aic7xxx_osm.c (71679B)
1 2/* 3 * Adaptec AIC7xxx device driver for Linux. 4 * 5 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $ 6 * 7 * Copyright (c) 1994 John Aycock 8 * The University of Calgary Department of Computer Science. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F 25 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA 26 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, 27 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, 28 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file 29 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, 30 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the 31 * ANSI SCSI-2 specification (draft 10c), ... 32 * 33 * -------------------------------------------------------------------------- 34 * 35 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): 36 * 37 * Substantially modified to include support for wide and twin bus 38 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, 39 * SCB paging, and other rework of the code. 40 * 41 * -------------------------------------------------------------------------- 42 * Copyright (c) 1994-2000 Justin T. Gibbs. 43 * Copyright (c) 2000-2001 Adaptec Inc. 44 * All rights reserved. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions, and the following disclaimer, 51 * without modification. 52 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 53 * substantially similar to the "NO WARRANTY" disclaimer below 54 * ("Disclaimer") and any redistribution must be conditioned upon 55 * including a substantially similar Disclaimer requirement for further 56 * binary redistribution. 57 * 3. Neither the names of the above-listed copyright holders nor the names 58 * of any contributors may be used to endorse or promote products derived 59 * from this software without specific prior written permission. 60 * 61 * Alternatively, this software may be distributed under the terms of the 62 * GNU General Public License ("GPL") version 2 as published by the Free 63 * Software Foundation. 64 * 65 * NO WARRANTY 66 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 67 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 68 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 69 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 70 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 74 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 75 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 76 * POSSIBILITY OF SUCH DAMAGES. 77 * 78 *--------------------------------------------------------------------------- 79 * 80 * Thanks also go to (in alphabetical order) the following: 81 * 82 * Rory Bolt - Sequencer bug fixes 83 * Jay Estabrook - Initial DEC Alpha support 84 * Doug Ledford - Much needed abort/reset bug fixes 85 * Kai Makisara - DMAing of SCBs 86 * 87 * A Boot time option was also added for not resetting the scsi bus. 88 * 89 * Form: aic7xxx=extended 90 * aic7xxx=no_reset 91 * aic7xxx=verbose 92 * 93 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 94 * 95 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp 96 */ 97 98/* 99 * Further driver modifications made by Doug Ledford <dledford@redhat.com> 100 * 101 * Copyright (c) 1997-1999 Doug Ledford 102 * 103 * These changes are released under the same licensing terms as the FreeBSD 104 * driver written by Justin Gibbs. Please see his Copyright notice above 105 * for the exact terms and conditions covering my changes as well as the 106 * warranty statement. 107 * 108 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include 109 * but are not limited to: 110 * 111 * 1: Import of the latest FreeBSD sequencer code for this driver 112 * 2: Modification of kernel code to accommodate different sequencer semantics 113 * 3: Extensive changes throughout kernel portion of driver to improve 114 * abort/reset processing and error hanndling 115 * 4: Other work contributed by various people on the Internet 116 * 5: Changes to printk information and verbosity selection code 117 * 6: General reliability related changes, especially in IRQ management 118 * 7: Modifications to the default probe/attach order for supported cards 119 * 8: SMP friendliness has been improved 120 * 121 */ 122 123#include "aic7xxx_osm.h" 124#include "aic7xxx_inline.h" 125#include <scsi/scsicam.h> 126 127static struct scsi_transport_template *ahc_linux_transport_template = NULL; 128 129#include <linux/init.h> /* __setup */ 130#include <linux/mm.h> /* For fetching system memory size */ 131#include <linux/blkdev.h> /* For block_size() */ 132#include <linux/delay.h> /* For ssleep/msleep */ 133#include <linux/slab.h> 134 135 136/* 137 * Set this to the delay in seconds after SCSI bus reset. 138 * Note, we honor this only for the initial bus reset. 139 * The scsi error recovery code performs its own bus settle 140 * delay handling for error recovery actions. 141 */ 142#ifdef CONFIG_AIC7XXX_RESET_DELAY_MS 143#define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS 144#else 145#define AIC7XXX_RESET_DELAY 5000 146#endif 147 148/* 149 * To change the default number of tagged transactions allowed per-device, 150 * add a line to the lilo.conf file like: 151 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" 152 * which will result in the first four devices on the first two 153 * controllers being set to a tagged queue depth of 32. 154 * 155 * The tag_commands is an array of 16 to allow for wide and twin adapters. 156 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 157 * for channel 1. 158 */ 159typedef struct { 160 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ 161} adapter_tag_info_t; 162 163/* 164 * Modify this as you see fit for your system. 165 * 166 * 0 tagged queuing disabled 167 * 1 <= n <= 253 n == max tags ever dispatched. 168 * 169 * The driver will throttle the number of commands dispatched to a 170 * device if it returns queue full. For devices with a fixed maximum 171 * queue depth, the driver will eventually determine this depth and 172 * lock it in (a console message is printed to indicate that a lock 173 * has occurred). On some devices, queue full is returned for a temporary 174 * resource shortage. These devices will return queue full at varying 175 * depths. The driver will throttle back when the queue fulls occur and 176 * attempt to slowly increase the depth over time as the device recovers 177 * from the resource shortage. 178 * 179 * In this example, the first line will disable tagged queueing for all 180 * the devices on the first probed aic7xxx adapter. 181 * 182 * The second line enables tagged queueing with 4 commands/LUN for IDs 183 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the 184 * driver to attempt to use up to 64 tags for ID 1. 185 * 186 * The third line is the same as the first line. 187 * 188 * The fourth line disables tagged queueing for devices 0 and 3. It 189 * enables tagged queueing for the other IDs, with 16 commands/LUN 190 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for 191 * IDs 2, 5-7, and 9-15. 192 */ 193 194/* 195 * NOTE: The below structure is for reference only, the actual structure 196 * to modify in order to change things is just below this comment block. 197adapter_tag_info_t aic7xxx_tag_info[] = 198{ 199 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 200 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, 201 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 202 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} 203}; 204*/ 205 206#ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE 207#define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE 208#else 209#define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE 210#endif 211 212#define AIC7XXX_CONFIGED_TAG_COMMANDS { \ 213 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 214 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 215 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 216 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 217 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 218 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 219 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 220 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ 221} 222 223/* 224 * By default, use the number of commands specified by 225 * the users kernel configuration. 226 */ 227static adapter_tag_info_t aic7xxx_tag_info[] = 228{ 229 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 230 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 231 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 232 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 233 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 234 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 235 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 236 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 237 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 238 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 239 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 240 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 241 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 242 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 243 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 244 {AIC7XXX_CONFIGED_TAG_COMMANDS} 245}; 246 247/* 248 * There should be a specific return value for this in scsi.h, but 249 * it seems that most drivers ignore it. 250 */ 251#define DID_UNDERFLOW DID_ERROR 252 253void 254ahc_print_path(struct ahc_softc *ahc, struct scb *scb) 255{ 256 printk("(scsi%d:%c:%d:%d): ", 257 ahc->platform_data->host->host_no, 258 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', 259 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, 260 scb != NULL ? SCB_GET_LUN(scb) : -1); 261} 262 263/* 264 * XXX - these options apply unilaterally to _all_ 274x/284x/294x 265 * cards in the system. This should be fixed. Exceptions to this 266 * rule are noted in the comments. 267 */ 268 269/* 270 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This 271 * has no effect on any later resets that might occur due to things like 272 * SCSI bus timeouts. 273 */ 274static uint32_t aic7xxx_no_reset; 275 276/* 277 * Should we force EXTENDED translation on a controller. 278 * 0 == Use whatever is in the SEEPROM or default to off 279 * 1 == Use whatever is in the SEEPROM or default to on 280 */ 281static uint32_t aic7xxx_extended; 282 283/* 284 * PCI bus parity checking of the Adaptec controllers. This is somewhat 285 * dubious at best. To my knowledge, this option has never actually 286 * solved a PCI parity problem, but on certain machines with broken PCI 287 * chipset configurations where stray PCI transactions with bad parity are 288 * the norm rather than the exception, the error messages can be overwhelming. 289 * It's included in the driver for completeness. 290 * 0 = Shut off PCI parity check 291 * non-0 = reverse polarity pci parity checking 292 */ 293static uint32_t aic7xxx_pci_parity = ~0; 294 295/* 296 * There are lots of broken chipsets in the world. Some of them will 297 * violate the PCI spec when we issue byte sized memory writes to our 298 * controller. I/O mapped register access, if allowed by the given 299 * platform, will work in almost all cases. 300 */ 301uint32_t aic7xxx_allow_memio = ~0; 302 303/* 304 * So that we can set how long each device is given as a selection timeout. 305 * The table of values goes like this: 306 * 0 - 256ms 307 * 1 - 128ms 308 * 2 - 64ms 309 * 3 - 32ms 310 * We default to 256ms because some older devices need a longer time 311 * to respond to initial selection. 312 */ 313static uint32_t aic7xxx_seltime; 314 315/* 316 * Certain devices do not perform any aging on commands. Should the 317 * device be saturated by commands in one portion of the disk, it is 318 * possible for transactions on far away sectors to never be serviced. 319 * To handle these devices, we can periodically send an ordered tag to 320 * force all outstanding transactions to be serviced prior to a new 321 * transaction. 322 */ 323static uint32_t aic7xxx_periodic_otag; 324 325/* 326 * Module information and settable options. 327 */ 328static char *aic7xxx = NULL; 329 330MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>"); 331MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver"); 332MODULE_LICENSE("Dual BSD/GPL"); 333MODULE_VERSION(AIC7XXX_DRIVER_VERSION); 334module_param(aic7xxx, charp, 0444); 335MODULE_PARM_DESC(aic7xxx, 336"period-delimited options string:\n" 337" verbose Enable verbose/diagnostic logging\n" 338" allow_memio Allow device registers to be memory mapped\n" 339" debug Bitmask of debug values to enable\n" 340" no_probe Toggle EISA/VLB controller probing\n" 341" probe_eisa_vl Toggle EISA/VLB controller probing\n" 342" no_reset Suppress initial bus resets\n" 343" extended Enable extended geometry on all controllers\n" 344" periodic_otag Send an ordered tagged transaction\n" 345" periodically to prevent tag starvation.\n" 346" This may be required by some older disk\n" 347" drives or RAID arrays.\n" 348" tag_info:<tag_str> Set per-target tag depth\n" 349" global_tag_depth:<int> Global tag depth for every target\n" 350" on every bus\n" 351" seltime:<int> Selection Timeout\n" 352" (0/256ms,1/128ms,2/64ms,3/32ms)\n" 353"\n" 354" Sample modprobe configuration file:\n" 355" # Toggle EISA/VLB probing\n" 356" # Set tag depth on Controller 1/Target 1 to 10 tags\n" 357" # Shorten the selection timeout to 128ms\n" 358"\n" 359" options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n" 360); 361 362static void ahc_linux_handle_scsi_status(struct ahc_softc *, 363 struct scsi_device *, 364 struct scb *); 365static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, 366 struct scsi_cmnd *cmd); 367static void ahc_linux_freeze_simq(struct ahc_softc *ahc); 368static void ahc_linux_release_simq(struct ahc_softc *ahc); 369static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag); 370static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); 371static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, 372 struct ahc_devinfo *devinfo); 373static void ahc_linux_device_queue_depth(struct scsi_device *); 374static int ahc_linux_run_command(struct ahc_softc*, 375 struct ahc_linux_device *, 376 struct scsi_cmnd *); 377static void ahc_linux_setup_tag_info_global(char *p); 378static int aic7xxx_setup(char *s); 379 380static int ahc_linux_unit; 381 382 383/************************** OS Utility Wrappers *******************************/ 384void 385ahc_delay(long usec) 386{ 387 /* 388 * udelay on Linux can have problems for 389 * multi-millisecond waits. Wait at most 390 * 1024us per call. 391 */ 392 while (usec > 0) { 393 udelay(usec % 1024); 394 usec -= 1024; 395 } 396} 397 398/***************************** Low Level I/O **********************************/ 399uint8_t 400ahc_inb(struct ahc_softc * ahc, long port) 401{ 402 uint8_t x; 403 404 if (ahc->tag == BUS_SPACE_MEMIO) { 405 x = readb(ahc->bsh.maddr + port); 406 } else { 407 x = inb(ahc->bsh.ioport + port); 408 } 409 mb(); 410 return (x); 411} 412 413void 414ahc_outb(struct ahc_softc * ahc, long port, uint8_t val) 415{ 416 if (ahc->tag == BUS_SPACE_MEMIO) { 417 writeb(val, ahc->bsh.maddr + port); 418 } else { 419 outb(val, ahc->bsh.ioport + port); 420 } 421 mb(); 422} 423 424void 425ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 426{ 427 int i; 428 429 /* 430 * There is probably a more efficient way to do this on Linux 431 * but we don't use this for anything speed critical and this 432 * should work. 433 */ 434 for (i = 0; i < count; i++) 435 ahc_outb(ahc, port, *array++); 436} 437 438void 439ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 440{ 441 int i; 442 443 /* 444 * There is probably a more efficient way to do this on Linux 445 * but we don't use this for anything speed critical and this 446 * should work. 447 */ 448 for (i = 0; i < count; i++) 449 *array++ = ahc_inb(ahc, port); 450} 451 452/********************************* Inlines ************************************/ 453static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); 454 455static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 456 struct ahc_dma_seg *sg, 457 dma_addr_t addr, bus_size_t len); 458 459static void 460ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) 461{ 462 struct scsi_cmnd *cmd; 463 464 cmd = scb->io_ctx; 465 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); 466 467 scsi_dma_unmap(cmd); 468} 469 470static int 471ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 472 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len) 473{ 474 int consumed; 475 476 if ((scb->sg_count + 1) > AHC_NSEG) 477 panic("Too few segs for dma mapping. " 478 "Increase AHC_NSEG\n"); 479 480 consumed = 1; 481 sg->addr = ahc_htole32(addr & 0xFFFFFFFF); 482 scb->platform_data->xfer_len += len; 483 484 if (sizeof(dma_addr_t) > 4 485 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) 486 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK; 487 488 sg->len = ahc_htole32(len); 489 return (consumed); 490} 491 492/* 493 * Return a string describing the driver. 494 */ 495static const char * 496ahc_linux_info(struct Scsi_Host *host) 497{ 498 static char buffer[512]; 499 char ahc_info[256]; 500 char *bp; 501 struct ahc_softc *ahc; 502 503 bp = &buffer[0]; 504 ahc = *(struct ahc_softc **)host->hostdata; 505 memset(bp, 0, sizeof(buffer)); 506 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n" 507 " <"); 508 strcat(bp, ahc->description); 509 strcat(bp, ">\n" 510 " "); 511 ahc_controller_info(ahc, ahc_info); 512 strcat(bp, ahc_info); 513 strcat(bp, "\n"); 514 515 return (bp); 516} 517 518/* 519 * Queue an SCB to the controller. 520 */ 521static int ahc_linux_queue_lck(struct scsi_cmnd *cmd) 522{ 523 struct ahc_softc *ahc; 524 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device); 525 int rtn = SCSI_MLQUEUE_HOST_BUSY; 526 unsigned long flags; 527 528 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 529 530 ahc_lock(ahc, &flags); 531 if (ahc->platform_data->qfrozen == 0) { 532 cmd->result = CAM_REQ_INPROG << 16; 533 rtn = ahc_linux_run_command(ahc, dev, cmd); 534 } 535 ahc_unlock(ahc, &flags); 536 537 return rtn; 538} 539 540static DEF_SCSI_QCMD(ahc_linux_queue) 541 542static inline struct scsi_target ** 543ahc_linux_target_in_softc(struct scsi_target *starget) 544{ 545 struct ahc_softc *ahc = 546 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 547 unsigned int target_offset; 548 549 target_offset = starget->id; 550 if (starget->channel != 0) 551 target_offset += 8; 552 553 return &ahc->platform_data->starget[target_offset]; 554} 555 556static int 557ahc_linux_target_alloc(struct scsi_target *starget) 558{ 559 struct ahc_softc *ahc = 560 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 561 struct seeprom_config *sc = ahc->seep_config; 562 unsigned long flags; 563 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 564 unsigned short scsirate; 565 struct ahc_devinfo devinfo; 566 char channel = starget->channel + 'A'; 567 unsigned int our_id = ahc->our_id; 568 unsigned int target_offset; 569 570 target_offset = starget->id; 571 if (starget->channel != 0) 572 target_offset += 8; 573 574 if (starget->channel) 575 our_id = ahc->our_id_b; 576 577 ahc_lock(ahc, &flags); 578 579 BUG_ON(*ahc_targp != NULL); 580 581 *ahc_targp = starget; 582 583 if (sc) { 584 int maxsync = AHC_SYNCRATE_DT; 585 int ultra = 0; 586 int flags = sc->device_flags[target_offset]; 587 588 if (ahc->flags & AHC_NEWEEPROM_FMT) { 589 if (flags & CFSYNCHISULTRA) 590 ultra = 1; 591 } else if (flags & CFULTRAEN) 592 ultra = 1; 593 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04 594 * change it to ultra=0, CFXFER = 0 */ 595 if(ultra && (flags & CFXFER) == 0x04) { 596 ultra = 0; 597 flags &= ~CFXFER; 598 } 599 600 if ((ahc->features & AHC_ULTRA2) != 0) { 601 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0); 602 } else { 603 scsirate = (flags & CFXFER) << 4; 604 maxsync = ultra ? AHC_SYNCRATE_ULTRA : 605 AHC_SYNCRATE_FAST; 606 } 607 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0; 608 if (!(flags & CFSYNCH)) 609 spi_max_offset(starget) = 0; 610 spi_min_period(starget) = 611 ahc_find_period(ahc, scsirate, maxsync); 612 } 613 ahc_compile_devinfo(&devinfo, our_id, starget->id, 614 CAM_LUN_WILDCARD, channel, 615 ROLE_INITIATOR); 616 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, 617 AHC_TRANS_GOAL, /*paused*/FALSE); 618 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 619 AHC_TRANS_GOAL, /*paused*/FALSE); 620 ahc_unlock(ahc, &flags); 621 622 return 0; 623} 624 625static void 626ahc_linux_target_destroy(struct scsi_target *starget) 627{ 628 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 629 630 *ahc_targp = NULL; 631} 632 633static int 634ahc_linux_slave_alloc(struct scsi_device *sdev) 635{ 636 struct ahc_softc *ahc = 637 *((struct ahc_softc **)sdev->host->hostdata); 638 struct scsi_target *starget = sdev->sdev_target; 639 struct ahc_linux_device *dev; 640 641 if (bootverbose) 642 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id); 643 644 dev = scsi_transport_device_data(sdev); 645 memset(dev, 0, sizeof(*dev)); 646 647 /* 648 * We start out life using untagged 649 * transactions of which we allow one. 650 */ 651 dev->openings = 1; 652 653 /* 654 * Set maxtags to 0. This will be changed if we 655 * later determine that we are dealing with 656 * a tagged queuing capable device. 657 */ 658 dev->maxtags = 0; 659 660 spi_period(starget) = 0; 661 662 return 0; 663} 664 665static int 666ahc_linux_slave_configure(struct scsi_device *sdev) 667{ 668 if (bootverbose) 669 sdev_printk(KERN_INFO, sdev, "Slave Configure\n"); 670 671 ahc_linux_device_queue_depth(sdev); 672 673 /* Initial Domain Validation */ 674 if (!spi_initial_dv(sdev->sdev_target)) 675 spi_dv_device(sdev); 676 677 return 0; 678} 679 680#if defined(__i386__) 681/* 682 * Return the disk geometry for the given SCSI device. 683 */ 684static int 685ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, 686 sector_t capacity, int geom[]) 687{ 688 int heads; 689 int sectors; 690 int cylinders; 691 int extended; 692 struct ahc_softc *ahc; 693 u_int channel; 694 695 ahc = *((struct ahc_softc **)sdev->host->hostdata); 696 channel = sdev_channel(sdev); 697 698 if (scsi_partsize(bdev, capacity, geom)) 699 return 0; 700 701 heads = 64; 702 sectors = 32; 703 cylinders = aic_sector_div(capacity, heads, sectors); 704 705 if (aic7xxx_extended != 0) 706 extended = 1; 707 else if (channel == 0) 708 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; 709 else 710 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; 711 if (extended && cylinders >= 1024) { 712 heads = 255; 713 sectors = 63; 714 cylinders = aic_sector_div(capacity, heads, sectors); 715 } 716 geom[0] = heads; 717 geom[1] = sectors; 718 geom[2] = cylinders; 719 return (0); 720} 721#endif 722 723/* 724 * Abort the current SCSI command(s). 725 */ 726static int 727ahc_linux_abort(struct scsi_cmnd *cmd) 728{ 729 int error; 730 731 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); 732 if (error != SUCCESS) 733 printk("aic7xxx_abort returns 0x%x\n", error); 734 return (error); 735} 736 737/* 738 * Attempt to send a target reset message to the device that timed out. 739 */ 740static int 741ahc_linux_dev_reset(struct scsi_cmnd *cmd) 742{ 743 int error; 744 745 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); 746 if (error != SUCCESS) 747 printk("aic7xxx_dev_reset returns 0x%x\n", error); 748 return (error); 749} 750 751/* 752 * Reset the SCSI bus. 753 */ 754static int 755ahc_linux_bus_reset(struct scsi_cmnd *cmd) 756{ 757 struct ahc_softc *ahc; 758 int found; 759 unsigned long flags; 760 761 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 762 763 ahc_lock(ahc, &flags); 764 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A', 765 /*initiate reset*/TRUE); 766 ahc_unlock(ahc, &flags); 767 768 if (bootverbose) 769 printk("%s: SCSI bus reset delivered. " 770 "%d SCBs aborted.\n", ahc_name(ahc), found); 771 772 return SUCCESS; 773} 774 775struct scsi_host_template aic7xxx_driver_template = { 776 .module = THIS_MODULE, 777 .name = "aic7xxx", 778 .proc_name = "aic7xxx", 779 .show_info = ahc_linux_show_info, 780 .write_info = ahc_proc_write_seeprom, 781 .info = ahc_linux_info, 782 .queuecommand = ahc_linux_queue, 783 .eh_abort_handler = ahc_linux_abort, 784 .eh_device_reset_handler = ahc_linux_dev_reset, 785 .eh_bus_reset_handler = ahc_linux_bus_reset, 786#if defined(__i386__) 787 .bios_param = ahc_linux_biosparam, 788#endif 789 .can_queue = AHC_MAX_QUEUE, 790 .this_id = -1, 791 .max_sectors = 8192, 792 .cmd_per_lun = 2, 793 .slave_alloc = ahc_linux_slave_alloc, 794 .slave_configure = ahc_linux_slave_configure, 795 .target_alloc = ahc_linux_target_alloc, 796 .target_destroy = ahc_linux_target_destroy, 797}; 798 799/**************************** Tasklet Handler *********************************/ 800 801/******************************** Macros **************************************/ 802#define BUILD_SCSIID(ahc, cmd) \ 803 ((((cmd)->device->id << TID_SHIFT) & TID) \ 804 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ 805 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB)) 806 807/******************************** Bus DMA *************************************/ 808int 809ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, 810 bus_size_t alignment, bus_size_t boundary, 811 dma_addr_t lowaddr, dma_addr_t highaddr, 812 bus_dma_filter_t *filter, void *filterarg, 813 bus_size_t maxsize, int nsegments, 814 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) 815{ 816 bus_dma_tag_t dmat; 817 818 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC); 819 if (dmat == NULL) 820 return (ENOMEM); 821 822 /* 823 * Linux is very simplistic about DMA memory. For now don't 824 * maintain all specification information. Once Linux supplies 825 * better facilities for doing these operations, or the 826 * needs of this particular driver change, we might need to do 827 * more here. 828 */ 829 dmat->alignment = alignment; 830 dmat->boundary = boundary; 831 dmat->maxsize = maxsize; 832 *ret_tag = dmat; 833 return (0); 834} 835 836void 837ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) 838{ 839 kfree(dmat); 840} 841 842int 843ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, 844 int flags, bus_dmamap_t *mapp) 845{ 846 /* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */ 847 *vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC); 848 if (*vaddr == NULL) 849 return ENOMEM; 850 return 0; 851} 852 853void 854ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, 855 void* vaddr, bus_dmamap_t map) 856{ 857 dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map); 858} 859 860int 861ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, 862 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, 863 void *cb_arg, int flags) 864{ 865 /* 866 * Assume for now that this will only be used during 867 * initialization and not for per-transaction buffer mapping. 868 */ 869 bus_dma_segment_t stack_sg; 870 871 stack_sg.ds_addr = map; 872 stack_sg.ds_len = dmat->maxsize; 873 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); 874 return (0); 875} 876 877void 878ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 879{ 880} 881 882int 883ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 884{ 885 /* Nothing to do */ 886 return (0); 887} 888 889static void 890ahc_linux_setup_tag_info_global(char *p) 891{ 892 int tags, i, j; 893 894 tags = simple_strtoul(p + 1, NULL, 0) & 0xff; 895 printk("Setting Global Tags= %d\n", tags); 896 897 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) { 898 for (j = 0; j < AHC_NUM_TARGETS; j++) { 899 aic7xxx_tag_info[i].tag_commands[j] = tags; 900 } 901 } 902} 903 904static void 905ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) 906{ 907 908 if ((instance >= 0) && (targ >= 0) 909 && (instance < ARRAY_SIZE(aic7xxx_tag_info)) 910 && (targ < AHC_NUM_TARGETS)) { 911 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff; 912 if (bootverbose) 913 printk("tag_info[%d:%d] = %d\n", instance, targ, value); 914 } 915} 916 917static char * 918ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth, 919 void (*callback)(u_long, int, int, int32_t), 920 u_long callback_arg) 921{ 922 char *tok_end; 923 char *tok_end2; 924 int i; 925 int instance; 926 int targ; 927 int done; 928 char tok_list[] = {'.', ',', '{', '}', '\0'}; 929 930 /* All options use a ':' name/arg separator */ 931 if (*opt_arg != ':') 932 return (opt_arg); 933 opt_arg++; 934 instance = -1; 935 targ = -1; 936 done = FALSE; 937 /* 938 * Restore separator that may be in 939 * the middle of our option argument. 940 */ 941 tok_end = strchr(opt_arg, '\0'); 942 if (tok_end < end) 943 *tok_end = ','; 944 while (!done) { 945 switch (*opt_arg) { 946 case '{': 947 if (instance == -1) { 948 instance = 0; 949 } else { 950 if (depth > 1) { 951 if (targ == -1) 952 targ = 0; 953 } else { 954 printk("Malformed Option %s\n", 955 opt_name); 956 done = TRUE; 957 } 958 } 959 opt_arg++; 960 break; 961 case '}': 962 if (targ != -1) 963 targ = -1; 964 else if (instance != -1) 965 instance = -1; 966 opt_arg++; 967 break; 968 case ',': 969 case '.': 970 if (instance == -1) 971 done = TRUE; 972 else if (targ >= 0) 973 targ++; 974 else if (instance >= 0) 975 instance++; 976 opt_arg++; 977 break; 978 case '\0': 979 done = TRUE; 980 break; 981 default: 982 tok_end = end; 983 for (i = 0; tok_list[i]; i++) { 984 tok_end2 = strchr(opt_arg, tok_list[i]); 985 if ((tok_end2) && (tok_end2 < tok_end)) 986 tok_end = tok_end2; 987 } 988 callback(callback_arg, instance, targ, 989 simple_strtol(opt_arg, NULL, 0)); 990 opt_arg = tok_end; 991 break; 992 } 993 } 994 return (opt_arg); 995} 996 997/* 998 * Handle Linux boot parameters. This routine allows for assigning a value 999 * to a parameter with a ':' between the parameter and the value. 1000 * ie. aic7xxx=stpwlev:1,extended 1001 */ 1002static int 1003aic7xxx_setup(char *s) 1004{ 1005 int i, n; 1006 char *p; 1007 char *end; 1008 1009 static const struct { 1010 const char *name; 1011 uint32_t *flag; 1012 } options[] = { 1013 { "extended", &aic7xxx_extended }, 1014 { "no_reset", &aic7xxx_no_reset }, 1015 { "verbose", &aic7xxx_verbose }, 1016 { "allow_memio", &aic7xxx_allow_memio}, 1017#ifdef AHC_DEBUG 1018 { "debug", &ahc_debug }, 1019#endif 1020 { "periodic_otag", &aic7xxx_periodic_otag }, 1021 { "pci_parity", &aic7xxx_pci_parity }, 1022 { "seltime", &aic7xxx_seltime }, 1023 { "tag_info", NULL }, 1024 { "global_tag_depth", NULL }, 1025 { "dv", NULL } 1026 }; 1027 1028 end = strchr(s, '\0'); 1029 1030 /* 1031 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE 1032 * will never be 0 in this case. 1033 */ 1034 n = 0; 1035 1036 while ((p = strsep(&s, ",.")) != NULL) { 1037 if (*p == '\0') 1038 continue; 1039 for (i = 0; i < ARRAY_SIZE(options); i++) { 1040 1041 n = strlen(options[i].name); 1042 if (strncmp(options[i].name, p, n) == 0) 1043 break; 1044 } 1045 if (i == ARRAY_SIZE(options)) 1046 continue; 1047 1048 if (strncmp(p, "global_tag_depth", n) == 0) { 1049 ahc_linux_setup_tag_info_global(p + n); 1050 } else if (strncmp(p, "tag_info", n) == 0) { 1051 s = ahc_parse_brace_option("tag_info", p + n, end, 1052 2, ahc_linux_setup_tag_info, 0); 1053 } else if (p[n] == ':') { 1054 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); 1055 } else if (strncmp(p, "verbose", n) == 0) { 1056 *(options[i].flag) = 1; 1057 } else { 1058 *(options[i].flag) ^= 0xFFFFFFFF; 1059 } 1060 } 1061 return 1; 1062} 1063 1064__setup("aic7xxx=", aic7xxx_setup); 1065 1066uint32_t aic7xxx_verbose; 1067 1068int 1069ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template) 1070{ 1071 char buf[80]; 1072 struct Scsi_Host *host; 1073 char *new_name; 1074 u_long s; 1075 int retval; 1076 1077 template->name = ahc->description; 1078 host = scsi_host_alloc(template, sizeof(struct ahc_softc *)); 1079 if (host == NULL) 1080 return (ENOMEM); 1081 1082 *((struct ahc_softc **)host->hostdata) = ahc; 1083 ahc->platform_data->host = host; 1084 host->can_queue = AHC_MAX_QUEUE; 1085 host->cmd_per_lun = 2; 1086 /* XXX No way to communicate the ID for multiple channels */ 1087 host->this_id = ahc->our_id; 1088 host->irq = ahc->platform_data->irq; 1089 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; 1090 host->max_lun = AHC_NUM_LUNS; 1091 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; 1092 host->sg_tablesize = AHC_NSEG; 1093 ahc_lock(ahc, &s); 1094 ahc_set_unit(ahc, ahc_linux_unit++); 1095 ahc_unlock(ahc, &s); 1096 sprintf(buf, "scsi%d", host->host_no); 1097 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC); 1098 if (new_name != NULL) { 1099 strcpy(new_name, buf); 1100 ahc_set_name(ahc, new_name); 1101 } 1102 host->unique_id = ahc->unit; 1103 ahc_linux_initialize_scsi_bus(ahc); 1104 ahc_intr_enable(ahc, TRUE); 1105 1106 host->transportt = ahc_linux_transport_template; 1107 1108 retval = scsi_add_host(host, ahc->dev); 1109 if (retval) { 1110 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n"); 1111 scsi_host_put(host); 1112 return retval; 1113 } 1114 1115 scsi_scan_host(host); 1116 return 0; 1117} 1118 1119/* 1120 * Place the SCSI bus into a known state by either resetting it, 1121 * or forcing transfer negotiations on the next command to any 1122 * target. 1123 */ 1124static void 1125ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) 1126{ 1127 int i; 1128 int numtarg; 1129 unsigned long s; 1130 1131 i = 0; 1132 numtarg = 0; 1133 1134 ahc_lock(ahc, &s); 1135 1136 if (aic7xxx_no_reset != 0) 1137 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); 1138 1139 if ((ahc->flags & AHC_RESET_BUS_A) != 0) 1140 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); 1141 else 1142 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; 1143 1144 if ((ahc->features & AHC_TWIN) != 0) { 1145 1146 if ((ahc->flags & AHC_RESET_BUS_B) != 0) { 1147 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); 1148 } else { 1149 if (numtarg == 0) 1150 i = 8; 1151 numtarg += 8; 1152 } 1153 } 1154 1155 /* 1156 * Force negotiation to async for all targets that 1157 * will not see an initial bus reset. 1158 */ 1159 for (; i < numtarg; i++) { 1160 struct ahc_devinfo devinfo; 1161 struct ahc_initiator_tinfo *tinfo; 1162 struct ahc_tmode_tstate *tstate; 1163 u_int our_id; 1164 u_int target_id; 1165 char channel; 1166 1167 channel = 'A'; 1168 our_id = ahc->our_id; 1169 target_id = i; 1170 if (i > 7 && (ahc->features & AHC_TWIN) != 0) { 1171 channel = 'B'; 1172 our_id = ahc->our_id_b; 1173 target_id = i % 8; 1174 } 1175 tinfo = ahc_fetch_transinfo(ahc, channel, our_id, 1176 target_id, &tstate); 1177 ahc_compile_devinfo(&devinfo, our_id, target_id, 1178 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); 1179 ahc_update_neg_request(ahc, &devinfo, tstate, 1180 tinfo, AHC_NEG_ALWAYS); 1181 } 1182 ahc_unlock(ahc, &s); 1183 /* Give the bus some time to recover */ 1184 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { 1185 ahc_linux_freeze_simq(ahc); 1186 msleep(AIC7XXX_RESET_DELAY); 1187 ahc_linux_release_simq(ahc); 1188 } 1189} 1190 1191int 1192ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) 1193{ 1194 1195 ahc->platform_data = 1196 kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC); 1197 if (ahc->platform_data == NULL) 1198 return (ENOMEM); 1199 ahc->platform_data->irq = AHC_LINUX_NOIRQ; 1200 ahc_lockinit(ahc); 1201 ahc->seltime = (aic7xxx_seltime & 0x3) << 4; 1202 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; 1203 if (aic7xxx_pci_parity == 0) 1204 ahc->flags |= AHC_DISABLE_PCI_PERR; 1205 1206 return (0); 1207} 1208 1209void 1210ahc_platform_free(struct ahc_softc *ahc) 1211{ 1212 struct scsi_target *starget; 1213 int i; 1214 1215 if (ahc->platform_data != NULL) { 1216 /* destroy all of the device and target objects */ 1217 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1218 starget = ahc->platform_data->starget[i]; 1219 if (starget != NULL) { 1220 ahc->platform_data->starget[i] = NULL; 1221 } 1222 } 1223 1224 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ) 1225 free_irq(ahc->platform_data->irq, ahc); 1226 if (ahc->tag == BUS_SPACE_PIO 1227 && ahc->bsh.ioport != 0) 1228 release_region(ahc->bsh.ioport, 256); 1229 if (ahc->tag == BUS_SPACE_MEMIO 1230 && ahc->bsh.maddr != NULL) { 1231 iounmap(ahc->bsh.maddr); 1232 release_mem_region(ahc->platform_data->mem_busaddr, 1233 0x1000); 1234 } 1235 1236 if (ahc->platform_data->host) 1237 scsi_host_put(ahc->platform_data->host); 1238 1239 kfree(ahc->platform_data); 1240 } 1241} 1242 1243void 1244ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) 1245{ 1246 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), 1247 SCB_GET_CHANNEL(ahc, scb), 1248 SCB_GET_LUN(scb), SCB_LIST_NULL, 1249 ROLE_UNKNOWN, CAM_REQUEUE_REQ); 1250} 1251 1252void 1253ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev, 1254 struct ahc_devinfo *devinfo, ahc_queue_alg alg) 1255{ 1256 struct ahc_linux_device *dev; 1257 int was_queuing; 1258 int now_queuing; 1259 1260 if (sdev == NULL) 1261 return; 1262 dev = scsi_transport_device_data(sdev); 1263 1264 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); 1265 switch (alg) { 1266 default: 1267 case AHC_QUEUE_NONE: 1268 now_queuing = 0; 1269 break; 1270 case AHC_QUEUE_BASIC: 1271 now_queuing = AHC_DEV_Q_BASIC; 1272 break; 1273 case AHC_QUEUE_TAGGED: 1274 now_queuing = AHC_DEV_Q_TAGGED; 1275 break; 1276 } 1277 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 1278 && (was_queuing != now_queuing) 1279 && (dev->active != 0)) { 1280 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; 1281 dev->qfrozen++; 1282 } 1283 1284 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); 1285 if (now_queuing) { 1286 u_int usertags; 1287 1288 usertags = ahc_linux_user_tagdepth(ahc, devinfo); 1289 if (!was_queuing) { 1290 /* 1291 * Start out aggressively and allow our 1292 * dynamic queue depth algorithm to take 1293 * care of the rest. 1294 */ 1295 dev->maxtags = usertags; 1296 dev->openings = dev->maxtags - dev->active; 1297 } 1298 if (dev->maxtags == 0) { 1299 /* 1300 * Queueing is disabled by the user. 1301 */ 1302 dev->openings = 1; 1303 } else if (alg == AHC_QUEUE_TAGGED) { 1304 dev->flags |= AHC_DEV_Q_TAGGED; 1305 if (aic7xxx_periodic_otag != 0) 1306 dev->flags |= AHC_DEV_PERIODIC_OTAG; 1307 } else 1308 dev->flags |= AHC_DEV_Q_BASIC; 1309 } else { 1310 /* We can only have one opening. */ 1311 dev->maxtags = 0; 1312 dev->openings = 1 - dev->active; 1313 } 1314 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) { 1315 case AHC_DEV_Q_BASIC: 1316 case AHC_DEV_Q_TAGGED: 1317 scsi_change_queue_depth(sdev, 1318 dev->openings + dev->active); 1319 break; 1320 default: 1321 /* 1322 * We allow the OS to queue 2 untagged transactions to 1323 * us at any time even though we can only execute them 1324 * serially on the controller/device. This should 1325 * remove some latency. 1326 */ 1327 scsi_change_queue_depth(sdev, 2); 1328 break; 1329 } 1330} 1331 1332int 1333ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, 1334 int lun, u_int tag, role_t role, uint32_t status) 1335{ 1336 return 0; 1337} 1338 1339static u_int 1340ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 1341{ 1342 static int warned_user; 1343 u_int tags; 1344 1345 tags = 0; 1346 if ((ahc->user_discenable & devinfo->target_mask) != 0) { 1347 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) { 1348 if (warned_user == 0) { 1349 1350 printk(KERN_WARNING 1351"aic7xxx: WARNING: Insufficient tag_info instances\n" 1352"aic7xxx: for installed controllers. Using defaults\n" 1353"aic7xxx: Please update the aic7xxx_tag_info array in\n" 1354"aic7xxx: the aic7xxx_osm..c source file.\n"); 1355 warned_user++; 1356 } 1357 tags = AHC_MAX_QUEUE; 1358 } else { 1359 adapter_tag_info_t *tag_info; 1360 1361 tag_info = &aic7xxx_tag_info[ahc->unit]; 1362 tags = tag_info->tag_commands[devinfo->target_offset]; 1363 if (tags > AHC_MAX_QUEUE) 1364 tags = AHC_MAX_QUEUE; 1365 } 1366 } 1367 return (tags); 1368} 1369 1370/* 1371 * Determines the queue depth for a given device. 1372 */ 1373static void 1374ahc_linux_device_queue_depth(struct scsi_device *sdev) 1375{ 1376 struct ahc_devinfo devinfo; 1377 u_int tags; 1378 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata); 1379 1380 ahc_compile_devinfo(&devinfo, 1381 sdev->sdev_target->channel == 0 1382 ? ahc->our_id : ahc->our_id_b, 1383 sdev->sdev_target->id, sdev->lun, 1384 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1385 ROLE_INITIATOR); 1386 tags = ahc_linux_user_tagdepth(ahc, &devinfo); 1387 if (tags != 0 && sdev->tagged_supported != 0) { 1388 1389 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED); 1390 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1391 devinfo.lun, AC_TRANSFER_NEG); 1392 ahc_print_devinfo(ahc, &devinfo); 1393 printk("Tagged Queuing enabled. Depth %d\n", tags); 1394 } else { 1395 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE); 1396 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1397 devinfo.lun, AC_TRANSFER_NEG); 1398 } 1399} 1400 1401static int 1402ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev, 1403 struct scsi_cmnd *cmd) 1404{ 1405 struct scb *scb; 1406 struct hardware_scb *hscb; 1407 struct ahc_initiator_tinfo *tinfo; 1408 struct ahc_tmode_tstate *tstate; 1409 uint16_t mask; 1410 struct scb_tailq *untagged_q = NULL; 1411 int nseg; 1412 1413 /* 1414 * Schedule us to run later. The only reason we are not 1415 * running is because the whole controller Q is frozen. 1416 */ 1417 if (ahc->platform_data->qfrozen != 0) 1418 return SCSI_MLQUEUE_HOST_BUSY; 1419 1420 /* 1421 * We only allow one untagged transaction 1422 * per target in the initiator role unless 1423 * we are storing a full busy target *lun* 1424 * table in SCB space. 1425 */ 1426 if (!(cmd->flags & SCMD_TAGGED) 1427 && (ahc->features & AHC_SCB_BTT) == 0) { 1428 int target_offset; 1429 1430 target_offset = cmd->device->id + cmd->device->channel * 8; 1431 untagged_q = &(ahc->untagged_queues[target_offset]); 1432 if (!TAILQ_EMPTY(untagged_q)) 1433 /* if we're already executing an untagged command 1434 * we're busy to another */ 1435 return SCSI_MLQUEUE_DEVICE_BUSY; 1436 } 1437 1438 nseg = scsi_dma_map(cmd); 1439 if (nseg < 0) 1440 return SCSI_MLQUEUE_HOST_BUSY; 1441 1442 /* 1443 * Get an scb to use. 1444 */ 1445 scb = ahc_get_scb(ahc); 1446 if (!scb) { 1447 scsi_dma_unmap(cmd); 1448 return SCSI_MLQUEUE_HOST_BUSY; 1449 } 1450 1451 scb->io_ctx = cmd; 1452 scb->platform_data->dev = dev; 1453 hscb = scb->hscb; 1454 cmd->host_scribble = (char *)scb; 1455 1456 /* 1457 * Fill out basics of the HSCB. 1458 */ 1459 hscb->control = 0; 1460 hscb->scsiid = BUILD_SCSIID(ahc, cmd); 1461 hscb->lun = cmd->device->lun; 1462 mask = SCB_GET_TARGET_MASK(ahc, scb); 1463 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), 1464 SCB_GET_OUR_ID(scb), 1465 SCB_GET_TARGET(ahc, scb), &tstate); 1466 hscb->scsirate = tinfo->scsirate; 1467 hscb->scsioffset = tinfo->curr.offset; 1468 if ((tstate->ultraenb & mask) != 0) 1469 hscb->control |= ULTRAENB; 1470 1471 if ((ahc->user_discenable & mask) != 0) 1472 hscb->control |= DISCENB; 1473 1474 if ((tstate->auto_negotiate & mask) != 0) { 1475 scb->flags |= SCB_AUTO_NEGOTIATE; 1476 scb->hscb->control |= MK_MESSAGE; 1477 } 1478 1479 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { 1480 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH 1481 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { 1482 hscb->control |= ORDERED_QUEUE_TAG; 1483 dev->commands_since_idle_or_otag = 0; 1484 } else { 1485 hscb->control |= SIMPLE_QUEUE_TAG; 1486 } 1487 } 1488 1489 hscb->cdb_len = cmd->cmd_len; 1490 if (hscb->cdb_len <= 12) { 1491 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); 1492 } else { 1493 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); 1494 scb->flags |= SCB_CDB32_PTR; 1495 } 1496 1497 scb->platform_data->xfer_len = 0; 1498 ahc_set_residual(scb, 0); 1499 ahc_set_sense_residual(scb, 0); 1500 scb->sg_count = 0; 1501 1502 if (nseg > 0) { 1503 struct ahc_dma_seg *sg; 1504 struct scatterlist *cur_seg; 1505 int i; 1506 1507 /* Copy the segments into the SG list. */ 1508 sg = scb->sg_list; 1509 /* 1510 * The sg_count may be larger than nseg if 1511 * a transfer crosses a 32bit page. 1512 */ 1513 scsi_for_each_sg(cmd, cur_seg, nseg, i) { 1514 dma_addr_t addr; 1515 bus_size_t len; 1516 int consumed; 1517 1518 addr = sg_dma_address(cur_seg); 1519 len = sg_dma_len(cur_seg); 1520 consumed = ahc_linux_map_seg(ahc, scb, 1521 sg, addr, len); 1522 sg += consumed; 1523 scb->sg_count += consumed; 1524 } 1525 sg--; 1526 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); 1527 1528 /* 1529 * Reset the sg list pointer. 1530 */ 1531 scb->hscb->sgptr = 1532 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); 1533 1534 /* 1535 * Copy the first SG into the "current" 1536 * data pointer area. 1537 */ 1538 scb->hscb->dataptr = scb->sg_list->addr; 1539 scb->hscb->datacnt = scb->sg_list->len; 1540 } else { 1541 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); 1542 scb->hscb->dataptr = 0; 1543 scb->hscb->datacnt = 0; 1544 scb->sg_count = 0; 1545 } 1546 1547 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); 1548 dev->openings--; 1549 dev->active++; 1550 dev->commands_issued++; 1551 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) 1552 dev->commands_since_idle_or_otag++; 1553 1554 scb->flags |= SCB_ACTIVE; 1555 if (untagged_q) { 1556 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); 1557 scb->flags |= SCB_UNTAGGEDQ; 1558 } 1559 ahc_queue_scb(ahc, scb); 1560 return 0; 1561} 1562 1563/* 1564 * SCSI controller interrupt handler. 1565 */ 1566irqreturn_t 1567ahc_linux_isr(int irq, void *dev_id) 1568{ 1569 struct ahc_softc *ahc; 1570 u_long flags; 1571 int ours; 1572 1573 ahc = (struct ahc_softc *) dev_id; 1574 ahc_lock(ahc, &flags); 1575 ours = ahc_intr(ahc); 1576 ahc_unlock(ahc, &flags); 1577 return IRQ_RETVAL(ours); 1578} 1579 1580void 1581ahc_platform_flushwork(struct ahc_softc *ahc) 1582{ 1583 1584} 1585 1586void 1587ahc_send_async(struct ahc_softc *ahc, char channel, 1588 u_int target, u_int lun, ac_code code) 1589{ 1590 switch (code) { 1591 case AC_TRANSFER_NEG: 1592 { 1593 struct scsi_target *starget; 1594 struct ahc_initiator_tinfo *tinfo; 1595 struct ahc_tmode_tstate *tstate; 1596 int target_offset; 1597 unsigned int target_ppr_options; 1598 1599 BUG_ON(target == CAM_TARGET_WILDCARD); 1600 1601 tinfo = ahc_fetch_transinfo(ahc, channel, 1602 channel == 'A' ? ahc->our_id 1603 : ahc->our_id_b, 1604 target, &tstate); 1605 1606 /* 1607 * Don't bother reporting results while 1608 * negotiations are still pending. 1609 */ 1610 if (tinfo->curr.period != tinfo->goal.period 1611 || tinfo->curr.width != tinfo->goal.width 1612 || tinfo->curr.offset != tinfo->goal.offset 1613 || tinfo->curr.ppr_options != tinfo->goal.ppr_options) 1614 if (bootverbose == 0) 1615 break; 1616 1617 /* 1618 * Don't bother reporting results that 1619 * are identical to those last reported. 1620 */ 1621 target_offset = target; 1622 if (channel == 'B') 1623 target_offset += 8; 1624 starget = ahc->platform_data->starget[target_offset]; 1625 if (starget == NULL) 1626 break; 1627 1628 target_ppr_options = 1629 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0) 1630 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0) 1631 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0); 1632 1633 if (tinfo->curr.period == spi_period(starget) 1634 && tinfo->curr.width == spi_width(starget) 1635 && tinfo->curr.offset == spi_offset(starget) 1636 && tinfo->curr.ppr_options == target_ppr_options) 1637 if (bootverbose == 0) 1638 break; 1639 1640 spi_period(starget) = tinfo->curr.period; 1641 spi_width(starget) = tinfo->curr.width; 1642 spi_offset(starget) = tinfo->curr.offset; 1643 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0; 1644 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0; 1645 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0; 1646 spi_display_xfer_agreement(starget); 1647 break; 1648 } 1649 case AC_SENT_BDR: 1650 { 1651 WARN_ON(lun != CAM_LUN_WILDCARD); 1652 scsi_report_device_reset(ahc->platform_data->host, 1653 channel - 'A', target); 1654 break; 1655 } 1656 case AC_BUS_RESET: 1657 if (ahc->platform_data->host != NULL) { 1658 scsi_report_bus_reset(ahc->platform_data->host, 1659 channel - 'A'); 1660 } 1661 break; 1662 default: 1663 panic("ahc_send_async: Unexpected async event"); 1664 } 1665} 1666 1667/* 1668 * Calls the higher level scsi done function and frees the scb. 1669 */ 1670void 1671ahc_done(struct ahc_softc *ahc, struct scb *scb) 1672{ 1673 struct scsi_cmnd *cmd; 1674 struct ahc_linux_device *dev; 1675 1676 LIST_REMOVE(scb, pending_links); 1677 if ((scb->flags & SCB_UNTAGGEDQ) != 0) { 1678 struct scb_tailq *untagged_q; 1679 int target_offset; 1680 1681 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); 1682 untagged_q = &(ahc->untagged_queues[target_offset]); 1683 TAILQ_REMOVE(untagged_q, scb, links.tqe); 1684 BUG_ON(!TAILQ_EMPTY(untagged_q)); 1685 } else if ((scb->flags & SCB_ACTIVE) == 0) { 1686 /* 1687 * Transactions aborted from the untagged queue may 1688 * not have been dispatched to the controller, so 1689 * only check the SCB_ACTIVE flag for tagged transactions. 1690 */ 1691 printk("SCB %d done'd twice\n", scb->hscb->tag); 1692 ahc_dump_card_state(ahc); 1693 panic("Stopping for safety"); 1694 } 1695 cmd = scb->io_ctx; 1696 dev = scb->platform_data->dev; 1697 dev->active--; 1698 dev->openings++; 1699 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { 1700 cmd->result &= ~(CAM_DEV_QFRZN << 16); 1701 dev->qfrozen--; 1702 } 1703 ahc_linux_unmap_scb(ahc, scb); 1704 1705 /* 1706 * Guard against stale sense data. 1707 * The Linux mid-layer assumes that sense 1708 * was retrieved anytime the first byte of 1709 * the sense buffer looks "sane". 1710 */ 1711 cmd->sense_buffer[0] = 0; 1712 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { 1713#ifdef AHC_REPORT_UNDERFLOWS 1714 uint32_t amount_xferred; 1715 1716 amount_xferred = 1717 ahc_get_transfer_length(scb) - ahc_get_residual(scb); 1718#endif 1719 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { 1720#ifdef AHC_DEBUG 1721 if ((ahc_debug & AHC_SHOW_MISC) != 0) { 1722 ahc_print_path(ahc, scb); 1723 printk("Set CAM_UNCOR_PARITY\n"); 1724 } 1725#endif 1726 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY); 1727#ifdef AHC_REPORT_UNDERFLOWS 1728 /* 1729 * This code is disabled by default as some 1730 * clients of the SCSI system do not properly 1731 * initialize the underflow parameter. This 1732 * results in spurious termination of commands 1733 * that complete as expected (e.g. underflow is 1734 * allowed as command can return variable amounts 1735 * of data. 1736 */ 1737 } else if (amount_xferred < scb->io_ctx->underflow) { 1738 u_int i; 1739 1740 ahc_print_path(ahc, scb); 1741 printk("CDB:"); 1742 for (i = 0; i < scb->io_ctx->cmd_len; i++) 1743 printk(" 0x%x", scb->io_ctx->cmnd[i]); 1744 printk("\n"); 1745 ahc_print_path(ahc, scb); 1746 printk("Saw underflow (%ld of %ld bytes). " 1747 "Treated as error\n", 1748 ahc_get_residual(scb), 1749 ahc_get_transfer_length(scb)); 1750 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); 1751#endif 1752 } else { 1753 ahc_set_transaction_status(scb, CAM_REQ_CMP); 1754 } 1755 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { 1756 ahc_linux_handle_scsi_status(ahc, cmd->device, scb); 1757 } 1758 1759 if (dev->openings == 1 1760 && ahc_get_transaction_status(scb) == CAM_REQ_CMP 1761 && ahc_get_scsi_status(scb) != SAM_STAT_TASK_SET_FULL) 1762 dev->tag_success_count++; 1763 /* 1764 * Some devices deal with temporary internal resource 1765 * shortages by returning queue full. When the queue 1766 * full occurrs, we throttle back. Slowly try to get 1767 * back to our previous queue depth. 1768 */ 1769 if ((dev->openings + dev->active) < dev->maxtags 1770 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { 1771 dev->tag_success_count = 0; 1772 dev->openings++; 1773 } 1774 1775 if (dev->active == 0) 1776 dev->commands_since_idle_or_otag = 0; 1777 1778 if ((scb->flags & SCB_RECOVERY_SCB) != 0) { 1779 printk("Recovery SCB completes\n"); 1780 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT 1781 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED) 1782 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); 1783 1784 if (ahc->platform_data->eh_done) 1785 complete(ahc->platform_data->eh_done); 1786 } 1787 1788 ahc_free_scb(ahc, scb); 1789 ahc_linux_queue_cmd_complete(ahc, cmd); 1790} 1791 1792static void 1793ahc_linux_handle_scsi_status(struct ahc_softc *ahc, 1794 struct scsi_device *sdev, struct scb *scb) 1795{ 1796 struct ahc_devinfo devinfo; 1797 struct ahc_linux_device *dev = scsi_transport_device_data(sdev); 1798 1799 ahc_compile_devinfo(&devinfo, 1800 ahc->our_id, 1801 sdev->sdev_target->id, sdev->lun, 1802 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1803 ROLE_INITIATOR); 1804 1805 /* 1806 * We don't currently trust the mid-layer to 1807 * properly deal with queue full or busy. So, 1808 * when one occurs, we tell the mid-layer to 1809 * unconditionally requeue the command to us 1810 * so that we can retry it ourselves. We also 1811 * implement our own throttling mechanism so 1812 * we don't clobber the device with too many 1813 * commands. 1814 */ 1815 switch (ahc_get_scsi_status(scb)) { 1816 default: 1817 break; 1818 case SAM_STAT_CHECK_CONDITION: 1819 case SAM_STAT_COMMAND_TERMINATED: 1820 { 1821 struct scsi_cmnd *cmd; 1822 1823 /* 1824 * Copy sense information to the OS's cmd 1825 * structure if it is available. 1826 */ 1827 cmd = scb->io_ctx; 1828 if (scb->flags & SCB_SENSE) { 1829 u_int sense_size; 1830 1831 sense_size = min(sizeof(struct scsi_sense_data) 1832 - ahc_get_sense_residual(scb), 1833 (u_long)SCSI_SENSE_BUFFERSIZE); 1834 memcpy(cmd->sense_buffer, 1835 ahc_get_sense_buf(ahc, scb), sense_size); 1836 if (sense_size < SCSI_SENSE_BUFFERSIZE) 1837 memset(&cmd->sense_buffer[sense_size], 0, 1838 SCSI_SENSE_BUFFERSIZE - sense_size); 1839#ifdef AHC_DEBUG 1840 if (ahc_debug & AHC_SHOW_SENSE) { 1841 int i; 1842 1843 printk("Copied %d bytes of sense data:", 1844 sense_size); 1845 for (i = 0; i < sense_size; i++) { 1846 if ((i & 0xF) == 0) 1847 printk("\n"); 1848 printk("0x%x ", cmd->sense_buffer[i]); 1849 } 1850 printk("\n"); 1851 } 1852#endif 1853 } 1854 break; 1855 } 1856 case SAM_STAT_TASK_SET_FULL: 1857 { 1858 /* 1859 * By the time the core driver has returned this 1860 * command, all other commands that were queued 1861 * to us but not the device have been returned. 1862 * This ensures that dev->active is equal to 1863 * the number of commands actually queued to 1864 * the device. 1865 */ 1866 dev->tag_success_count = 0; 1867 if (dev->active != 0) { 1868 /* 1869 * Drop our opening count to the number 1870 * of commands currently outstanding. 1871 */ 1872 dev->openings = 0; 1873/* 1874 ahc_print_path(ahc, scb); 1875 printk("Dropping tag count to %d\n", dev->active); 1876 */ 1877 if (dev->active == dev->tags_on_last_queuefull) { 1878 1879 dev->last_queuefull_same_count++; 1880 /* 1881 * If we repeatedly see a queue full 1882 * at the same queue depth, this 1883 * device has a fixed number of tag 1884 * slots. Lock in this tag depth 1885 * so we stop seeing queue fulls from 1886 * this device. 1887 */ 1888 if (dev->last_queuefull_same_count 1889 == AHC_LOCK_TAGS_COUNT) { 1890 dev->maxtags = dev->active; 1891 ahc_print_path(ahc, scb); 1892 printk("Locking max tag count at %d\n", 1893 dev->active); 1894 } 1895 } else { 1896 dev->tags_on_last_queuefull = dev->active; 1897 dev->last_queuefull_same_count = 0; 1898 } 1899 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); 1900 ahc_set_scsi_status(scb, SAM_STAT_GOOD); 1901 ahc_platform_set_tags(ahc, sdev, &devinfo, 1902 (dev->flags & AHC_DEV_Q_BASIC) 1903 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1904 break; 1905 } 1906 /* 1907 * Drop down to a single opening, and treat this 1908 * as if the target returned BUSY SCSI status. 1909 */ 1910 dev->openings = 1; 1911 ahc_set_scsi_status(scb, SAM_STAT_BUSY); 1912 ahc_platform_set_tags(ahc, sdev, &devinfo, 1913 (dev->flags & AHC_DEV_Q_BASIC) 1914 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1915 break; 1916 } 1917 } 1918} 1919 1920static void 1921ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd) 1922{ 1923 /* 1924 * Map CAM error codes into Linux Error codes. We 1925 * avoid the conversion so that the DV code has the 1926 * full error information available when making 1927 * state change decisions. 1928 */ 1929 { 1930 u_int new_status; 1931 1932 switch (ahc_cmd_get_transaction_status(cmd)) { 1933 case CAM_REQ_INPROG: 1934 case CAM_REQ_CMP: 1935 case CAM_SCSI_STATUS_ERROR: 1936 new_status = DID_OK; 1937 break; 1938 case CAM_REQ_ABORTED: 1939 new_status = DID_ABORT; 1940 break; 1941 case CAM_BUSY: 1942 new_status = DID_BUS_BUSY; 1943 break; 1944 case CAM_REQ_INVALID: 1945 case CAM_PATH_INVALID: 1946 new_status = DID_BAD_TARGET; 1947 break; 1948 case CAM_SEL_TIMEOUT: 1949 new_status = DID_NO_CONNECT; 1950 break; 1951 case CAM_SCSI_BUS_RESET: 1952 case CAM_BDR_SENT: 1953 new_status = DID_RESET; 1954 break; 1955 case CAM_UNCOR_PARITY: 1956 new_status = DID_PARITY; 1957 break; 1958 case CAM_CMD_TIMEOUT: 1959 new_status = DID_TIME_OUT; 1960 break; 1961 case CAM_UA_ABORT: 1962 case CAM_REQ_CMP_ERR: 1963 case CAM_AUTOSENSE_FAIL: 1964 case CAM_NO_HBA: 1965 case CAM_DATA_RUN_ERR: 1966 case CAM_UNEXP_BUSFREE: 1967 case CAM_SEQUENCE_FAIL: 1968 case CAM_CCB_LEN_ERR: 1969 case CAM_PROVIDE_FAIL: 1970 case CAM_REQ_TERMIO: 1971 case CAM_UNREC_HBA_ERROR: 1972 case CAM_REQ_TOO_BIG: 1973 new_status = DID_ERROR; 1974 break; 1975 case CAM_REQUEUE_REQ: 1976 new_status = DID_REQUEUE; 1977 break; 1978 default: 1979 /* We should never get here */ 1980 new_status = DID_ERROR; 1981 break; 1982 } 1983 1984 ahc_cmd_set_transaction_status(cmd, new_status); 1985 } 1986 1987 scsi_done(cmd); 1988} 1989 1990static void 1991ahc_linux_freeze_simq(struct ahc_softc *ahc) 1992{ 1993 unsigned long s; 1994 1995 ahc_lock(ahc, &s); 1996 ahc->platform_data->qfrozen++; 1997 if (ahc->platform_data->qfrozen == 1) { 1998 scsi_block_requests(ahc->platform_data->host); 1999 2000 /* XXX What about Twin channels? */ 2001 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, 2002 CAM_LUN_WILDCARD, SCB_LIST_NULL, 2003 ROLE_INITIATOR, CAM_REQUEUE_REQ); 2004 } 2005 ahc_unlock(ahc, &s); 2006} 2007 2008static void 2009ahc_linux_release_simq(struct ahc_softc *ahc) 2010{ 2011 u_long s; 2012 int unblock_reqs; 2013 2014 unblock_reqs = 0; 2015 ahc_lock(ahc, &s); 2016 if (ahc->platform_data->qfrozen > 0) 2017 ahc->platform_data->qfrozen--; 2018 if (ahc->platform_data->qfrozen == 0) 2019 unblock_reqs = 1; 2020 ahc_unlock(ahc, &s); 2021 /* 2022 * There is still a race here. The mid-layer 2023 * should keep its own freeze count and use 2024 * a bottom half handler to run the queues 2025 * so we can unblock with our own lock held. 2026 */ 2027 if (unblock_reqs) 2028 scsi_unblock_requests(ahc->platform_data->host); 2029} 2030 2031static int 2032ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag) 2033{ 2034 struct ahc_softc *ahc; 2035 struct ahc_linux_device *dev; 2036 struct scb *pending_scb; 2037 u_int saved_scbptr; 2038 u_int active_scb_index; 2039 u_int last_phase; 2040 u_int saved_scsiid; 2041 u_int cdb_byte; 2042 int retval; 2043 int was_paused; 2044 int paused; 2045 int wait; 2046 int disconnected; 2047 unsigned long flags; 2048 2049 pending_scb = NULL; 2050 paused = FALSE; 2051 wait = FALSE; 2052 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 2053 2054 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n", 2055 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); 2056 2057 printk("CDB:"); 2058 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) 2059 printk(" 0x%x", cmd->cmnd[cdb_byte]); 2060 printk("\n"); 2061 2062 ahc_lock(ahc, &flags); 2063 2064 /* 2065 * First determine if we currently own this command. 2066 * Start by searching the device queue. If not found 2067 * there, check the pending_scb list. If not found 2068 * at all, and the system wanted us to just abort the 2069 * command, return success. 2070 */ 2071 dev = scsi_transport_device_data(cmd->device); 2072 2073 if (dev == NULL) { 2074 /* 2075 * No target device for this command exists, 2076 * so we must not still own the command. 2077 */ 2078 printk("%s:%d:%d:%d: Is not an active device\n", 2079 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2080 (u8)cmd->device->lun); 2081 retval = SUCCESS; 2082 goto no_cmd; 2083 } 2084 2085 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0 2086 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id, 2087 cmd->device->channel + 'A', 2088 (u8)cmd->device->lun, 2089 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) { 2090 printk("%s:%d:%d:%d: Command found on untagged queue\n", 2091 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2092 (u8)cmd->device->lun); 2093 retval = SUCCESS; 2094 goto done; 2095 } 2096 2097 /* 2098 * See if we can find a matching cmd in the pending list. 2099 */ 2100 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2101 if (pending_scb->io_ctx == cmd) 2102 break; 2103 } 2104 2105 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { 2106 2107 /* Any SCB for this device will do for a target reset */ 2108 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2109 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd), 2110 scmd_channel(cmd) + 'A', 2111 CAM_LUN_WILDCARD, 2112 SCB_LIST_NULL, ROLE_INITIATOR)) 2113 break; 2114 } 2115 } 2116 2117 if (pending_scb == NULL) { 2118 scmd_printk(KERN_INFO, cmd, "Command not found\n"); 2119 goto no_cmd; 2120 } 2121 2122 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { 2123 /* 2124 * We can't queue two recovery actions using the same SCB 2125 */ 2126 retval = FAILED; 2127 goto done; 2128 } 2129 2130 /* 2131 * Ensure that the card doesn't do anything 2132 * behind our back and that we didn't "just" miss 2133 * an interrupt that would affect this cmd. 2134 */ 2135 was_paused = ahc_is_paused(ahc); 2136 ahc_pause_and_flushwork(ahc); 2137 paused = TRUE; 2138 2139 if ((pending_scb->flags & SCB_ACTIVE) == 0) { 2140 scmd_printk(KERN_INFO, cmd, "Command already completed\n"); 2141 goto no_cmd; 2142 } 2143 2144 printk("%s: At time of recovery, card was %spaused\n", 2145 ahc_name(ahc), was_paused ? "" : "not "); 2146 ahc_dump_card_state(ahc); 2147 2148 disconnected = TRUE; 2149 if (flag == SCB_ABORT) { 2150 if (ahc_search_qinfifo(ahc, cmd->device->id, 2151 cmd->device->channel + 'A', 2152 cmd->device->lun, 2153 pending_scb->hscb->tag, 2154 ROLE_INITIATOR, CAM_REQ_ABORTED, 2155 SEARCH_COMPLETE) > 0) { 2156 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", 2157 ahc_name(ahc), cmd->device->channel, 2158 cmd->device->id, (u8)cmd->device->lun); 2159 retval = SUCCESS; 2160 goto done; 2161 } 2162 } else if (ahc_search_qinfifo(ahc, cmd->device->id, 2163 cmd->device->channel + 'A', 2164 cmd->device->lun, 2165 pending_scb->hscb->tag, 2166 ROLE_INITIATOR, /*status*/0, 2167 SEARCH_COUNT) > 0) { 2168 disconnected = FALSE; 2169 } 2170 2171 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { 2172 struct scb *bus_scb; 2173 2174 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG)); 2175 if (bus_scb == pending_scb) 2176 disconnected = FALSE; 2177 else if (flag != SCB_ABORT 2178 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid 2179 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb)) 2180 disconnected = FALSE; 2181 } 2182 2183 /* 2184 * At this point, pending_scb is the scb associated with the 2185 * passed in command. That command is currently active on the 2186 * bus, is in the disconnected state, or we're hoping to find 2187 * a command for the same target active on the bus to abuse to 2188 * send a BDR. Queue the appropriate message based on which of 2189 * these states we are in. 2190 */ 2191 last_phase = ahc_inb(ahc, LASTPHASE); 2192 saved_scbptr = ahc_inb(ahc, SCBPTR); 2193 active_scb_index = ahc_inb(ahc, SCB_TAG); 2194 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); 2195 if (last_phase != P_BUSFREE 2196 && (pending_scb->hscb->tag == active_scb_index 2197 || (flag == SCB_DEVICE_RESET 2198 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) { 2199 2200 /* 2201 * We're active on the bus, so assert ATN 2202 * and hope that the target responds. 2203 */ 2204 pending_scb = ahc_lookup_scb(ahc, active_scb_index); 2205 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2206 ahc_outb(ahc, MSG_OUT, HOST_MSG); 2207 ahc_outb(ahc, SCSISIGO, last_phase|ATNO); 2208 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n"); 2209 wait = TRUE; 2210 } else if (disconnected) { 2211 2212 /* 2213 * Actually re-queue this SCB in an attempt 2214 * to select the device before it reconnects. 2215 * In either case (selection or reselection), 2216 * we will now issue the approprate message 2217 * to the timed-out device. 2218 * 2219 * Set the MK_MESSAGE control bit indicating 2220 * that we desire to send a message. We 2221 * also set the disconnected flag since 2222 * in the paging case there is no guarantee 2223 * that our SCB control byte matches the 2224 * version on the card. We don't want the 2225 * sequencer to abort the command thinking 2226 * an unsolicited reselection occurred. 2227 */ 2228 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; 2229 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2230 2231 /* 2232 * Remove any cached copy of this SCB in the 2233 * disconnected list in preparation for the 2234 * queuing of our abort SCB. We use the 2235 * same element in the SCB, SCB_NEXT, for 2236 * both the qinfifo and the disconnected list. 2237 */ 2238 ahc_search_disc_list(ahc, cmd->device->id, 2239 cmd->device->channel + 'A', 2240 cmd->device->lun, pending_scb->hscb->tag, 2241 /*stop_on_first*/TRUE, 2242 /*remove*/TRUE, 2243 /*save_state*/FALSE); 2244 2245 /* 2246 * In the non-paging case, the sequencer will 2247 * never re-reference the in-core SCB. 2248 * To make sure we are notified during 2249 * reselection, set the MK_MESSAGE flag in 2250 * the card's copy of the SCB. 2251 */ 2252 if ((ahc->flags & AHC_PAGESCBS) == 0) { 2253 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); 2254 ahc_outb(ahc, SCB_CONTROL, 2255 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); 2256 } 2257 2258 /* 2259 * Clear out any entries in the QINFIFO first 2260 * so we are the next SCB for this target 2261 * to run. 2262 */ 2263 ahc_search_qinfifo(ahc, cmd->device->id, 2264 cmd->device->channel + 'A', 2265 cmd->device->lun, SCB_LIST_NULL, 2266 ROLE_INITIATOR, CAM_REQUEUE_REQ, 2267 SEARCH_COMPLETE); 2268 ahc_qinfifo_requeue_tail(ahc, pending_scb); 2269 ahc_outb(ahc, SCBPTR, saved_scbptr); 2270 ahc_print_path(ahc, pending_scb); 2271 printk("Device is disconnected, re-queuing SCB\n"); 2272 wait = TRUE; 2273 } else { 2274 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n"); 2275 retval = FAILED; 2276 goto done; 2277 } 2278 2279no_cmd: 2280 /* 2281 * Our assumption is that if we don't have the command, no 2282 * recovery action was required, so we return success. Again, 2283 * the semantics of the mid-layer recovery engine are not 2284 * well defined, so this may change in time. 2285 */ 2286 retval = SUCCESS; 2287done: 2288 if (paused) 2289 ahc_unpause(ahc); 2290 if (wait) { 2291 DECLARE_COMPLETION_ONSTACK(done); 2292 2293 ahc->platform_data->eh_done = &done; 2294 ahc_unlock(ahc, &flags); 2295 2296 printk("Recovery code sleeping\n"); 2297 if (!wait_for_completion_timeout(&done, 5 * HZ)) { 2298 ahc_lock(ahc, &flags); 2299 ahc->platform_data->eh_done = NULL; 2300 ahc_unlock(ahc, &flags); 2301 2302 printk("Timer Expired\n"); 2303 retval = FAILED; 2304 } 2305 printk("Recovery code awake\n"); 2306 } else 2307 ahc_unlock(ahc, &flags); 2308 return (retval); 2309} 2310 2311static void ahc_linux_set_width(struct scsi_target *starget, int width) 2312{ 2313 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2314 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2315 struct ahc_devinfo devinfo; 2316 unsigned long flags; 2317 2318 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2319 starget->channel + 'A', ROLE_INITIATOR); 2320 ahc_lock(ahc, &flags); 2321 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE); 2322 ahc_unlock(ahc, &flags); 2323} 2324 2325static void ahc_linux_set_period(struct scsi_target *starget, int period) 2326{ 2327 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2328 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2329 struct ahc_tmode_tstate *tstate; 2330 struct ahc_initiator_tinfo *tinfo 2331 = ahc_fetch_transinfo(ahc, 2332 starget->channel + 'A', 2333 shost->this_id, starget->id, &tstate); 2334 struct ahc_devinfo devinfo; 2335 unsigned int ppr_options = tinfo->goal.ppr_options; 2336 unsigned long flags; 2337 unsigned long offset = tinfo->goal.offset; 2338 const struct ahc_syncrate *syncrate; 2339 2340 if (offset == 0) 2341 offset = MAX_OFFSET; 2342 2343 if (period < 9) 2344 period = 9; /* 12.5ns is our minimum */ 2345 if (period == 9) { 2346 if (spi_max_width(starget)) 2347 ppr_options |= MSG_EXT_PPR_DT_REQ; 2348 else 2349 /* need wide for DT and need DT for 12.5 ns */ 2350 period = 10; 2351 } 2352 2353 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2354 starget->channel + 'A', ROLE_INITIATOR); 2355 2356 /* all PPR requests apart from QAS require wide transfers */ 2357 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) { 2358 if (spi_width(starget) == 0) 2359 ppr_options &= MSG_EXT_PPR_QAS_REQ; 2360 } 2361 2362 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 2363 AHC_SYNCRATE_DT); 2364 ahc_lock(ahc, &flags); 2365 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2366 ppr_options, AHC_TRANS_GOAL, FALSE); 2367 ahc_unlock(ahc, &flags); 2368} 2369 2370static void ahc_linux_set_offset(struct scsi_target *starget, int offset) 2371{ 2372 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2373 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2374 struct ahc_tmode_tstate *tstate; 2375 struct ahc_initiator_tinfo *tinfo 2376 = ahc_fetch_transinfo(ahc, 2377 starget->channel + 'A', 2378 shost->this_id, starget->id, &tstate); 2379 struct ahc_devinfo devinfo; 2380 unsigned int ppr_options = 0; 2381 unsigned int period = 0; 2382 unsigned long flags; 2383 const struct ahc_syncrate *syncrate = NULL; 2384 2385 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2386 starget->channel + 'A', ROLE_INITIATOR); 2387 if (offset != 0) { 2388 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 2389 AHC_SYNCRATE_DT); 2390 period = tinfo->goal.period; 2391 ppr_options = tinfo->goal.ppr_options; 2392 } 2393 ahc_lock(ahc, &flags); 2394 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2395 ppr_options, AHC_TRANS_GOAL, FALSE); 2396 ahc_unlock(ahc, &flags); 2397} 2398 2399static void ahc_linux_set_dt(struct scsi_target *starget, int dt) 2400{ 2401 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2402 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2403 struct ahc_tmode_tstate *tstate; 2404 struct ahc_initiator_tinfo *tinfo 2405 = ahc_fetch_transinfo(ahc, 2406 starget->channel + 'A', 2407 shost->this_id, starget->id, &tstate); 2408 struct ahc_devinfo devinfo; 2409 unsigned int ppr_options = tinfo->goal.ppr_options 2410 & ~MSG_EXT_PPR_DT_REQ; 2411 unsigned int period = tinfo->goal.period; 2412 unsigned int width = tinfo->goal.width; 2413 unsigned long flags; 2414 const struct ahc_syncrate *syncrate; 2415 2416 if (dt && spi_max_width(starget)) { 2417 ppr_options |= MSG_EXT_PPR_DT_REQ; 2418 if (!width) 2419 ahc_linux_set_width(starget, 1); 2420 } else if (period == 9) 2421 period = 10; /* if resetting DT, period must be >= 25ns */ 2422 2423 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2424 starget->channel + 'A', ROLE_INITIATOR); 2425 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 2426 AHC_SYNCRATE_DT); 2427 ahc_lock(ahc, &flags); 2428 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2429 ppr_options, AHC_TRANS_GOAL, FALSE); 2430 ahc_unlock(ahc, &flags); 2431} 2432 2433#if 0 2434/* FIXME: This code claims to support IU and QAS. However, the actual 2435 * sequencer code and aic7xxx_core have no support for these parameters and 2436 * will get into a bad state if they're negotiated. Do not enable this 2437 * unless you know what you're doing */ 2438static void ahc_linux_set_qas(struct scsi_target *starget, int qas) 2439{ 2440 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2441 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2442 struct ahc_tmode_tstate *tstate; 2443 struct ahc_initiator_tinfo *tinfo 2444 = ahc_fetch_transinfo(ahc, 2445 starget->channel + 'A', 2446 shost->this_id, starget->id, &tstate); 2447 struct ahc_devinfo devinfo; 2448 unsigned int ppr_options = tinfo->goal.ppr_options 2449 & ~MSG_EXT_PPR_QAS_REQ; 2450 unsigned int period = tinfo->goal.period; 2451 unsigned long flags; 2452 struct ahc_syncrate *syncrate; 2453 2454 if (qas) 2455 ppr_options |= MSG_EXT_PPR_QAS_REQ; 2456 2457 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2458 starget->channel + 'A', ROLE_INITIATOR); 2459 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 2460 AHC_SYNCRATE_DT); 2461 ahc_lock(ahc, &flags); 2462 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2463 ppr_options, AHC_TRANS_GOAL, FALSE); 2464 ahc_unlock(ahc, &flags); 2465} 2466 2467static void ahc_linux_set_iu(struct scsi_target *starget, int iu) 2468{ 2469 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2470 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2471 struct ahc_tmode_tstate *tstate; 2472 struct ahc_initiator_tinfo *tinfo 2473 = ahc_fetch_transinfo(ahc, 2474 starget->channel + 'A', 2475 shost->this_id, starget->id, &tstate); 2476 struct ahc_devinfo devinfo; 2477 unsigned int ppr_options = tinfo->goal.ppr_options 2478 & ~MSG_EXT_PPR_IU_REQ; 2479 unsigned int period = tinfo->goal.period; 2480 unsigned long flags; 2481 struct ahc_syncrate *syncrate; 2482 2483 if (iu) 2484 ppr_options |= MSG_EXT_PPR_IU_REQ; 2485 2486 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2487 starget->channel + 'A', ROLE_INITIATOR); 2488 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 2489 AHC_SYNCRATE_DT); 2490 ahc_lock(ahc, &flags); 2491 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2492 ppr_options, AHC_TRANS_GOAL, FALSE); 2493 ahc_unlock(ahc, &flags); 2494} 2495#endif 2496 2497static void ahc_linux_get_signalling(struct Scsi_Host *shost) 2498{ 2499 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata; 2500 unsigned long flags; 2501 u8 mode; 2502 2503 if (!(ahc->features & AHC_ULTRA2)) { 2504 /* non-LVD chipset, may not have SBLKCTL reg */ 2505 spi_signalling(shost) = 2506 ahc->features & AHC_HVD ? 2507 SPI_SIGNAL_HVD : 2508 SPI_SIGNAL_SE; 2509 return; 2510 } 2511 2512 ahc_lock(ahc, &flags); 2513 ahc_pause(ahc); 2514 mode = ahc_inb(ahc, SBLKCTL); 2515 ahc_unpause(ahc); 2516 ahc_unlock(ahc, &flags); 2517 2518 if (mode & ENAB40) 2519 spi_signalling(shost) = SPI_SIGNAL_LVD; 2520 else if (mode & ENAB20) 2521 spi_signalling(shost) = SPI_SIGNAL_SE; 2522 else 2523 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 2524} 2525 2526static struct spi_function_template ahc_linux_transport_functions = { 2527 .set_offset = ahc_linux_set_offset, 2528 .show_offset = 1, 2529 .set_period = ahc_linux_set_period, 2530 .show_period = 1, 2531 .set_width = ahc_linux_set_width, 2532 .show_width = 1, 2533 .set_dt = ahc_linux_set_dt, 2534 .show_dt = 1, 2535#if 0 2536 .set_iu = ahc_linux_set_iu, 2537 .show_iu = 1, 2538 .set_qas = ahc_linux_set_qas, 2539 .show_qas = 1, 2540#endif 2541 .get_signalling = ahc_linux_get_signalling, 2542}; 2543 2544 2545 2546static int __init 2547ahc_linux_init(void) 2548{ 2549 /* 2550 * If we've been passed any parameters, process them now. 2551 */ 2552 if (aic7xxx) 2553 aic7xxx_setup(aic7xxx); 2554 2555 ahc_linux_transport_template = 2556 spi_attach_transport(&ahc_linux_transport_functions); 2557 if (!ahc_linux_transport_template) 2558 return -ENODEV; 2559 2560 scsi_transport_reserve_device(ahc_linux_transport_template, 2561 sizeof(struct ahc_linux_device)); 2562 2563 ahc_linux_pci_init(); 2564 ahc_linux_eisa_init(); 2565 return 0; 2566} 2567 2568static void 2569ahc_linux_exit(void) 2570{ 2571 ahc_linux_pci_exit(); 2572 ahc_linux_eisa_exit(); 2573 spi_release_transport(ahc_linux_transport_template); 2574} 2575 2576module_init(ahc_linux_init); 2577module_exit(ahc_linux_exit);