cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

csio_wr.c (46522B)


      1/*
      2 * This file is part of the Chelsio FCoE driver for Linux.
      3 *
      4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
      5 *
      6 * This software is available to you under a choice of one of two
      7 * licenses.  You may choose to be licensed under the terms of the GNU
      8 * General Public License (GPL) Version 2, available from the file
      9 * COPYING in the main directory of this source tree, or the
     10 * OpenIB.org BSD license below:
     11 *
     12 *     Redistribution and use in source and binary forms, with or
     13 *     without modification, are permitted provided that the following
     14 *     conditions are met:
     15 *
     16 *      - Redistributions of source code must retain the above
     17 *        copyright notice, this list of conditions and the following
     18 *        disclaimer.
     19 *
     20 *      - Redistributions in binary form must reproduce the above
     21 *        copyright notice, this list of conditions and the following
     22 *        disclaimer in the documentation and/or other materials
     23 *        provided with the distribution.
     24 *
     25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     32 * SOFTWARE.
     33 */
     34
     35#include <linux/kernel.h>
     36#include <linux/string.h>
     37#include <linux/compiler.h>
     38#include <linux/slab.h>
     39#include <asm/page.h>
     40#include <linux/cache.h>
     41
     42#include "t4_values.h"
     43#include "csio_hw.h"
     44#include "csio_wr.h"
     45#include "csio_mb.h"
     46#include "csio_defs.h"
     47
     48int csio_intr_coalesce_cnt;		/* value:SGE_INGRESS_RX_THRESHOLD[0] */
     49static int csio_sge_thresh_reg;		/* SGE_INGRESS_RX_THRESHOLD[0] */
     50
     51int csio_intr_coalesce_time = 10;	/* value:SGE_TIMER_VALUE_1 */
     52static int csio_sge_timer_reg = 1;
     53
     54#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)				\
     55	csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
     56
     57static void
     58csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
     59{
     60	sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
     61							reg * sizeof(uint32_t));
     62}
     63
     64/* Free list buffer size */
     65static inline uint32_t
     66csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
     67{
     68	return sge->sge_fl_buf_size[buf->paddr & 0xF];
     69}
     70
     71/* Size of the egress queue status page */
     72static inline uint32_t
     73csio_wr_qstat_pgsz(struct csio_hw *hw)
     74{
     75	return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
     76}
     77
     78/* Ring freelist doorbell */
     79static inline void
     80csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
     81{
     82	/*
     83	 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
     84	 * number of bytes in the freelist queue. This translates to atleast
     85	 * 8 freelist buffer pointers (since each pointer is 8 bytes).
     86	 */
     87	if (flq->inc_idx >= 8) {
     88		csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
     89				  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
     90				  MYPF_REG(SGE_PF_KDOORBELL_A));
     91		flq->inc_idx &= 7;
     92	}
     93}
     94
     95/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
     96static void
     97csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
     98{
     99	csio_wr_reg32(hw, CIDXINC_V(0)		|
    100			  INGRESSQID_V(iqid)	|
    101			  TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
    102			  MYPF_REG(SGE_PF_GTS_A));
    103}
    104
    105/*
    106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
    107 * @hw: HW module.
    108 * @flq: Freelist queue.
    109 *
    110 * Fill up freelist buffer entries with buffers of size specified
    111 * in the size register.
    112 *
    113 */
    114static int
    115csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
    116{
    117	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
    118	struct csio_sge *sge = &wrm->sge;
    119	__be64 *d = (__be64 *)(flq->vstart);
    120	struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
    121	uint64_t paddr;
    122	int sreg = flq->un.fl.sreg;
    123	int n = flq->credits;
    124
    125	while (n--) {
    126		buf->len = sge->sge_fl_buf_size[sreg];
    127		buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
    128						&buf->paddr, GFP_KERNEL);
    129		if (!buf->vaddr) {
    130			csio_err(hw, "Could only fill %d buffers!\n", n + 1);
    131			return -ENOMEM;
    132		}
    133
    134		paddr = buf->paddr | (sreg & 0xF);
    135
    136		*d++ = cpu_to_be64(paddr);
    137		buf++;
    138	}
    139
    140	return 0;
    141}
    142
    143/*
    144 * csio_wr_update_fl -
    145 * @hw: HW module.
    146 * @flq: Freelist queue.
    147 *
    148 *
    149 */
    150static inline void
    151csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
    152{
    153
    154	flq->inc_idx += n;
    155	flq->pidx += n;
    156	if (unlikely(flq->pidx >= flq->credits))
    157		flq->pidx -= (uint16_t)flq->credits;
    158
    159	CSIO_INC_STATS(flq, n_flq_refill);
    160}
    161
    162/*
    163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
    164 * @hw: HW module
    165 * @qsize: Size of the queue in bytes
    166 * @wrsize: Since of WR in this queue, if fixed.
    167 * @type: Type of queue (Ingress/Egress/Freelist)
    168 * @owner: Module that owns this queue.
    169 * @nflb: Number of freelist buffers for FL.
    170 * @sreg: What is the FL buffer size register?
    171 * @iq_int_handler: Ingress queue handler in INTx mode.
    172 *
    173 * This function allocates and sets up a queue for the caller
    174 * of size qsize, aligned at the required boundary. This is subject to
    175 * be free entries being available in the queue array. If one is found,
    176 * it is initialized with the allocated queue, marked as being used (owner),
    177 * and a handle returned to the caller in form of the queue's index
    178 * into the q_arr array.
    179 * If user has indicated a freelist (by specifying nflb > 0), create
    180 * another queue (with its own index into q_arr) for the freelist. Allocate
    181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
    182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
    183 * with its owning ingress queue.
    184 */
    185int
    186csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
    187		uint16_t type, void *owner, uint32_t nflb, int sreg,
    188		iq_handler_t iq_intx_handler)
    189{
    190	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
    191	struct csio_q	*q, *flq;
    192	int		free_idx = wrm->free_qidx;
    193	int		ret_idx = free_idx;
    194	uint32_t	qsz;
    195	int flq_idx;
    196
    197	if (free_idx >= wrm->num_q) {
    198		csio_err(hw, "No more free queues.\n");
    199		return -1;
    200	}
    201
    202	switch (type) {
    203	case CSIO_EGRESS:
    204		qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
    205		break;
    206	case CSIO_INGRESS:
    207		switch (wrsize) {
    208		case 16:
    209		case 32:
    210		case 64:
    211		case 128:
    212			break;
    213		default:
    214			csio_err(hw, "Invalid Ingress queue WR size:%d\n",
    215				    wrsize);
    216			return -1;
    217		}
    218
    219		/*
    220		 * Number of elements must be a multiple of 16
    221		 * So this includes status page size
    222		 */
    223		qsz = ALIGN(qsize/wrsize, 16) * wrsize;
    224
    225		break;
    226	case CSIO_FREELIST:
    227		qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
    228		break;
    229	default:
    230		csio_err(hw, "Invalid queue type: 0x%x\n", type);
    231		return -1;
    232	}
    233
    234	q = wrm->q_arr[free_idx];
    235
    236	q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
    237				       GFP_KERNEL);
    238	if (!q->vstart) {
    239		csio_err(hw,
    240			 "Failed to allocate DMA memory for "
    241			 "queue at id: %d size: %d\n", free_idx, qsize);
    242		return -1;
    243	}
    244
    245	q->type		= type;
    246	q->owner	= owner;
    247	q->pidx		= q->cidx = q->inc_idx = 0;
    248	q->size		= qsz;
    249	q->wr_sz	= wrsize;	/* If using fixed size WRs */
    250
    251	wrm->free_qidx++;
    252
    253	if (type == CSIO_INGRESS) {
    254		/* Since queue area is set to zero */
    255		q->un.iq.genbit	= 1;
    256
    257		/*
    258		 * Ingress queue status page size is always the size of
    259		 * the ingress queue entry.
    260		 */
    261		q->credits	= (qsz - q->wr_sz) / q->wr_sz;
    262		q->vwrap	= (void *)((uintptr_t)(q->vstart) + qsz
    263							- q->wr_sz);
    264
    265		/* Allocate memory for FL if requested */
    266		if (nflb > 0) {
    267			flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
    268						  sizeof(__be64), CSIO_FREELIST,
    269						  owner, 0, sreg, NULL);
    270			if (flq_idx == -1) {
    271				csio_err(hw,
    272					 "Failed to allocate FL queue"
    273					 " for IQ idx:%d\n", free_idx);
    274				return -1;
    275			}
    276
    277			/* Associate the new FL with the Ingress quue */
    278			q->un.iq.flq_idx = flq_idx;
    279
    280			flq = wrm->q_arr[q->un.iq.flq_idx];
    281			flq->un.fl.bufs = kcalloc(flq->credits,
    282						  sizeof(struct csio_dma_buf),
    283						  GFP_KERNEL);
    284			if (!flq->un.fl.bufs) {
    285				csio_err(hw,
    286					 "Failed to allocate FL queue bufs"
    287					 " for IQ idx:%d\n", free_idx);
    288				return -1;
    289			}
    290
    291			flq->un.fl.packen = 0;
    292			flq->un.fl.offset = 0;
    293			flq->un.fl.sreg = sreg;
    294
    295			/* Fill up the free list buffers */
    296			if (csio_wr_fill_fl(hw, flq))
    297				return -1;
    298
    299			/*
    300			 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
    301			 * remains unpopulated,otherwise HW thinks
    302			 * FLQ is empty.
    303			 */
    304			flq->pidx = flq->inc_idx = flq->credits - 8;
    305		} else {
    306			q->un.iq.flq_idx = -1;
    307		}
    308
    309		/* Associate the IQ INTx handler. */
    310		q->un.iq.iq_intx_handler = iq_intx_handler;
    311
    312		csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
    313
    314	} else if (type == CSIO_EGRESS) {
    315		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
    316		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
    317						- csio_wr_qstat_pgsz(hw));
    318		csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
    319	} else { /* Freelist */
    320		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
    321		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
    322						- csio_wr_qstat_pgsz(hw));
    323		csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
    324	}
    325
    326	return ret_idx;
    327}
    328
    329/*
    330 * csio_wr_iq_create_rsp - Response handler for IQ creation.
    331 * @hw: The HW module.
    332 * @mbp: Mailbox.
    333 * @iq_idx: Ingress queue that got created.
    334 *
    335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
    336 */
    337static int
    338csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
    339{
    340	struct csio_iq_params iqp;
    341	enum fw_retval retval;
    342	uint32_t iq_id;
    343	int flq_idx;
    344
    345	memset(&iqp, 0, sizeof(struct csio_iq_params));
    346
    347	csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
    348
    349	if (retval != FW_SUCCESS) {
    350		csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
    351		mempool_free(mbp, hw->mb_mempool);
    352		return -EINVAL;
    353	}
    354
    355	csio_q_iqid(hw, iq_idx)		= iqp.iqid;
    356	csio_q_physiqid(hw, iq_idx)	= iqp.physiqid;
    357	csio_q_pidx(hw, iq_idx)		= csio_q_cidx(hw, iq_idx) = 0;
    358	csio_q_inc_idx(hw, iq_idx)	= 0;
    359
    360	/* Actual iq-id. */
    361	iq_id = iqp.iqid - hw->wrm.fw_iq_start;
    362
    363	/* Set the iq-id to iq map table. */
    364	if (iq_id >= CSIO_MAX_IQ) {
    365		csio_err(hw,
    366			 "Exceeding MAX_IQ(%d) supported!"
    367			 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
    368			 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
    369		mempool_free(mbp, hw->mb_mempool);
    370		return -EINVAL;
    371	}
    372	csio_q_set_intr_map(hw, iq_idx, iq_id);
    373
    374	/*
    375	 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
    376	 * ingress context of this queue. This will block interrupts to
    377	 * this queue until the next GTS write. Therefore, we do a
    378	 * 0-cidx increment GTS write for this queue just to clear the
    379	 * interrupt_sent bit. This will re-enable interrupts to this
    380	 * queue.
    381	 */
    382	csio_wr_sge_intr_enable(hw, iqp.physiqid);
    383
    384	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
    385	if (flq_idx != -1) {
    386		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
    387
    388		csio_q_flid(hw, flq_idx) = iqp.fl0id;
    389		csio_q_cidx(hw, flq_idx) = 0;
    390		csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
    391		csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
    392
    393		/* Now update SGE about the buffers allocated during init */
    394		csio_wr_ring_fldb(hw, flq);
    395	}
    396
    397	mempool_free(mbp, hw->mb_mempool);
    398
    399	return 0;
    400}
    401
    402/*
    403 * csio_wr_iq_create - Configure an Ingress queue with FW.
    404 * @hw: The HW module.
    405 * @priv: Private data object.
    406 * @iq_idx: Ingress queue index in the WR module.
    407 * @vec: MSIX vector.
    408 * @portid: PCIE Channel to be associated with this queue.
    409 * @async: Is this a FW asynchronous message handling queue?
    410 * @cbfn: Completion callback.
    411 *
    412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
    413 * with alloc/write bits set.
    414 */
    415int
    416csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
    417		  uint32_t vec, uint8_t portid, bool async,
    418		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
    419{
    420	struct csio_mb  *mbp;
    421	struct csio_iq_params iqp;
    422	int flq_idx;
    423
    424	memset(&iqp, 0, sizeof(struct csio_iq_params));
    425	csio_q_portid(hw, iq_idx) = portid;
    426
    427	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
    428	if (!mbp) {
    429		csio_err(hw, "IQ command out of memory!\n");
    430		return -ENOMEM;
    431	}
    432
    433	switch (hw->intr_mode) {
    434	case CSIO_IM_INTX:
    435	case CSIO_IM_MSI:
    436		/* For interrupt forwarding queue only */
    437		if (hw->intr_iq_idx == iq_idx)
    438			iqp.iqandst	= X_INTERRUPTDESTINATION_PCIE;
    439		else
    440			iqp.iqandst	= X_INTERRUPTDESTINATION_IQ;
    441		iqp.iqandstindex	=
    442			csio_q_physiqid(hw, hw->intr_iq_idx);
    443		break;
    444	case CSIO_IM_MSIX:
    445		iqp.iqandst		= X_INTERRUPTDESTINATION_PCIE;
    446		iqp.iqandstindex	= (uint16_t)vec;
    447		break;
    448	case CSIO_IM_NONE:
    449		mempool_free(mbp, hw->mb_mempool);
    450		return -EINVAL;
    451	}
    452
    453	/* Pass in the ingress queue cmd parameters */
    454	iqp.pfn			= hw->pfn;
    455	iqp.vfn			= 0;
    456	iqp.iq_start		= 1;
    457	iqp.viid		= 0;
    458	iqp.type		= FW_IQ_TYPE_FL_INT_CAP;
    459	iqp.iqasynch		= async;
    460	if (csio_intr_coalesce_cnt)
    461		iqp.iqanus	= X_UPDATESCHEDULING_COUNTER_OPTTIMER;
    462	else
    463		iqp.iqanus	= X_UPDATESCHEDULING_TIMER;
    464	iqp.iqanud		= X_UPDATEDELIVERY_INTERRUPT;
    465	iqp.iqpciech		= portid;
    466	iqp.iqintcntthresh	= (uint8_t)csio_sge_thresh_reg;
    467
    468	switch (csio_q_wr_sz(hw, iq_idx)) {
    469	case 16:
    470		iqp.iqesize = 0; break;
    471	case 32:
    472		iqp.iqesize = 1; break;
    473	case 64:
    474		iqp.iqesize = 2; break;
    475	case 128:
    476		iqp.iqesize = 3; break;
    477	}
    478
    479	iqp.iqsize		= csio_q_size(hw, iq_idx) /
    480						csio_q_wr_sz(hw, iq_idx);
    481	iqp.iqaddr		= csio_q_pstart(hw, iq_idx);
    482
    483	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
    484	if (flq_idx != -1) {
    485		enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
    486		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
    487
    488		iqp.fl0paden	= 1;
    489		iqp.fl0packen	= flq->un.fl.packen ? 1 : 0;
    490		iqp.fl0fbmin	= X_FETCHBURSTMIN_64B;
    491		iqp.fl0fbmax	= ((chip == CHELSIO_T5) ?
    492				  X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
    493		iqp.fl0size	= csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
    494		iqp.fl0addr	= csio_q_pstart(hw, flq_idx);
    495	}
    496
    497	csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
    498
    499	if (csio_mb_issue(hw, mbp)) {
    500		csio_err(hw, "Issue of IQ cmd failed!\n");
    501		mempool_free(mbp, hw->mb_mempool);
    502		return -EINVAL;
    503	}
    504
    505	if (cbfn != NULL)
    506		return 0;
    507
    508	return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
    509}
    510
    511/*
    512 * csio_wr_eq_create_rsp - Response handler for EQ creation.
    513 * @hw: The HW module.
    514 * @mbp: Mailbox.
    515 * @eq_idx: Egress queue that got created.
    516 *
    517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
    518 */
    519static int
    520csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
    521{
    522	struct csio_eq_params eqp;
    523	enum fw_retval retval;
    524
    525	memset(&eqp, 0, sizeof(struct csio_eq_params));
    526
    527	csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
    528
    529	if (retval != FW_SUCCESS) {
    530		csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
    531		mempool_free(mbp, hw->mb_mempool);
    532		return -EINVAL;
    533	}
    534
    535	csio_q_eqid(hw, eq_idx)	= (uint16_t)eqp.eqid;
    536	csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
    537	csio_q_pidx(hw, eq_idx)	= csio_q_cidx(hw, eq_idx) = 0;
    538	csio_q_inc_idx(hw, eq_idx) = 0;
    539
    540	mempool_free(mbp, hw->mb_mempool);
    541
    542	return 0;
    543}
    544
    545/*
    546 * csio_wr_eq_create - Configure an Egress queue with FW.
    547 * @hw: HW module.
    548 * @priv: Private data.
    549 * @eq_idx: Egress queue index in the WR module.
    550 * @iq_idx: Associated ingress queue index.
    551 * @cbfn: Completion callback.
    552 *
    553 * This API configures a offload egress queue with FW by issuing a
    554 * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
    555 */
    556int
    557csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
    558		  int iq_idx, uint8_t portid,
    559		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
    560{
    561	struct csio_mb  *mbp;
    562	struct csio_eq_params eqp;
    563
    564	memset(&eqp, 0, sizeof(struct csio_eq_params));
    565
    566	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
    567	if (!mbp) {
    568		csio_err(hw, "EQ command out of memory!\n");
    569		return -ENOMEM;
    570	}
    571
    572	eqp.pfn			= hw->pfn;
    573	eqp.vfn			= 0;
    574	eqp.eqstart		= 1;
    575	eqp.hostfcmode		= X_HOSTFCMODE_STATUS_PAGE;
    576	eqp.iqid		= csio_q_iqid(hw, iq_idx);
    577	eqp.fbmin		= X_FETCHBURSTMIN_64B;
    578	eqp.fbmax		= X_FETCHBURSTMAX_512B;
    579	eqp.cidxfthresh		= 0;
    580	eqp.pciechn		= portid;
    581	eqp.eqsize		= csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
    582	eqp.eqaddr		= csio_q_pstart(hw, eq_idx);
    583
    584	csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
    585				    &eqp, cbfn);
    586
    587	if (csio_mb_issue(hw, mbp)) {
    588		csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
    589		mempool_free(mbp, hw->mb_mempool);
    590		return -EINVAL;
    591	}
    592
    593	if (cbfn != NULL)
    594		return 0;
    595
    596	return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
    597}
    598
    599/*
    600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
    601 * @hw: The HW module.
    602 * @mbp: Mailbox.
    603 * @iq_idx: Ingress queue that was freed.
    604 *
    605 * Handle FW_IQ_CMD (free) mailbox completion.
    606 */
    607static int
    608csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
    609{
    610	enum fw_retval retval = csio_mb_fw_retval(mbp);
    611	int rv = 0;
    612
    613	if (retval != FW_SUCCESS)
    614		rv = -EINVAL;
    615
    616	mempool_free(mbp, hw->mb_mempool);
    617
    618	return rv;
    619}
    620
    621/*
    622 * csio_wr_iq_destroy - Free an ingress queue.
    623 * @hw: The HW module.
    624 * @priv: Private data object.
    625 * @iq_idx: Ingress queue index to destroy
    626 * @cbfn: Completion callback.
    627 *
    628 * This API frees an ingress queue by issuing the FW_IQ_CMD
    629 * with the free bit set.
    630 */
    631static int
    632csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
    633		   void (*cbfn)(struct csio_hw *, struct csio_mb *))
    634{
    635	int rv = 0;
    636	struct csio_mb  *mbp;
    637	struct csio_iq_params iqp;
    638	int flq_idx;
    639
    640	memset(&iqp, 0, sizeof(struct csio_iq_params));
    641
    642	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
    643	if (!mbp)
    644		return -ENOMEM;
    645
    646	iqp.pfn		= hw->pfn;
    647	iqp.vfn		= 0;
    648	iqp.iqid	= csio_q_iqid(hw, iq_idx);
    649	iqp.type	= FW_IQ_TYPE_FL_INT_CAP;
    650
    651	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
    652	if (flq_idx != -1)
    653		iqp.fl0id = csio_q_flid(hw, flq_idx);
    654	else
    655		iqp.fl0id = 0xFFFF;
    656
    657	iqp.fl1id = 0xFFFF;
    658
    659	csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
    660
    661	rv = csio_mb_issue(hw, mbp);
    662	if (rv != 0) {
    663		mempool_free(mbp, hw->mb_mempool);
    664		return rv;
    665	}
    666
    667	if (cbfn != NULL)
    668		return 0;
    669
    670	return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
    671}
    672
    673/*
    674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
    675 * @hw: The HW module.
    676 * @mbp: Mailbox.
    677 * @eq_idx: Egress queue that was freed.
    678 *
    679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
    680 */
    681static int
    682csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
    683{
    684	enum fw_retval retval = csio_mb_fw_retval(mbp);
    685	int rv = 0;
    686
    687	if (retval != FW_SUCCESS)
    688		rv = -EINVAL;
    689
    690	mempool_free(mbp, hw->mb_mempool);
    691
    692	return rv;
    693}
    694
    695/*
    696 * csio_wr_eq_destroy - Free an Egress queue.
    697 * @hw: The HW module.
    698 * @priv: Private data object.
    699 * @eq_idx: Egress queue index to destroy
    700 * @cbfn: Completion callback.
    701 *
    702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
    703 * with the free bit set.
    704 */
    705static int
    706csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
    707		   void (*cbfn) (struct csio_hw *, struct csio_mb *))
    708{
    709	int rv = 0;
    710	struct csio_mb  *mbp;
    711	struct csio_eq_params eqp;
    712
    713	memset(&eqp, 0, sizeof(struct csio_eq_params));
    714
    715	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
    716	if (!mbp)
    717		return -ENOMEM;
    718
    719	eqp.pfn		= hw->pfn;
    720	eqp.vfn		= 0;
    721	eqp.eqid	= csio_q_eqid(hw, eq_idx);
    722
    723	csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
    724
    725	rv = csio_mb_issue(hw, mbp);
    726	if (rv != 0) {
    727		mempool_free(mbp, hw->mb_mempool);
    728		return rv;
    729	}
    730
    731	if (cbfn != NULL)
    732		return 0;
    733
    734	return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
    735}
    736
    737/*
    738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
    739 * @hw: HW module
    740 * @qidx: Egress queue index
    741 *
    742 * Cleanup the Egress queue status page.
    743 */
    744static void
    745csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
    746{
    747	struct csio_q	*q = csio_hw_to_wrm(hw)->q_arr[qidx];
    748	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
    749
    750	memset(stp, 0, sizeof(*stp));
    751}
    752
    753/*
    754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
    755 * @hw: HW module
    756 * @qidx: Ingress queue index
    757 *
    758 * Cleanup the footer entries in the given ingress queue,
    759 * set to 1 the internal copy of genbit.
    760 */
    761static void
    762csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
    763{
    764	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
    765	struct csio_q	*q	= wrm->q_arr[qidx];
    766	void *wr;
    767	struct csio_iqwr_footer *ftr;
    768	uint32_t i = 0;
    769
    770	/* set to 1 since we are just about zero out genbit */
    771	q->un.iq.genbit = 1;
    772
    773	for (i = 0; i < q->credits; i++) {
    774		/* Get the WR */
    775		wr = (void *)((uintptr_t)q->vstart +
    776					   (i * q->wr_sz));
    777		/* Get the footer */
    778		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
    779					  (q->wr_sz - sizeof(*ftr)));
    780		/* Zero out footer */
    781		memset(ftr, 0, sizeof(*ftr));
    782	}
    783}
    784
    785int
    786csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
    787{
    788	int i, flq_idx;
    789	struct csio_q *q;
    790	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
    791	int rv;
    792
    793	for (i = 0; i < wrm->free_qidx; i++) {
    794		q = wrm->q_arr[i];
    795
    796		switch (q->type) {
    797		case CSIO_EGRESS:
    798			if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
    799				csio_wr_cleanup_eq_stpg(hw, i);
    800				if (!cmd) {
    801					csio_q_eqid(hw, i) = CSIO_MAX_QID;
    802					continue;
    803				}
    804
    805				rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
    806				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
    807					cmd = false;
    808
    809				csio_q_eqid(hw, i) = CSIO_MAX_QID;
    810			}
    811			fallthrough;
    812		case CSIO_INGRESS:
    813			if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
    814				csio_wr_cleanup_iq_ftr(hw, i);
    815				if (!cmd) {
    816					csio_q_iqid(hw, i) = CSIO_MAX_QID;
    817					flq_idx = csio_q_iq_flq_idx(hw, i);
    818					if (flq_idx != -1)
    819						csio_q_flid(hw, flq_idx) =
    820								CSIO_MAX_QID;
    821					continue;
    822				}
    823
    824				rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
    825				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
    826					cmd = false;
    827
    828				csio_q_iqid(hw, i) = CSIO_MAX_QID;
    829				flq_idx = csio_q_iq_flq_idx(hw, i);
    830				if (flq_idx != -1)
    831					csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
    832			}
    833			break;
    834		default:
    835			break;
    836		}
    837	}
    838
    839	hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
    840
    841	return 0;
    842}
    843
    844/*
    845 * csio_wr_get - Get requested size of WR entry/entries from queue.
    846 * @hw: HW module.
    847 * @qidx: Index of queue.
    848 * @size: Cumulative size of Work request(s).
    849 * @wrp: Work request pair.
    850 *
    851 * If requested credits are available, return the start address of the
    852 * work request in the work request pair. Set pidx accordingly and
    853 * return.
    854 *
    855 * NOTE about WR pair:
    856 * ==================
    857 * A WR can start towards the end of a queue, and then continue at the
    858 * beginning, since the queue is considered to be circular. This will
    859 * require a pair of address/size to be passed back to the caller -
    860 * hence Work request pair format.
    861 */
    862int
    863csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
    864	    struct csio_wr_pair *wrp)
    865{
    866	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
    867	struct csio_q *q = wrm->q_arr[qidx];
    868	void *cwr = (void *)((uintptr_t)(q->vstart) +
    869						(q->pidx * CSIO_QCREDIT_SZ));
    870	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
    871	uint16_t cidx = q->cidx = ntohs(stp->cidx);
    872	uint16_t pidx = q->pidx;
    873	uint32_t req_sz	= ALIGN(size, CSIO_QCREDIT_SZ);
    874	int req_credits	= req_sz / CSIO_QCREDIT_SZ;
    875	int credits;
    876
    877	CSIO_DB_ASSERT(q->owner != NULL);
    878	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
    879	CSIO_DB_ASSERT(cidx <= q->credits);
    880
    881	/* Calculate credits */
    882	if (pidx > cidx) {
    883		credits = q->credits - (pidx - cidx) - 1;
    884	} else if (cidx > pidx) {
    885		credits = cidx - pidx - 1;
    886	} else {
    887		/* cidx == pidx, empty queue */
    888		credits = q->credits;
    889		CSIO_INC_STATS(q, n_qempty);
    890	}
    891
    892	/*
    893	 * Check if we have enough credits.
    894	 * credits = 1 implies queue is full.
    895	 */
    896	if (!credits || (req_credits > credits)) {
    897		CSIO_INC_STATS(q, n_qfull);
    898		return -EBUSY;
    899	}
    900
    901	/*
    902	 * If we are here, we have enough credits to satisfy the
    903	 * request. Check if we are near the end of q, and if WR spills over.
    904	 * If it does, use the first addr/size to cover the queue until
    905	 * the end. Fit the remainder portion of the request at the top
    906	 * of queue and return it in the second addr/len. Set pidx
    907	 * accordingly.
    908	 */
    909	if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
    910		wrp->addr1 = cwr;
    911		wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
    912		wrp->addr2 = q->vstart;
    913		wrp->size2 = req_sz - wrp->size1;
    914		q->pidx	= (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
    915							CSIO_QCREDIT_SZ);
    916		CSIO_INC_STATS(q, n_qwrap);
    917		CSIO_INC_STATS(q, n_eq_wr_split);
    918	} else {
    919		wrp->addr1 = cwr;
    920		wrp->size1 = req_sz;
    921		wrp->addr2 = NULL;
    922		wrp->size2 = 0;
    923		q->pidx	+= (uint16_t)req_credits;
    924
    925		/* We are the end of queue, roll back pidx to top of queue */
    926		if (unlikely(q->pidx == q->credits)) {
    927			q->pidx = 0;
    928			CSIO_INC_STATS(q, n_qwrap);
    929		}
    930	}
    931
    932	q->inc_idx = (uint16_t)req_credits;
    933
    934	CSIO_INC_STATS(q, n_tot_reqs);
    935
    936	return 0;
    937}
    938
    939/*
    940 * csio_wr_copy_to_wrp - Copies given data into WR.
    941 * @data_buf - Data buffer
    942 * @wrp - Work request pair.
    943 * @wr_off - Work request offset.
    944 * @data_len - Data length.
    945 *
    946 * Copies the given data in Work Request. Work request pair(wrp) specifies
    947 * address information of Work request.
    948 * Returns: none
    949 */
    950void
    951csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
    952		   uint32_t wr_off, uint32_t data_len)
    953{
    954	uint32_t nbytes;
    955
    956	/* Number of space available in buffer addr1 of WRP */
    957	nbytes = ((wrp->size1 - wr_off) >= data_len) ?
    958					data_len : (wrp->size1 - wr_off);
    959
    960	memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
    961	data_len -= nbytes;
    962
    963	/* Write the remaining data from the begining of circular buffer */
    964	if (data_len) {
    965		CSIO_DB_ASSERT(data_len <= wrp->size2);
    966		CSIO_DB_ASSERT(wrp->addr2 != NULL);
    967		memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
    968	}
    969}
    970
    971/*
    972 * csio_wr_issue - Notify chip of Work request.
    973 * @hw: HW module.
    974 * @qidx: Index of queue.
    975 * @prio: 0: Low priority, 1: High priority
    976 *
    977 * Rings the SGE Doorbell by writing the current producer index of the passed
    978 * in queue into the register.
    979 *
    980 */
    981int
    982csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
    983{
    984	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
    985	struct csio_q *q = wrm->q_arr[qidx];
    986
    987	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
    988
    989	wmb();
    990	/* Ring SGE Doorbell writing q->pidx into it */
    991	csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
    992			  PIDX_T5_V(q->inc_idx) | DBTYPE_F,
    993			  MYPF_REG(SGE_PF_KDOORBELL_A));
    994	q->inc_idx = 0;
    995
    996	return 0;
    997}
    998
    999static inline uint32_t
   1000csio_wr_avail_qcredits(struct csio_q *q)
   1001{
   1002	if (q->pidx > q->cidx)
   1003		return q->pidx - q->cidx;
   1004	else if (q->cidx > q->pidx)
   1005		return q->credits - (q->cidx - q->pidx);
   1006	else
   1007		return 0;	/* cidx == pidx, empty queue */
   1008}
   1009
   1010/*
   1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
   1012 * @hw: HW module.
   1013 * @flq: The freelist queue.
   1014 *
   1015 * Invalidate the driver's version of a freelist buffer entry,
   1016 * without freeing the associated the DMA memory. The entry
   1017 * to be invalidated is picked up from the current Free list
   1018 * queue cidx.
   1019 *
   1020 */
   1021static inline void
   1022csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
   1023{
   1024	flq->cidx++;
   1025	if (flq->cidx == flq->credits) {
   1026		flq->cidx = 0;
   1027		CSIO_INC_STATS(flq, n_qwrap);
   1028	}
   1029}
   1030
   1031/*
   1032 * csio_wr_process_fl - Process a freelist completion.
   1033 * @hw: HW module.
   1034 * @q: The ingress queue attached to the Freelist.
   1035 * @wr: The freelist completion WR in the ingress queue.
   1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
   1037 * @iq_handler: Caller's handler for this completion.
   1038 * @priv: Private pointer of caller
   1039 *
   1040 */
   1041static inline void
   1042csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
   1043		   void *wr, uint32_t len_to_qid,
   1044		   void (*iq_handler)(struct csio_hw *, void *,
   1045				      uint32_t, struct csio_fl_dma_buf *,
   1046				      void *),
   1047		   void *priv)
   1048{
   1049	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1050	struct csio_sge *sge = &wrm->sge;
   1051	struct csio_fl_dma_buf flb;
   1052	struct csio_dma_buf *buf, *fbuf;
   1053	uint32_t bufsz, len, lastlen = 0;
   1054	int n;
   1055	struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
   1056
   1057	CSIO_DB_ASSERT(flq != NULL);
   1058
   1059	len = len_to_qid;
   1060
   1061	if (len & IQWRF_NEWBUF) {
   1062		if (flq->un.fl.offset > 0) {
   1063			csio_wr_inval_flq_buf(hw, flq);
   1064			flq->un.fl.offset = 0;
   1065		}
   1066		len = IQWRF_LEN_GET(len);
   1067	}
   1068
   1069	CSIO_DB_ASSERT(len != 0);
   1070
   1071	flb.totlen = len;
   1072
   1073	/* Consume all freelist buffers used for len bytes */
   1074	for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
   1075		buf = &flq->un.fl.bufs[flq->cidx];
   1076		bufsz = csio_wr_fl_bufsz(sge, buf);
   1077
   1078		fbuf->paddr	= buf->paddr;
   1079		fbuf->vaddr	= buf->vaddr;
   1080
   1081		flb.offset	= flq->un.fl.offset;
   1082		lastlen		= min(bufsz, len);
   1083		fbuf->len	= lastlen;
   1084
   1085		len -= lastlen;
   1086		if (!len)
   1087			break;
   1088		csio_wr_inval_flq_buf(hw, flq);
   1089	}
   1090
   1091	flb.defer_free = flq->un.fl.packen ? 0 : 1;
   1092
   1093	iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
   1094		   &flb, priv);
   1095
   1096	if (flq->un.fl.packen)
   1097		flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
   1098	else
   1099		csio_wr_inval_flq_buf(hw, flq);
   1100
   1101}
   1102
   1103/*
   1104 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
   1105 * @q: Ingress quueue.
   1106 * @ftr: Ingress queue WR SGE footer.
   1107 *
   1108 * The entry is new if our generation bit matches the corresponding
   1109 * bit in the footer of the current WR.
   1110 */
   1111static inline bool
   1112csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
   1113{
   1114	return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
   1115}
   1116
   1117/*
   1118 * csio_wr_process_iq - Process elements in Ingress queue.
   1119 * @hw:  HW pointer
   1120 * @qidx: Index of queue
   1121 * @iq_handler: Handler for this queue
   1122 * @priv: Caller's private pointer
   1123 *
   1124 * This routine walks through every entry of the ingress queue, calling
   1125 * the provided iq_handler with the entry, until the generation bit
   1126 * flips.
   1127 */
   1128int
   1129csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
   1130		   void (*iq_handler)(struct csio_hw *, void *,
   1131				      uint32_t, struct csio_fl_dma_buf *,
   1132				      void *),
   1133		   void *priv)
   1134{
   1135	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1136	void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
   1137	struct csio_iqwr_footer *ftr;
   1138	uint32_t wr_type, fw_qid, qid;
   1139	struct csio_q *q_completed;
   1140	struct csio_q *flq = csio_iq_has_fl(q) ?
   1141					wrm->q_arr[q->un.iq.flq_idx] : NULL;
   1142	int rv = 0;
   1143
   1144	/* Get the footer */
   1145	ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
   1146					  (q->wr_sz - sizeof(*ftr)));
   1147
   1148	/*
   1149	 * When q wrapped around last time, driver should have inverted
   1150	 * ic.genbit as well.
   1151	 */
   1152	while (csio_is_new_iqwr(q, ftr)) {
   1153
   1154		CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
   1155						(uintptr_t)q->vwrap);
   1156		rmb();
   1157		wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
   1158
   1159		switch (wr_type) {
   1160		case X_RSPD_TYPE_CPL:
   1161			/* Subtract footer from WR len */
   1162			iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
   1163			break;
   1164		case X_RSPD_TYPE_FLBUF:
   1165			csio_wr_process_fl(hw, q, wr,
   1166					   ntohl(ftr->pldbuflen_qid),
   1167					   iq_handler, priv);
   1168			break;
   1169		case X_RSPD_TYPE_INTR:
   1170			fw_qid = ntohl(ftr->pldbuflen_qid);
   1171			qid = fw_qid - wrm->fw_iq_start;
   1172			q_completed = hw->wrm.intr_map[qid];
   1173
   1174			if (unlikely(qid ==
   1175					csio_q_physiqid(hw, hw->intr_iq_idx))) {
   1176				/*
   1177				 * We are already in the Forward Interrupt
   1178				 * Interrupt Queue Service! Do-not service
   1179				 * again!
   1180				 *
   1181				 */
   1182			} else {
   1183				CSIO_DB_ASSERT(q_completed);
   1184				CSIO_DB_ASSERT(
   1185					q_completed->un.iq.iq_intx_handler);
   1186
   1187				/* Call the queue handler. */
   1188				q_completed->un.iq.iq_intx_handler(hw, NULL,
   1189						0, NULL, (void *)q_completed);
   1190			}
   1191			break;
   1192		default:
   1193			csio_warn(hw, "Unknown resp type 0x%x received\n",
   1194				 wr_type);
   1195			CSIO_INC_STATS(q, n_rsp_unknown);
   1196			break;
   1197		}
   1198
   1199		/*
   1200		 * Ingress *always* has fixed size WR entries. Therefore,
   1201		 * there should always be complete WRs towards the end of
   1202		 * queue.
   1203		 */
   1204		if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
   1205
   1206			/* Roll over to start of queue */
   1207			q->cidx = 0;
   1208			wr	= q->vstart;
   1209
   1210			/* Toggle genbit */
   1211			q->un.iq.genbit ^= 0x1;
   1212
   1213			CSIO_INC_STATS(q, n_qwrap);
   1214		} else {
   1215			q->cidx++;
   1216			wr	= (void *)((uintptr_t)(q->vstart) +
   1217					   (q->cidx * q->wr_sz));
   1218		}
   1219
   1220		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
   1221						  (q->wr_sz - sizeof(*ftr)));
   1222		q->inc_idx++;
   1223
   1224	} /* while (q->un.iq.genbit == hdr->genbit) */
   1225
   1226	/*
   1227	 * We need to re-arm SGE interrupts in case we got a stray interrupt,
   1228	 * especially in msix mode. With INTx, this may be a common occurence.
   1229	 */
   1230	if (unlikely(!q->inc_idx)) {
   1231		CSIO_INC_STATS(q, n_stray_comp);
   1232		rv = -EINVAL;
   1233		goto restart;
   1234	}
   1235
   1236	/* Replenish free list buffers if pending falls below low water mark */
   1237	if (flq) {
   1238		uint32_t avail  = csio_wr_avail_qcredits(flq);
   1239		if (avail <= 16) {
   1240			/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
   1241			 * remains unpopulated otherwise HW thinks
   1242			 * FLQ is empty.
   1243			 */
   1244			csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
   1245			csio_wr_ring_fldb(hw, flq);
   1246		}
   1247	}
   1248
   1249restart:
   1250	/* Now inform SGE about our incremental index value */
   1251	csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)		|
   1252			  INGRESSQID_V(q->un.iq.physiqid)	|
   1253			  TIMERREG_V(csio_sge_timer_reg),
   1254			  MYPF_REG(SGE_PF_GTS_A));
   1255	q->stats.n_tot_rsps += q->inc_idx;
   1256
   1257	q->inc_idx = 0;
   1258
   1259	return rv;
   1260}
   1261
   1262int
   1263csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
   1264		   void (*iq_handler)(struct csio_hw *, void *,
   1265				      uint32_t, struct csio_fl_dma_buf *,
   1266				      void *),
   1267		   void *priv)
   1268{
   1269	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
   1270	struct csio_q	*iq	= wrm->q_arr[qidx];
   1271
   1272	return csio_wr_process_iq(hw, iq, iq_handler, priv);
   1273}
   1274
   1275static int
   1276csio_closest_timer(struct csio_sge *s, int time)
   1277{
   1278	int i, delta, match = 0, min_delta = INT_MAX;
   1279
   1280	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
   1281		delta = time - s->timer_val[i];
   1282		if (delta < 0)
   1283			delta = -delta;
   1284		if (delta < min_delta) {
   1285			min_delta = delta;
   1286			match = i;
   1287		}
   1288	}
   1289	return match;
   1290}
   1291
   1292static int
   1293csio_closest_thresh(struct csio_sge *s, int cnt)
   1294{
   1295	int i, delta, match = 0, min_delta = INT_MAX;
   1296
   1297	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
   1298		delta = cnt - s->counter_val[i];
   1299		if (delta < 0)
   1300			delta = -delta;
   1301		if (delta < min_delta) {
   1302			min_delta = delta;
   1303			match = i;
   1304		}
   1305	}
   1306	return match;
   1307}
   1308
   1309static void
   1310csio_wr_fixup_host_params(struct csio_hw *hw)
   1311{
   1312	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1313	struct csio_sge *sge = &wrm->sge;
   1314	uint32_t clsz = L1_CACHE_BYTES;
   1315	uint32_t s_hps = PAGE_SHIFT - 10;
   1316	uint32_t stat_len = clsz > 64 ? 128 : 64;
   1317	u32 fl_align = clsz < 32 ? 32 : clsz;
   1318	u32 pack_align;
   1319	u32 ingpad, ingpack;
   1320
   1321	csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
   1322		      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
   1323		      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
   1324		      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
   1325		      SGE_HOST_PAGE_SIZE_A);
   1326
   1327	/* T5 introduced the separation of the Free List Padding and
   1328	 * Packing Boundaries.  Thus, we can select a smaller Padding
   1329	 * Boundary to avoid uselessly chewing up PCIe Link and Memory
   1330	 * Bandwidth, and use a Packing Boundary which is large enough
   1331	 * to avoid false sharing between CPUs, etc.
   1332	 *
   1333	 * For the PCI Link, the smaller the Padding Boundary the
   1334	 * better.  For the Memory Controller, a smaller Padding
   1335	 * Boundary is better until we cross under the Memory Line
   1336	 * Size (the minimum unit of transfer to/from Memory).  If we
   1337	 * have a Padding Boundary which is smaller than the Memory
   1338	 * Line Size, that'll involve a Read-Modify-Write cycle on the
   1339	 * Memory Controller which is never good.
   1340	 */
   1341
   1342	/* We want the Packing Boundary to be based on the Cache Line
   1343	 * Size in order to help avoid False Sharing performance
   1344	 * issues between CPUs, etc.  We also want the Packing
   1345	 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
   1346	 * get best performance when the Packing Boundary is a
   1347	 * multiple of the Maximum Payload Size.
   1348	 */
   1349	pack_align = fl_align;
   1350	if (pci_is_pcie(hw->pdev)) {
   1351		u32 mps, mps_log;
   1352		u16 devctl;
   1353
   1354		/* The PCIe Device Control Maximum Payload Size field
   1355		 * [bits 7:5] encodes sizes as powers of 2 starting at
   1356		 * 128 bytes.
   1357		 */
   1358		pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
   1359		mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
   1360		mps = 1 << mps_log;
   1361		if (mps > pack_align)
   1362			pack_align = mps;
   1363	}
   1364
   1365	/* T5/T6 have a special interpretation of the "0"
   1366	 * value for the Packing Boundary.  This corresponds to 16
   1367	 * bytes instead of the expected 32 bytes.
   1368	 */
   1369	if (pack_align <= 16) {
   1370		ingpack = INGPACKBOUNDARY_16B_X;
   1371		fl_align = 16;
   1372	} else if (pack_align == 32) {
   1373		ingpack = INGPACKBOUNDARY_64B_X;
   1374		fl_align = 64;
   1375	} else {
   1376		u32 pack_align_log = fls(pack_align) - 1;
   1377
   1378		ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
   1379		fl_align = pack_align;
   1380	}
   1381
   1382	/* Use the smallest Ingress Padding which isn't smaller than
   1383	 * the Memory Controller Read/Write Size.  We'll take that as
   1384	 * being 8 bytes since we don't know of any system with a
   1385	 * wider Memory Controller Bus Width.
   1386	 */
   1387	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
   1388		ingpad = INGPADBOUNDARY_32B_X;
   1389	else
   1390		ingpad = T6_INGPADBOUNDARY_8B_X;
   1391
   1392	csio_set_reg_field(hw, SGE_CONTROL_A,
   1393			   INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
   1394			   EGRSTATUSPAGESIZE_F,
   1395			   INGPADBOUNDARY_V(ingpad) |
   1396			   EGRSTATUSPAGESIZE_V(stat_len != 64));
   1397	csio_set_reg_field(hw, SGE_CONTROL2_A,
   1398			   INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
   1399			   INGPACKBOUNDARY_V(ingpack));
   1400
   1401	/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
   1402	csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
   1403
   1404	/*
   1405	 * If using hard params, the following will get set correctly
   1406	 * in csio_wr_set_sge().
   1407	 */
   1408	if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
   1409		csio_wr_reg32(hw,
   1410			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
   1411			fl_align - 1) & ~(fl_align - 1),
   1412			SGE_FL_BUFFER_SIZE2_A);
   1413		csio_wr_reg32(hw,
   1414			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
   1415			fl_align - 1) & ~(fl_align - 1),
   1416			SGE_FL_BUFFER_SIZE3_A);
   1417	}
   1418
   1419	sge->csio_fl_align = fl_align;
   1420
   1421	csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
   1422
   1423	/* default value of rx_dma_offset of the NIC driver */
   1424	csio_set_reg_field(hw, SGE_CONTROL_A,
   1425			   PKTSHIFT_V(PKTSHIFT_M),
   1426			   PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
   1427
   1428	csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
   1429				    CSUM_HAS_PSEUDO_HDR_F, 0);
   1430}
   1431
   1432static void
   1433csio_init_intr_coalesce_parms(struct csio_hw *hw)
   1434{
   1435	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1436	struct csio_sge *sge = &wrm->sge;
   1437
   1438	csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
   1439	if (csio_intr_coalesce_cnt) {
   1440		csio_sge_thresh_reg = 0;
   1441		csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
   1442		return;
   1443	}
   1444
   1445	csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
   1446}
   1447
   1448/*
   1449 * csio_wr_get_sge - Get SGE register values.
   1450 * @hw: HW module.
   1451 *
   1452 * Used by non-master functions and by master-functions relying on config file.
   1453 */
   1454static void
   1455csio_wr_get_sge(struct csio_hw *hw)
   1456{
   1457	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1458	struct csio_sge *sge = &wrm->sge;
   1459	uint32_t ingpad;
   1460	int i;
   1461	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
   1462	u32 ingress_rx_threshold;
   1463
   1464	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
   1465
   1466	ingpad = INGPADBOUNDARY_G(sge->sge_control);
   1467
   1468	switch (ingpad) {
   1469	case X_INGPCIEBOUNDARY_32B:
   1470		sge->csio_fl_align = 32; break;
   1471	case X_INGPCIEBOUNDARY_64B:
   1472		sge->csio_fl_align = 64; break;
   1473	case X_INGPCIEBOUNDARY_128B:
   1474		sge->csio_fl_align = 128; break;
   1475	case X_INGPCIEBOUNDARY_256B:
   1476		sge->csio_fl_align = 256; break;
   1477	case X_INGPCIEBOUNDARY_512B:
   1478		sge->csio_fl_align = 512; break;
   1479	case X_INGPCIEBOUNDARY_1024B:
   1480		sge->csio_fl_align = 1024; break;
   1481	case X_INGPCIEBOUNDARY_2048B:
   1482		sge->csio_fl_align = 2048; break;
   1483	case X_INGPCIEBOUNDARY_4096B:
   1484		sge->csio_fl_align = 4096; break;
   1485	}
   1486
   1487	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
   1488		csio_get_flbuf_size(hw, sge, i);
   1489
   1490	timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
   1491	timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
   1492	timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
   1493
   1494	sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
   1495					TIMERVALUE0_G(timer_value_0_and_1));
   1496	sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
   1497					TIMERVALUE1_G(timer_value_0_and_1));
   1498	sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
   1499					TIMERVALUE2_G(timer_value_2_and_3));
   1500	sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
   1501					TIMERVALUE3_G(timer_value_2_and_3));
   1502	sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
   1503					TIMERVALUE4_G(timer_value_4_and_5));
   1504	sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
   1505					TIMERVALUE5_G(timer_value_4_and_5));
   1506
   1507	ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
   1508	sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
   1509	sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
   1510	sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
   1511	sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
   1512
   1513	csio_init_intr_coalesce_parms(hw);
   1514}
   1515
   1516/*
   1517 * csio_wr_set_sge - Initialize SGE registers
   1518 * @hw: HW module.
   1519 *
   1520 * Used by Master function to initialize SGE registers in the absence
   1521 * of a config file.
   1522 */
   1523static void
   1524csio_wr_set_sge(struct csio_hw *hw)
   1525{
   1526	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
   1527	struct csio_sge *sge = &wrm->sge;
   1528	int i;
   1529
   1530	/*
   1531	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
   1532	 * Queue and Packet Date to the Free List.
   1533	 */
   1534	csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
   1535
   1536	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
   1537
   1538	/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
   1539
   1540	/*
   1541	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
   1542	 * and generate an interrupt when this occurs so we can recover.
   1543	 */
   1544	csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
   1545			   LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
   1546			   LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
   1547	csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
   1548			   HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
   1549			   HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
   1550
   1551	csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
   1552			   ENABLE_DROP_F);
   1553
   1554	/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
   1555
   1556	CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
   1557	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
   1558		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
   1559	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
   1560		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
   1561	CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
   1562	CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
   1563	CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
   1564	CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
   1565	CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
   1566
   1567	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
   1568		csio_get_flbuf_size(hw, sge, i);
   1569
   1570	/* Initialize interrupt coalescing attributes */
   1571	sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
   1572	sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
   1573	sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
   1574	sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
   1575	sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
   1576	sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
   1577
   1578	sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
   1579	sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
   1580	sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
   1581	sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
   1582
   1583	csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
   1584		      THRESHOLD_1_V(sge->counter_val[1]) |
   1585		      THRESHOLD_2_V(sge->counter_val[2]) |
   1586		      THRESHOLD_3_V(sge->counter_val[3]),
   1587		      SGE_INGRESS_RX_THRESHOLD_A);
   1588
   1589	csio_wr_reg32(hw,
   1590		   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
   1591		   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
   1592		   SGE_TIMER_VALUE_0_AND_1_A);
   1593
   1594	csio_wr_reg32(hw,
   1595		   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
   1596		   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
   1597		   SGE_TIMER_VALUE_2_AND_3_A);
   1598
   1599	csio_wr_reg32(hw,
   1600		   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
   1601		   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
   1602		   SGE_TIMER_VALUE_4_AND_5_A);
   1603
   1604	csio_init_intr_coalesce_parms(hw);
   1605}
   1606
   1607void
   1608csio_wr_sge_init(struct csio_hw *hw)
   1609{
   1610	/*
   1611	 * If we are master and chip is not initialized:
   1612	 *    - If we plan to use the config file, we need to fixup some
   1613	 *      host specific registers, and read the rest of the SGE
   1614	 *      configuration.
   1615	 *    - If we dont plan to use the config file, we need to initialize
   1616	 *      SGE entirely, including fixing the host specific registers.
   1617	 * If we are master and chip is initialized, just read and work off of
   1618	 *	the already initialized SGE values.
   1619	 * If we arent the master, we are only allowed to read and work off of
   1620	 *      the already initialized SGE values.
   1621	 *
   1622	 * Therefore, before calling this function, we assume that the master-
   1623	 * ship of the card, state and whether to use config file or not, have
   1624	 * already been decided.
   1625	 */
   1626	if (csio_is_hw_master(hw)) {
   1627		if (hw->fw_state != CSIO_DEV_STATE_INIT)
   1628			csio_wr_fixup_host_params(hw);
   1629
   1630		if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
   1631			csio_wr_get_sge(hw);
   1632		else
   1633			csio_wr_set_sge(hw);
   1634	} else
   1635		csio_wr_get_sge(hw);
   1636}
   1637
   1638/*
   1639 * csio_wrm_init - Initialize Work request module.
   1640 * @wrm: WR module
   1641 * @hw: HW pointer
   1642 *
   1643 * Allocates memory for an array of queue pointers starting at q_arr.
   1644 */
   1645int
   1646csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
   1647{
   1648	int i;
   1649
   1650	if (!wrm->num_q) {
   1651		csio_err(hw, "Num queues is not set\n");
   1652		return -EINVAL;
   1653	}
   1654
   1655	wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
   1656	if (!wrm->q_arr)
   1657		goto err;
   1658
   1659	for (i = 0; i < wrm->num_q; i++) {
   1660		wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
   1661		if (!wrm->q_arr[i]) {
   1662			while (--i >= 0)
   1663				kfree(wrm->q_arr[i]);
   1664			goto err_free_arr;
   1665		}
   1666	}
   1667	wrm->free_qidx	= 0;
   1668
   1669	return 0;
   1670
   1671err_free_arr:
   1672	kfree(wrm->q_arr);
   1673err:
   1674	return -ENOMEM;
   1675}
   1676
   1677/*
   1678 * csio_wrm_exit - Initialize Work request module.
   1679 * @wrm: WR module
   1680 * @hw: HW module
   1681 *
   1682 * Uninitialize WR module. Free q_arr and pointers in it.
   1683 * We have the additional job of freeing the DMA memory associated
   1684 * with the queues.
   1685 */
   1686void
   1687csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
   1688{
   1689	int i;
   1690	uint32_t j;
   1691	struct csio_q *q;
   1692	struct csio_dma_buf *buf;
   1693
   1694	for (i = 0; i < wrm->num_q; i++) {
   1695		q = wrm->q_arr[i];
   1696
   1697		if (wrm->free_qidx && (i < wrm->free_qidx)) {
   1698			if (q->type == CSIO_FREELIST) {
   1699				if (!q->un.fl.bufs)
   1700					continue;
   1701				for (j = 0; j < q->credits; j++) {
   1702					buf = &q->un.fl.bufs[j];
   1703					if (!buf->vaddr)
   1704						continue;
   1705					dma_free_coherent(&hw->pdev->dev,
   1706							buf->len, buf->vaddr,
   1707							buf->paddr);
   1708				}
   1709				kfree(q->un.fl.bufs);
   1710			}
   1711			dma_free_coherent(&hw->pdev->dev, q->size,
   1712					q->vstart, q->pstart);
   1713		}
   1714		kfree(q);
   1715	}
   1716
   1717	hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
   1718
   1719	kfree(wrm->q_arr);
   1720}