->id;
   7352
   7353	if (sdev->lun == 0) {
   7354		/*
   7355		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
   7356		 * is enabled in the EEPROM and the device supports the
   7357		 * feature, then enable it in the microcode.
   7358		 */
   7359
   7360		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
   7361			advansys_wide_enable_wdtr(iop_base, tidmask);
   7362		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
   7363			advansys_wide_enable_sdtr(iop_base, tidmask);
   7364		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
   7365			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
   7366
   7367		/*
   7368		 * Tag Queuing is disabled for the BIOS which runs in polled
   7369		 * mode and would see no benefit from Tag Queuing. Also by
   7370		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   7371		 * bugs will at least work with the BIOS.
   7372		 */
   7373		if ((adv_dvc->tagqng_able & tidmask) &&
   7374		    sdev->tagged_supported) {
   7375			unsigned short cfg_word;
   7376			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
   7377			cfg_word |= tidmask;
   7378			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
   7379					 cfg_word);
   7380			AdvWriteByteLram(iop_base,
   7381					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
   7382					 adv_dvc->max_dvc_qng);
   7383		}
   7384	}
   7385
   7386	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
   7387		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
   7388}
   7389
   7390/*
   7391 * Set the number of commands to queue per device for the
   7392 * specified host adapter.
   7393 */
   7394static int advansys_slave_configure(struct scsi_device *sdev)
   7395{
   7396	struct asc_board *boardp = shost_priv(sdev->host);
   7397
   7398	if (ASC_NARROW_BOARD(boardp))
   7399		advansys_narrow_slave_configure(sdev,
   7400						&boardp->dvc_var.asc_dvc_var);
   7401	else
   7402		advansys_wide_slave_configure(sdev,
   7403						&boardp->dvc_var.adv_dvc_var);
   7404
   7405	return 0;
   7406}
   7407
   7408static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
   7409{
   7410	struct asc_board *board = shost_priv(scp->device->host);
   7411	struct advansys_cmd *acmd = advansys_cmd(scp);
   7412
   7413	acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer,
   7414					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
   7415	if (dma_mapping_error(board->dev, acmd->dma_handle)) {
   7416		ASC_DBG(1, "failed to map sense buffer\n");
   7417		return 0;
   7418	}
   7419	return cpu_to_le32(acmd->dma_handle);
   7420}
   7421
   7422static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
   7423			struct asc_scsi_q *asc_scsi_q)
   7424{
   7425	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
   7426	int use_sg;
   7427	u32 srb_tag;
   7428
   7429	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
   7430
   7431	/*
   7432	 * Set the srb_tag to the command tag + 1, as
   7433	 * srb_tag '0' is used internally by the chip.
   7434	 */
   7435	srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
   7436	asc_scsi_q->q2.srb_tag = srb_tag;
   7437
   7438	/*
   7439	 * Build the ASC_SCSI_Q request.
   7440	 */
   7441	asc_scsi_q->cdbptr = &scp->cmnd[0];
   7442	asc_scsi_q->q2.cdb_len = scp->cmd_len;
   7443	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
   7444	asc_scsi_q->q1.target_lun = scp->device->lun;
   7445	asc_scsi_q->q2.target_ix =
   7446	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
   7447	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
   7448	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
   7449	if (!asc_scsi_q->q1.sense_addr)
   7450		return ASC_BUSY;
   7451
   7452	/*
   7453	 * If there are any outstanding requests for the current target,
   7454	 * then every 255th request send an ORDERED request. This heuristic
   7455	 * tries to retain the benefit of request sorting while preventing
   7456	 * request starvation. 255 is the max number of tags or pending commands
   7457	 * a device may have outstanding.
   7458	 *
   7459	 * The request count is incremented below for every successfully
   7460	 * started request.
   7461	 *
   7462	 */
   7463	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
   7464	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
   7465		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
   7466	} else {
   7467		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
   7468	}
   7469
   7470	/* Build ASC_SCSI_Q */
   7471	use_sg = scsi_dma_map(scp);
   7472	if (use_sg < 0) {
   7473		ASC_DBG(1, "failed to map sglist\n");
   7474		return ASC_BUSY;
   7475	} else if (use_sg > 0) {
   7476		int sgcnt;
   7477		struct scatterlist *slp;
   7478		struct asc_sg_head *asc_sg_head;
   7479
   7480		if (use_sg > scp->device->host->sg_tablesize) {
   7481			scmd_printk(KERN_ERR, scp, "use_sg %d > "
   7482				"sg_tablesize %d\n", use_sg,
   7483				scp->device->host->sg_tablesize);
   7484			scsi_dma_unmap(scp);
   7485			set_host_byte(scp, DID_ERROR);
   7486			return ASC_ERROR;
   7487		}
   7488
   7489		asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg),
   7490				      GFP_ATOMIC);
   7491		if (!asc_sg_head) {
   7492			scsi_dma_unmap(scp);
   7493			set_host_byte(scp, DID_SOFT_ERROR);
   7494			return ASC_ERROR;
   7495		}
   7496
   7497		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
   7498		asc_scsi_q->sg_head = asc_sg_head;
   7499		asc_scsi_q->q1.data_cnt = 0;
   7500		asc_scsi_q->q1.data_addr = 0;
   7501		/* This is a byte value, otherwise it would need to be swapped. */
   7502		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
   7503		ASC_STATS_ADD(scp->device->host, xfer_elem,
   7504			      asc_sg_head->entry_cnt);
   7505
   7506		/*
   7507		 * Convert scatter-gather list into ASC_SG_HEAD list.
   7508		 */
   7509		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
   7510			asc_sg_head->sg_list[sgcnt].addr =
   7511			    cpu_to_le32(sg_dma_address(slp));
   7512			asc_sg_head->sg_list[sgcnt].bytes =
   7513			    cpu_to_le32(sg_dma_len(slp));
   7514			ASC_STATS_ADD(scp->device->host, xfer_sect,
   7515				      DIV_ROUND_UP(sg_dma_len(slp), 512));
   7516		}
   7517	}
   7518
   7519	ASC_STATS(scp->device->host, xfer_cnt);
   7520
   7521	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
   7522	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
   7523
   7524	return ASC_NOERROR;
   7525}
   7526
   7527/*
   7528 * Build scatter-gather list for Adv Library (Wide Board).
   7529 *
   7530 * Additional ADV_SG_BLOCK structures will need to be allocated
   7531 * if the total number of scatter-gather elements exceeds
   7532 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
   7533 * assumed to be physically contiguous.
   7534 *
   7535 * Return:
   7536 *      ADV_SUCCESS(1) - SG List successfully created
   7537 *      ADV_ERROR(-1) - SG List creation failed
   7538 */
   7539static int
   7540adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
   7541	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
   7542{
   7543	adv_sgblk_t *sgblkp, *prev_sgblkp;
   7544	struct scatterlist *slp;
   7545	int sg_elem_cnt;
   7546	ADV_SG_BLOCK *sg_block, *prev_sg_block;
   7547	dma_addr_t sgblk_paddr;
   7548	int i;
   7549
   7550	slp = scsi_sglist(scp);
   7551	sg_elem_cnt = use_sg;
   7552	prev_sgblkp = NULL;
   7553	prev_sg_block = NULL;
   7554	reqp->sgblkp = NULL;
   7555
   7556	for (;;) {
   7557		/*
   7558		 * Allocate a 'adv_sgblk_t' structure from the board free
   7559		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
   7560		 * (15) scatter-gather elements.
   7561		 */
   7562		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
   7563					&sgblk_paddr);
   7564		if (!sgblkp) {
   7565			ASC_DBG(1, "no free adv_sgblk_t\n");
   7566			ASC_STATS(scp->device->host, adv_build_nosg);
   7567
   7568			/*
   7569			 * Allocation failed. Free 'adv_sgblk_t' structures
   7570			 * already allocated for the request.
   7571			 */
   7572			while ((sgblkp = reqp->sgblkp) != NULL) {
   7573				/* Remove 'sgblkp' from the request list. */
   7574				reqp->sgblkp = sgblkp->next_sgblkp;
   7575				sgblkp->next_sgblkp = NULL;
   7576				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
   7577					      sgblkp->sg_addr);
   7578			}
   7579			return ASC_BUSY;
   7580		}
   7581		/* Complete 'adv_sgblk_t' board allocation. */
   7582		sgblkp->sg_addr = sgblk_paddr;
   7583		sgblkp->next_sgblkp = NULL;
   7584		sg_block = &sgblkp->sg_block;
   7585
   7586		/*
   7587		 * Check if this is the first 'adv_sgblk_t' for the
   7588		 * request.
   7589		 */
   7590		if (reqp->sgblkp == NULL) {
   7591			/* Request's first scatter-gather block. */
   7592			reqp->sgblkp = sgblkp;
   7593
   7594			/*
   7595			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
   7596			 * address pointers.
   7597			 */
   7598			scsiqp->sg_list_ptr = sg_block;
   7599			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
   7600		} else {
   7601			/* Request's second or later scatter-gather block. */
   7602			prev_sgblkp->next_sgblkp = sgblkp;
   7603
   7604			/*
   7605			 * Point the previous ADV_SG_BLOCK structure to
   7606			 * the newly allocated ADV_SG_BLOCK structure.
   7607			 */
   7608			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
   7609		}
   7610
   7611		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
   7612			sg_block->sg_list[i].sg_addr =
   7613					cpu_to_le32(sg_dma_address(slp));
   7614			sg_block->sg_list[i].sg_count =
   7615					cpu_to_le32(sg_dma_len(slp));
   7616			ASC_STATS_ADD(scp->device->host, xfer_sect,
   7617				      DIV_ROUND_UP(sg_dma_len(slp), 512));
   7618
   7619			if (--sg_elem_cnt == 0) {
   7620				/*
   7621				 * Last ADV_SG_BLOCK and scatter-gather entry.
   7622				 */
   7623				sg_block->sg_cnt = i + 1;
   7624				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
   7625				return ADV_SUCCESS;
   7626			}
   7627			slp = sg_next(slp);
   7628		}
   7629		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
   7630		prev_sg_block = sg_block;
   7631		prev_sgblkp = sgblkp;
   7632	}
   7633}
   7634
   7635/*
   7636 * Build a request structure for the Adv Library (Wide Board).
   7637 *
   7638 * If an adv_req_t can not be allocated to issue the request,
   7639 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
   7640 *
   7641 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
   7642 * microcode for DMA addresses or math operations are byte swapped
   7643 * to little-endian order.
   7644 */
   7645static int
   7646adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
   7647	      adv_req_t **adv_reqpp)
   7648{
   7649	u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
   7650	adv_req_t *reqp;
   7651	ADV_SCSI_REQ_Q *scsiqp;
   7652	int ret;
   7653	int use_sg;
   7654	dma_addr_t sense_addr;
   7655
   7656	/*
   7657	 * Allocate an adv_req_t structure from the board to execute
   7658	 * the command.
   7659	 */
   7660	reqp = &boardp->adv_reqp[srb_tag];
   7661	if (reqp->cmndp && reqp->cmndp != scp ) {
   7662		ASC_DBG(1, "no free adv_req_t\n");
   7663		ASC_STATS(scp->device->host, adv_build_noreq);
   7664		return ASC_BUSY;
   7665	}
   7666
   7667	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
   7668
   7669	scsiqp = &reqp->scsi_req_q;
   7670
   7671	/*
   7672	 * Initialize the structure.
   7673	 */
   7674	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
   7675
   7676	/*
   7677	 * Set the srb_tag to the command tag.
   7678	 */
   7679	scsiqp->srb_tag = srb_tag;
   7680
   7681	/*
   7682	 * Set 'host_scribble' to point to the adv_req_t structure.
   7683	 */
   7684	reqp->cmndp = scp;
   7685	scp->host_scribble = (void *)reqp;
   7686
   7687	/*
   7688	 * Build the ADV_SCSI_REQ_Q request.
   7689	 */
   7690
   7691	/* Set CDB length and copy it to the request structure.  */
   7692	scsiqp->cdb_len = scp->cmd_len;
   7693	/* Copy first 12 CDB bytes to cdb[]. */
   7694	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
   7695	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
   7696	if (scp->cmd_len > 12) {
   7697		int cdb16_len = scp->cmd_len - 12;
   7698
   7699		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
   7700	}
   7701
   7702	scsiqp->target_id = scp->device->id;
   7703	scsiqp->target_lun = scp->device->lun;
   7704
   7705	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
   7706				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
   7707	if (dma_mapping_error(boardp->dev, sense_addr)) {
   7708		ASC_DBG(1, "failed to map sense buffer\n");
   7709		ASC_STATS(scp->device->host, adv_build_noreq);
   7710		return ASC_BUSY;
   7711	}
   7712	scsiqp->sense_addr = cpu_to_le32(sense_addr);
   7713	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
   7714
   7715	/* Build ADV_SCSI_REQ_Q */
   7716
   7717	use_sg = scsi_dma_map(scp);
   7718	if (use_sg < 0) {
   7719		ASC_DBG(1, "failed to map SG list\n");
   7720		ASC_STATS(scp->device->host, adv_build_noreq);
   7721		return ASC_BUSY;
   7722	} else if (use_sg == 0) {
   7723		/* Zero-length transfer */
   7724		reqp->sgblkp = NULL;
   7725		scsiqp->data_cnt = 0;
   7726
   7727		scsiqp->data_addr = 0;
   7728		scsiqp->sg_list_ptr = NULL;
   7729		scsiqp->sg_real_addr = 0;
   7730	} else {
   7731		if (use_sg > ADV_MAX_SG_LIST) {
   7732			scmd_printk(KERN_ERR, scp, "use_sg %d > "
   7733				   "ADV_MAX_SG_LIST %d\n", use_sg,
   7734				   scp->device->host->sg_tablesize);
   7735			scsi_dma_unmap(scp);
   7736			set_host_byte(scp, DID_ERROR);
   7737			reqp->cmndp = NULL;
   7738			scp->host_scribble = NULL;
   7739
   7740			return ASC_ERROR;
   7741		}
   7742
   7743		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
   7744
   7745		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
   7746		if (ret != ADV_SUCCESS) {
   7747			scsi_dma_unmap(scp);
   7748			set_host_byte(scp, DID_ERROR);
   7749			reqp->cmndp = NULL;
   7750			scp->host_scribble = NULL;
   7751
   7752			return ret;
   7753		}
   7754
   7755		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
   7756	}
   7757
   7758	ASC_STATS(scp->device->host, xfer_cnt);
   7759
   7760	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
   7761	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
   7762
   7763	*adv_reqpp = reqp;
   7764
   7765	return ASC_NOERROR;
   7766}
   7767
   7768static int AscSgListToQueue(int sg_list)
   7769{
   7770	int n_sg_list_qs;
   7771
   7772	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
   7773	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
   7774		n_sg_list_qs++;
   7775	return n_sg_list_qs + 1;
   7776}
   7777
   7778static uint
   7779AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
   7780{
   7781	uint cur_used_qs;
   7782	uint cur_free_qs;
   7783	ASC_SCSI_BIT_ID_TYPE target_id;
   7784	uchar tid_no;
   7785
   7786	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
   7787	tid_no = ASC_TIX_TO_TID(target_ix);
   7788	if ((asc_dvc->unit_not_ready & target_id) ||
   7789	    (asc_dvc->queue_full_or_busy & target_id)) {
   7790		return 0;
   7791	}
   7792	if (n_qs == 1) {
   7793		cur_used_qs = (uint) asc_dvc->cur_total_qng +
   7794		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
   7795	} else {
   7796		cur_used_qs = (uint) asc_dvc->cur_total_qng +
   7797		    (uint) ASC_MIN_FREE_Q;
   7798	}
   7799	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
   7800		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
   7801		if (asc_dvc->cur_dvc_qng[tid_no] >=
   7802		    asc_dvc->max_dvc_qng[tid_no]) {
   7803			return 0;
   7804		}
   7805		return cur_free_qs;
   7806	}
   7807	if (n_qs > 1) {
   7808		if ((n_qs > asc_dvc->last_q_shortage)
   7809		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
   7810			asc_dvc->last_q_shortage = n_qs;
   7811		}
   7812	}
   7813	return 0;
   7814}
   7815
   7816static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
   7817{
   7818	ushort q_addr;
   7819	uchar next_qp;
   7820	uchar q_status;
   7821
   7822	q_addr = ASC_QNO_TO_QADDR(free_q_head);
   7823	q_status = (uchar)AscReadLramByte(iop_base,
   7824					  (ushort)(q_addr +
   7825						   ASC_SCSIQ_B_STATUS));
   7826	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
   7827	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
   7828		return next_qp;
   7829	return ASC_QLINK_END;
   7830}
   7831
   7832static uchar
   7833AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
   7834{
   7835	uchar i;
   7836
   7837	for (i = 0; i < n_free_q; i++) {
   7838		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
   7839		if (free_q_head == ASC_QLINK_END)
   7840			break;
   7841	}
   7842	return free_q_head;
   7843}
   7844
   7845/*
   7846 * void
   7847 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
   7848 *
   7849 * Calling/Exit State:
   7850 *    none
   7851 *
   7852 * Description:
   7853 *     Output an ASC_SCSI_Q structure to the chip
   7854 */
   7855static void
   7856DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
   7857{
   7858	int i;
   7859
   7860	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
   7861	AscSetChipLramAddr(iop_base, s_addr);
   7862	for (i = 0; i < 2 * words; i += 2) {
   7863		if (i == 4 || i == 20) {
   7864			continue;
   7865		}
   7866		outpw(iop_base + IOP_RAM_DATA,
   7867		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
   7868	}
   7869}
   7870
   7871static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
   7872{
   7873	ushort q_addr;
   7874	uchar tid_no;
   7875	uchar sdtr_data;
   7876	uchar syn_period_ix;
   7877	uchar syn_offset;
   7878	PortAddr iop_base;
   7879
   7880	iop_base = asc_dvc->iop_base;
   7881	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
   7882	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
   7883		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
   7884		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
   7885		syn_period_ix =
   7886		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
   7887		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
   7888		AscMsgOutSDTR(asc_dvc,
   7889			      asc_dvc->sdtr_period_tbl[syn_period_ix],
   7890			      syn_offset);
   7891		scsiq->q1.cntl |= QC_MSG_OUT;
   7892	}
   7893	q_addr = ASC_QNO_TO_QADDR(q_no);
   7894	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
   7895		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
   7896	}
   7897	scsiq->q1.status = QS_FREE;
   7898	AscMemWordCopyPtrToLram(iop_base,
   7899				q_addr + ASC_SCSIQ_CDB_BEG,
   7900				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
   7901
   7902	DvcPutScsiQ(iop_base,
   7903		    q_addr + ASC_SCSIQ_CPY_BEG,
   7904		    (uchar *)&scsiq->q1.cntl,
   7905		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
   7906	AscWriteLramWord(iop_base,
   7907			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
   7908			 (ushort)(((ushort)scsiq->q1.
   7909				   q_no << 8) | (ushort)QS_READY));
   7910	return 1;
   7911}
   7912
   7913static int
   7914AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
   7915{
   7916	int sta;
   7917	int i;
   7918	ASC_SG_HEAD *sg_head;
   7919	ASC_SG_LIST_Q scsi_sg_q;
   7920	__le32 saved_data_addr;
   7921	__le32 saved_data_cnt;
   7922	PortAddr iop_base;
   7923	ushort sg_list_dwords;
   7924	ushort sg_index;
   7925	ushort sg_entry_cnt;
   7926	ushort q_addr;
   7927	uchar next_qp;
   7928
   7929	iop_base = asc_dvc->iop_base;
   7930	sg_head = scsiq->sg_head;
   7931	saved_data_addr = scsiq->q1.data_addr;
   7932	saved_data_cnt = scsiq->q1.data_cnt;
   7933	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
   7934	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
   7935	/*
   7936	 * Set sg_entry_cnt to be the number of SG elements that
   7937	 * will fit in the allocated SG queues. It is minus 1, because
   7938	 * the first SG element is handled above.
   7939	 */
   7940	sg_entry_cnt = sg_head->entry_cnt - 1;
   7941
   7942	if (sg_entry_cnt != 0) {
   7943		scsiq->q1.cntl |= QC_SG_HEAD;
   7944		q_addr = ASC_QNO_TO_QADDR(q_no);
   7945		sg_index = 1;
   7946		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
   7947		scsi_sg_q.sg_head_qp = q_no;
   7948		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
   7949		for (i = 0; i < sg_head->queue_cnt; i++) {
   7950			scsi_sg_q.seq_no = i + 1;
   7951			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
   7952				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
   7953				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
   7954				if (i == 0) {
   7955					scsi_sg_q.sg_list_cnt =
   7956					    ASC_SG_LIST_PER_Q;
   7957					scsi_sg_q.sg_cur_list_cnt =
   7958					    ASC_SG_LIST_PER_Q;
   7959				} else {
   7960					scsi_sg_q.sg_list_cnt =
   7961					    ASC_SG_LIST_PER_Q - 1;
   7962					scsi_sg_q.sg_cur_list_cnt =
   7963					    ASC_SG_LIST_PER_Q - 1;
   7964				}
   7965			} else {
   7966				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
   7967				sg_list_dwords = sg_entry_cnt << 1;
   7968				if (i == 0) {
   7969					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
   7970					scsi_sg_q.sg_cur_list_cnt =
   7971					    sg_entry_cnt;
   7972				} else {
   7973					scsi_sg_q.sg_list_cnt =
   7974					    sg_entry_cnt - 1;
   7975					scsi_sg_q.sg_cur_list_cnt =
   7976					    sg_entry_cnt - 1;
   7977				}
   7978				sg_entry_cnt = 0;
   7979			}
   7980			next_qp = AscReadLramByte(iop_base,
   7981						  (ushort)(q_addr +
   7982							   ASC_SCSIQ_B_FWD));
   7983			scsi_sg_q.q_no = next_qp;
   7984			q_addr = ASC_QNO_TO_QADDR(next_qp);
   7985			AscMemWordCopyPtrToLram(iop_base,
   7986						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
   7987						(uchar *)&scsi_sg_q,
   7988						sizeof(ASC_SG_LIST_Q) >> 1);
   7989			AscMemDWordCopyPtrToLram(iop_base,
   7990						 q_addr + ASC_SGQ_LIST_BEG,
   7991						 (uchar *)&sg_head->
   7992						 sg_list[sg_index],
   7993						 sg_list_dwords);
   7994			sg_index += ASC_SG_LIST_PER_Q;
   7995			scsiq->next_sg_index = sg_index;
   7996		}
   7997	} else {
   7998		scsiq->q1.cntl &= ~QC_SG_HEAD;
   7999	}
   8000	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
   8001	scsiq->q1.data_addr = saved_data_addr;
   8002	scsiq->q1.data_cnt = saved_data_cnt;
   8003	return (sta);
   8004}
   8005
   8006static int
   8007AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
   8008{
   8009	PortAddr iop_base;
   8010	uchar free_q_head;
   8011	uchar next_qp;
   8012	uchar tid_no;
   8013	uchar target_ix;
   8014	int sta;
   8015
   8016	iop_base = asc_dvc->iop_base;
   8017	target_ix = scsiq->q2.target_ix;
   8018	tid_no = ASC_TIX_TO_TID(target_ix);
   8019	sta = 0;
   8020	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
   8021	if (n_q_required > 1) {
   8022		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
   8023						    (uchar)n_q_required);
   8024		if (next_qp != ASC_QLINK_END) {
   8025			asc_dvc->last_q_shortage = 0;
   8026			scsiq->sg_head->queue_cnt = n_q_required - 1;
   8027			scsiq->q1.q_no = free_q_head;
   8028			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
   8029						     free_q_head);
   8030		}
   8031	} else if (n_q_required == 1) {
   8032		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
   8033		if (next_qp != ASC_QLINK_END) {
   8034			scsiq->q1.q_no = free_q_head;
   8035			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
   8036		}
   8037	}
   8038	if (sta == 1) {
   8039		AscPutVarFreeQHead(iop_base, next_qp);
   8040		asc_dvc->cur_total_qng += n_q_required;
   8041		asc_dvc->cur_dvc_qng[tid_no]++;
   8042	}
   8043	return sta;
   8044}
   8045
   8046#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
   8047static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
   8048	INQUIRY,
   8049	REQUEST_SENSE,
   8050	READ_CAPACITY,
   8051	READ_TOC,
   8052	MODE_SELECT,
   8053	MODE_SENSE,
   8054	MODE_SELECT_10,
   8055	MODE_SENSE_10,
   8056	0xFF,
   8057	0xFF,
   8058	0xFF,
   8059	0xFF,
   8060	0xFF,
   8061	0xFF,
   8062	0xFF,
   8063	0xFF
   8064};
   8065
   8066static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
   8067{
   8068	PortAddr iop_base;
   8069	int sta;
   8070	int n_q_required;
   8071	bool disable_syn_offset_one_fix;
   8072	int i;
   8073	u32 addr;
   8074	ushort sg_entry_cnt = 0;
   8075	ushort sg_entry_cnt_minus_one = 0;
   8076	uchar target_ix;
   8077	uchar tid_no;
   8078	uchar sdtr_data;
   8079	uchar extra_bytes;
   8080	uchar scsi_cmd;
   8081	uchar disable_cmd;
   8082	ASC_SG_HEAD *sg_head;
   8083	unsigned long data_cnt;
   8084
   8085	iop_base = asc_dvc->iop_base;
   8086	sg_head = scsiq->sg_head;
   8087	if (asc_dvc->err_code != 0)
   8088		return ASC_ERROR;
   8089	scsiq->q1.q_no = 0;
   8090	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
   8091		scsiq->q1.extra_bytes = 0;
   8092	}
   8093	sta = 0;
   8094	target_ix = scsiq->q2.target_ix;
   8095	tid_no = ASC_TIX_TO_TID(target_ix);
   8096	n_q_required = 1;
   8097	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
   8098		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
   8099			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
   8100			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
   8101			AscMsgOutSDTR(asc_dvc,
   8102				      asc_dvc->
   8103				      sdtr_period_tbl[(sdtr_data >> 4) &
   8104						      (uchar)(asc_dvc->
   8105							      max_sdtr_index -
   8106							      1)],
   8107				      (uchar)(sdtr_data & (uchar)
   8108					      ASC_SYN_MAX_OFFSET));
   8109			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
   8110		}
   8111	}
   8112	if (asc_dvc->in_critical_cnt != 0) {
   8113		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
   8114		return ASC_ERROR;
   8115	}
   8116	asc_dvc->in_critical_cnt++;
   8117	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
   8118		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
   8119			asc_dvc->in_critical_cnt--;
   8120			return ASC_ERROR;
   8121		}
   8122		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
   8123			asc_dvc->in_critical_cnt--;
   8124			return ASC_ERROR;
   8125		}
   8126		if (sg_entry_cnt == 1) {
   8127			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
   8128			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
   8129			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
   8130		}
   8131		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
   8132	}
   8133	scsi_cmd = scsiq->cdbptr[0];
   8134	disable_syn_offset_one_fix = false;
   8135	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
   8136	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
   8137		if (scsiq->q1.cntl & QC_SG_HEAD) {
   8138			data_cnt = 0;
   8139			for (i = 0; i < sg_entry_cnt; i++) {
   8140				data_cnt += le32_to_cpu(sg_head->sg_list[i].
   8141							bytes);
   8142			}
   8143		} else {
   8144			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
   8145		}
   8146		if (data_cnt != 0UL) {
   8147			if (data_cnt < 512UL) {
   8148				disable_syn_offset_one_fix = true;
   8149			} else {
   8150				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
   8151				     i++) {
   8152					disable_cmd =
   8153					    _syn_offset_one_disable_cmd[i];
   8154					if (disable_cmd == 0xFF) {
   8155						break;
   8156					}
   8157					if (scsi_cmd == disable_cmd) {
   8158						disable_syn_offset_one_fix =
   8159						    true;
   8160						break;
   8161					}
   8162				}
   8163			}
   8164		}
   8165	}
   8166	if (disable_syn_offset_one_fix) {
   8167		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
   8168		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
   8169				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
   8170	} else {
   8171		scsiq->q2.tag_code &= 0x27;
   8172	}
   8173	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
   8174		if (asc_dvc->bug_fix_cntl) {
   8175			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
   8176				if ((scsi_cmd == READ_6) ||
   8177				    (scsi_cmd == READ_10)) {
   8178					addr = le32_to_cpu(sg_head->
   8179								   sg_list
   8180								   [sg_entry_cnt_minus_one].
   8181								   addr) +
   8182						le32_to_cpu(sg_head->
   8183								  sg_list
   8184								  [sg_entry_cnt_minus_one].
   8185								  bytes);
   8186					extra_bytes =
   8187					    (uchar)((ushort)addr & 0x0003);
   8188					if ((extra_bytes != 0)
   8189					    &&
   8190					    ((scsiq->q2.
   8191					      tag_code &
   8192					      ASC_TAG_FLAG_EXTRA_BYTES)
   8193					     == 0)) {
   8194						scsiq->q2.tag_code |=
   8195						    ASC_TAG_FLAG_EXTRA_BYTES;
   8196						scsiq->q1.extra_bytes =
   8197						    extra_bytes;
   8198						data_cnt =
   8199						    le32_to_cpu(sg_head->
   8200								sg_list
   8201								[sg_entry_cnt_minus_one].
   8202								bytes);
   8203						data_cnt -= extra_bytes;
   8204						sg_head->
   8205						    sg_list
   8206						    [sg_entry_cnt_minus_one].
   8207						    bytes =
   8208						    cpu_to_le32(data_cnt);
   8209					}
   8210				}
   8211			}
   8212		}
   8213		sg_head->entry_to_copy = sg_head->entry_cnt;
   8214		n_q_required = AscSgListToQueue(sg_entry_cnt);
   8215		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
   8216		     (uint) n_q_required)
   8217		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
   8218			if ((sta =
   8219			     AscSendScsiQueue(asc_dvc, scsiq,
   8220					      n_q_required)) == 1) {
   8221				asc_dvc->in_critical_cnt--;
   8222				return (sta);
   8223			}
   8224		}
   8225	} else {
   8226		if (asc_dvc->bug_fix_cntl) {
   8227			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
   8228				if ((scsi_cmd == READ_6) ||
   8229				    (scsi_cmd == READ_10)) {
   8230					addr =
   8231					    le32_to_cpu(scsiq->q1.data_addr) +
   8232					    le32_to_cpu(scsiq->q1.data_cnt);
   8233					extra_bytes =
   8234					    (uchar)((ushort)addr & 0x0003);
   8235					if ((extra_bytes != 0)
   8236					    &&
   8237					    ((scsiq->q2.
   8238					      tag_code &
   8239					      ASC_TAG_FLAG_EXTRA_BYTES)
   8240					     == 0)) {
   8241						data_cnt =
   8242						    le32_to_cpu(scsiq->q1.
   8243								data_cnt);
   8244						if (((ushort)data_cnt & 0x01FF)
   8245						    == 0) {
   8246							scsiq->q2.tag_code |=
   8247							    ASC_TAG_FLAG_EXTRA_BYTES;
   8248							data_cnt -= extra_bytes;
   8249							scsiq->q1.data_cnt =
   8250							    cpu_to_le32
   8251							    (data_cnt);
   8252							scsiq->q1.extra_bytes =
   8253							    extra_bytes;
   8254						}
   8255					}
   8256				}
   8257			}
   8258		}
   8259		n_q_required = 1;
   8260		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
   8261		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
   8262			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
   8263						    n_q_required)) == 1) {
   8264				asc_dvc->in_critical_cnt--;
   8265				return (sta);
   8266			}
   8267		}
   8268	}
   8269	asc_dvc->in_critical_cnt--;
   8270	return (sta);
   8271}
   8272
   8273/*
   8274 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
   8275 *
   8276 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
   8277 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   8278 *   RISC to notify it a new command is ready to be executed.
   8279 *
   8280 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   8281 * set to SCSI_MAX_RETRY.
   8282 *
   8283 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
   8284 * for DMA addresses or math operations are byte swapped to little-endian
   8285 * order.
   8286 *
   8287 * Return:
   8288 *      ADV_SUCCESS(1) - The request was successfully queued.
   8289 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
   8290 *                       request completes.
   8291 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
   8292 *                       host IC error.
   8293 */
   8294static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
   8295{
   8296	AdvPortAddr iop_base;
   8297	ADV_CARR_T *new_carrp;
   8298	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
   8299
   8300	/*
   8301	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
   8302	 */
   8303	if (scsiq->target_id > ADV_MAX_TID) {
   8304		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   8305		scsiq->done_status = QD_WITH_ERROR;
   8306		return ADV_ERROR;
   8307	}
   8308
   8309	iop_base = asc_dvc->iop_base;
   8310
   8311	/*
   8312	 * Allocate a carrier ensuring at least one carrier always
   8313	 * remains on the freelist and initialize fields.
   8314	 */
   8315	new_carrp = adv_get_next_carrier(asc_dvc);
   8316	if (!new_carrp) {
   8317		ASC_DBG(1, "No free carriers\n");
   8318		return ADV_BUSY;
   8319	}
   8320
   8321	asc_dvc->carr_pending_cnt++;
   8322
   8323	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
   8324	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
   8325	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
   8326
   8327	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
   8328	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
   8329
   8330	/*
   8331	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
   8332	 * the microcode. The newly allocated stopper will become the new
   8333	 * stopper.
   8334	 */
   8335	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
   8336
   8337	/*
   8338	 * Set the 'next_vpa' pointer for the old stopper to be the
   8339	 * physical address of the new stopper. The RISC can only
   8340	 * follow physical addresses.
   8341	 */
   8342	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
   8343
   8344	/*
   8345	 * Set the host adapter stopper pointer to point to the new carrier.
   8346	 */
   8347	asc_dvc->icq_sp = new_carrp;
   8348
   8349	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
   8350	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
   8351		/*
   8352		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
   8353		 */
   8354		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
   8355		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
   8356			/*
   8357			 * Clear the tickle value. In the ASC-3550 the RISC flag
   8358			 * command 'clr_tickle_a' does not work unless the host
   8359			 * value is cleared.
   8360			 */
   8361			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
   8362					     ADV_TICKLE_NOP);
   8363		}
   8364	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
   8365		/*
   8366		 * Notify the RISC a carrier is ready by writing the physical
   8367		 * address of the new carrier stopper to the COMMA register.
   8368		 */
   8369		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
   8370				      le32_to_cpu(new_carrp->carr_pa));
   8371	}
   8372
   8373	return ADV_SUCCESS;
   8374}
   8375
   8376/*
   8377 * Execute a single 'struct scsi_cmnd'.
   8378 */
   8379static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
   8380{
   8381	int ret, err_code;
   8382	struct asc_board *boardp = shost_priv(scp->device->host);
   8383
   8384	ASC_DBG(1, "scp 0x%p\n", scp);
   8385
   8386	if (ASC_NARROW_BOARD(boardp)) {
   8387		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
   8388		struct asc_scsi_q asc_scsi_q;
   8389
   8390		ret = asc_build_req(boardp, scp, &asc_scsi_q);
   8391		if (ret != ASC_NOERROR) {
   8392			ASC_STATS(scp->device->host, build_error);
   8393			return ret;
   8394		}
   8395
   8396		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
   8397		kfree(asc_scsi_q.sg_head);
   8398		err_code = asc_dvc->err_code;
   8399	} else {
   8400		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
   8401		adv_req_t *adv_reqp;
   8402
   8403		switch (adv_build_req(boardp, scp, &adv_reqp)) {
   8404		case ASC_NOERROR:
   8405			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
   8406			break;
   8407		case ASC_BUSY:
   8408			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
   8409			/*
   8410			 * The asc_stats fields 'adv_build_noreq' and
   8411			 * 'adv_build_nosg' count wide board busy conditions.
   8412			 * They are updated in adv_build_req and
   8413			 * adv_get_sglist, respectively.
   8414			 */
   8415			return ASC_BUSY;
   8416		case ASC_ERROR:
   8417		default:
   8418			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
   8419			ASC_STATS(scp->device->host, build_error);
   8420			return ASC_ERROR;
   8421		}
   8422
   8423		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
   8424		err_code = adv_dvc->err_code;
   8425	}
   8426
   8427	switch (ret) {
   8428	case ASC_NOERROR:
   8429		ASC_STATS(scp->device->host, exe_noerror);
   8430		/*
   8431		 * Increment monotonically increasing per device
   8432		 * successful request counter. Wrapping doesn't matter.
   8433		 */
   8434		boardp->reqcnt[scp->device->id]++;
   8435		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
   8436		break;
   8437	case ASC_BUSY:
   8438		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
   8439		ASC_STATS(scp->device->host, exe_busy);
   8440		break;
   8441	case ASC_ERROR:
   8442		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
   8443			"err_code 0x%x\n", err_code);
   8444		ASC_STATS(scp->device->host, exe_error);
   8445		set_host_byte(scp, DID_ERROR);
   8446		break;
   8447	default:
   8448		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
   8449			"err_code 0x%x\n", err_code);
   8450		ASC_STATS(scp->device->host, exe_unknown);
   8451		set_host_byte(scp, DID_ERROR);
   8452		break;
   8453	}
   8454
   8455	ASC_DBG(1, "end\n");
   8456	return ret;
   8457}
   8458
   8459/*
   8460 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
   8461 *
   8462 * This function always returns 0. Command return status is saved
   8463 * in the 'scp' result field.
   8464 */
   8465static int advansys_queuecommand_lck(struct scsi_cmnd *scp)
   8466{
   8467	struct Scsi_Host *shost = scp->device->host;
   8468	int asc_res, result = 0;
   8469
   8470	ASC_STATS(shost, queuecommand);
   8471
   8472	asc_res = asc_execute_scsi_cmnd(scp);
   8473
   8474	switch (asc_res) {
   8475	case ASC_NOERROR:
   8476		break;
   8477	case ASC_BUSY:
   8478		result = SCSI_MLQUEUE_HOST_BUSY;
   8479		break;
   8480	case ASC_ERROR:
   8481	default:
   8482		asc_scsi_done(scp);
   8483		break;
   8484	}
   8485
   8486	return result;
   8487}
   8488
   8489static DEF_SCSI_QCMD(advansys_queuecommand)
   8490
   8491static ushort AscGetEisaChipCfg(PortAddr iop_base)
   8492{
   8493	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
   8494	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
   8495	return inpw(eisa_cfg_iop);
   8496}
   8497
   8498/*
   8499 * Return the BIOS address of the adapter at the specified
   8500 * I/O port and with the specified bus type.
   8501 */
   8502static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
   8503					    unsigned short bus_type)
   8504{
   8505	unsigned short cfg_lsw;
   8506	unsigned short bios_addr;
   8507
   8508	/*
   8509	 * The PCI BIOS is re-located by the motherboard BIOS. Because
   8510	 * of this the driver can not determine where a PCI BIOS is
   8511	 * loaded and executes.
   8512	 */
   8513	if (bus_type & ASC_IS_PCI)
   8514		return 0;
   8515
   8516	if ((bus_type & ASC_IS_EISA) != 0) {
   8517		cfg_lsw = AscGetEisaChipCfg(iop_base);
   8518		cfg_lsw &= 0x000F;
   8519		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
   8520		return bios_addr;
   8521	}
   8522
   8523	cfg_lsw = AscGetChipCfgLsw(iop_base);
   8524	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
   8525	return bios_addr;
   8526}
   8527
   8528static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
   8529{
   8530	ushort cfg_lsw;
   8531
   8532	if (AscGetChipScsiID(iop_base) == new_host_id) {
   8533		return (new_host_id);
   8534	}
   8535	cfg_lsw = AscGetChipCfgLsw(iop_base);
   8536	cfg_lsw &= 0xF8FF;
   8537	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
   8538	AscSetChipCfgLsw(iop_base, cfg_lsw);
   8539	return (AscGetChipScsiID(iop_base));
   8540}
   8541
   8542static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
   8543{
   8544	unsigned char sc;
   8545
   8546	AscSetBank(iop_base, 1);
   8547	sc = inp(iop_base + IOP_REG_SC);
   8548	AscSetBank(iop_base, 0);
   8549	return sc;
   8550}
   8551
   8552static unsigned char AscGetChipVersion(PortAddr iop_base,
   8553				       unsigned short bus_type)
   8554{
   8555	if (bus_type & ASC_IS_EISA) {
   8556		PortAddr eisa_iop;
   8557		unsigned char revision;
   8558		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
   8559		    (PortAddr) ASC_EISA_REV_IOP_MASK;
   8560		revision = inp(eisa_iop);
   8561		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
   8562	}
   8563	return AscGetChipVerNo(iop_base);
   8564}
   8565
   8566static int AscStopQueueExe(PortAddr iop_base)
   8567{
   8568	int count = 0;
   8569
   8570	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
   8571		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
   8572				 ASC_STOP_REQ_RISC_STOP);
   8573		do {
   8574			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
   8575			    ASC_STOP_ACK_RISC_STOP) {
   8576				return (1);
   8577			}
   8578			mdelay(100);
   8579		} while (count++ < 20);
   8580	}
   8581	return (0);
   8582}
   8583
   8584static unsigned int AscGetMaxDmaCount(ushort bus_type)
   8585{
   8586	if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
   8587		return ASC_MAX_VL_DMA_COUNT;
   8588	return ASC_MAX_PCI_DMA_COUNT;
   8589}
   8590
   8591static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
   8592{
   8593	int i;
   8594	PortAddr iop_base;
   8595	uchar chip_version;
   8596
   8597	iop_base = asc_dvc->iop_base;
   8598	asc_dvc->err_code = 0;
   8599	if ((asc_dvc->bus_type &
   8600	     (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
   8601		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
   8602	}
   8603	AscSetChipControl(iop_base, CC_HALT);
   8604	AscSetChipStatus(iop_base, 0);
   8605	asc_dvc->bug_fix_cntl = 0;
   8606	asc_dvc->pci_fix_asyn_xfer = 0;
   8607	asc_dvc->pci_fix_asyn_xfer_always = 0;
   8608	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
   8609	asc_dvc->sdtr_done = 0;
   8610	asc_dvc->cur_total_qng = 0;
   8611	asc_dvc->is_in_int = false;
   8612	asc_dvc->in_critical_cnt = 0;
   8613	asc_dvc->last_q_shortage = 0;
   8614	asc_dvc->use_tagged_qng = 0;
   8615	asc_dvc->no_scam = 0;
   8616	asc_dvc->unit_not_ready = 0;
   8617	asc_dvc->queue_full_or_busy = 0;
   8618	asc_dvc->redo_scam = 0;
   8619	asc_dvc->res2 = 0;
   8620	asc_dvc->min_sdtr_index = 0;
   8621	asc_dvc->cfg->can_tagged_qng = 0;
   8622	asc_dvc->cfg->cmd_qng_enabled = 0;
   8623	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
   8624	asc_dvc->init_sdtr = 0;
   8625	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
   8626	asc_dvc->scsi_reset_wait = 3;
   8627	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
   8628	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
   8629	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
   8630	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
   8631	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
   8632	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
   8633	asc_dvc->cfg->chip_version = chip_version;
   8634	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
   8635	asc_dvc->max_sdtr_index = 7;
   8636	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
   8637	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
   8638		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
   8639		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
   8640		asc_dvc->max_sdtr_index = 15;
   8641		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
   8642			AscSetExtraControl(iop_base,
   8643					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
   8644		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
   8645			AscSetExtraControl(iop_base,
   8646					   (SEC_ACTIVE_NEGATE |
   8647					    SEC_ENABLE_FILTER));
   8648		}
   8649	}
   8650	if (asc_dvc->bus_type == ASC_IS_PCI) {
   8651		AscSetExtraControl(iop_base,
   8652				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
   8653	}
   8654
   8655	for (i = 0; i <= ASC_MAX_TID; i++) {
   8656		asc_dvc->cur_dvc_qng[i] = 0;
   8657		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
   8658		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
   8659		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
   8660		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
   8661	}
   8662}
   8663
   8664static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
   8665{
   8666	int retry;
   8667
   8668	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
   8669		unsigned char read_back;
   8670		AscSetChipEEPCmd(iop_base, cmd_reg);
   8671		mdelay(1);
   8672		read_back = AscGetChipEEPCmd(iop_base);
   8673		if (read_back == cmd_reg)
   8674			return 1;
   8675	}
   8676	return 0;
   8677}
   8678
   8679static void AscWaitEEPRead(void)
   8680{
   8681	mdelay(1);
   8682}
   8683
   8684static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
   8685{
   8686	ushort read_wval;
   8687	uchar cmd_reg;
   8688
   8689	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
   8690	AscWaitEEPRead();
   8691	cmd_reg = addr | ASC_EEP_CMD_READ;
   8692	AscWriteEEPCmdReg(iop_base, cmd_reg);
   8693	AscWaitEEPRead();
   8694	read_wval = AscGetChipEEPData(iop_base);
   8695	AscWaitEEPRead();
   8696	return read_wval;
   8697}
   8698
   8699static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
   8700			      ushort bus_type)
   8701{
   8702	ushort wval;
   8703	ushort sum;
   8704	ushort *wbuf;
   8705	int cfg_beg;
   8706	int cfg_end;
   8707	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
   8708	int s_addr;
   8709
   8710	wbuf = (ushort *)cfg_buf;
   8711	sum = 0;
   8712	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
   8713	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
   8714		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
   8715		sum += *wbuf;
   8716	}
   8717	if (bus_type & ASC_IS_VL) {
   8718		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
   8719		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
   8720	} else {
   8721		cfg_beg = ASC_EEP_DVC_CFG_BEG;
   8722		cfg_end = ASC_EEP_MAX_DVC_ADDR;
   8723	}
   8724	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
   8725		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
   8726		if (s_addr <= uchar_end_in_config) {
   8727			/*
   8728			 * Swap all char fields - must unswap bytes already swapped
   8729			 * by AscReadEEPWord().
   8730			 */
   8731			*wbuf = le16_to_cpu(wval);
   8732		} else {
   8733			/* Don't swap word field at the end - cntl field. */
   8734			*wbuf = wval;
   8735		}
   8736		sum += wval;	/* Checksum treats all EEPROM data as words. */
   8737	}
   8738	/*
   8739	 * Read the checksum word which will be compared against 'sum'
   8740	 * by the caller. Word field already swapped.
   8741	 */
   8742	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
   8743	return sum;
   8744}
   8745
   8746static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
   8747{
   8748	PortAddr iop_base;
   8749	ushort q_addr;
   8750	ushort saved_word;
   8751	int sta;
   8752
   8753	iop_base = asc_dvc->iop_base;
   8754	sta = 0;
   8755	q_addr = ASC_QNO_TO_QADDR(241);
   8756	saved_word = AscReadLramWord(iop_base, q_addr);
   8757	AscSetChipLramAddr(iop_base, q_addr);
   8758	AscSetChipLramData(iop_base, 0x55AA);
   8759	mdelay(10);
   8760	AscSetChipLramAddr(iop_base, q_addr);
   8761	if (AscGetChipLramData(iop_base) == 0x55AA) {
   8762		sta = 1;
   8763		AscWriteLramWord(iop_base, q_addr, saved_word);
   8764	}
   8765	return (sta);
   8766}
   8767
   8768static void AscWaitEEPWrite(void)
   8769{
   8770	mdelay(20);
   8771}
   8772
   8773static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
   8774{
   8775	ushort read_back;
   8776	int retry;
   8777
   8778	retry = 0;
   8779	while (true) {
   8780		AscSetChipEEPData(iop_base, data_reg);
   8781		mdelay(1);
   8782		read_back = AscGetChipEEPData(iop_base);
   8783		if (read_back == data_reg) {
   8784			return (1);
   8785		}
   8786		if (retry++ > ASC_EEP_MAX_RETRY) {
   8787			return (0);
   8788		}
   8789	}
   8790}
   8791
   8792static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
   8793{
   8794	ushort read_wval;
   8795
   8796	read_wval = AscReadEEPWord(iop_base, addr);
   8797	if (read_wval != word_val) {
   8798		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
   8799		AscWaitEEPRead();
   8800		AscWriteEEPDataReg(iop_base, word_val);
   8801		AscWaitEEPRead();
   8802		AscWriteEEPCmdReg(iop_base,
   8803				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
   8804		AscWaitEEPWrite();
   8805		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
   8806		AscWaitEEPRead();
   8807		return (AscReadEEPWord(iop_base, addr));
   8808	}
   8809	return (read_wval);
   8810}
   8811
   8812static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
   8813			       ushort bus_type)
   8814{
   8815	int n_error;
   8816	ushort *wbuf;
   8817	ushort word;
   8818	ushort sum;
   8819	int s_addr;
   8820	int cfg_beg;
   8821	int cfg_end;
   8822	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
   8823
   8824	wbuf = (ushort *)cfg_buf;
   8825	n_error = 0;
   8826	sum = 0;
   8827	/* Write two config words; AscWriteEEPWord() will swap bytes. */
   8828	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
   8829		sum += *wbuf;
   8830		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
   8831			n_error++;
   8832		}
   8833	}
   8834	if (bus_type & ASC_IS_VL) {
   8835		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
   8836		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
   8837	} else {
   8838		cfg_beg = ASC_EEP_DVC_CFG_BEG;
   8839		cfg_end = ASC_EEP_MAX_DVC_ADDR;
   8840	}
   8841	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
   8842		if (s_addr <= uchar_end_in_config) {
   8843			/*
   8844			 * This is a char field. Swap char fields before they are
   8845			 * swapped again by AscWriteEEPWord().
   8846			 */
   8847			word = cpu_to_le16(*wbuf);
   8848			if (word !=
   8849			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
   8850				n_error++;
   8851			}
   8852		} else {
   8853			/* Don't swap word field at the end - cntl field. */
   8854			if (*wbuf !=
   8855			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
   8856				n_error++;
   8857			}
   8858		}
   8859		sum += *wbuf;	/* Checksum calculated from word values. */
   8860	}
   8861	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
   8862	*wbuf = sum;
   8863	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
   8864		n_error++;
   8865	}
   8866
   8867	/* Read EEPROM back again. */
   8868	wbuf = (ushort *)cfg_buf;
   8869	/*
   8870	 * Read two config words; Byte-swapping done by AscReadEEPWord().
   8871	 */
   8872	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
   8873		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
   8874			n_error++;
   8875		}
   8876	}
   8877	if (bus_type & ASC_IS_VL) {
   8878		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
   8879		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
   8880	} else {
   8881		cfg_beg = ASC_EEP_DVC_CFG_BEG;
   8882		cfg_end = ASC_EEP_MAX_DVC_ADDR;
   8883	}
   8884	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
   8885		if (s_addr <= uchar_end_in_config) {
   8886			/*
   8887			 * Swap all char fields. Must unswap bytes already swapped
   8888			 * by AscReadEEPWord().
   8889			 */
   8890			word =
   8891			    le16_to_cpu(AscReadEEPWord
   8892					(iop_base, (uchar)s_addr));
   8893		} else {
   8894			/* Don't swap word field at the end - cntl field. */
   8895			word = AscReadEEPWord(iop_base, (uchar)s_addr);
   8896		}
   8897		if (*wbuf != word) {
   8898			n_error++;
   8899		}
   8900	}
   8901	/* Read checksum; Byte swapping not needed. */
   8902	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
   8903		n_error++;
   8904	}
   8905	return n_error;
   8906}
   8907
   8908static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
   8909			   ushort bus_type)
   8910{
   8911	int retry;
   8912	int n_error;
   8913
   8914	retry = 0;
   8915	while (true) {
   8916		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
   8917						   bus_type)) == 0) {
   8918			break;
   8919		}
   8920		if (++retry > ASC_EEP_MAX_RETRY) {
   8921			break;
   8922		}
   8923	}
   8924	return n_error;
   8925}
   8926
   8927static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
   8928{
   8929	ASCEEP_CONFIG eep_config_buf;
   8930	ASCEEP_CONFIG *eep_config;
   8931	PortAddr iop_base;
   8932	ushort chksum;
   8933	ushort warn_code;
   8934	ushort cfg_msw, cfg_lsw;
   8935	int i;
   8936	int write_eep = 0;
   8937
   8938	iop_base = asc_dvc->iop_base;
   8939	warn_code = 0;
   8940	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
   8941	AscStopQueueExe(iop_base);
   8942	if ((AscStopChip(iop_base)) ||
   8943	    (AscGetChipScsiCtrl(iop_base) != 0)) {
   8944		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
   8945		AscResetChipAndScsiBus(asc_dvc);
   8946		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
   8947	}
   8948	if (!AscIsChipHalted(iop_base)) {
   8949		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
   8950		return (warn_code);
   8951	}
   8952	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
   8953	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
   8954		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
   8955		return (warn_code);
   8956	}
   8957	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
   8958	cfg_msw = AscGetChipCfgMsw(iop_base);
   8959	cfg_lsw = AscGetChipCfgLsw(iop_base);
   8960	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
   8961		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
   8962		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
   8963		AscSetChipCfgMsw(iop_base, cfg_msw);
   8964	}
   8965	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
   8966	ASC_DBG(1, "chksum 0x%x\n", chksum);
   8967	if (chksum == 0) {
   8968		chksum = 0xaa55;
   8969	}
   8970	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
   8971		warn_code |= ASC_WARN_AUTO_CONFIG;
   8972		if (asc_dvc->cfg->chip_version == 3) {
   8973			if (eep_config->cfg_lsw != cfg_lsw) {
   8974				warn_code |= ASC_WARN_EEPROM_RECOVER;
   8975				eep_config->cfg_lsw =
   8976				    AscGetChipCfgLsw(iop_base);
   8977			}
   8978			if (eep_config->cfg_msw != cfg_msw) {
   8979				warn_code |= ASC_WARN_EEPROM_RECOVER;
   8980				eep_config->cfg_msw =
   8981				    AscGetChipCfgMsw(iop_base);
   8982			}
   8983		}
   8984	}
   8985	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
   8986	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
   8987	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
   8988	if (chksum != eep_config->chksum) {
   8989		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
   8990		    ASC_CHIP_VER_PCI_ULTRA_3050) {
   8991			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
   8992			eep_config->init_sdtr = 0xFF;
   8993			eep_config->disc_enable = 0xFF;
   8994			eep_config->start_motor = 0xFF;
   8995			eep_config->use_cmd_qng = 0;
   8996			eep_config->max_total_qng = 0xF0;
   8997			eep_config->max_tag_qng = 0x20;
   8998			eep_config->cntl = 0xBFFF;
   8999			ASC_EEP_SET_CHIP_ID(eep_config, 7);
   9000			eep_config->no_scam = 0;
   9001			eep_config->adapter_info[0] = 0;
   9002			eep_config->adapter_info[1] = 0;
   9003			eep_config->adapter_info[2] = 0;
   9004			eep_config->adapter_info[3] = 0;
   9005			eep_config->adapter_info[4] = 0;
   9006			/* Indicate EEPROM-less board. */
   9007			eep_config->adapter_info[5] = 0xBB;
   9008		} else {
   9009			ASC_PRINT
   9010			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
   9011			write_eep = 1;
   9012			warn_code |= ASC_WARN_EEPROM_CHKSUM;
   9013		}
   9014	}
   9015	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
   9016	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
   9017	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
   9018	asc_dvc->start_motor = eep_config->start_motor;
   9019	asc_dvc->dvc_cntl = eep_config->cntl;
   9020	asc_dvc->no_scam = eep_config->no_scam;
   9021	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
   9022	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
   9023	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
   9024	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
   9025	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
   9026	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
   9027	if (!AscTestExternalLram(asc_dvc)) {
   9028		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
   9029		     ASC_IS_PCI_ULTRA)) {
   9030			eep_config->max_total_qng =
   9031			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
   9032			eep_config->max_tag_qng =
   9033			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
   9034		} else {
   9035			eep_config->cfg_msw |= 0x0800;
   9036			cfg_msw |= 0x0800;
   9037			AscSetChipCfgMsw(iop_base, cfg_msw);
   9038			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
   9039			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
   9040		}
   9041	} else {
   9042	}
   9043	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
   9044		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
   9045	}
   9046	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
   9047		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
   9048	}
   9049	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
   9050		eep_config->max_tag_qng = eep_config->max_total_qng;
   9051	}
   9052	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
   9053		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
   9054	}
   9055	asc_dvc->max_total_qng = eep_config->max_total_qng;
   9056	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
   9057	    eep_config->use_cmd_qng) {
   9058		eep_config->disc_enable = eep_config->use_cmd_qng;
   9059		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
   9060	}
   9061	ASC_EEP_SET_CHIP_ID(eep_config,
   9062			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
   9063	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
   9064	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
   9065	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
   9066		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
   9067	}
   9068
   9069	for (i = 0; i <= ASC_MAX_TID; i++) {
   9070		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
   9071		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
   9072		asc_dvc->cfg->sdtr_period_offset[i] =
   9073		    (uchar)(ASC_DEF_SDTR_OFFSET |
   9074			    (asc_dvc->min_sdtr_index << 4));
   9075	}
   9076	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
   9077	if (write_eep) {
   9078		if ((i = AscSetEEPConfig(iop_base, eep_config,
   9079				     asc_dvc->bus_type)) != 0) {
   9080			ASC_PRINT1
   9081			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
   9082			     i);
   9083		} else {
   9084			ASC_PRINT
   9085			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
   9086		}
   9087	}
   9088	return (warn_code);
   9089}
   9090
   9091static int AscInitGetConfig(struct Scsi_Host *shost)
   9092{
   9093	struct asc_board *board = shost_priv(shost);
   9094	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
   9095	unsigned short warn_code = 0;
   9096
   9097	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
   9098	if (asc_dvc->err_code != 0)
   9099		return asc_dvc->err_code;
   9100
   9101	if (AscFindSignature(asc_dvc->iop_base)) {
   9102		AscInitAscDvcVar(asc_dvc);
   9103		warn_code = AscInitFromEEP(asc_dvc);
   9104		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
   9105		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
   9106			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
   9107	} else {
   9108		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
   9109	}
   9110
   9111	switch (warn_code) {
   9112	case 0:	/* No error */
   9113		break;
   9114	case ASC_WARN_IO_PORT_ROTATE:
   9115		shost_printk(KERN_WARNING, shost, "I/O port address "
   9116				"modified\n");
   9117		break;
   9118	case ASC_WARN_AUTO_CONFIG:
   9119		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
   9120				"enabled\n");
   9121		break;
   9122	case ASC_WARN_EEPROM_CHKSUM:
   9123		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
   9124		break;
   9125	case ASC_WARN_IRQ_MODIFIED:
   9126		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
   9127		break;
   9128	case ASC_WARN_CMD_QNG_CONFLICT:
   9129		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
   9130				"disconnects\n");
   9131		break;
   9132	default:
   9133		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
   9134				warn_code);
   9135		break;
   9136	}
   9137
   9138	if (asc_dvc->err_code != 0)
   9139		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
   9140			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
   9141
   9142	return asc_dvc->err_code;
   9143}
   9144
   9145static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
   9146{
   9147	struct asc_board *board = shost_priv(shost);
   9148	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
   9149	PortAddr iop_base = asc_dvc->iop_base;
   9150	unsigned short cfg_msw;
   9151	unsigned short warn_code = 0;
   9152
   9153	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
   9154	if (asc_dvc->err_code != 0)
   9155		return asc_dvc->err_code;
   9156	if (!AscFindSignature(asc_dvc->iop_base)) {
   9157		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
   9158		return asc_dvc->err_code;
   9159	}
   9160
   9161	cfg_msw = AscGetChipCfgMsw(iop_base);
   9162	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
   9163		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
   9164		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
   9165		AscSetChipCfgMsw(iop_base, cfg_msw);
   9166	}
   9167	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
   9168	    asc_dvc->cfg->cmd_qng_enabled) {
   9169		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
   9170		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
   9171	}
   9172	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
   9173		warn_code |= ASC_WARN_AUTO_CONFIG;
   9174	}
   9175#ifdef CONFIG_PCI
   9176	if (asc_dvc->bus_type & ASC_IS_PCI) {
   9177		cfg_msw &= 0xFFC0;
   9178		AscSetChipCfgMsw(iop_base, cfg_msw);
   9179		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
   9180		} else {
   9181			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
   9182			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
   9183				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
   9184				asc_dvc->bug_fix_cntl |=
   9185				    ASC_BUG_FIX_ASYN_USE_SYN;
   9186			}
   9187		}
   9188	} else
   9189#endif /* CONFIG_PCI */
   9190	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
   9191	    asc_dvc->cfg->chip_scsi_id) {
   9192		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
   9193	}
   9194
   9195	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
   9196
   9197	switch (warn_code) {
   9198	case 0:	/* No error. */
   9199		break;
   9200	case ASC_WARN_IO_PORT_ROTATE:
   9201		shost_printk(KERN_WARNING, shost, "I/O port address "
   9202				"modified\n");
   9203		break;
   9204	case ASC_WARN_AUTO_CONFIG:
   9205		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
   9206				"enabled\n");
   9207		break;
   9208	case ASC_WARN_EEPROM_CHKSUM:
   9209		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
   9210		break;
   9211	case ASC_WARN_IRQ_MODIFIED:
   9212		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
   9213		break;
   9214	case ASC_WARN_CMD_QNG_CONFLICT:
   9215		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
   9216				"disconnects\n");
   9217		break;
   9218	default:
   9219		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
   9220				warn_code);
   9221		break;
   9222	}
   9223
   9224	if (asc_dvc->err_code != 0)
   9225		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
   9226			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
   9227
   9228	return asc_dvc->err_code;
   9229}
   9230
   9231/*
   9232 * EEPROM Configuration.
   9233 *
   9234 * All drivers should use this structure to set the default EEPROM
   9235 * configuration. The BIOS now uses this structure when it is built.
   9236 * Additional structure information can be found in a_condor.h where
   9237 * the structure is defined.
   9238 *
   9239 * The *_Field_IsChar structs are needed to correct for endianness.
   9240 * These values are read from the board 16 bits at a time directly
   9241 * into the structs. Because some fields are char, the values will be
   9242 * in the wrong order. The *_Field_IsChar tells when to flip the
   9243 * bytes. Data read and written to PCI memory is automatically swapped
   9244 * on big-endian platforms so char fields read as words are actually being
   9245 * unswapped on big-endian platforms.
   9246 */
   9247#ifdef CONFIG_PCI
   9248static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
   9249	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
   9250	0x0000,			/* cfg_msw */
   9251	0xFFFF,			/* disc_enable */
   9252	0xFFFF,			/* wdtr_able */
   9253	0xFFFF,			/* sdtr_able */
   9254	0xFFFF,			/* start_motor */
   9255	0xFFFF,			/* tagqng_able */
   9256	0xFFFF,			/* bios_scan */
   9257	0,			/* scam_tolerant */
   9258	7,			/* adapter_scsi_id */
   9259	0,			/* bios_boot_delay */
   9260	3,			/* scsi_reset_delay */
   9261	0,			/* bios_id_lun */
   9262	0,			/* termination */
   9263	0,			/* reserved1 */
   9264	0xFFE7,			/* bios_ctrl */
   9265	0xFFFF,			/* ultra_able */
   9266	0,			/* reserved2 */
   9267	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
   9268	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
   9269	0,			/* dvc_cntl */
   9270	0,			/* bug_fix */
   9271	0,			/* serial_number_word1 */
   9272	0,			/* serial_number_word2 */
   9273	0,			/* serial_number_word3 */
   9274	0,			/* check_sum */
   9275	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   9276	,			/* oem_name[16] */
   9277	0,			/* dvc_err_code */
   9278	0,			/* adv_err_code */
   9279	0,			/* adv_err_addr */
   9280	0,			/* saved_dvc_err_code */
   9281	0,			/* saved_adv_err_code */
   9282	0,			/* saved_adv_err_addr */
   9283	0			/* num_of_err */
   9284};
   9285
   9286static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
   9287	0,			/* cfg_lsw */
   9288	0,			/* cfg_msw */
   9289	0,			/* -disc_enable */
   9290	0,			/* wdtr_able */
   9291	0,			/* sdtr_able */
   9292	0,			/* start_motor */
   9293	0,			/* tagqng_able */
   9294	0,			/* bios_scan */
   9295	0,			/* scam_tolerant */
   9296	1,			/* adapter_scsi_id */
   9297	1,			/* bios_boot_delay */
   9298	1,			/* scsi_reset_delay */
   9299	1,			/* bios_id_lun */
   9300	1,			/* termination */
   9301	1,			/* reserved1 */
   9302	0,			/* bios_ctrl */
   9303	0,			/* ultra_able */
   9304	0,			/* reserved2 */
   9305	1,			/* max_host_qng */
   9306	1,			/* max_dvc_qng */
   9307	0,			/* dvc_cntl */
   9308	0,			/* bug_fix */
   9309	0,			/* serial_number_word1 */
   9310	0,			/* serial_number_word2 */
   9311	0,			/* serial_number_word3 */
   9312	0,			/* check_sum */
   9313	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
   9314	,			/* oem_name[16] */
   9315	0,			/* dvc_err_code */
   9316	0,			/* adv_err_code */
   9317	0,			/* adv_err_addr */
   9318	0,			/* saved_dvc_err_code */
   9319	0,			/* saved_adv_err_code */
   9320	0,			/* saved_adv_err_addr */
   9321	0			/* num_of_err */
   9322};
   9323
   9324static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
   9325	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
   9326	0x0000,			/* 01 cfg_msw */
   9327	0xFFFF,			/* 02 disc_enable */
   9328	0xFFFF,			/* 03 wdtr_able */
   9329	0x4444,			/* 04 sdtr_speed1 */
   9330	0xFFFF,			/* 05 start_motor */
   9331	0xFFFF,			/* 06 tagqng_able */
   9332	0xFFFF,			/* 07 bios_scan */
   9333	0,			/* 08 scam_tolerant */
   9334	7,			/* 09 adapter_scsi_id */
   9335	0,			/*    bios_boot_delay */
   9336	3,			/* 10 scsi_reset_delay */
   9337	0,			/*    bios_id_lun */
   9338	0,			/* 11 termination_se */
   9339	0,			/*    termination_lvd */
   9340	0xFFE7,			/* 12 bios_ctrl */
   9341	0x4444,			/* 13 sdtr_speed2 */
   9342	0x4444,			/* 14 sdtr_speed3 */
   9343	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
   9344	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
   9345	0,			/* 16 dvc_cntl */
   9346	0x4444,			/* 17 sdtr_speed4 */
   9347	0,			/* 18 serial_number_word1 */
   9348	0,			/* 19 serial_number_word2 */
   9349	0,			/* 20 serial_number_word3 */
   9350	0,			/* 21 check_sum */
   9351	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   9352	,			/* 22-29 oem_name[16] */
   9353	0,			/* 30 dvc_err_code */
   9354	0,			/* 31 adv_err_code */
   9355	0,			/* 32 adv_err_addr */
   9356	0,			/* 33 saved_dvc_err_code */
   9357	0,			/* 34 saved_adv_err_code */
   9358	0,			/* 35 saved_adv_err_addr */
   9359	0,			/* 36 reserved */
   9360	0,			/* 37 reserved */
   9361	0,			/* 38 reserved */
   9362	0,			/* 39 reserved */
   9363	0,			/* 40 reserved */
   9364	0,			/* 41 reserved */
   9365	0,			/* 42 reserved */
   9366	0,			/* 43 reserved */
   9367	0,			/* 44 reserved */
   9368	0,			/* 45 reserved */
   9369	0,			/* 46 reserved */
   9370	0,			/* 47 reserved */
   9371	0,			/* 48 reserved */
   9372	0,			/* 49 reserved */
   9373	0,			/* 50 reserved */
   9374	0,			/* 51 reserved */
   9375	0,			/* 52 reserved */
   9376	0,			/* 53 reserved */
   9377	0,			/* 54 reserved */
   9378	0,			/* 55 reserved */
   9379	0,			/* 56 cisptr_lsw */
   9380	0,			/* 57 cisprt_msw */
   9381	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
   9382	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
   9383	0,			/* 60 reserved */
   9384	0,			/* 61 reserved */
   9385	0,			/* 62 reserved */
   9386	0			/* 63 reserved */
   9387};
   9388
   9389static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
   9390	0,			/* 00 cfg_lsw */
   9391	0,			/* 01 cfg_msw */
   9392	0,			/* 02 disc_enable */
   9393	0,			/* 03 wdtr_able */
   9394	0,			/* 04 sdtr_speed1 */
   9395	0,			/* 05 start_motor */
   9396	0,			/* 06 tagqng_able */
   9397	0,			/* 07 bios_scan */
   9398	0,			/* 08 scam_tolerant */
   9399	1,			/* 09 adapter_scsi_id */
   9400	1,			/*    bios_boot_delay */
   9401	1,			/* 10 scsi_reset_delay */
   9402	1,			/*    bios_id_lun */
   9403	1,			/* 11 termination_se */
   9404	1,			/*    termination_lvd */
   9405	0,			/* 12 bios_ctrl */
   9406	0,			/* 13 sdtr_speed2 */
   9407	0,			/* 14 sdtr_speed3 */
   9408	1,			/* 15 max_host_qng */
   9409	1,			/*    max_dvc_qng */
   9410	0,			/* 16 dvc_cntl */
   9411	0,			/* 17 sdtr_speed4 */
   9412	0,			/* 18 serial_number_word1 */
   9413	0,			/* 19 serial_number_word2 */
   9414	0,			/* 20 serial_number_word3 */
   9415	0,			/* 21 check_sum */
   9416	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
   9417	,			/* 22-29 oem_name[16] */
   9418	0,			/* 30 dvc_err_code */
   9419	0,			/* 31 adv_err_code */
   9420	0,			/* 32 adv_err_addr */
   9421	0,			/* 33 saved_dvc_err_code */
   9422	0,			/* 34 saved_adv_err_code */
   9423	0,			/* 35 saved_adv_err_addr */
   9424	0,			/* 36 reserved */
   9425	0,			/* 37 reserved */
   9426	0,			/* 38 reserved */
   9427	0,			/* 39 reserved */
   9428	0,			/* 40 reserved */
   9429	0,			/* 41 reserved */
   9430	0,			/* 42 reserved */
   9431	0,			/* 43 reserved */
   9432	0,			/* 44 reserved */
   9433	0,			/* 45 reserved */
   9434	0,			/* 46 reserved */
   9435	0,			/* 47 reserved */
   9436	0,			/* 48 reserved */
   9437	0,			/* 49 reserved */
   9438	0,			/* 50 reserved */
   9439	0,			/* 51 reserved */
   9440	0,			/* 52 reserved */
   9441	0,			/* 53 reserved */
   9442	0,			/* 54 reserved */
   9443	0,			/* 55 reserved */
   9444	0,			/* 56 cisptr_lsw */
   9445	0,			/* 57 cisprt_msw */
   9446	0,			/* 58 subsysvid */
   9447	0,			/* 59 subsysid */
   9448	0,			/* 60 reserved */
   9449	0,			/* 61 reserved */
   9450	0,			/* 62 reserved */
   9451	0			/* 63 reserved */
   9452};
   9453
   9454static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
   9455	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
   9456	0x0000,			/* 01 cfg_msw */
   9457	0xFFFF,			/* 02 disc_enable */
   9458	0xFFFF,			/* 03 wdtr_able */
   9459	0x5555,			/* 04 sdtr_speed1 */
   9460	0xFFFF,			/* 05 start_motor */
   9461	0xFFFF,			/* 06 tagqng_able */
   9462	0xFFFF,			/* 07 bios_scan */
   9463	0,			/* 08 scam_tolerant */
   9464	7,			/* 09 adapter_scsi_id */
   9465	0,			/*    bios_boot_delay */
   9466	3,			/* 10 scsi_reset_delay */
   9467	0,			/*    bios_id_lun */
   9468	0,			/* 11 termination_se */
   9469	0,			/*    termination_lvd */
   9470	0xFFE7,			/* 12 bios_ctrl */
   9471	0x5555,			/* 13 sdtr_speed2 */
   9472	0x5555,			/* 14 sdtr_speed3 */
   9473	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
   9474	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
   9475	0,			/* 16 dvc_cntl */
   9476	0x5555,			/* 17 sdtr_speed4 */
   9477	0,			/* 18 serial_number_word1 */
   9478	0,			/* 19 serial_number_word2 */
   9479	0,			/* 20 serial_number_word3 */
   9480	0,			/* 21 check_sum */
   9481	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   9482	,			/* 22-29 oem_name[16] */
   9483	0,			/* 30 dvc_err_code */
   9484	0,			/* 31 adv_err_code */
   9485	0,			/* 32 adv_err_addr */
   9486	0,			/* 33 saved_dvc_err_code */
   9487	0,			/* 34 saved_adv_err_code */
   9488	0,			/* 35 saved_adv_err_addr */
   9489	0,			/* 36 reserved */
   9490	0,			/* 37 reserved */
   9491	0,			/* 38 reserved */
   9492	0,			/* 39 reserved */
   9493	0,			/* 40 reserved */
   9494	0,			/* 41 reserved */
   9495	0,			/* 42 reserved */
   9496	0,			/* 43 reserved */
   9497	0,			/* 44 reserved */
   9498	0,			/* 45 reserved */
   9499	0,			/* 46 reserved */
   9500	0,			/* 47 reserved */
   9501	0,			/* 48 reserved */
   9502	0,			/* 49 reserved */
   9503	0,			/* 50 reserved */
   9504	0,			/* 51 reserved */
   9505	0,			/* 52 reserved */
   9506	0,			/* 53 reserved */
   9507	0,			/* 54 reserved */
   9508	0,			/* 55 reserved */
   9509	0,			/* 56 cisptr_lsw */
   9510	0,			/* 57 cisprt_msw */
   9511	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
   9512	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
   9513	0,			/* 60 reserved */
   9514	0,			/* 61 reserved */
   9515	0,			/* 62 reserved */
   9516	0			/* 63 reserved */
   9517};
   9518
   9519static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
   9520	0,			/* 00 cfg_lsw */
   9521	0,			/* 01 cfg_msw */
   9522	0,			/* 02 disc_enable */
   9523	0,			/* 03 wdtr_able */
   9524	0,			/* 04 sdtr_speed1 */
   9525	0,			/* 05 start_motor */
   9526	0,			/* 06 tagqng_able */
   9527	0,			/* 07 bios_scan */
   9528	0,			/* 08 scam_tolerant */
   9529	1,			/* 09 adapter_scsi_id */
   9530	1,			/*    bios_boot_delay */
   9531	1,			/* 10 scsi_reset_delay */
   9532	1,			/*    bios_id_lun */
   9533	1,			/* 11 termination_se */
   9534	1,			/*    termination_lvd */
   9535	0,			/* 12 bios_ctrl */
   9536	0,			/* 13 sdtr_speed2 */
   9537	0,			/* 14 sdtr_speed3 */
   9538	1,			/* 15 max_host_qng */
   9539	1,			/*    max_dvc_qng */
   9540	0,			/* 16 dvc_cntl */
   9541	0,			/* 17 sdtr_speed4 */
   9542	0,			/* 18 serial_number_word1 */
   9543	0,			/* 19 serial_number_word2 */
   9544	0,			/* 20 serial_number_word3 */
   9545	0,			/* 21 check_sum */
   9546	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
   9547	,			/* 22-29 oem_name[16] */
   9548	0,			/* 30 dvc_err_code */
   9549	0,			/* 31 adv_err_code */
   9550	0,			/* 32 adv_err_addr */
   9551	0,			/* 33 saved_dvc_err_code */
   9552	0,			/* 34 saved_adv_err_code */
   9553	0,			/* 35 saved_adv_err_addr */
   9554	0,			/* 36 reserved */
   9555	0,			/* 37 reserved */
   9556	0,			/* 38 reserved */
   9557	0,			/* 39 reserved */
   9558	0,			/* 40 reserved */
   9559	0,			/* 41 reserved */
   9560	0,			/* 42 reserved */
   9561	0,			/* 43 reserved */
   9562	0,			/* 44 reserved */
   9563	0,			/* 45 reserved */
   9564	0,			/* 46 reserved */
   9565	0,			/* 47 reserved */
   9566	0,			/* 48 reserved */
   9567	0,			/* 49 reserved */
   9568	0,			/* 50 reserved */
   9569	0,			/* 51 reserved */
   9570	0,			/* 52 reserved */
   9571	0,			/* 53 reserved */
   9572	0,			/* 54 reserved */
   9573	0,			/* 55 reserved */
   9574	0,			/* 56 cisptr_lsw */
   9575	0,			/* 57 cisprt_msw */
   9576	0,			/* 58 subsysvid */
   9577	0,			/* 59 subsysid */
   9578	0,			/* 60 reserved */
   9579	0,			/* 61 reserved */
   9580	0,			/* 62 reserved */
   9581	0			/* 63 reserved */
   9582};
   9583
   9584/*
   9585 * Wait for EEPROM command to complete
   9586 */
   9587static void AdvWaitEEPCmd(AdvPortAddr iop_base)
   9588{
   9589	int eep_delay_ms;
   9590
   9591	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
   9592		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
   9593		    ASC_EEP_CMD_DONE) {
   9594			break;
   9595		}
   9596		mdelay(1);
   9597	}
   9598	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
   9599	    0)
   9600		BUG();
   9601}
   9602
   9603/*
   9604 * Read the EEPROM from specified location
   9605 */
   9606static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
   9607{
   9608	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9609			     ASC_EEP_CMD_READ | eep_word_addr);
   9610	AdvWaitEEPCmd(iop_base);
   9611	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
   9612}
   9613
   9614/*
   9615 * Write the EEPROM from 'cfg_buf'.
   9616 */
   9617static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
   9618				ADVEEP_3550_CONFIG *cfg_buf)
   9619{
   9620	ushort *wbuf;
   9621	ushort addr, chksum;
   9622	ushort *charfields;
   9623
   9624	wbuf = (ushort *)cfg_buf;
   9625	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
   9626	chksum = 0;
   9627
   9628	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   9629	AdvWaitEEPCmd(iop_base);
   9630
   9631	/*
   9632	 * Write EEPROM from word 0 to word 20.
   9633	 */
   9634	for (addr = ADV_EEP_DVC_CFG_BEGIN;
   9635	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
   9636		ushort word;
   9637
   9638		if (*charfields++) {
   9639			word = cpu_to_le16(*wbuf);
   9640		} else {
   9641			word = *wbuf;
   9642		}
   9643		chksum += *wbuf;	/* Checksum is calculated from word values. */
   9644		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9645		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9646				     ASC_EEP_CMD_WRITE | addr);
   9647		AdvWaitEEPCmd(iop_base);
   9648		mdelay(ADV_EEP_DELAY_MS);
   9649	}
   9650
   9651	/*
   9652	 * Write EEPROM checksum at word 21.
   9653	 */
   9654	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
   9655	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
   9656	AdvWaitEEPCmd(iop_base);
   9657	wbuf++;
   9658	charfields++;
   9659
   9660	/*
   9661	 * Write EEPROM OEM name at words 22 to 29.
   9662	 */
   9663	for (addr = ADV_EEP_DVC_CTL_BEGIN;
   9664	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   9665		ushort word;
   9666
   9667		if (*charfields++) {
   9668			word = cpu_to_le16(*wbuf);
   9669		} else {
   9670			word = *wbuf;
   9671		}
   9672		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9673		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9674				     ASC_EEP_CMD_WRITE | addr);
   9675		AdvWaitEEPCmd(iop_base);
   9676	}
   9677	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
   9678	AdvWaitEEPCmd(iop_base);
   9679}
   9680
   9681/*
   9682 * Write the EEPROM from 'cfg_buf'.
   9683 */
   9684static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
   9685				   ADVEEP_38C0800_CONFIG *cfg_buf)
   9686{
   9687	ushort *wbuf;
   9688	ushort *charfields;
   9689	ushort addr, chksum;
   9690
   9691	wbuf = (ushort *)cfg_buf;
   9692	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
   9693	chksum = 0;
   9694
   9695	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   9696	AdvWaitEEPCmd(iop_base);
   9697
   9698	/*
   9699	 * Write EEPROM from word 0 to word 20.
   9700	 */
   9701	for (addr = ADV_EEP_DVC_CFG_BEGIN;
   9702	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
   9703		ushort word;
   9704
   9705		if (*charfields++) {
   9706			word = cpu_to_le16(*wbuf);
   9707		} else {
   9708			word = *wbuf;
   9709		}
   9710		chksum += *wbuf;	/* Checksum is calculated from word values. */
   9711		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9712		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9713				     ASC_EEP_CMD_WRITE | addr);
   9714		AdvWaitEEPCmd(iop_base);
   9715		mdelay(ADV_EEP_DELAY_MS);
   9716	}
   9717
   9718	/*
   9719	 * Write EEPROM checksum at word 21.
   9720	 */
   9721	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
   9722	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
   9723	AdvWaitEEPCmd(iop_base);
   9724	wbuf++;
   9725	charfields++;
   9726
   9727	/*
   9728	 * Write EEPROM OEM name at words 22 to 29.
   9729	 */
   9730	for (addr = ADV_EEP_DVC_CTL_BEGIN;
   9731	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   9732		ushort word;
   9733
   9734		if (*charfields++) {
   9735			word = cpu_to_le16(*wbuf);
   9736		} else {
   9737			word = *wbuf;
   9738		}
   9739		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9740		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9741				     ASC_EEP_CMD_WRITE | addr);
   9742		AdvWaitEEPCmd(iop_base);
   9743	}
   9744	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
   9745	AdvWaitEEPCmd(iop_base);
   9746}
   9747
   9748/*
   9749 * Write the EEPROM from 'cfg_buf'.
   9750 */
   9751static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
   9752				   ADVEEP_38C1600_CONFIG *cfg_buf)
   9753{
   9754	ushort *wbuf;
   9755	ushort *charfields;
   9756	ushort addr, chksum;
   9757
   9758	wbuf = (ushort *)cfg_buf;
   9759	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
   9760	chksum = 0;
   9761
   9762	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   9763	AdvWaitEEPCmd(iop_base);
   9764
   9765	/*
   9766	 * Write EEPROM from word 0 to word 20.
   9767	 */
   9768	for (addr = ADV_EEP_DVC_CFG_BEGIN;
   9769	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
   9770		ushort word;
   9771
   9772		if (*charfields++) {
   9773			word = cpu_to_le16(*wbuf);
   9774		} else {
   9775			word = *wbuf;
   9776		}
   9777		chksum += *wbuf;	/* Checksum is calculated from word values. */
   9778		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9779		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9780				     ASC_EEP_CMD_WRITE | addr);
   9781		AdvWaitEEPCmd(iop_base);
   9782		mdelay(ADV_EEP_DELAY_MS);
   9783	}
   9784
   9785	/*
   9786	 * Write EEPROM checksum at word 21.
   9787	 */
   9788	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
   9789	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
   9790	AdvWaitEEPCmd(iop_base);
   9791	wbuf++;
   9792	charfields++;
   9793
   9794	/*
   9795	 * Write EEPROM OEM name at words 22 to 29.
   9796	 */
   9797	for (addr = ADV_EEP_DVC_CTL_BEGIN;
   9798	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   9799		ushort word;
   9800
   9801		if (*charfields++) {
   9802			word = cpu_to_le16(*wbuf);
   9803		} else {
   9804			word = *wbuf;
   9805		}
   9806		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
   9807		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
   9808				     ASC_EEP_CMD_WRITE | addr);
   9809		AdvWaitEEPCmd(iop_base);
   9810	}
   9811	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
   9812	AdvWaitEEPCmd(iop_base);
   9813}
   9814
   9815/*
   9816 * Read EEPROM configuration into the specified buffer.
   9817 *
   9818 * Return a checksum based on the EEPROM configuration read.
   9819 */
   9820static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
   9821				  ADVEEP_3550_CONFIG *cfg_buf)
   9822{
   9823	ushort wval, chksum;
   9824	ushort *wbuf;
   9825	int eep_addr;
   9826	ushort *charfields;
   9827
   9828	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
   9829	wbuf = (ushort *)cfg_buf;
   9830	chksum = 0;
   9831
   9832	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
   9833	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
   9834		wval = AdvReadEEPWord(iop_base, eep_addr);
   9835		chksum += wval;	/* Checksum is calculated from word values. */
   9836		if (*charfields++) {
   9837			*wbuf = le16_to_cpu(wval);
   9838		} else {
   9839			*wbuf = wval;
   9840		}
   9841	}
   9842	/* Read checksum word. */
   9843	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9844	wbuf++;
   9845	charfields++;
   9846
   9847	/* Read rest of EEPROM not covered by the checksum. */
   9848	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
   9849	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
   9850		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9851		if (*charfields++) {
   9852			*wbuf = le16_to_cpu(*wbuf);
   9853		}
   9854	}
   9855	return chksum;
   9856}
   9857
   9858/*
   9859 * Read EEPROM configuration into the specified buffer.
   9860 *
   9861 * Return a checksum based on the EEPROM configuration read.
   9862 */
   9863static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
   9864				     ADVEEP_38C0800_CONFIG *cfg_buf)
   9865{
   9866	ushort wval, chksum;
   9867	ushort *wbuf;
   9868	int eep_addr;
   9869	ushort *charfields;
   9870
   9871	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
   9872	wbuf = (ushort *)cfg_buf;
   9873	chksum = 0;
   9874
   9875	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
   9876	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
   9877		wval = AdvReadEEPWord(iop_base, eep_addr);
   9878		chksum += wval;	/* Checksum is calculated from word values. */
   9879		if (*charfields++) {
   9880			*wbuf = le16_to_cpu(wval);
   9881		} else {
   9882			*wbuf = wval;
   9883		}
   9884	}
   9885	/* Read checksum word. */
   9886	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9887	wbuf++;
   9888	charfields++;
   9889
   9890	/* Read rest of EEPROM not covered by the checksum. */
   9891	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
   9892	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
   9893		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9894		if (*charfields++) {
   9895			*wbuf = le16_to_cpu(*wbuf);
   9896		}
   9897	}
   9898	return chksum;
   9899}
   9900
   9901/*
   9902 * Read EEPROM configuration into the specified buffer.
   9903 *
   9904 * Return a checksum based on the EEPROM configuration read.
   9905 */
   9906static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
   9907				     ADVEEP_38C1600_CONFIG *cfg_buf)
   9908{
   9909	ushort wval, chksum;
   9910	ushort *wbuf;
   9911	int eep_addr;
   9912	ushort *charfields;
   9913
   9914	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
   9915	wbuf = (ushort *)cfg_buf;
   9916	chksum = 0;
   9917
   9918	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
   9919	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
   9920		wval = AdvReadEEPWord(iop_base, eep_addr);
   9921		chksum += wval;	/* Checksum is calculated from word values. */
   9922		if (*charfields++) {
   9923			*wbuf = le16_to_cpu(wval);
   9924		} else {
   9925			*wbuf = wval;
   9926		}
   9927	}
   9928	/* Read checksum word. */
   9929	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9930	wbuf++;
   9931	charfields++;
   9932
   9933	/* Read rest of EEPROM not covered by the checksum. */
   9934	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
   9935	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
   9936		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
   9937		if (*charfields++) {
   9938			*wbuf = le16_to_cpu(*wbuf);
   9939		}
   9940	}
   9941	return chksum;
   9942}
   9943
   9944/*
   9945 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   9946 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   9947 * all of this is done.
   9948 *
   9949 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
   9950 *
   9951 * For a non-fatal error return a warning code. If there are no warnings
   9952 * then 0 is returned.
   9953 *
   9954 * Note: Chip is stopped on entry.
   9955 */
   9956static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
   9957{
   9958	AdvPortAddr iop_base;
   9959	ushort warn_code;
   9960	ADVEEP_3550_CONFIG eep_config;
   9961
   9962	iop_base = asc_dvc->iop_base;
   9963
   9964	warn_code = 0;
   9965
   9966	/*
   9967	 * Read the board's EEPROM configuration.
   9968	 *
   9969	 * Set default values if a bad checksum is found.
   9970	 */
   9971	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
   9972		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   9973
   9974		/*
   9975		 * Set EEPROM default values.
   9976		 */
   9977		memcpy(&eep_config, &Default_3550_EEPROM_Config,
   9978			sizeof(ADVEEP_3550_CONFIG));
   9979
   9980		/*
   9981		 * Assume the 6 byte board serial number that was read from
   9982		 * EEPROM is correct even if the EEPROM checksum failed.
   9983		 */
   9984		eep_config.serial_number_word3 =
   9985		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
   9986
   9987		eep_config.serial_number_word2 =
   9988		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
   9989
   9990		eep_config.serial_number_word1 =
   9991		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
   9992
   9993		AdvSet3550EEPConfig(iop_base, &eep_config);
   9994	}
   9995	/*
   9996	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   9997	 * EEPROM configuration that was read.
   9998	 *
   9999	 * This is the mapping of EEPROM fields to Adv Library fields.
  10000	 */
  10001	asc_dvc->wdtr_able = eep_config.wdtr_able;
  10002	asc_dvc->sdtr_able = eep_config.sdtr_able;
  10003	asc_dvc->ultra_able = eep_config.ultra_able;
  10004	asc_dvc->tagqng_able = eep_config.tagqng_able;
  10005	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
  10006	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10007	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10008	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
  10009	asc_dvc->start_motor = eep_config.start_motor;
  10010	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
  10011	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
  10012	asc_dvc->no_scam = eep_config.scam_tolerant;
  10013	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
  10014	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
  10015	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
  10016
  10017	/*
  10018	 * Set the host maximum queuing (max. 253, min. 16) and the per device
  10019	 * maximum queuing (max. 63, min. 4).
  10020	 */
  10021	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
  10022		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10023	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
  10024		/* If the value is zero, assume it is uninitialized. */
  10025		if (eep_config.max_host_qng == 0) {
  10026			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10027		} else {
  10028			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
  10029		}
  10030	}
  10031
  10032	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
  10033		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10034	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
  10035		/* If the value is zero, assume it is uninitialized. */
  10036		if (eep_config.max_dvc_qng == 0) {
  10037			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10038		} else {
  10039			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
  10040		}
  10041	}
  10042
  10043	/*
  10044	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
  10045	 * set 'max_dvc_qng' to 'max_host_qng'.
  10046	 */
  10047	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  10048		eep_config.max_dvc_qng = eep_config.max_host_qng;
  10049	}
  10050
  10051	/*
  10052	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
  10053	 * values based on possibly adjusted EEPROM values.
  10054	 */
  10055	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10056	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10057
  10058	/*
  10059	 * If the EEPROM 'termination' field is set to automatic (0), then set
  10060	 * the ADV_DVC_CFG 'termination' field to automatic also.
  10061	 *
  10062	 * If the termination is specified with a non-zero 'termination'
  10063	 * value check that a legal value is set and set the ADV_DVC_CFG
  10064	 * 'termination' field appropriately.
  10065	 */
  10066	if (eep_config.termination == 0) {
  10067		asc_dvc->cfg->termination = 0;	/* auto termination */
  10068	} else {
  10069		/* Enable manual control with low off / high off. */
  10070		if (eep_config.termination == 1) {
  10071			asc_dvc->cfg->termination = TERM_CTL_SEL;
  10072
  10073			/* Enable manual control with low off / high on. */
  10074		} else if (eep_config.termination == 2) {
  10075			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
  10076
  10077			/* Enable manual control with low on / high on. */
  10078		} else if (eep_config.termination == 3) {
  10079			asc_dvc->cfg->termination =
  10080			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
  10081		} else {
  10082			/*
  10083			 * The EEPROM 'termination' field contains a bad value. Use
  10084			 * automatic termination instead.
  10085			 */
  10086			asc_dvc->cfg->termination = 0;
  10087			warn_code |= ASC_WARN_EEPROM_TERMINATION;
  10088		}
  10089	}
  10090
  10091	return warn_code;
  10092}
  10093
  10094/*
  10095 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
  10096 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
  10097 * all of this is done.
  10098 *
  10099 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
  10100 *
  10101 * For a non-fatal error return a warning code. If there are no warnings
  10102 * then 0 is returned.
  10103 *
  10104 * Note: Chip is stopped on entry.
  10105 */
  10106static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
  10107{
  10108	AdvPortAddr iop_base;
  10109	ushort warn_code;
  10110	ADVEEP_38C0800_CONFIG eep_config;
  10111	uchar tid, termination;
  10112	ushort sdtr_speed = 0;
  10113
  10114	iop_base = asc_dvc->iop_base;
  10115
  10116	warn_code = 0;
  10117
  10118	/*
  10119	 * Read the board's EEPROM configuration.
  10120	 *
  10121	 * Set default values if a bad checksum is found.
  10122	 */
  10123	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
  10124	    eep_config.check_sum) {
  10125		warn_code |= ASC_WARN_EEPROM_CHKSUM;
  10126
  10127		/*
  10128		 * Set EEPROM default values.
  10129		 */
  10130		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
  10131			sizeof(ADVEEP_38C0800_CONFIG));
  10132
  10133		/*
  10134		 * Assume the 6 byte board serial number that was read from
  10135		 * EEPROM is correct even if the EEPROM checksum failed.
  10136		 */
  10137		eep_config.serial_number_word3 =
  10138		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
  10139
  10140		eep_config.serial_number_word2 =
  10141		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
  10142
  10143		eep_config.serial_number_word1 =
  10144		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
  10145
  10146		AdvSet38C0800EEPConfig(iop_base, &eep_config);
  10147	}
  10148	/*
  10149	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
  10150	 * EEPROM configuration that was read.
  10151	 *
  10152	 * This is the mapping of EEPROM fields to Adv Library fields.
  10153	 */
  10154	asc_dvc->wdtr_able = eep_config.wdtr_able;
  10155	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
  10156	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
  10157	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
  10158	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
  10159	asc_dvc->tagqng_able = eep_config.tagqng_able;
  10160	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
  10161	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10162	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10163	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
  10164	asc_dvc->start_motor = eep_config.start_motor;
  10165	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
  10166	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
  10167	asc_dvc->no_scam = eep_config.scam_tolerant;
  10168	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
  10169	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
  10170	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
  10171
  10172	/*
  10173	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
  10174	 * are set, then set an 'sdtr_able' bit for it.
  10175	 */
  10176	asc_dvc->sdtr_able = 0;
  10177	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
  10178		if (tid == 0) {
  10179			sdtr_speed = asc_dvc->sdtr_speed1;
  10180		} else if (tid == 4) {
  10181			sdtr_speed = asc_dvc->sdtr_speed2;
  10182		} else if (tid == 8) {
  10183			sdtr_speed = asc_dvc->sdtr_speed3;
  10184		} else if (tid == 12) {
  10185			sdtr_speed = asc_dvc->sdtr_speed4;
  10186		}
  10187		if (sdtr_speed & ADV_MAX_TID) {
  10188			asc_dvc->sdtr_able |= (1 << tid);
  10189		}
  10190		sdtr_speed >>= 4;
  10191	}
  10192
  10193	/*
  10194	 * Set the host maximum queuing (max. 253, min. 16) and the per device
  10195	 * maximum queuing (max. 63, min. 4).
  10196	 */
  10197	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
  10198		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10199	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
  10200		/* If the value is zero, assume it is uninitialized. */
  10201		if (eep_config.max_host_qng == 0) {
  10202			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10203		} else {
  10204			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
  10205		}
  10206	}
  10207
  10208	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
  10209		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10210	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
  10211		/* If the value is zero, assume it is uninitialized. */
  10212		if (eep_config.max_dvc_qng == 0) {
  10213			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10214		} else {
  10215			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
  10216		}
  10217	}
  10218
  10219	/*
  10220	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
  10221	 * set 'max_dvc_qng' to 'max_host_qng'.
  10222	 */
  10223	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  10224		eep_config.max_dvc_qng = eep_config.max_host_qng;
  10225	}
  10226
  10227	/*
  10228	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
  10229	 * values based on possibly adjusted EEPROM values.
  10230	 */
  10231	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10232	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10233
  10234	/*
  10235	 * If the EEPROM 'termination' field is set to automatic (0), then set
  10236	 * the ADV_DVC_CFG 'termination' field to automatic also.
  10237	 *
  10238	 * If the termination is specified with a non-zero 'termination'
  10239	 * value check that a legal value is set and set the ADV_DVC_CFG
  10240	 * 'termination' field appropriately.
  10241	 */
  10242	if (eep_config.termination_se == 0) {
  10243		termination = 0;	/* auto termination for SE */
  10244	} else {
  10245		/* Enable manual control with low off / high off. */
  10246		if (eep_config.termination_se == 1) {
  10247			termination = 0;
  10248
  10249			/* Enable manual control with low off / high on. */
  10250		} else if (eep_config.termination_se == 2) {
  10251			termination = TERM_SE_HI;
  10252
  10253			/* Enable manual control with low on / high on. */
  10254		} else if (eep_config.termination_se == 3) {
  10255			termination = TERM_SE;
  10256		} else {
  10257			/*
  10258			 * The EEPROM 'termination_se' field contains a bad value.
  10259			 * Use automatic termination instead.
  10260			 */
  10261			termination = 0;
  10262			warn_code |= ASC_WARN_EEPROM_TERMINATION;
  10263		}
  10264	}
  10265
  10266	if (eep_config.termination_lvd == 0) {
  10267		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
  10268	} else {
  10269		/* Enable manual control with low off / high off. */
  10270		if (eep_config.termination_lvd == 1) {
  10271			asc_dvc->cfg->termination = termination;
  10272
  10273			/* Enable manual control with low off / high on. */
  10274		} else if (eep_config.termination_lvd == 2) {
  10275			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
  10276
  10277			/* Enable manual control with low on / high on. */
  10278		} else if (eep_config.termination_lvd == 3) {
  10279			asc_dvc->cfg->termination = termination | TERM_LVD;
  10280		} else {
  10281			/*
  10282			 * The EEPROM 'termination_lvd' field contains a bad value.
  10283			 * Use automatic termination instead.
  10284			 */
  10285			asc_dvc->cfg->termination = termination;
  10286			warn_code |= ASC_WARN_EEPROM_TERMINATION;
  10287		}
  10288	}
  10289
  10290	return warn_code;
  10291}
  10292
  10293/*
  10294 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
  10295 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
  10296 * all of this is done.
  10297 *
  10298 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
  10299 *
  10300 * For a non-fatal error return a warning code. If there are no warnings
  10301 * then 0 is returned.
  10302 *
  10303 * Note: Chip is stopped on entry.
  10304 */
  10305static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
  10306{
  10307	AdvPortAddr iop_base;
  10308	ushort warn_code;
  10309	ADVEEP_38C1600_CONFIG eep_config;
  10310	uchar tid, termination;
  10311	ushort sdtr_speed = 0;
  10312
  10313	iop_base = asc_dvc->iop_base;
  10314
  10315	warn_code = 0;
  10316
  10317	/*
  10318	 * Read the board's EEPROM configuration.
  10319	 *
  10320	 * Set default values if a bad checksum is found.
  10321	 */
  10322	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
  10323	    eep_config.check_sum) {
  10324		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
  10325		warn_code |= ASC_WARN_EEPROM_CHKSUM;
  10326
  10327		/*
  10328		 * Set EEPROM default values.
  10329		 */
  10330		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
  10331			sizeof(ADVEEP_38C1600_CONFIG));
  10332
  10333		if (PCI_FUNC(pdev->devfn) != 0) {
  10334			u8 ints;
  10335			/*
  10336			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
  10337			 * and old Mac system booting problem. The Expansion
  10338			 * ROM must be disabled in Function 1 for these systems
  10339			 */
  10340			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
  10341			/*
  10342			 * Clear the INTAB (bit 11) if the GPIO 0 input
  10343			 * indicates the Function 1 interrupt line is wired
  10344			 * to INTB.
  10345			 *
  10346			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
  10347			 *   1 - Function 1 interrupt line wired to INT A.
  10348			 *   0 - Function 1 interrupt line wired to INT B.
  10349			 *
  10350			 * Note: Function 0 is always wired to INTA.
  10351			 * Put all 5 GPIO bits in input mode and then read
  10352			 * their input values.
  10353			 */
  10354			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
  10355			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
  10356			if ((ints & 0x01) == 0)
  10357				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
  10358		}
  10359
  10360		/*
  10361		 * Assume the 6 byte board serial number that was read from
  10362		 * EEPROM is correct even if the EEPROM checksum failed.
  10363		 */
  10364		eep_config.serial_number_word3 =
  10365			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
  10366		eep_config.serial_number_word2 =
  10367			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
  10368		eep_config.serial_number_word1 =
  10369			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
  10370
  10371		AdvSet38C1600EEPConfig(iop_base, &eep_config);
  10372	}
  10373
  10374	/*
  10375	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
  10376	 * EEPROM configuration that was read.
  10377	 *
  10378	 * This is the mapping of EEPROM fields to Adv Library fields.
  10379	 */
  10380	asc_dvc->wdtr_able = eep_config.wdtr_able;
  10381	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
  10382	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
  10383	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
  10384	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
  10385	asc_dvc->ppr_able = 0;
  10386	asc_dvc->tagqng_able = eep_config.tagqng_able;
  10387	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
  10388	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10389	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10390	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
  10391	asc_dvc->start_motor = eep_config.start_motor;
  10392	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
  10393	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
  10394	asc_dvc->no_scam = eep_config.scam_tolerant;
  10395
  10396	/*
  10397	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
  10398	 * are set, then set an 'sdtr_able' bit for it.
  10399	 */
  10400	asc_dvc->sdtr_able = 0;
  10401	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
  10402		if (tid == 0) {
  10403			sdtr_speed = asc_dvc->sdtr_speed1;
  10404		} else if (tid == 4) {
  10405			sdtr_speed = asc_dvc->sdtr_speed2;
  10406		} else if (tid == 8) {
  10407			sdtr_speed = asc_dvc->sdtr_speed3;
  10408		} else if (tid == 12) {
  10409			sdtr_speed = asc_dvc->sdtr_speed4;
  10410		}
  10411		if (sdtr_speed & ASC_MAX_TID) {
  10412			asc_dvc->sdtr_able |= (1 << tid);
  10413		}
  10414		sdtr_speed >>= 4;
  10415	}
  10416
  10417	/*
  10418	 * Set the host maximum queuing (max. 253, min. 16) and the per device
  10419	 * maximum queuing (max. 63, min. 4).
  10420	 */
  10421	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
  10422		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10423	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
  10424		/* If the value is zero, assume it is uninitialized. */
  10425		if (eep_config.max_host_qng == 0) {
  10426			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
  10427		} else {
  10428			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
  10429		}
  10430	}
  10431
  10432	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
  10433		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10434	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
  10435		/* If the value is zero, assume it is uninitialized. */
  10436		if (eep_config.max_dvc_qng == 0) {
  10437			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
  10438		} else {
  10439			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
  10440		}
  10441	}
  10442
  10443	/*
  10444	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
  10445	 * set 'max_dvc_qng' to 'max_host_qng'.
  10446	 */
  10447	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  10448		eep_config.max_dvc_qng = eep_config.max_host_qng;
  10449	}
  10450
  10451	/*
  10452	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
  10453	 * values based on possibly adjusted EEPROM values.
  10454	 */
  10455	asc_dvc->max_host_qng = eep_config.max_host_qng;
  10456	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
  10457
  10458	/*
  10459	 * If the EEPROM 'termination' field is set to automatic (0), then set
  10460	 * the ASC_DVC_CFG 'termination' field to automatic also.
  10461	 *
  10462	 * If the termination is specified with a non-zero 'termination'
  10463	 * value check that a legal value is set and set the ASC_DVC_CFG
  10464	 * 'termination' field appropriately.
  10465	 */
  10466	if (eep_config.termination_se == 0) {
  10467		termination = 0;	/* auto termination for SE */
  10468	} else {
  10469		/* Enable manual control with low off / high off. */
  10470		if (eep_config.termination_se == 1) {
  10471			termination = 0;
  10472
  10473			/* Enable manual control with low off / high on. */
  10474		} else if (eep_config.termination_se == 2) {
  10475			termination = TERM_SE_HI;
  10476
  10477			/* Enable manual control with low on / high on. */
  10478		} else if (eep_config.termination_se == 3) {
  10479			termination = TERM_SE;
  10480		} else {
  10481			/*
  10482			 * The EEPROM 'termination_se' field contains a bad value.
  10483			 * Use automatic termination instead.
  10484			 */
  10485			termination = 0;
  10486			warn_code |= ASC_WARN_EEPROM_TERMINATION;
  10487		}
  10488	}
  10489
  10490	if (eep_config.termination_lvd == 0) {
  10491		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
  10492	} else {
  10493		/* Enable manual control with low off / high off. */
  10494		if (eep_config.termination_lvd == 1) {
  10495			asc_dvc->cfg->termination = termination;
  10496
  10497			/* Enable manual control with low off / high on. */
  10498		} else if (eep_config.termination_lvd == 2) {
  10499			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
  10500
  10501			/* Enable manual control with low on / high on. */
  10502		} else if (eep_config.termination_lvd == 3) {
  10503			asc_dvc->cfg->termination = termination | TERM_LVD;
  10504		} else {
  10505			/*
  10506			 * The EEPROM 'termination_lvd' field contains a bad value.
  10507			 * Use automatic termination instead.
  10508			 */
  10509			asc_dvc->cfg->termination = termination;
  10510			warn_code |= ASC_WARN_EEPROM_TERMINATION;
  10511		}
  10512	}
  10513
  10514	return warn_code;
  10515}
  10516
  10517/*
  10518 * Initialize the ADV_DVC_VAR structure.
  10519 *
  10520 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
  10521 *
  10522 * For a non-fatal error return a warning code. If there are no warnings
  10523 * then 0 is returned.
  10524 */
  10525static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
  10526{
  10527	struct asc_board *board = shost_priv(shost);
  10528	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
  10529	unsigned short warn_code = 0;
  10530	AdvPortAddr iop_base = asc_dvc->iop_base;
  10531	u16 cmd;
  10532	int status;
  10533
  10534	asc_dvc->err_code = 0;
  10535
  10536	/*
  10537	 * Save the state of the PCI Configuration Command Register
  10538	 * "Parity Error Response Control" Bit. If the bit is clear (0),
  10539	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
  10540	 * DMA parity errors.
  10541	 */
  10542	asc_dvc->cfg->control_flag = 0;
  10543	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
  10544	if ((cmd & PCI_COMMAND_PARITY) == 0)
  10545		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
  10546
  10547	asc_dvc->cfg->chip_version =
  10548	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
  10549
  10550	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
  10551		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
  10552		 (ushort)ADV_CHIP_ID_BYTE);
  10553
  10554	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
  10555		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
  10556		 (ushort)ADV_CHIP_ID_WORD);
  10557
  10558	/*
  10559	 * Reset the chip to start and allow register writes.
  10560	 */
  10561	if (AdvFindSignature(iop_base) == 0) {
  10562		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
  10563		return ADV_ERROR;
  10564	} else {
  10565		/*
  10566		 * The caller must set 'chip_type' to a valid setting.
  10567		 */
  10568		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
  10569		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
  10570		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
  10571			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
  10572			return ADV_ERROR;
  10573		}
  10574
  10575		/*
  10576		 * Reset Chip.
  10577		 */
  10578		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
  10579				     ADV_CTRL_REG_CMD_RESET);
  10580		mdelay(100);
  10581		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
  10582				     ADV_CTRL_REG_CMD_WR_IO_REG);
  10583
  10584		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
  10585			status = AdvInitFrom38C1600EEP(asc_dvc);
  10586		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
  10587			status = AdvInitFrom38C0800EEP(asc_dvc);
  10588		} else {
  10589			status = AdvInitFrom3550EEP(asc_dvc);
  10590		}
  10591		warn_code |= status;
  10592	}
  10593
  10594	if (warn_code != 0)
  10595		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
  10596
  10597	if (asc_dvc->err_code)
  10598		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
  10599				asc_dvc->err_code);
  10600
  10601	return asc_dvc->err_code;
  10602}
  10603#endif
  10604
  10605static struct scsi_host_template advansys_template = {
  10606	.proc_name = DRV_NAME,
  10607#ifdef CONFIG_PROC_FS
  10608	.show_info = advansys_show_info,
  10609#endif
  10610	.name = DRV_NAME,
  10611	.info = advansys_info,
  10612	.queuecommand = advansys_queuecommand,
  10613	.eh_host_reset_handler = advansys_reset,
  10614	.bios_param = advansys_biosparam,
  10615	.slave_configure = advansys_slave_configure,
  10616	.cmd_size = sizeof(struct advansys_cmd),
  10617};
  10618
  10619static int advansys_wide_init_chip(struct Scsi_Host *shost)
  10620{
  10621	struct asc_board *board = shost_priv(shost);
  10622	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
  10623	size_t sgblk_pool_size;
  10624	int warn_code, err_code;
  10625
  10626	/*
  10627	 * Allocate buffer carrier structures. The total size
  10628	 * is about 8 KB, so allocate all at once.
  10629	 */
  10630	adv_dvc->carrier = dma_alloc_coherent(board->dev,
  10631		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
  10632	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
  10633
  10634	if (!adv_dvc->carrier)
  10635		goto kmalloc_failed;
  10636
  10637	/*
  10638	 * Allocate up to 'max_host_qng' request structures for the Wide
  10639	 * board. The total size is about 16 KB, so allocate all at once.
  10640	 * If the allocation fails decrement and try again.
  10641	 */
  10642	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
  10643	if (board->adv_reqp_size & 0x1f) {
  10644		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
  10645		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
  10646	}
  10647	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
  10648		&board->adv_reqp_addr, GFP_KERNEL);
  10649
  10650	if (!board->adv_reqp)
  10651		goto kmalloc_failed;
  10652
  10653	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
  10654		adv_dvc->max_host_qng, board->adv_reqp_size);
  10655
  10656	/*
  10657	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
  10658	 * the Wide board. Each structure is about 136 bytes.
  10659	 */
  10660	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
  10661	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
  10662						sgblk_pool_size, 32, 0);
  10663
  10664	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
  10665		sizeof(adv_sgblk_t), sgblk_pool_size);
  10666
  10667	if (!board->adv_sgblk_pool)
  10668		goto kmalloc_failed;
  10669
  10670	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
  10671		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
  10672		warn_code = AdvInitAsc3550Driver(adv_dvc);
  10673	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
  10674		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
  10675		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
  10676	} else {
  10677		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
  10678		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
  10679	}
  10680	err_code = adv_dvc->err_code;
  10681
  10682	if (warn_code || err_code) {
  10683		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
  10684			"0x%x\n", warn_code, err_code);
  10685	}
  10686
  10687	goto exit;
  10688
  10689 kmalloc_failed:
  10690	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
  10691	err_code = ADV_ERROR;
  10692 exit:
  10693	return err_code;
  10694}
  10695
  10696static void advansys_wide_free_mem(struct asc_board *board)
  10697{
  10698	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
  10699
  10700	if (adv_dvc->carrier) {
  10701		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
  10702				  adv_dvc->carrier, adv_dvc->carrier_addr);
  10703		adv_dvc->carrier = NULL;
  10704	}
  10705	if (board->adv_reqp) {
  10706		dma_free_coherent(board->dev, board->adv_reqp_size,
  10707				  board->adv_reqp, board->adv_reqp_addr);
  10708		board->adv_reqp = NULL;
  10709	}
  10710	if (board->adv_sgblk_pool) {
  10711		dma_pool_destroy(board->adv_sgblk_pool);
  10712		board->adv_sgblk_pool = NULL;
  10713	}
  10714}
  10715
  10716static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
  10717				int bus_type)
  10718{
  10719	struct pci_dev *pdev;
  10720	struct asc_board *boardp = shost_priv(shost);
  10721	ASC_DVC_VAR *asc_dvc_varp = NULL;
  10722	ADV_DVC_VAR *adv_dvc_varp = NULL;
  10723	int share_irq, warn_code, ret;
  10724
  10725	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
  10726
  10727	if (ASC_NARROW_BOARD(boardp)) {
  10728		ASC_DBG(1, "narrow board\n");
  10729		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
  10730		asc_dvc_varp->bus_type = bus_type;
  10731		asc_dvc_varp->drv_ptr = boardp;
  10732		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
  10733		asc_dvc_varp->iop_base = iop;
  10734	} else {
  10735#ifdef CONFIG_PCI
  10736		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
  10737		adv_dvc_varp->drv_ptr = boardp;
  10738		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
  10739		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
  10740			ASC_DBG(1, "wide board ASC-3550\n");
  10741			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
  10742		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
  10743			ASC_DBG(1, "wide board ASC-38C0800\n");
  10744			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
  10745		} else {
  10746			ASC_DBG(1, "wide board ASC-38C1600\n");
  10747			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
  10748		}
  10749
  10750		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
  10751		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
  10752		if (!boardp->ioremap_addr) {
  10753			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
  10754					"returned NULL\n",
  10755					(long)pci_resource_start(pdev, 1),
  10756					boardp->asc_n_io_port);
  10757			ret = -ENODEV;
  10758			goto err_shost;
  10759		}
  10760		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
  10761		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
  10762
  10763		/*
  10764		 * Even though it isn't used to access wide boards, other
  10765		 * than for the debug line below, save I/O Port address so
  10766		 * that it can be reported.
  10767		 */
  10768		boardp->ioport = iop;
  10769
  10770		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
  10771				(ushort)inp(iop + 1), (ushort)inpw(iop));
  10772#endif /* CONFIG_PCI */
  10773	}
  10774
  10775	if (ASC_NARROW_BOARD(boardp)) {
  10776		/*
  10777		 * Set the board bus type and PCI IRQ before
  10778		 * calling AscInitGetConfig().
  10779		 */
  10780		switch (asc_dvc_varp->bus_type) {
  10781#ifdef CONFIG_ISA
  10782		case ASC_IS_VL:
  10783			share_irq = 0;
  10784			break;
  10785		case ASC_IS_EISA:
  10786			share_irq = IRQF_SHARED;
  10787			break;
  10788#endif /* CONFIG_ISA */
  10789#ifdef CONFIG_PCI
  10790		case ASC_IS_PCI:
  10791			share_irq = IRQF_SHARED;
  10792			break;
  10793#endif /* CONFIG_PCI */
  10794		default:
  10795			shost_printk(KERN_ERR, shost, "unknown adapter type: "
  10796					"%d\n", asc_dvc_varp->bus_type);
  10797			share_irq = 0;
  10798			break;
  10799		}
  10800
  10801		/*
  10802		 * NOTE: AscInitGetConfig() may change the board's
  10803		 * bus_type value. The bus_type value should no
  10804		 * longer be used. If the bus_type field must be
  10805		 * referenced only use the bit-wise AND operator "&".
  10806		 */
  10807		ASC_DBG(2, "AscInitGetConfig()\n");
  10808		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
  10809	} else {
  10810#ifdef CONFIG_PCI
  10811		/*
  10812		 * For Wide boards set PCI information before calling
  10813		 * AdvInitGetConfig().
  10814		 */
  10815		share_irq = IRQF_SHARED;
  10816		ASC_DBG(2, "AdvInitGetConfig()\n");
  10817
  10818		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
  10819#else
  10820		share_irq = 0;
  10821		ret = -ENODEV;
  10822#endif /* CONFIG_PCI */
  10823	}
  10824
  10825	if (ret)
  10826		goto err_unmap;
  10827
  10828	/*
  10829	 * Save the EEPROM configuration so that it can be displayed
  10830	 * from /proc/scsi/advansys/[0...].
  10831	 */
  10832	if (ASC_NARROW_BOARD(boardp)) {
  10833
  10834		ASCEEP_CONFIG *ep;
  10835
  10836		/*
  10837		 * Set the adapter's target id bit in the 'init_tidmask' field.
  10838		 */
  10839		boardp->init_tidmask |=
  10840		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
  10841
  10842		/*
  10843		 * Save EEPROM settings for the board.
  10844		 */
  10845		ep = &boardp->eep_config.asc_eep;
  10846
  10847		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
  10848		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
  10849		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
  10850		ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
  10851		ep->start_motor = asc_dvc_varp->start_motor;
  10852		ep->cntl = asc_dvc_varp->dvc_cntl;
  10853		ep->no_scam = asc_dvc_varp->no_scam;
  10854		ep->max_total_qng = asc_dvc_varp->max_total_qng;
  10855		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
  10856		/* 'max_tag_qng' is set to the same value for every device. */
  10857		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
  10858		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
  10859		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
  10860		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
  10861		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
  10862		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
  10863		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
  10864
  10865		/*
  10866		 * Modify board configuration.
  10867		 */
  10868		ASC_DBG(2, "AscInitSetConfig()\n");
  10869		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
  10870		if (ret)
  10871			goto err_unmap;
  10872	} else {
  10873		ADVEEP_3550_CONFIG *ep_3550;
  10874		ADVEEP_38C0800_CONFIG *ep_38C0800;
  10875		ADVEEP_38C1600_CONFIG *ep_38C1600;
  10876
  10877		/*
  10878		 * Save Wide EEP Configuration Information.
  10879		 */
  10880		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
  10881			ep_3550 = &boardp->eep_config.adv_3550_eep;
  10882
  10883			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
  10884			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
  10885			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
  10886			ep_3550->termination = adv_dvc_varp->cfg->termination;
  10887			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
  10888			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
  10889			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
  10890			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
  10891			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
  10892			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
  10893			ep_3550->start_motor = adv_dvc_varp->start_motor;
  10894			ep_3550->scsi_reset_delay =
  10895			    adv_dvc_varp->scsi_reset_wait;
  10896			ep_3550->serial_number_word1 =
  10897			    adv_dvc_varp->cfg->serial1;
  10898			ep_3550->serial_number_word2 =
  10899			    adv_dvc_varp->cfg->serial2;
  10900			ep_3550->serial_number_word3 =
  10901			    adv_dvc_varp->cfg->serial3;
  10902		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
  10903			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
  10904
  10905			ep_38C0800->adapter_scsi_id =
  10906			    adv_dvc_varp->chip_scsi_id;
  10907			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
  10908			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
  10909			ep_38C0800->termination_lvd =
  10910			    adv_dvc_varp->cfg->termination;
  10911			ep_38C0800->disc_enable =
  10912			    adv_dvc_varp->cfg->disc_enable;
  10913			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
  10914			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
  10915			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
  10916			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
  10917			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
  10918			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
  10919			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
  10920			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
  10921			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
  10922			ep_38C0800->scsi_reset_delay =
  10923			    adv_dvc_varp->scsi_reset_wait;
  10924			ep_38C0800->serial_number_word1 =
  10925			    adv_dvc_varp->cfg->serial1;
  10926			ep_38C0800->serial_number_word2 =
  10927			    adv_dvc_varp->cfg->serial2;
  10928			ep_38C0800->serial_number_word3 =
  10929			    adv_dvc_varp->cfg->serial3;
  10930		} else {
  10931			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
  10932
  10933			ep_38C1600->adapter_scsi_id =
  10934			    adv_dvc_varp->chip_scsi_id;
  10935			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
  10936			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
  10937			ep_38C1600->termination_lvd =
  10938			    adv_dvc_varp->cfg->termination;
  10939			ep_38C1600->disc_enable =
  10940			    adv_dvc_varp->cfg->disc_enable;
  10941			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
  10942			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
  10943			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
  10944			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
  10945			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
  10946			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
  10947			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
  10948			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
  10949			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
  10950			ep_38C1600->scsi_reset_delay =
  10951			    adv_dvc_varp->scsi_reset_wait;
  10952			ep_38C1600->serial_number_word1 =
  10953			    adv_dvc_varp->cfg->serial1;
  10954			ep_38C1600->serial_number_word2 =
  10955			    adv_dvc_varp->cfg->serial2;
  10956			ep_38C1600->serial_number_word3 =
  10957			    adv_dvc_varp->cfg->serial3;
  10958		}
  10959
  10960		/*
  10961		 * Set the adapter's target id bit in the 'init_tidmask' field.
  10962		 */
  10963		boardp->init_tidmask |=
  10964		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
  10965	}
  10966
  10967	/*
  10968	 * Channels are numbered beginning with 0. For AdvanSys one host
  10969	 * structure supports one channel. Multi-channel boards have a
  10970	 * separate host structure for each channel.
  10971	 */
  10972	shost->max_channel = 0;
  10973	if (ASC_NARROW_BOARD(boardp)) {
  10974		shost->max_id = ASC_MAX_TID + 1;
  10975		shost->max_lun = ASC_MAX_LUN + 1;
  10976		shost->max_cmd_len = ASC_MAX_CDB_LEN;
  10977
  10978		shost->io_port = asc_dvc_varp->iop_base;
  10979		boardp->asc_n_io_port = ASC_IOADR_GAP;
  10980		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
  10981
  10982		/* Set maximum number of queues the adapter can handle. */
  10983		shost->can_queue = asc_dvc_varp->max_total_qng;
  10984	} else {
  10985		shost->max_id = ADV_MAX_TID + 1;
  10986		shost->max_lun = ADV_MAX_LUN + 1;
  10987		shost->max_cmd_len = ADV_MAX_CDB_LEN;
  10988
  10989		/*
  10990		 * Save the I/O Port address and length even though
  10991		 * I/O ports are not used to access Wide boards.
  10992		 * Instead the Wide boards are accessed with
  10993		 * PCI Memory Mapped I/O.
  10994		 */
  10995		shost->io_port = iop;
  10996
  10997		shost->this_id = adv_dvc_varp->chip_scsi_id;
  10998
  10999		/* Set maximum number of queues the adapter can handle. */
  11000		shost->can_queue = adv_dvc_varp->max_host_qng;
  11001	}
  11002
  11003	/*
  11004	 * Set the maximum number of scatter-gather elements the
  11005	 * adapter can handle.
  11006	 */
  11007	if (ASC_NARROW_BOARD(boardp)) {
  11008		/*
  11009		 * Allow two commands with 'sg_tablesize' scatter-gather
  11010		 * elements to be executed simultaneously. This value is
  11011		 * the theoretical hardware limit. It may be decreased
  11012		 * below.
  11013		 */
  11014		shost->sg_tablesize =
  11015		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
  11016		     ASC_SG_LIST_PER_Q) + 1;
  11017	} else {
  11018		shost->sg_tablesize = ADV_MAX_SG_LIST;
  11019	}
  11020
  11021	/*
  11022	 * The value of 'sg_tablesize' can not exceed the SCSI
  11023	 * mid-level driver definition of SG_ALL. SG_ALL also
  11024	 * must not be exceeded, because it is used to define the
  11025	 * size of the scatter-gather table in 'struct asc_sg_head'.
  11026	 */
  11027	if (shost->sg_tablesize > SG_ALL) {
  11028		shost->sg_tablesize = SG_ALL;
  11029	}
  11030
  11031	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
  11032
  11033	/* BIOS start address. */
  11034	if (ASC_NARROW_BOARD(boardp)) {
  11035		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
  11036						    asc_dvc_varp->bus_type);
  11037	} else {
  11038		/*
  11039		 * Fill-in BIOS board variables. The Wide BIOS saves
  11040		 * information in LRAM that is used by the driver.
  11041		 */
  11042		AdvReadWordLram(adv_dvc_varp->iop_base,
  11043				BIOS_SIGNATURE, boardp->bios_signature);
  11044		AdvReadWordLram(adv_dvc_varp->iop_base,
  11045				BIOS_VERSION, boardp->bios_version);
  11046		AdvReadWordLram(adv_dvc_varp->iop_base,
  11047				BIOS_CODESEG, boardp->bios_codeseg);
  11048		AdvReadWordLram(adv_dvc_varp->iop_base,
  11049				BIOS_CODELEN, boardp->bios_codelen);
  11050
  11051		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
  11052			 boardp->bios_signature, boardp->bios_version);
  11053
  11054		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
  11055			 boardp->bios_codeseg, boardp->bios_codelen);
  11056
  11057		/*
  11058		 * If the BIOS saved a valid signature, then fill in
  11059		 * the BIOS code segment base address.
  11060		 */
  11061		if (boardp->bios_signature == 0x55AA) {
  11062			/*
  11063			 * Convert x86 realmode code segment to a linear
  11064			 * address by shifting left 4.
  11065			 */
  11066			shost->base = ((ulong)boardp->bios_codeseg << 4);
  11067		} else {
  11068			shost->base = 0;
  11069		}
  11070	}
  11071
  11072	/*
  11073	 * Register Board Resources - I/O Port, DMA, IRQ
  11074	 */
  11075
  11076	/* Register DMA Channel for Narrow boards. */
  11077	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
  11078
  11079	/* Register IRQ Number. */
  11080	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
  11081
  11082	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
  11083			  DRV_NAME, shost);
  11084
  11085	if (ret) {
  11086		if (ret == -EBUSY) {
  11087			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
  11088					"already in use\n", boardp->irq);
  11089		} else if (ret == -EINVAL) {
  11090			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
  11091					"not valid\n", boardp->irq);
  11092		} else {
  11093			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
  11094					"failed with %d\n", boardp->irq, ret);
  11095		}
  11096		goto err_unmap;
  11097	}
  11098
  11099	/*
  11100	 * Initialize board RISC chip and enable interrupts.
  11101	 */
  11102	if (ASC_NARROW_BOARD(boardp)) {
  11103		ASC_DBG(2, "AscInitAsc1000Driver()\n");
  11104
  11105		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
  11106		if (!asc_dvc_varp->overrun_buf) {
  11107			ret = -ENOMEM;
  11108			goto err_free_irq;
  11109		}
  11110		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
  11111
  11112		if (warn_code || asc_dvc_varp->err_code) {
  11113			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
  11114					"warn 0x%x, error 0x%x\n",
  11115					asc_dvc_varp->init_state, warn_code,
  11116					asc_dvc_varp->err_code);
  11117			if (!asc_dvc_varp->overrun_dma) {
  11118				ret = -ENODEV;
  11119				goto err_free_mem;
  11120			}
  11121		}
  11122	} else {
  11123		if (advansys_wide_init_chip(shost)) {
  11124			ret = -ENODEV;
  11125			goto err_free_mem;
  11126		}
  11127	}
  11128
  11129	ASC_DBG_PRT_SCSI_HOST(2, shost);
  11130
  11131	ret = scsi_add_host(shost, boardp->dev);
  11132	if (ret)
  11133		goto err_free_mem;
  11134
  11135	scsi_scan_host(shost);
  11136	return 0;
  11137
  11138 err_free_mem:
  11139	if (ASC_NARROW_BOARD(boardp)) {
  11140		if (asc_dvc_varp->overrun_dma)
  11141			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
  11142					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
  11143		kfree(asc_dvc_varp->overrun_buf);
  11144	} else
  11145		advansys_wide_free_mem(boardp);
  11146 err_free_irq:
  11147	free_irq(boardp->irq, shost);
  11148 err_unmap:
  11149	if (boardp->ioremap_addr)
  11150		iounmap(boardp->ioremap_addr);
  11151#ifdef CONFIG_PCI
  11152 err_shost:
  11153#endif
  11154	return ret;
  11155}
  11156
  11157/*
  11158 * advansys_release()
  11159 *
  11160 * Release resources allocated for a single AdvanSys adapter.
  11161 */
  11162static int advansys_release(struct Scsi_Host *shost)
  11163{
  11164	struct asc_board *board = shost_priv(shost);
  11165	ASC_DBG(1, "begin\n");
  11166	scsi_remove_host(shost);
  11167	free_irq(board->irq, shost);
  11168
  11169	if (ASC_NARROW_BOARD(board)) {
  11170		dma_unmap_single(board->dev,
  11171					board->dvc_var.asc_dvc_var.overrun_dma,
  11172					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
  11173		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
  11174	} else {
  11175		iounmap(board->ioremap_addr);
  11176		advansys_wide_free_mem(board);
  11177	}
  11178	scsi_host_put(shost);
  11179	ASC_DBG(1, "end\n");
  11180	return 0;
  11181}
  11182
  11183#define ASC_IOADR_TABLE_MAX_IX  11
  11184
  11185static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
  11186	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
  11187	0x0210, 0x0230, 0x0250, 0x0330
  11188};
  11189
  11190static void advansys_vlb_remove(struct device *dev, unsigned int id)
  11191{
  11192	int ioport = _asc_def_iop_base[id];
  11193	advansys_release(dev_get_drvdata(dev));
  11194	release_region(ioport, ASC_IOADR_GAP);
  11195}
  11196
  11197/*
  11198 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
  11199 * 000: invalid
  11200 * 001: 10
  11201 * 010: 11
  11202 * 011: 12
  11203 * 100: invalid
  11204 * 101: 14
  11205 * 110: 15
  11206 * 111: invalid
  11207 */
  11208static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
  11209{
  11210	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
  11211	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
  11212	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
  11213		return 0;
  11214	return chip_irq;
  11215}
  11216
  11217static int advansys_vlb_probe(struct device *dev, unsigned int id)
  11218{
  11219	int err = -ENODEV;
  11220	PortAddr iop_base = _asc_def_iop_base[id];
  11221	struct Scsi_Host *shost;
  11222	struct asc_board *board;
  11223
  11224	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
  11225		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
  11226		return -ENODEV;
  11227	}
  11228	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
  11229	if (!AscFindSignature(iop_base))
  11230		goto release_region;
  11231	/*
  11232	 * I don't think this condition can actually happen, but the old
  11233	 * driver did it, and the chances of finding a VLB setup in 2007
  11234	 * to do testing with is slight to none.
  11235	 */
  11236	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
  11237		goto release_region;
  11238
  11239	err = -ENOMEM;
  11240	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
  11241	if (!shost)
  11242		goto release_region;
  11243
  11244	board = shost_priv(shost);
  11245	board->irq = advansys_vlb_irq_no(iop_base);
  11246	board->dev = dev;
  11247	board->shost = shost;
  11248
  11249	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
  11250	if (err)
  11251		goto free_host;
  11252
  11253	dev_set_drvdata(dev, shost);
  11254	return 0;
  11255
  11256 free_host:
  11257	scsi_host_put(shost);
  11258 release_region:
  11259	release_region(iop_base, ASC_IOADR_GAP);
  11260	return -ENODEV;
  11261}
  11262
  11263static struct isa_driver advansys_vlb_driver = {
  11264	.probe		= advansys_vlb_probe,
  11265	.remove		= advansys_vlb_remove,
  11266	.driver = {
  11267		.owner	= THIS_MODULE,
  11268		.name	= "advansys_vlb",
  11269	},
  11270};
  11271
  11272static struct eisa_device_id advansys_eisa_table[] = {
  11273	{ "ABP7401" },
  11274	{ "ABP7501" },
  11275	{ "" }
  11276};
  11277
  11278MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
  11279
  11280/*
  11281 * EISA is a little more tricky than PCI; each EISA device may have two
  11282 * channels, and this driver is written to make each channel its own Scsi_Host
  11283 */
  11284struct eisa_scsi_data {
  11285	struct Scsi_Host *host[2];
  11286};
  11287
  11288/*
  11289 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
  11290 * 000: 10
  11291 * 001: 11
  11292 * 010: 12
  11293 * 011: invalid
  11294 * 100: 14
  11295 * 101: 15
  11296 * 110: invalid
  11297 * 111: invalid
  11298 */
  11299static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
  11300{
  11301	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
  11302	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
  11303	if ((chip_irq == 13) || (chip_irq > 15))
  11304		return 0;
  11305	return chip_irq;
  11306}
  11307
  11308static int advansys_eisa_probe(struct device *dev)
  11309{
  11310	int i, ioport, irq = 0;
  11311	int err;
  11312	struct eisa_device *edev = to_eisa_device(dev);
  11313	struct eisa_scsi_data *data;
  11314
  11315	err = -ENOMEM;
  11316	data = kzalloc(sizeof(*data), GFP_KERNEL);
  11317	if (!data)
  11318		goto fail;
  11319	ioport = edev->base_addr + 0xc30;
  11320
  11321	err = -ENODEV;
  11322	for (i = 0; i < 2; i++, ioport += 0x20) {
  11323		struct asc_board *board;
  11324		struct Scsi_Host *shost;
  11325		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
  11326			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
  11327			       ioport + ASC_IOADR_GAP - 1);
  11328			continue;
  11329		}
  11330		if (!AscFindSignature(ioport)) {
  11331			release_region(ioport, ASC_IOADR_GAP);
  11332			continue;
  11333		}
  11334
  11335		/*
  11336		 * I don't know why we need to do this for EISA chips, but
  11337		 * not for any others.  It looks to be equivalent to
  11338		 * AscGetChipCfgMsw, but I may have overlooked something,
  11339		 * so I'm not converting it until I get an EISA board to
  11340		 * test with.
  11341		 */
  11342		inw(ioport + 4);
  11343
  11344		if (!irq)
  11345			irq = advansys_eisa_irq_no(edev);
  11346
  11347		err = -ENOMEM;
  11348		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
  11349		if (!shost)
  11350			goto release_region;
  11351
  11352		board = shost_priv(shost);
  11353		board->irq = irq;
  11354		board->dev = dev;
  11355		board->shost = shost;
  11356
  11357		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
  11358		if (!err) {
  11359			data->host[i] = shost;
  11360			continue;
  11361		}
  11362
  11363		scsi_host_put(shost);
  11364 release_region:
  11365		release_region(ioport, ASC_IOADR_GAP);
  11366		break;
  11367	}
  11368
  11369	if (err)
  11370		goto free_data;
  11371	dev_set_drvdata(dev, data);
  11372	return 0;
  11373
  11374 free_data:
  11375	kfree(data->host[0]);
  11376	kfree(data->host[1]);
  11377	kfree(data);
  11378 fail:
  11379	return err;
  11380}
  11381
  11382static int advansys_eisa_remove(struct device *dev)
  11383{
  11384	int i;
  11385	struct eisa_scsi_data *data = dev_get_drvdata(dev);
  11386
  11387	for (i = 0; i < 2; i++) {
  11388		int ioport;
  11389		struct Scsi_Host *shost = data->host[i];
  11390		if (!shost)
  11391			continue;
  11392		ioport = shost->io_port;
  11393		advansys_release(shost);
  11394		release_region(ioport, ASC_IOADR_GAP);
  11395	}
  11396
  11397	kfree(data);
  11398	return 0;
  11399}
  11400
  11401static struct eisa_driver advansys_eisa_driver = {
  11402	.id_table =		advansys_eisa_table,
  11403	.driver = {
  11404		.name =		DRV_NAME,
  11405		.probe =	advansys_eisa_probe,
  11406		.remove =	advansys_eisa_remove,
  11407	}
  11408};
  11409
  11410/* PCI Devices supported by this driver */
  11411static struct pci_device_id advansys_pci_tbl[] = {
  11412	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
  11413	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11414	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
  11415	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11416	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
  11417	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11418	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
  11419	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11420	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
  11421	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11422	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
  11423	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  11424	{}
  11425};
  11426
  11427MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
  11428
  11429static void advansys_set_latency(struct pci_dev *pdev)
  11430{
  11431	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
  11432	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
  11433		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
  11434	} else {
  11435		u8 latency;
  11436		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
  11437		if (latency < 0x20)
  11438			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
  11439	}
  11440}
  11441
  11442static int advansys_pci_probe(struct pci_dev *pdev,
  11443			      const struct pci_device_id *ent)
  11444{
  11445	int err, ioport;
  11446	struct Scsi_Host *shost;
  11447	struct asc_board *board;
  11448
  11449	err = pci_enable_device(pdev);
  11450	if (err)
  11451		goto fail;
  11452	err = pci_request_regions(pdev, DRV_NAME);
  11453	if (err)
  11454		goto disable_device;
  11455	pci_set_master(pdev);
  11456	advansys_set_latency(pdev);
  11457
  11458	err = -ENODEV;
  11459	if (pci_resource_len(pdev, 0) == 0)
  11460		goto release_region;
  11461
  11462	ioport = pci_resource_start(pdev, 0);
  11463
  11464	err = -ENOMEM;
  11465	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
  11466	if (!shost)
  11467		goto release_region;
  11468
  11469	board = shost_priv(shost);
  11470	board->irq = pdev->irq;
  11471	board->dev = &pdev->dev;
  11472	board->shost = shost;
  11473
  11474	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
  11475	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
  11476	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
  11477		board->flags |= ASC_IS_WIDE_BOARD;
  11478	}
  11479
  11480	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
  11481	if (err)
  11482		goto free_host;
  11483
  11484	pci_set_drvdata(pdev, shost);
  11485	return 0;
  11486
  11487 free_host:
  11488	scsi_host_put(shost);
  11489 release_region:
  11490	pci_release_regions(pdev);
  11491 disable_device:
  11492	pci_disable_device(pdev);
  11493 fail:
  11494	return err;
  11495}
  11496
  11497static void advansys_pci_remove(struct pci_dev *pdev)
  11498{
  11499	advansys_release(pci_get_drvdata(pdev));
  11500	pci_release_regions(pdev);
  11501	pci_disable_device(pdev);
  11502}
  11503
  11504static struct pci_driver advansys_pci_driver = {
  11505	.name =		DRV_NAME,
  11506	.id_table =	advansys_pci_tbl,
  11507	.probe =	advansys_pci_probe,
  11508	.remove =	advansys_pci_remove,
  11509};
  11510
  11511static int __init advansys_init(void)
  11512{
  11513	int error;
  11514
  11515	error = isa_register_driver(&advansys_vlb_driver,
  11516				    ASC_IOADR_TABLE_MAX_IX);
  11517	if (error)
  11518		goto fail;
  11519
  11520	error = eisa_driver_register(&advansys_eisa_driver);
  11521	if (error)
  11522		goto unregister_vlb;
  11523
  11524	error = pci_register_driver(&advansys_pci_driver);
  11525	if (error)
  11526		goto unregister_eisa;
  11527
  11528	return 0;
  11529
  11530 unregister_eisa:
  11531	eisa_driver_unregister(&advansys_eisa_driver);
  11532 unregister_vlb:
  11533	isa_unregister_driver(&advansys_vlb_driver);
  11534 fail:
  11535	return error;
  11536}
  11537
  11538static void __exit advansys_exit(void)
  11539{
  11540	pci_unregister_driver(&advansys_pci_driver);
  11541	eisa_driver_unregister(&advansys_eisa_driver);
  11542	isa_unregister_driver(&advansys_vlb_driver);
  11543}
  11544
  11545module_init(advansys_init);
  11546module_exit(advansys_exit);
  11547
  11548MODULE_LICENSE("GPL");
  11549MODULE_FIRMWARE("advansys/mcode.bin");
  11550MODULE_FIRMWARE("advansys/3550.bin");
  11551MODULE_FIRMWARE("advansys/38C0800.bin");
  11552MODULE_FIRMWARE("advansys/38C1600.bin");