cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

aic94xx_hwi.c (38022B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Aic94xx SAS/SATA driver hardware interface.
      4 *
      5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
      6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
      7 */
      8
      9#include <linux/pci.h>
     10#include <linux/slab.h>
     11#include <linux/delay.h>
     12#include <linux/module.h>
     13#include <linux/firmware.h>
     14
     15#include "aic94xx.h"
     16#include "aic94xx_reg.h"
     17#include "aic94xx_hwi.h"
     18#include "aic94xx_seq.h"
     19#include "aic94xx_dump.h"
     20
     21u32 MBAR0_SWB_SIZE;
     22
     23/* ---------- Initialization ---------- */
     24
     25static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
     26{
     27	/* adapter came with a sas address */
     28	if (asd_ha->hw_prof.sas_addr[0])
     29		return 0;
     30
     31	return sas_request_addr(asd_ha->sas_ha.core.shost,
     32				asd_ha->hw_prof.sas_addr);
     33}
     34
     35static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
     36{
     37	int i;
     38
     39	for (i = 0; i < ASD_MAX_PHYS; i++) {
     40		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
     41			continue;
     42		/* Set a phy's address only if it has none.
     43		 */
     44		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
     45			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
     46		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
     47		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
     48	}
     49}
     50
     51/* ---------- PHY initialization ---------- */
     52
     53static void asd_init_phy_identify(struct asd_phy *phy)
     54{
     55	phy->identify_frame = phy->id_frm_tok->vaddr;
     56
     57	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
     58
     59	phy->identify_frame->dev_type = SAS_END_DEVICE;
     60	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
     61		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
     62	if (phy->sas_phy.role & PHY_ROLE_TARGET)
     63		phy->identify_frame->target_bits = phy->sas_phy.tproto;
     64	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
     65	       SAS_ADDR_SIZE);
     66	phy->identify_frame->phy_id = phy->sas_phy.id;
     67}
     68
     69static int asd_init_phy(struct asd_phy *phy)
     70{
     71	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
     72	struct asd_sas_phy *sas_phy = &phy->sas_phy;
     73
     74	sas_phy->enabled = 1;
     75	sas_phy->class = SAS;
     76	sas_phy->iproto = SAS_PROTOCOL_ALL;
     77	sas_phy->tproto = 0;
     78	sas_phy->type = PHY_TYPE_PHYSICAL;
     79	sas_phy->role = PHY_ROLE_INITIATOR;
     80	sas_phy->oob_mode = OOB_NOT_CONNECTED;
     81	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
     82
     83	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
     84					     sizeof(*phy->identify_frame),
     85					     GFP_KERNEL);
     86	if (!phy->id_frm_tok) {
     87		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
     88		return -ENOMEM;
     89	} else
     90		asd_init_phy_identify(phy);
     91
     92	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
     93
     94	return 0;
     95}
     96
     97static void asd_init_ports(struct asd_ha_struct *asd_ha)
     98{
     99	int i;
    100
    101	spin_lock_init(&asd_ha->asd_ports_lock);
    102	for (i = 0; i < ASD_MAX_PHYS; i++) {
    103		struct asd_port *asd_port = &asd_ha->asd_ports[i];
    104
    105		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
    106		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
    107		asd_port->phy_mask = 0;
    108		asd_port->num_phys = 0;
    109	}
    110}
    111
    112static int asd_init_phys(struct asd_ha_struct *asd_ha)
    113{
    114	u8 i;
    115	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
    116
    117	for (i = 0; i < ASD_MAX_PHYS; i++) {
    118		struct asd_phy *phy = &asd_ha->phys[i];
    119
    120		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
    121		phy->asd_port = NULL;
    122
    123		phy->sas_phy.enabled = 0;
    124		phy->sas_phy.id = i;
    125		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
    126		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
    127		phy->sas_phy.ha = &asd_ha->sas_ha;
    128		phy->sas_phy.lldd_phy = phy;
    129	}
    130
    131	/* Now enable and initialize only the enabled phys. */
    132	for_each_phy(phy_mask, phy_mask, i) {
    133		int err = asd_init_phy(&asd_ha->phys[i]);
    134		if (err)
    135			return err;
    136	}
    137
    138	return 0;
    139}
    140
    141/* ---------- Sliding windows ---------- */
    142
    143static int asd_init_sw(struct asd_ha_struct *asd_ha)
    144{
    145	struct pci_dev *pcidev = asd_ha->pcidev;
    146	int err;
    147	u32 v;
    148
    149	/* Unlock MBARs */
    150	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
    151	if (err) {
    152		asd_printk("couldn't access conf. space of %s\n",
    153			   pci_name(pcidev));
    154		goto Err;
    155	}
    156	if (v)
    157		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
    158	if (err) {
    159		asd_printk("couldn't write to MBAR_KEY of %s\n",
    160			   pci_name(pcidev));
    161		goto Err;
    162	}
    163
    164	/* Set sliding windows A, B and C to point to proper internal
    165	 * memory regions.
    166	 */
    167	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
    168	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
    169			       REG_BASE_ADDR_CSEQCIO);
    170	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
    171	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
    172	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
    173	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
    174	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
    175	if (!asd_ha->iospace) {
    176		/* MBAR1 will point to OCM (On Chip Memory) */
    177		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
    178		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
    179	}
    180	spin_lock_init(&asd_ha->iolock);
    181Err:
    182	return err;
    183}
    184
    185/* ---------- SCB initialization ---------- */
    186
    187/**
    188 * asd_init_scbs - manually allocate the first SCB.
    189 * @asd_ha: pointer to host adapter structure
    190 *
    191 * This allocates the very first SCB which would be sent to the
    192 * sequencer for execution.  Its bus address is written to
    193 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
    194 * the _next_ scb to be DMA-ed to the host adapter is read from the last
    195 * SCB DMA-ed to the host adapter, we have to always stay one step
    196 * ahead of the sequencer and keep one SCB already allocated.
    197 */
    198static int asd_init_scbs(struct asd_ha_struct *asd_ha)
    199{
    200	struct asd_seq_data *seq = &asd_ha->seq;
    201	int bitmap_bytes;
    202
    203	/* allocate the index array and bitmap */
    204	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
    205	asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
    206					     sizeof(void *),
    207					     GFP_KERNEL);
    208	if (!asd_ha->seq.tc_index_array)
    209		return -ENOMEM;
    210
    211	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
    212	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
    213	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
    214	if (!asd_ha->seq.tc_index_bitmap) {
    215		kfree(asd_ha->seq.tc_index_array);
    216		asd_ha->seq.tc_index_array = NULL;
    217		return -ENOMEM;
    218	}
    219
    220	spin_lock_init(&seq->tc_index_lock);
    221
    222	seq->next_scb.size = sizeof(struct scb);
    223	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
    224					     &seq->next_scb.dma_handle);
    225	if (!seq->next_scb.vaddr) {
    226		kfree(asd_ha->seq.tc_index_bitmap);
    227		kfree(asd_ha->seq.tc_index_array);
    228		asd_ha->seq.tc_index_bitmap = NULL;
    229		asd_ha->seq.tc_index_array = NULL;
    230		return -ENOMEM;
    231	}
    232
    233	seq->pending = 0;
    234	spin_lock_init(&seq->pend_q_lock);
    235	INIT_LIST_HEAD(&seq->pend_q);
    236
    237	return 0;
    238}
    239
    240static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
    241{
    242	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
    243	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
    244	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
    245		    asd_ha->hw_prof.max_scbs,
    246		    asd_ha->hw_prof.max_ddbs);
    247}
    248
    249/* ---------- Done List initialization ---------- */
    250
    251static void asd_dl_tasklet_handler(unsigned long);
    252
    253static int asd_init_dl(struct asd_ha_struct *asd_ha)
    254{
    255	asd_ha->seq.actual_dl
    256		= asd_alloc_coherent(asd_ha,
    257			     ASD_DL_SIZE * sizeof(struct done_list_struct),
    258				     GFP_KERNEL);
    259	if (!asd_ha->seq.actual_dl)
    260		return -ENOMEM;
    261	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
    262	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
    263	asd_ha->seq.dl_next = 0;
    264	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
    265		     (unsigned long) asd_ha);
    266
    267	return 0;
    268}
    269
    270/* ---------- EDB and ESCB init ---------- */
    271
    272static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
    273{
    274	struct asd_seq_data *seq = &asd_ha->seq;
    275	int i;
    276
    277	seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
    278				     gfp_flags);
    279	if (!seq->edb_arr)
    280		return -ENOMEM;
    281
    282	for (i = 0; i < seq->num_edbs; i++) {
    283		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
    284						     gfp_flags);
    285		if (!seq->edb_arr[i])
    286			goto Err_unroll;
    287		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
    288	}
    289
    290	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
    291
    292	return 0;
    293
    294Err_unroll:
    295	for (i-- ; i >= 0; i--)
    296		asd_free_coherent(asd_ha, seq->edb_arr[i]);
    297	kfree(seq->edb_arr);
    298	seq->edb_arr = NULL;
    299
    300	return -ENOMEM;
    301}
    302
    303static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
    304			   gfp_t gfp_flags)
    305{
    306	struct asd_seq_data *seq = &asd_ha->seq;
    307	struct asd_ascb *escb;
    308	int i, escbs;
    309
    310	seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
    311				      gfp_flags);
    312	if (!seq->escb_arr)
    313		return -ENOMEM;
    314
    315	escbs = seq->num_escbs;
    316	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
    317	if (!escb) {
    318		asd_printk("couldn't allocate list of escbs\n");
    319		goto Err;
    320	}
    321	seq->num_escbs -= escbs;  /* subtract what was not allocated */
    322	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
    323
    324	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
    325							       struct asd_ascb,
    326							       list)) {
    327		seq->escb_arr[i] = escb;
    328		escb->scb->header.opcode = EMPTY_SCB;
    329	}
    330
    331	return 0;
    332Err:
    333	kfree(seq->escb_arr);
    334	seq->escb_arr = NULL;
    335	return -ENOMEM;
    336
    337}
    338
    339static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
    340{
    341	struct asd_seq_data *seq = &asd_ha->seq;
    342	int i, k, z = 0;
    343
    344	for (i = 0; i < seq->num_escbs; i++) {
    345		struct asd_ascb *ascb = seq->escb_arr[i];
    346		struct empty_scb *escb = &ascb->scb->escb;
    347
    348		ascb->edb_index = z;
    349
    350		escb->num_valid = ASD_EDBS_PER_SCB;
    351
    352		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
    353			struct sg_el *eb = &escb->eb[k];
    354			struct asd_dma_tok *edb = seq->edb_arr[z++];
    355
    356			memset(eb, 0, sizeof(*eb));
    357			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
    358			eb->size = cpu_to_le32(((u32) edb->size));
    359		}
    360	}
    361}
    362
    363/**
    364 * asd_init_escbs -- allocate and initialize empty scbs
    365 * @asd_ha: pointer to host adapter structure
    366 *
    367 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
    368 * They transport sense data, etc.
    369 */
    370static int asd_init_escbs(struct asd_ha_struct *asd_ha)
    371{
    372	struct asd_seq_data *seq = &asd_ha->seq;
    373	int err = 0;
    374
    375	/* Allocate two empty data buffers (edb) per sequencer. */
    376	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
    377
    378	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
    379	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
    380
    381	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
    382	if (err) {
    383		asd_printk("couldn't allocate edbs\n");
    384		return err;
    385	}
    386
    387	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
    388	if (err) {
    389		asd_printk("couldn't allocate escbs\n");
    390		return err;
    391	}
    392
    393	asd_assign_edbs2escbs(asd_ha);
    394	/* In order to insure that normal SCBs do not overfill sequencer
    395	 * memory and leave no space for escbs (halting condition),
    396	 * we increment pending here by the number of escbs.  However,
    397	 * escbs are never pending.
    398	 */
    399	seq->pending   = seq->num_escbs;
    400	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
    401
    402	return 0;
    403}
    404
    405/* ---------- HW initialization ---------- */
    406
    407/**
    408 * asd_chip_hardrst -- hard reset the chip
    409 * @asd_ha: pointer to host adapter structure
    410 *
    411 * This takes 16 cycles and is synchronous to CFCLK, which runs
    412 * at 200 MHz, so this should take at most 80 nanoseconds.
    413 */
    414int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
    415{
    416	int i;
    417	int count = 100;
    418	u32 reg;
    419
    420	for (i = 0 ; i < 4 ; i++) {
    421		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
    422	}
    423
    424	do {
    425		udelay(1);
    426		reg = asd_read_reg_dword(asd_ha, CHIMINT);
    427		if (reg & HARDRSTDET) {
    428			asd_write_reg_dword(asd_ha, CHIMINT,
    429					    HARDRSTDET|PORRSTDET);
    430			return 0;
    431		}
    432	} while (--count > 0);
    433
    434	return -ENODEV;
    435}
    436
    437/**
    438 * asd_init_chip -- initialize the chip
    439 * @asd_ha: pointer to host adapter structure
    440 *
    441 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
    442 * microcode and starts the sequencers.  The caller has to explicitly
    443 * enable HA interrupts with asd_enable_ints(asd_ha).
    444 */
    445static int asd_init_chip(struct asd_ha_struct *asd_ha)
    446{
    447	int err;
    448
    449	err = asd_chip_hardrst(asd_ha);
    450	if (err) {
    451		asd_printk("couldn't hard reset %s\n",
    452			    pci_name(asd_ha->pcidev));
    453		goto out;
    454	}
    455
    456	asd_disable_ints(asd_ha);
    457
    458	err = asd_init_seqs(asd_ha);
    459	if (err) {
    460		asd_printk("couldn't init seqs for %s\n",
    461			   pci_name(asd_ha->pcidev));
    462		goto out;
    463	}
    464
    465	err = asd_start_seqs(asd_ha);
    466	if (err) {
    467		asd_printk("couldn't start seqs for %s\n",
    468			   pci_name(asd_ha->pcidev));
    469		goto out;
    470	}
    471out:
    472	return err;
    473}
    474
    475#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
    476
    477static int max_devs = 0;
    478module_param_named(max_devs, max_devs, int, S_IRUGO);
    479MODULE_PARM_DESC(max_devs, "\n"
    480	"\tMaximum number of SAS devices to support (not LUs).\n"
    481	"\tDefault: 2176, Maximum: 65663.\n");
    482
    483static int max_cmnds = 0;
    484module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
    485MODULE_PARM_DESC(max_cmnds, "\n"
    486	"\tMaximum number of commands queuable.\n"
    487	"\tDefault: 512, Maximum: 66047.\n");
    488
    489static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
    490{
    491	unsigned long dma_addr = OCM_BASE_ADDR;
    492	u32 d;
    493
    494	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
    495	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
    496	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
    497	d |= 4;
    498	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
    499	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
    500}
    501
    502static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
    503{
    504	dma_addr_t dma_handle;
    505	unsigned long dma_addr;
    506	u32 d;
    507	int size;
    508
    509	asd_extend_devctx_ocm(asd_ha);
    510
    511	asd_ha->hw_prof.ddb_ext = NULL;
    512	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
    513		max_devs = asd_ha->hw_prof.max_ddbs;
    514		return 0;
    515	}
    516
    517	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
    518
    519	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
    520	if (!asd_ha->hw_prof.ddb_ext) {
    521		asd_printk("couldn't allocate memory for %d devices\n",
    522			   max_devs);
    523		max_devs = asd_ha->hw_prof.max_ddbs;
    524		return -ENOMEM;
    525	}
    526	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
    527	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
    528	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
    529	dma_handle = (dma_addr_t) dma_addr;
    530	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
    531	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
    532	d &= ~4;
    533	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
    534
    535	asd_ha->hw_prof.max_ddbs = max_devs;
    536
    537	return 0;
    538}
    539
    540static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
    541{
    542	dma_addr_t dma_handle;
    543	unsigned long dma_addr;
    544	u32 d;
    545	int size;
    546
    547	asd_ha->hw_prof.scb_ext = NULL;
    548	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
    549		max_cmnds = asd_ha->hw_prof.max_scbs;
    550		return 0;
    551	}
    552
    553	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
    554
    555	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
    556	if (!asd_ha->hw_prof.scb_ext) {
    557		asd_printk("couldn't allocate memory for %d commands\n",
    558			   max_cmnds);
    559		max_cmnds = asd_ha->hw_prof.max_scbs;
    560		return -ENOMEM;
    561	}
    562	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
    563	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
    564	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
    565	dma_handle = (dma_addr_t) dma_addr;
    566	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
    567	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
    568	d &= ~1;
    569	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
    570
    571	asd_ha->hw_prof.max_scbs = max_cmnds;
    572
    573	return 0;
    574}
    575
    576/**
    577 * asd_init_ctxmem -- initialize context memory
    578 * @asd_ha: pointer to host adapter structure
    579 *
    580 * This function sets the maximum number of SCBs and
    581 * DDBs which can be used by the sequencer.  This is normally
    582 * 512 and 128 respectively.  If support for more SCBs or more DDBs
    583 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
    584 * initialized here to extend context memory to point to host memory,
    585 * thus allowing unlimited support for SCBs and DDBs -- only limited
    586 * by host memory.
    587 */
    588static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
    589{
    590	int bitmap_bytes;
    591
    592	asd_get_max_scb_ddb(asd_ha);
    593	asd_extend_devctx(asd_ha);
    594	asd_extend_cmdctx(asd_ha);
    595
    596	/* The kernel wants bitmaps to be unsigned long sized. */
    597	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
    598	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
    599	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
    600	if (!asd_ha->hw_prof.ddb_bitmap)
    601		return -ENOMEM;
    602	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
    603
    604	return 0;
    605}
    606
    607int asd_init_hw(struct asd_ha_struct *asd_ha)
    608{
    609	int err;
    610	u32 v;
    611
    612	err = asd_init_sw(asd_ha);
    613	if (err)
    614		return err;
    615
    616	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
    617	if (err) {
    618		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
    619			   pci_name(asd_ha->pcidev));
    620		return err;
    621	}
    622	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
    623					v | SC_TMR_DIS);
    624	if (err) {
    625		asd_printk("couldn't disable split completion timer of %s\n",
    626			   pci_name(asd_ha->pcidev));
    627		return err;
    628	}
    629
    630	err = asd_read_ocm(asd_ha);
    631	if (err) {
    632		asd_printk("couldn't read ocm(%d)\n", err);
    633		/* While suspicios, it is not an error that we
    634		 * couldn't read the OCM. */
    635	}
    636
    637	err = asd_read_flash(asd_ha);
    638	if (err) {
    639		asd_printk("couldn't read flash(%d)\n", err);
    640		/* While suspicios, it is not an error that we
    641		 * couldn't read FLASH memory.
    642		 */
    643	}
    644
    645	asd_init_ctxmem(asd_ha);
    646
    647	if (asd_get_user_sas_addr(asd_ha)) {
    648		asd_printk("No SAS Address provided for %s\n",
    649			   pci_name(asd_ha->pcidev));
    650		err = -ENODEV;
    651		goto Out;
    652	}
    653
    654	asd_propagate_sas_addr(asd_ha);
    655
    656	err = asd_init_phys(asd_ha);
    657	if (err) {
    658		asd_printk("couldn't initialize phys for %s\n",
    659			    pci_name(asd_ha->pcidev));
    660		goto Out;
    661	}
    662
    663	asd_init_ports(asd_ha);
    664
    665	err = asd_init_scbs(asd_ha);
    666	if (err) {
    667		asd_printk("couldn't initialize scbs for %s\n",
    668			    pci_name(asd_ha->pcidev));
    669		goto Out;
    670	}
    671
    672	err = asd_init_dl(asd_ha);
    673	if (err) {
    674		asd_printk("couldn't initialize the done list:%d\n",
    675			    err);
    676		goto Out;
    677	}
    678
    679	err = asd_init_escbs(asd_ha);
    680	if (err) {
    681		asd_printk("couldn't initialize escbs\n");
    682		goto Out;
    683	}
    684
    685	err = asd_init_chip(asd_ha);
    686	if (err) {
    687		asd_printk("couldn't init the chip\n");
    688		goto Out;
    689	}
    690Out:
    691	return err;
    692}
    693
    694/* ---------- Chip reset ---------- */
    695
    696/**
    697 * asd_chip_reset -- reset the host adapter, etc
    698 * @asd_ha: pointer to host adapter structure of interest
    699 *
    700 * Called from the ISR.  Hard reset the chip.  Let everything
    701 * timeout.  This should be no different than hot-unplugging the
    702 * host adapter.  Once everything times out we'll init the chip with
    703 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
    704 * XXX finish.
    705 */
    706static void asd_chip_reset(struct asd_ha_struct *asd_ha)
    707{
    708	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
    709	asd_chip_hardrst(asd_ha);
    710}
    711
    712/* ---------- Done List Routines ---------- */
    713
    714static void asd_dl_tasklet_handler(unsigned long data)
    715{
    716	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
    717	struct asd_seq_data *seq = &asd_ha->seq;
    718	unsigned long flags;
    719
    720	while (1) {
    721		struct done_list_struct *dl = &seq->dl[seq->dl_next];
    722		struct asd_ascb *ascb;
    723
    724		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
    725			break;
    726
    727		/* find the aSCB */
    728		spin_lock_irqsave(&seq->tc_index_lock, flags);
    729		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
    730		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
    731		if (unlikely(!ascb)) {
    732			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
    733			goto next_1;
    734		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
    735			goto out;
    736		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
    737			goto next_1;
    738		}
    739		spin_lock_irqsave(&seq->pend_q_lock, flags);
    740		list_del_init(&ascb->list);
    741		seq->pending--;
    742		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
    743	out:
    744		ascb->tasklet_complete(ascb, dl);
    745
    746	next_1:
    747		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
    748		if (!seq->dl_next)
    749			seq->dl_toggle ^= DL_TOGGLE_MASK;
    750	}
    751}
    752
    753/* ---------- Interrupt Service Routines ---------- */
    754
    755/**
    756 * asd_process_donelist_isr -- schedule processing of done list entries
    757 * @asd_ha: pointer to host adapter structure
    758 */
    759static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
    760{
    761	tasklet_schedule(&asd_ha->seq.dl_tasklet);
    762}
    763
    764/**
    765 * asd_com_sas_isr -- process device communication interrupt (COMINT)
    766 * @asd_ha: pointer to host adapter structure
    767 */
    768static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
    769{
    770	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
    771
    772	/* clear COMSTAT int */
    773	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
    774
    775	if (comstat & CSBUFPERR) {
    776		asd_printk("%s: command/status buffer dma parity error\n",
    777			   pci_name(asd_ha->pcidev));
    778	} else if (comstat & CSERR) {
    779		int i;
    780		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
    781		dmaerr &= 0xFF;
    782		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
    783			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
    784			   pci_name(asd_ha->pcidev),
    785			   dmaerr,
    786			   asd_read_reg_dword(asd_ha, CSDMAADR),
    787			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
    788		asd_printk("CSBUFFER:\n");
    789		for (i = 0; i < 8; i++) {
    790			asd_printk("%08x %08x %08x %08x\n",
    791				   asd_read_reg_dword(asd_ha, CSBUFFER),
    792				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
    793				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
    794				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
    795		}
    796		asd_dump_seq_state(asd_ha, 0);
    797	} else if (comstat & OVLYERR) {
    798		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
    799		dmaerr = (dmaerr >> 8) & 0xFF;
    800		asd_printk("%s: overlay dma error:0x%x\n",
    801			   pci_name(asd_ha->pcidev),
    802			   dmaerr);
    803	}
    804	asd_chip_reset(asd_ha);
    805}
    806
    807static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
    808{
    809	static const char *halt_code[256] = {
    810		"UNEXPECTED_INTERRUPT0",
    811		"UNEXPECTED_INTERRUPT1",
    812		"UNEXPECTED_INTERRUPT2",
    813		"UNEXPECTED_INTERRUPT3",
    814		"UNEXPECTED_INTERRUPT4",
    815		"UNEXPECTED_INTERRUPT5",
    816		"UNEXPECTED_INTERRUPT6",
    817		"UNEXPECTED_INTERRUPT7",
    818		"UNEXPECTED_INTERRUPT8",
    819		"UNEXPECTED_INTERRUPT9",
    820		"UNEXPECTED_INTERRUPT10",
    821		[11 ... 19] = "unknown[11,19]",
    822		"NO_FREE_SCB_AVAILABLE",
    823		"INVALID_SCB_OPCODE",
    824		"INVALID_MBX_OPCODE",
    825		"INVALID_ATA_STATE",
    826		"ATA_QUEUE_FULL",
    827		"ATA_TAG_TABLE_FAULT",
    828		"ATA_TAG_MASK_FAULT",
    829		"BAD_LINK_QUEUE_STATE",
    830		"DMA2CHIM_QUEUE_ERROR",
    831		"EMPTY_SCB_LIST_FULL",
    832		"unknown[30]",
    833		"IN_USE_SCB_ON_FREE_LIST",
    834		"BAD_OPEN_WAIT_STATE",
    835		"INVALID_STP_AFFILIATION",
    836		"unknown[34]",
    837		"EXEC_QUEUE_ERROR",
    838		"TOO_MANY_EMPTIES_NEEDED",
    839		"EMPTY_REQ_QUEUE_ERROR",
    840		"Q_MONIRTT_MGMT_ERROR",
    841		"TARGET_MODE_FLOW_ERROR",
    842		"DEVICE_QUEUE_NOT_FOUND",
    843		"START_IRTT_TIMER_ERROR",
    844		"ABORT_TASK_ILLEGAL_REQ",
    845		[43 ... 255] = "unknown[43,255]"
    846	};
    847
    848	if (dchstatus & CSEQINT) {
    849		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
    850
    851		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
    852			asd_printk("%s: CSEQ arp2int:0x%x\n",
    853				   pci_name(asd_ha->pcidev),
    854				   arp2int);
    855		} else if (arp2int & ARP2HALTC)
    856			asd_printk("%s: CSEQ halted: %s\n",
    857				   pci_name(asd_ha->pcidev),
    858				   halt_code[(arp2int>>16)&0xFF]);
    859		else
    860			asd_printk("%s: CARP2INT:0x%x\n",
    861				   pci_name(asd_ha->pcidev),
    862				   arp2int);
    863	}
    864	if (dchstatus & LSEQINT_MASK) {
    865		int lseq;
    866		u8  lseq_mask = dchstatus & LSEQINT_MASK;
    867
    868		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
    869			u32 arp2int = asd_read_reg_dword(asd_ha,
    870							 LmARP2INT(lseq));
    871			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
    872				       | ARP2CIOPERR)) {
    873				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
    874					   pci_name(asd_ha->pcidev),
    875					   lseq, arp2int);
    876				/* XXX we should only do lseq reset */
    877			} else if (arp2int & ARP2HALTC)
    878				asd_printk("%s: LSEQ%d halted: %s\n",
    879					   pci_name(asd_ha->pcidev),
    880					   lseq,halt_code[(arp2int>>16)&0xFF]);
    881			else
    882				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
    883					   pci_name(asd_ha->pcidev), lseq,
    884					   arp2int);
    885		}
    886	}
    887	asd_chip_reset(asd_ha);
    888}
    889
    890/**
    891 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
    892 * @asd_ha: pointer to host adapter structure
    893 */
    894static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
    895{
    896	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
    897
    898	if (dchstatus & CFIFTOERR) {
    899		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
    900		asd_chip_reset(asd_ha);
    901	} else
    902		asd_arp2_err(asd_ha, dchstatus);
    903}
    904
    905/**
    906 * asd_rbi_exsi_isr -- process external system interface interrupt (INITERR)
    907 * @asd_ha: pointer to host adapter structure
    908 */
    909static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
    910{
    911	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
    912
    913	if (!(stat0r & ASIERR)) {
    914		asd_printk("hmm, EXSI interrupted but no error?\n");
    915		return;
    916	}
    917
    918	if (stat0r & ASIFMTERR) {
    919		asd_printk("ASI SEEPROM format error for %s\n",
    920			   pci_name(asd_ha->pcidev));
    921	} else if (stat0r & ASISEECHKERR) {
    922		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
    923		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
    924			   stat1r & CHECKSUM_MASK,
    925			   pci_name(asd_ha->pcidev));
    926	} else {
    927		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
    928
    929		if (!(statr & CPI2ASIMSTERR_MASK)) {
    930			ASD_DPRINTK("hmm, ASIERR?\n");
    931			return;
    932		} else {
    933			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
    934			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
    935
    936			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
    937				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
    938				   "master id: 0x%x, master err: 0x%x\n",
    939				   pci_name(asd_ha->pcidev),
    940				   addr, data,
    941				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
    942				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
    943				   (statr & CPI2ASITARGERR_MASK) >> 8,
    944				   (statr & CPI2ASITARGMID_MASK) >> 4,
    945				   (statr & CPI2ASIMSTERR_MASK));
    946		}
    947	}
    948	asd_chip_reset(asd_ha);
    949}
    950
    951/**
    952 * asd_hst_pcix_isr -- process host interface interrupts
    953 * @asd_ha: pointer to host adapter structure
    954 *
    955 * Asserted on PCIX errors: target abort, etc.
    956 */
    957static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
    958{
    959	u16 status;
    960	u32 pcix_status;
    961	u32 ecc_status;
    962
    963	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
    964	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
    965	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
    966
    967	if (status & PCI_STATUS_DETECTED_PARITY)
    968		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
    969	else if (status & PCI_STATUS_REC_MASTER_ABORT)
    970		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
    971	else if (status & PCI_STATUS_REC_TARGET_ABORT)
    972		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
    973	else if (status & PCI_STATUS_PARITY)
    974		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
    975	else if (pcix_status & RCV_SCE) {
    976		asd_printk("received split completion error for %s\n",
    977			   pci_name(asd_ha->pcidev));
    978		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
    979		/* XXX: Abort task? */
    980		return;
    981	} else if (pcix_status & UNEXP_SC) {
    982		asd_printk("unexpected split completion for %s\n",
    983			   pci_name(asd_ha->pcidev));
    984		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
    985		/* ignore */
    986		return;
    987	} else if (pcix_status & SC_DISCARD)
    988		asd_printk("split completion discarded for %s\n",
    989			   pci_name(asd_ha->pcidev));
    990	else if (ecc_status & UNCOR_ECCERR)
    991		asd_printk("uncorrectable ECC error for %s\n",
    992			   pci_name(asd_ha->pcidev));
    993	asd_chip_reset(asd_ha);
    994}
    995
    996/**
    997 * asd_hw_isr -- host adapter interrupt service routine
    998 * @irq: ignored
    999 * @dev_id: pointer to host adapter structure
   1000 *
   1001 * The ISR processes done list entries and level 3 error handling.
   1002 */
   1003irqreturn_t asd_hw_isr(int irq, void *dev_id)
   1004{
   1005	struct asd_ha_struct *asd_ha = dev_id;
   1006	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
   1007
   1008	if (!chimint)
   1009		return IRQ_NONE;
   1010
   1011	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
   1012	(void) asd_read_reg_dword(asd_ha, CHIMINT);
   1013
   1014	if (chimint & DLAVAIL)
   1015		asd_process_donelist_isr(asd_ha);
   1016	if (chimint & COMINT)
   1017		asd_com_sas_isr(asd_ha);
   1018	if (chimint & DEVINT)
   1019		asd_dch_sas_isr(asd_ha);
   1020	if (chimint & INITERR)
   1021		asd_rbi_exsi_isr(asd_ha);
   1022	if (chimint & HOSTERR)
   1023		asd_hst_pcix_isr(asd_ha);
   1024
   1025	return IRQ_HANDLED;
   1026}
   1027
   1028/* ---------- SCB handling ---------- */
   1029
   1030static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
   1031				       gfp_t gfp_flags)
   1032{
   1033	extern struct kmem_cache *asd_ascb_cache;
   1034	struct asd_seq_data *seq = &asd_ha->seq;
   1035	struct asd_ascb *ascb;
   1036	unsigned long flags;
   1037
   1038	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
   1039
   1040	if (ascb) {
   1041		ascb->dma_scb.size = sizeof(struct scb);
   1042		ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
   1043						     gfp_flags,
   1044						    &ascb->dma_scb.dma_handle);
   1045		if (!ascb->dma_scb.vaddr) {
   1046			kmem_cache_free(asd_ascb_cache, ascb);
   1047			return NULL;
   1048		}
   1049		asd_init_ascb(asd_ha, ascb);
   1050
   1051		spin_lock_irqsave(&seq->tc_index_lock, flags);
   1052		ascb->tc_index = asd_tc_index_get(seq, ascb);
   1053		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
   1054		if (ascb->tc_index == -1)
   1055			goto undo;
   1056
   1057		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
   1058	}
   1059
   1060	return ascb;
   1061undo:
   1062	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
   1063		      ascb->dma_scb.dma_handle);
   1064	kmem_cache_free(asd_ascb_cache, ascb);
   1065	ASD_DPRINTK("no index for ascb\n");
   1066	return NULL;
   1067}
   1068
   1069/**
   1070 * asd_ascb_alloc_list -- allocate a list of aSCBs
   1071 * @asd_ha: pointer to host adapter structure
   1072 * @num: pointer to integer number of aSCBs
   1073 * @gfp_flags: GFP_ flags.
   1074 *
   1075 * This is the only function which is used to allocate aSCBs.
   1076 * It can allocate one or many. If more than one, then they form
   1077 * a linked list in two ways: by their list field of the ascb struct
   1078 * and by the next_scb field of the scb_header.
   1079 *
   1080 * Returns NULL if no memory was available, else pointer to a list
   1081 * of ascbs.  When this function returns, @num would be the number
   1082 * of SCBs which were not able to be allocated, 0 if all requested
   1083 * were able to be allocated.
   1084 */
   1085struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
   1086				     *asd_ha, int *num,
   1087				     gfp_t gfp_flags)
   1088{
   1089	struct asd_ascb *first = NULL;
   1090
   1091	for ( ; *num > 0; --*num) {
   1092		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
   1093
   1094		if (!ascb)
   1095			break;
   1096		else if (!first)
   1097			first = ascb;
   1098		else {
   1099			struct asd_ascb *last = list_entry(first->list.prev,
   1100							   struct asd_ascb,
   1101							   list);
   1102			list_add_tail(&ascb->list, &first->list);
   1103			last->scb->header.next_scb =
   1104				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
   1105		}
   1106	}
   1107
   1108	return first;
   1109}
   1110
   1111/**
   1112 * asd_swap_head_scb -- swap the head scb
   1113 * @asd_ha: pointer to host adapter structure
   1114 * @ascb: pointer to the head of an ascb list
   1115 *
   1116 * The sequencer knows the DMA address of the next SCB to be DMAed to
   1117 * the host adapter, from initialization or from the last list DMAed.
   1118 * seq->next_scb keeps the address of this SCB.  The sequencer will
   1119 * DMA to the host adapter this list of SCBs.  But the head (first
   1120 * element) of this list is not known to the sequencer.  Here we swap
   1121 * the head of the list with the known SCB (memcpy()).
   1122 * Only one memcpy() is required per list so it is in our interest
   1123 * to keep the list of SCB as long as possible so that the ratio
   1124 * of number of memcpy calls to the number of SCB DMA-ed is as small
   1125 * as possible.
   1126 *
   1127 * LOCKING: called with the pending list lock held.
   1128 */
   1129static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
   1130			      struct asd_ascb *ascb)
   1131{
   1132	struct asd_seq_data *seq = &asd_ha->seq;
   1133	struct asd_ascb *last = list_entry(ascb->list.prev,
   1134					   struct asd_ascb,
   1135					   list);
   1136	struct asd_dma_tok t = ascb->dma_scb;
   1137
   1138	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
   1139	ascb->dma_scb = seq->next_scb;
   1140	ascb->scb = ascb->dma_scb.vaddr;
   1141	seq->next_scb = t;
   1142	last->scb->header.next_scb =
   1143		cpu_to_le64(((u64)seq->next_scb.dma_handle));
   1144}
   1145
   1146/**
   1147 * asd_start_scb_timers -- (add and) start timers of SCBs
   1148 * @list: pointer to struct list_head of the scbs
   1149 *
   1150 * If an SCB in the @list has no timer function, assign the default
   1151 * one,  then start the timer of the SCB.  This function is
   1152 * intended to be called from asd_post_ascb_list(), just prior to
   1153 * posting the SCBs to the sequencer.
   1154 */
   1155static void asd_start_scb_timers(struct list_head *list)
   1156{
   1157	struct asd_ascb *ascb;
   1158	list_for_each_entry(ascb, list, list) {
   1159		if (!ascb->uldd_timer) {
   1160			ascb->timer.function = asd_ascb_timedout;
   1161			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
   1162			add_timer(&ascb->timer);
   1163		}
   1164	}
   1165}
   1166
   1167/**
   1168 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
   1169 * @asd_ha: pointer to a host adapter structure
   1170 * @ascb: pointer to the first aSCB in the list
   1171 * @num: number of aSCBs in the list (to be posted)
   1172 *
   1173 * See queueing comment in asd_post_escb_list().
   1174 *
   1175 * Additional note on queuing: In order to minimize the ratio of memcpy()
   1176 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
   1177 * in one go.
   1178 * Two cases are possible:
   1179 *    A) can_queue >= num,
   1180 *    B) can_queue < num.
   1181 * Case A: we can send the whole batch at once.  Increment "pending"
   1182 * in the beginning of this function, when it is checked, in order to
   1183 * eliminate races when this function is called by multiple processes.
   1184 * Case B: should never happen.
   1185 */
   1186int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
   1187		       int num)
   1188{
   1189	unsigned long flags;
   1190	LIST_HEAD(list);
   1191	int can_queue;
   1192
   1193	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
   1194	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
   1195	if (can_queue >= num)
   1196		asd_ha->seq.pending += num;
   1197	else
   1198		can_queue = 0;
   1199
   1200	if (!can_queue) {
   1201		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
   1202		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
   1203		return -SAS_QUEUE_FULL;
   1204	}
   1205
   1206	asd_swap_head_scb(asd_ha, ascb);
   1207
   1208	__list_add(&list, ascb->list.prev, &ascb->list);
   1209
   1210	asd_start_scb_timers(&list);
   1211
   1212	asd_ha->seq.scbpro += num;
   1213	list_splice_init(&list, asd_ha->seq.pend_q.prev);
   1214	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
   1215	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
   1216
   1217	return 0;
   1218}
   1219
   1220/**
   1221 * asd_post_escb_list -- post a list of 1 or more empty scb
   1222 * @asd_ha: pointer to a host adapter structure
   1223 * @ascb: pointer to the first empty SCB in the list
   1224 * @num: number of aSCBs in the list (to be posted)
   1225 *
   1226 * This is essentially the same as asd_post_ascb_list, but we do not
   1227 * increment pending, add those to the pending list or get indexes.
   1228 * See asd_init_escbs() and asd_init_post_escbs().
   1229 *
   1230 * Since sending a list of ascbs is a superset of sending a single
   1231 * ascb, this function exists to generalize this.  More specifically,
   1232 * when sending a list of those, we want to do only a _single_
   1233 * memcpy() at swap head, as opposed to for each ascb sent (in the
   1234 * case of sending them one by one).  That is, we want to minimize the
   1235 * ratio of memcpy() operations to the number of ascbs sent.  The same
   1236 * logic applies to asd_post_ascb_list().
   1237 */
   1238int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
   1239		       int num)
   1240{
   1241	unsigned long flags;
   1242
   1243	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
   1244	asd_swap_head_scb(asd_ha, ascb);
   1245	asd_ha->seq.scbpro += num;
   1246	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
   1247	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
   1248
   1249	return 0;
   1250}
   1251
   1252/* ---------- LED ---------- */
   1253
   1254/**
   1255 * asd_turn_led -- turn on/off an LED
   1256 * @asd_ha: pointer to host adapter structure
   1257 * @phy_id: the PHY id whose LED we want to manupulate
   1258 * @op: 1 to turn on, 0 to turn off
   1259 */
   1260void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
   1261{
   1262	if (phy_id < ASD_MAX_PHYS) {
   1263		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
   1264		if (op)
   1265			v |= LEDPOL;
   1266		else
   1267			v &= ~LEDPOL;
   1268		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
   1269	}
   1270}
   1271
   1272/**
   1273 * asd_control_led -- enable/disable an LED on the board
   1274 * @asd_ha: pointer to host adapter structure
   1275 * @phy_id: integer, the phy id
   1276 * @op: integer, 1 to enable, 0 to disable the LED
   1277 *
   1278 * First we output enable the LED, then we set the source
   1279 * to be an external module.
   1280 */
   1281void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
   1282{
   1283	if (phy_id < ASD_MAX_PHYS) {
   1284		u32 v;
   1285
   1286		v = asd_read_reg_dword(asd_ha, GPIOOER);
   1287		if (op)
   1288			v |= (1 << phy_id);
   1289		else
   1290			v &= ~(1 << phy_id);
   1291		asd_write_reg_dword(asd_ha, GPIOOER, v);
   1292
   1293		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
   1294		if (op)
   1295			v |= (1 << phy_id);
   1296		else
   1297			v &= ~(1 << phy_id);
   1298		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
   1299	}
   1300}
   1301
   1302/* ---------- PHY enable ---------- */
   1303
   1304static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
   1305{
   1306	struct asd_phy *phy = &asd_ha->phys[phy_id];
   1307
   1308	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
   1309	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
   1310			   HOTPLUG_DELAY_TIMEOUT);
   1311
   1312	/* Get defaults from manuf. sector */
   1313	/* XXX we need defaults for those in case MS is broken. */
   1314	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
   1315			   phy->phy_desc->phy_control_0);
   1316	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
   1317			   phy->phy_desc->phy_control_1);
   1318	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
   1319			   phy->phy_desc->phy_control_2);
   1320	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
   1321			   phy->phy_desc->phy_control_3);
   1322
   1323	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
   1324			    ASD_COMINIT_TIMEOUT);
   1325
   1326	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
   1327			   phy->id_frm_tok->dma_handle);
   1328
   1329	asd_control_led(asd_ha, phy_id, 1);
   1330
   1331	return 0;
   1332}
   1333
   1334int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
   1335{
   1336	u8  phy_m;
   1337	u8  i;
   1338	int num = 0, k;
   1339	struct asd_ascb *ascb;
   1340	struct asd_ascb *ascb_list;
   1341
   1342	if (!phy_mask) {
   1343		asd_printk("%s called with phy_mask of 0!?\n", __func__);
   1344		return 0;
   1345	}
   1346
   1347	for_each_phy(phy_mask, phy_m, i) {
   1348		num++;
   1349		asd_enable_phy(asd_ha, i);
   1350	}
   1351
   1352	k = num;
   1353	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
   1354	if (!ascb_list) {
   1355		asd_printk("no memory for control phy ascb list\n");
   1356		return -ENOMEM;
   1357	}
   1358	num -= k;
   1359
   1360	ascb = ascb_list;
   1361	for_each_phy(phy_mask, phy_m, i) {
   1362		asd_build_control_phy(ascb, i, ENABLE_PHY);
   1363		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
   1364	}
   1365	ASD_DPRINTK("posting %d control phy scbs\n", num);
   1366	k = asd_post_ascb_list(asd_ha, ascb_list, num);
   1367	if (k)
   1368		asd_ascb_free_list(ascb_list);
   1369
   1370	return k;
   1371}