queue.h (17078B)
1/* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * @(#)queue.h 8.5 (Berkeley) 8/20/94 27 * $FreeBSD: src/sys/sys/queue.h,v 1.38 2000/05/26 02:06:56 jake Exp $ 28 */ 29 30#ifndef _SYS_QUEUE_H_ 31#define _SYS_QUEUE_H_ 32 33/* 34 * This file defines five types of data structures: singly-linked lists, 35 * singly-linked tail queues, lists, tail queues, and circular queues. 36 * 37 * A singly-linked list is headed by a single forward pointer. The elements 38 * are singly linked for minimum space and pointer manipulation overhead at 39 * the expense of O(n) removal for arbitrary elements. New elements can be 40 * added to the list after an existing element or at the head of the list. 41 * Elements being removed from the head of the list should use the explicit 42 * macro for this purpose for optimum efficiency. A singly-linked list may 43 * only be traversed in the forward direction. Singly-linked lists are ideal 44 * for applications with large datasets and few or no removals or for 45 * implementing a LIFO queue. 46 * 47 * A singly-linked tail queue is headed by a pair of pointers, one to the 48 * head of the list and the other to the tail of the list. The elements are 49 * singly linked for minimum space and pointer manipulation overhead at the 50 * expense of O(n) removal for arbitrary elements. New elements can be added 51 * to the list after an existing element, at the head of the list, or at the 52 * end of the list. Elements being removed from the head of the tail queue 53 * should use the explicit macro for this purpose for optimum efficiency. 54 * A singly-linked tail queue may only be traversed in the forward direction. 55 * Singly-linked tail queues are ideal for applications with large datasets 56 * and few or no removals or for implementing a FIFO queue. 57 * 58 * A list is headed by a single forward pointer (or an array of forward 59 * pointers for a hash table header). The elements are doubly linked 60 * so that an arbitrary element can be removed without a need to 61 * traverse the list. New elements can be added to the list before 62 * or after an existing element or at the head of the list. A list 63 * may only be traversed in the forward direction. 64 * 65 * A tail queue is headed by a pair of pointers, one to the head of the 66 * list and the other to the tail of the list. The elements are doubly 67 * linked so that an arbitrary element can be removed without a need to 68 * traverse the list. New elements can be added to the list before or 69 * after an existing element, at the head of the list, or at the end of 70 * the list. A tail queue may be traversed in either direction. 71 * 72 * A circle queue is headed by a pair of pointers, one to the head of the 73 * list and the other to the tail of the list. The elements are doubly 74 * linked so that an arbitrary element can be removed without a need to 75 * traverse the list. New elements can be added to the list before or after 76 * an existing element, at the head of the list, or at the end of the list. 77 * A circle queue may be traversed in either direction, but has a more 78 * complex end of list detection. 79 * 80 * For details on the use of these macros, see the queue(3) manual page. 81 * 82 * 83 * SLIST LIST STAILQ TAILQ CIRCLEQ 84 * _HEAD + + + + + 85 * _HEAD_INITIALIZER + + + + + 86 * _ENTRY + + + + + 87 * _INIT + + + + + 88 * _EMPTY + + + + + 89 * _FIRST + + + + + 90 * _NEXT + + + + + 91 * _PREV - - - + + 92 * _LAST - - + + + 93 * _FOREACH + + + + + 94 * _FOREACH_REVERSE - - - + + 95 * _INSERT_HEAD + + + + + 96 * _INSERT_BEFORE - + - + + 97 * _INSERT_AFTER + + + + + 98 * _INSERT_TAIL - - + + + 99 * _REMOVE_HEAD + - + - - 100 * _REMOVE + + + + + 101 * 102 */ 103 104/* 105 * Singly-linked List declarations. 106 */ 107#define SLIST_HEAD(name, type) \ 108struct name { \ 109 struct type *slh_first; /* first element */ \ 110} 111 112#define SLIST_HEAD_INITIALIZER(head) \ 113 { NULL } 114 115#define SLIST_ENTRY(type) \ 116struct { \ 117 struct type *sle_next; /* next element */ \ 118} 119 120/* 121 * Singly-linked List functions. 122 */ 123#define SLIST_EMPTY(head) ((head)->slh_first == NULL) 124 125#define SLIST_FIRST(head) ((head)->slh_first) 126 127#define SLIST_FOREACH(var, head, field) \ 128 for ((var) = SLIST_FIRST((head)); \ 129 (var); \ 130 (var) = SLIST_NEXT((var), field)) 131 132#define SLIST_INIT(head) do { \ 133 SLIST_FIRST((head)) = NULL; \ 134} while (0) 135 136#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ 137 SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \ 138 SLIST_NEXT((slistelm), field) = (elm); \ 139} while (0) 140 141#define SLIST_INSERT_HEAD(head, elm, field) do { \ 142 SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \ 143 SLIST_FIRST((head)) = (elm); \ 144} while (0) 145 146#define SLIST_NEXT(elm, field) ((elm)->field.sle_next) 147 148#define SLIST_REMOVE(head, elm, type, field) do { \ 149 if (SLIST_FIRST((head)) == (elm)) { \ 150 SLIST_REMOVE_HEAD((head), field); \ 151 } \ 152 else { \ 153 struct type *curelm = SLIST_FIRST((head)); \ 154 while (SLIST_NEXT(curelm, field) != (elm)) \ 155 curelm = SLIST_NEXT(curelm, field); \ 156 SLIST_NEXT(curelm, field) = \ 157 SLIST_NEXT(SLIST_NEXT(curelm, field), field); \ 158 } \ 159} while (0) 160 161#define SLIST_REMOVE_HEAD(head, field) do { \ 162 SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \ 163} while (0) 164 165/* 166 * Singly-linked Tail queue declarations. 167 */ 168#define STAILQ_HEAD(name, type) \ 169struct name { \ 170 struct type *stqh_first;/* first element */ \ 171 struct type **stqh_last;/* addr of last next element */ \ 172} 173 174#define STAILQ_HEAD_INITIALIZER(head) \ 175 { NULL, &(head).stqh_first } 176 177#define STAILQ_ENTRY(type) \ 178struct { \ 179 struct type *stqe_next; /* next element */ \ 180} 181 182/* 183 * Singly-linked Tail queue functions. 184 */ 185#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) 186 187#define STAILQ_FIRST(head) ((head)->stqh_first) 188 189#define STAILQ_FOREACH(var, head, field) \ 190 for((var) = STAILQ_FIRST((head)); \ 191 (var); \ 192 (var) = STAILQ_NEXT((var), field)) 193 194#define STAILQ_INIT(head) do { \ 195 STAILQ_FIRST((head)) = NULL; \ 196 (head)->stqh_last = &STAILQ_FIRST((head)); \ 197} while (0) 198 199#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ 200 if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\ 201 (head)->stqh_last = &STAILQ_NEXT((elm), field); \ 202 STAILQ_NEXT((tqelm), field) = (elm); \ 203} while (0) 204 205#define STAILQ_INSERT_HEAD(head, elm, field) do { \ 206 if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \ 207 (head)->stqh_last = &STAILQ_NEXT((elm), field); \ 208 STAILQ_FIRST((head)) = (elm); \ 209} while (0) 210 211#define STAILQ_INSERT_TAIL(head, elm, field) do { \ 212 STAILQ_NEXT((elm), field) = NULL; \ 213 STAILQ_LAST((head)) = (elm); \ 214 (head)->stqh_last = &STAILQ_NEXT((elm), field); \ 215} while (0) 216 217#define STAILQ_LAST(head) (*(head)->stqh_last) 218 219#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) 220 221#define STAILQ_REMOVE(head, elm, type, field) do { \ 222 if (STAILQ_FIRST((head)) == (elm)) { \ 223 STAILQ_REMOVE_HEAD(head, field); \ 224 } \ 225 else { \ 226 struct type *curelm = STAILQ_FIRST((head)); \ 227 while (STAILQ_NEXT(curelm, field) != (elm)) \ 228 curelm = STAILQ_NEXT(curelm, field); \ 229 if ((STAILQ_NEXT(curelm, field) = \ 230 STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\ 231 (head)->stqh_last = &STAILQ_NEXT((curelm), field);\ 232 } \ 233} while (0) 234 235#define STAILQ_REMOVE_HEAD(head, field) do { \ 236 if ((STAILQ_FIRST((head)) = \ 237 STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \ 238 (head)->stqh_last = &STAILQ_FIRST((head)); \ 239} while (0) 240 241#define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \ 242 if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \ 243 (head)->stqh_last = &STAILQ_FIRST((head)); \ 244} while (0) 245 246/* 247 * List declarations. 248 */ 249#define BSD_LIST_HEAD(name, type) \ 250struct name { \ 251 struct type *lh_first; /* first element */ \ 252} 253 254#define LIST_HEAD_INITIALIZER(head) \ 255 { NULL } 256 257#define LIST_ENTRY(type) \ 258struct { \ 259 struct type *le_next; /* next element */ \ 260 struct type **le_prev; /* address of previous next element */ \ 261} 262 263/* 264 * List functions. 265 */ 266 267#define LIST_EMPTY(head) ((head)->lh_first == NULL) 268 269#define LIST_FIRST(head) ((head)->lh_first) 270 271#define LIST_FOREACH(var, head, field) \ 272 for ((var) = LIST_FIRST((head)); \ 273 (var); \ 274 (var) = LIST_NEXT((var), field)) 275 276#define LIST_INIT(head) do { \ 277 LIST_FIRST((head)) = NULL; \ 278} while (0) 279 280#define LIST_INSERT_AFTER(listelm, elm, field) do { \ 281 if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\ 282 LIST_NEXT((listelm), field)->field.le_prev = \ 283 &LIST_NEXT((elm), field); \ 284 LIST_NEXT((listelm), field) = (elm); \ 285 (elm)->field.le_prev = &LIST_NEXT((listelm), field); \ 286} while (0) 287 288#define LIST_INSERT_BEFORE(listelm, elm, field) do { \ 289 (elm)->field.le_prev = (listelm)->field.le_prev; \ 290 LIST_NEXT((elm), field) = (listelm); \ 291 *(listelm)->field.le_prev = (elm); \ 292 (listelm)->field.le_prev = &LIST_NEXT((elm), field); \ 293} while (0) 294 295#define LIST_INSERT_HEAD(head, elm, field) do { \ 296 if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \ 297 LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\ 298 LIST_FIRST((head)) = (elm); \ 299 (elm)->field.le_prev = &LIST_FIRST((head)); \ 300} while (0) 301 302#define LIST_NEXT(elm, field) ((elm)->field.le_next) 303 304#define LIST_REMOVE(elm, field) do { \ 305 if (LIST_NEXT((elm), field) != NULL) \ 306 LIST_NEXT((elm), field)->field.le_prev = \ 307 (elm)->field.le_prev; \ 308 *(elm)->field.le_prev = LIST_NEXT((elm), field); \ 309} while (0) 310 311/* 312 * Tail queue declarations. 313 */ 314#define TAILQ_HEAD(name, type) \ 315struct name { \ 316 struct type *tqh_first; /* first element */ \ 317 struct type **tqh_last; /* addr of last next element */ \ 318} 319 320#define TAILQ_HEAD_INITIALIZER(head) \ 321 { NULL, &(head).tqh_first } 322 323#define TAILQ_ENTRY(type) \ 324struct { \ 325 struct type *tqe_next; /* next element */ \ 326 struct type **tqe_prev; /* address of previous next element */ \ 327} 328 329/* 330 * Tail queue functions. 331 */ 332#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) 333 334#define TAILQ_FIRST(head) ((head)->tqh_first) 335 336#define TAILQ_FOREACH(var, head, field) \ 337 for ((var) = TAILQ_FIRST((head)); \ 338 (var); \ 339 (var) = TAILQ_NEXT((var), field)) 340 341#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ 342 for ((var) = TAILQ_LAST((head), headname); \ 343 (var); \ 344 (var) = TAILQ_PREV((var), headname, field)) 345 346#define TAILQ_INIT(head) do { \ 347 TAILQ_FIRST((head)) = NULL; \ 348 (head)->tqh_last = &TAILQ_FIRST((head)); \ 349} while (0) 350 351#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ 352 if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\ 353 TAILQ_NEXT((elm), field)->field.tqe_prev = \ 354 &TAILQ_NEXT((elm), field); \ 355 else \ 356 (head)->tqh_last = &TAILQ_NEXT((elm), field); \ 357 TAILQ_NEXT((listelm), field) = (elm); \ 358 (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \ 359} while (0) 360 361#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ 362 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ 363 TAILQ_NEXT((elm), field) = (listelm); \ 364 *(listelm)->field.tqe_prev = (elm); \ 365 (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \ 366} while (0) 367 368#define TAILQ_INSERT_HEAD(head, elm, field) do { \ 369 if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \ 370 TAILQ_FIRST((head))->field.tqe_prev = \ 371 &TAILQ_NEXT((elm), field); \ 372 else \ 373 (head)->tqh_last = &TAILQ_NEXT((elm), field); \ 374 TAILQ_FIRST((head)) = (elm); \ 375 (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \ 376} while (0) 377 378#define TAILQ_INSERT_TAIL(head, elm, field) do { \ 379 TAILQ_NEXT((elm), field) = NULL; \ 380 (elm)->field.tqe_prev = (head)->tqh_last; \ 381 *(head)->tqh_last = (elm); \ 382 (head)->tqh_last = &TAILQ_NEXT((elm), field); \ 383} while (0) 384 385#define TAILQ_LAST(head, headname) \ 386 (*(((struct headname *)((head)->tqh_last))->tqh_last)) 387 388#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) 389 390#define TAILQ_PREV(elm, headname, field) \ 391 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) 392 393#define TAILQ_REMOVE(head, elm, field) do { \ 394 if ((TAILQ_NEXT((elm), field)) != NULL) \ 395 TAILQ_NEXT((elm), field)->field.tqe_prev = \ 396 (elm)->field.tqe_prev; \ 397 else \ 398 (head)->tqh_last = (elm)->field.tqe_prev; \ 399 *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \ 400} while (0) 401 402/* 403 * Circular queue declarations. 404 */ 405#define CIRCLEQ_HEAD(name, type) \ 406struct name { \ 407 struct type *cqh_first; /* first element */ \ 408 struct type *cqh_last; /* last element */ \ 409} 410 411#define CIRCLEQ_HEAD_INITIALIZER(head) \ 412 { (void *)&(head), (void *)&(head) } 413 414#define CIRCLEQ_ENTRY(type) \ 415struct { \ 416 struct type *cqe_next; /* next element */ \ 417 struct type *cqe_prev; /* previous element */ \ 418} 419 420/* 421 * Circular queue functions. 422 */ 423#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) 424 425#define CIRCLEQ_FIRST(head) ((head)->cqh_first) 426 427#define CIRCLEQ_FOREACH(var, head, field) \ 428 for ((var) = CIRCLEQ_FIRST((head)); \ 429 (var) != (void *)(head); \ 430 (var) = CIRCLEQ_NEXT((var), field)) 431 432#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ 433 for ((var) = CIRCLEQ_LAST((head)); \ 434 (var) != (void *)(head); \ 435 (var) = CIRCLEQ_PREV((var), field)) 436 437#define CIRCLEQ_INIT(head) do { \ 438 CIRCLEQ_FIRST((head)) = (void *)(head); \ 439 CIRCLEQ_LAST((head)) = (void *)(head); \ 440} while (0) 441 442#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ 443 CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field); \ 444 CIRCLEQ_PREV((elm), field) = (listelm); \ 445 if (CIRCLEQ_NEXT((listelm), field) == (void *)(head)) \ 446 CIRCLEQ_LAST((head)) = (elm); \ 447 else \ 448 CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\ 449 CIRCLEQ_NEXT((listelm), field) = (elm); \ 450} while (0) 451 452#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ 453 CIRCLEQ_NEXT((elm), field) = (listelm); \ 454 CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field); \ 455 if (CIRCLEQ_PREV((listelm), field) == (void *)(head)) \ 456 CIRCLEQ_FIRST((head)) = (elm); \ 457 else \ 458 CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\ 459 CIRCLEQ_PREV((listelm), field) = (elm); \ 460} while (0) 461 462#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ 463 CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head)); \ 464 CIRCLEQ_PREV((elm), field) = (void *)(head); \ 465 if (CIRCLEQ_LAST((head)) == (void *)(head)) \ 466 CIRCLEQ_LAST((head)) = (elm); \ 467 else \ 468 CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm); \ 469 CIRCLEQ_FIRST((head)) = (elm); \ 470} while (0) 471 472#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ 473 CIRCLEQ_NEXT((elm), field) = (void *)(head); \ 474 CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head)); \ 475 if (CIRCLEQ_FIRST((head)) == (void *)(head)) \ 476 CIRCLEQ_FIRST((head)) = (elm); \ 477 else \ 478 CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm); \ 479 CIRCLEQ_LAST((head)) = (elm); \ 480} while (0) 481 482#define CIRCLEQ_LAST(head) ((head)->cqh_last) 483 484#define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next) 485 486#define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev) 487 488#define CIRCLEQ_REMOVE(head, elm, field) do { \ 489 if (CIRCLEQ_NEXT((elm), field) == (void *)(head)) \ 490 CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field); \ 491 else \ 492 CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) = \ 493 CIRCLEQ_PREV((elm), field); \ 494 if (CIRCLEQ_PREV((elm), field) == (void *)(head)) \ 495 CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field); \ 496 else \ 497 CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) = \ 498 CIRCLEQ_NEXT((elm), field); \ 499} while (0) 500 501#endif /* !_SYS_QUEUE_H_ */