cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

main.c (108403B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * CXL Flash Device Driver
      4 *
      5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
      6 *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
      7 *
      8 * Copyright (C) 2015 IBM Corporation
      9 */
     10
     11#include <linux/delay.h>
     12#include <linux/list.h>
     13#include <linux/module.h>
     14#include <linux/pci.h>
     15
     16#include <asm/unaligned.h>
     17
     18#include <scsi/scsi_cmnd.h>
     19#include <scsi/scsi_host.h>
     20#include <uapi/scsi/cxlflash_ioctl.h>
     21
     22#include "main.h"
     23#include "sislite.h"
     24#include "common.h"
     25
     26MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
     27MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
     28MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
     29MODULE_LICENSE("GPL");
     30
     31static struct class *cxlflash_class;
     32static u32 cxlflash_major;
     33static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
     34
     35/**
     36 * process_cmd_err() - command error handler
     37 * @cmd:	AFU command that experienced the error.
     38 * @scp:	SCSI command associated with the AFU command in error.
     39 *
     40 * Translates error bits from AFU command to SCSI command results.
     41 */
     42static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
     43{
     44	struct afu *afu = cmd->parent;
     45	struct cxlflash_cfg *cfg = afu->parent;
     46	struct device *dev = &cfg->dev->dev;
     47	struct sisl_ioasa *ioasa;
     48	u32 resid;
     49
     50	ioasa = &(cmd->sa);
     51
     52	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
     53		resid = ioasa->resid;
     54		scsi_set_resid(scp, resid);
     55		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
     56			__func__, cmd, scp, resid);
     57	}
     58
     59	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
     60		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
     61			__func__, cmd, scp);
     62		scp->result = (DID_ERROR << 16);
     63	}
     64
     65	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
     66		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
     67		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
     68		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
     69
     70	if (ioasa->rc.scsi_rc) {
     71		/* We have a SCSI status */
     72		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
     73			memcpy(scp->sense_buffer, ioasa->sense_data,
     74			       SISL_SENSE_DATA_LEN);
     75			scp->result = ioasa->rc.scsi_rc;
     76		} else
     77			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
     78	}
     79
     80	/*
     81	 * We encountered an error. Set scp->result based on nature
     82	 * of error.
     83	 */
     84	if (ioasa->rc.fc_rc) {
     85		/* We have an FC status */
     86		switch (ioasa->rc.fc_rc) {
     87		case SISL_FC_RC_LINKDOWN:
     88			scp->result = (DID_REQUEUE << 16);
     89			break;
     90		case SISL_FC_RC_RESID:
     91			/* This indicates an FCP resid underrun */
     92			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
     93				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
     94				 * then we will handle this error else where.
     95				 * If not then we must handle it here.
     96				 * This is probably an AFU bug.
     97				 */
     98				scp->result = (DID_ERROR << 16);
     99			}
    100			break;
    101		case SISL_FC_RC_RESIDERR:
    102			/* Resid mismatch between adapter and device */
    103		case SISL_FC_RC_TGTABORT:
    104		case SISL_FC_RC_ABORTOK:
    105		case SISL_FC_RC_ABORTFAIL:
    106		case SISL_FC_RC_NOLOGI:
    107		case SISL_FC_RC_ABORTPEND:
    108		case SISL_FC_RC_WRABORTPEND:
    109		case SISL_FC_RC_NOEXP:
    110		case SISL_FC_RC_INUSE:
    111			scp->result = (DID_ERROR << 16);
    112			break;
    113		}
    114	}
    115
    116	if (ioasa->rc.afu_rc) {
    117		/* We have an AFU error */
    118		switch (ioasa->rc.afu_rc) {
    119		case SISL_AFU_RC_NO_CHANNELS:
    120			scp->result = (DID_NO_CONNECT << 16);
    121			break;
    122		case SISL_AFU_RC_DATA_DMA_ERR:
    123			switch (ioasa->afu_extra) {
    124			case SISL_AFU_DMA_ERR_PAGE_IN:
    125				/* Retry */
    126				scp->result = (DID_IMM_RETRY << 16);
    127				break;
    128			case SISL_AFU_DMA_ERR_INVALID_EA:
    129			default:
    130				scp->result = (DID_ERROR << 16);
    131			}
    132			break;
    133		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
    134			/* Retry */
    135			scp->result = (DID_ALLOC_FAILURE << 16);
    136			break;
    137		default:
    138			scp->result = (DID_ERROR << 16);
    139		}
    140	}
    141}
    142
    143/**
    144 * cmd_complete() - command completion handler
    145 * @cmd:	AFU command that has completed.
    146 *
    147 * For SCSI commands this routine prepares and submits commands that have
    148 * either completed or timed out to the SCSI stack. For internal commands
    149 * (TMF or AFU), this routine simply notifies the originator that the
    150 * command has completed.
    151 */
    152static void cmd_complete(struct afu_cmd *cmd)
    153{
    154	struct scsi_cmnd *scp;
    155	ulong lock_flags;
    156	struct afu *afu = cmd->parent;
    157	struct cxlflash_cfg *cfg = afu->parent;
    158	struct device *dev = &cfg->dev->dev;
    159	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
    160
    161	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    162	list_del(&cmd->list);
    163	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    164
    165	if (cmd->scp) {
    166		scp = cmd->scp;
    167		if (unlikely(cmd->sa.ioasc))
    168			process_cmd_err(cmd, scp);
    169		else
    170			scp->result = (DID_OK << 16);
    171
    172		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
    173				    __func__, scp, scp->result, cmd->sa.ioasc);
    174		scsi_done(scp);
    175	} else if (cmd->cmd_tmf) {
    176		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    177		cfg->tmf_active = false;
    178		wake_up_all_locked(&cfg->tmf_waitq);
    179		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    180	} else
    181		complete(&cmd->cevent);
    182}
    183
    184/**
    185 * flush_pending_cmds() - flush all pending commands on this hardware queue
    186 * @hwq:	Hardware queue to flush.
    187 *
    188 * The hardware send queue lock associated with this hardware queue must be
    189 * held when calling this routine.
    190 */
    191static void flush_pending_cmds(struct hwq *hwq)
    192{
    193	struct cxlflash_cfg *cfg = hwq->afu->parent;
    194	struct afu_cmd *cmd, *tmp;
    195	struct scsi_cmnd *scp;
    196	ulong lock_flags;
    197
    198	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
    199		/* Bypass command when on a doneq, cmd_complete() will handle */
    200		if (!list_empty(&cmd->queue))
    201			continue;
    202
    203		list_del(&cmd->list);
    204
    205		if (cmd->scp) {
    206			scp = cmd->scp;
    207			scp->result = (DID_IMM_RETRY << 16);
    208			scsi_done(scp);
    209		} else {
    210			cmd->cmd_aborted = true;
    211
    212			if (cmd->cmd_tmf) {
    213				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    214				cfg->tmf_active = false;
    215				wake_up_all_locked(&cfg->tmf_waitq);
    216				spin_unlock_irqrestore(&cfg->tmf_slock,
    217						       lock_flags);
    218			} else
    219				complete(&cmd->cevent);
    220		}
    221	}
    222}
    223
    224/**
    225 * context_reset() - reset context via specified register
    226 * @hwq:	Hardware queue owning the context to be reset.
    227 * @reset_reg:	MMIO register to perform reset.
    228 *
    229 * When the reset is successful, the SISLite specification guarantees that
    230 * the AFU has aborted all currently pending I/O. Accordingly, these commands
    231 * must be flushed.
    232 *
    233 * Return: 0 on success, -errno on failure
    234 */
    235static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
    236{
    237	struct cxlflash_cfg *cfg = hwq->afu->parent;
    238	struct device *dev = &cfg->dev->dev;
    239	int rc = -ETIMEDOUT;
    240	int nretry = 0;
    241	u64 val = 0x1;
    242	ulong lock_flags;
    243
    244	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
    245
    246	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    247
    248	writeq_be(val, reset_reg);
    249	do {
    250		val = readq_be(reset_reg);
    251		if ((val & 0x1) == 0x0) {
    252			rc = 0;
    253			break;
    254		}
    255
    256		/* Double delay each time */
    257		udelay(1 << nretry);
    258	} while (nretry++ < MC_ROOM_RETRY_CNT);
    259
    260	if (!rc)
    261		flush_pending_cmds(hwq);
    262
    263	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    264
    265	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
    266		__func__, rc, val, nretry);
    267	return rc;
    268}
    269
    270/**
    271 * context_reset_ioarrin() - reset context via IOARRIN register
    272 * @hwq:	Hardware queue owning the context to be reset.
    273 *
    274 * Return: 0 on success, -errno on failure
    275 */
    276static int context_reset_ioarrin(struct hwq *hwq)
    277{
    278	return context_reset(hwq, &hwq->host_map->ioarrin);
    279}
    280
    281/**
    282 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
    283 * @hwq:	Hardware queue owning the context to be reset.
    284 *
    285 * Return: 0 on success, -errno on failure
    286 */
    287static int context_reset_sq(struct hwq *hwq)
    288{
    289	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
    290}
    291
    292/**
    293 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
    294 * @afu:	AFU associated with the host.
    295 * @cmd:	AFU command to send.
    296 *
    297 * Return:
    298 *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
    299 */
    300static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
    301{
    302	struct cxlflash_cfg *cfg = afu->parent;
    303	struct device *dev = &cfg->dev->dev;
    304	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
    305	int rc = 0;
    306	s64 room;
    307	ulong lock_flags;
    308
    309	/*
    310	 * To avoid the performance penalty of MMIO, spread the update of
    311	 * 'room' over multiple commands.
    312	 */
    313	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    314	if (--hwq->room < 0) {
    315		room = readq_be(&hwq->host_map->cmd_room);
    316		if (room <= 0) {
    317			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
    318					    "0x%02X, room=0x%016llX\n",
    319					    __func__, cmd->rcb.cdb[0], room);
    320			hwq->room = 0;
    321			rc = SCSI_MLQUEUE_HOST_BUSY;
    322			goto out;
    323		}
    324		hwq->room = room - 1;
    325	}
    326
    327	list_add(&cmd->list, &hwq->pending_cmds);
    328	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
    329out:
    330	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    331	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
    332		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
    333	return rc;
    334}
    335
    336/**
    337 * send_cmd_sq() - sends an AFU command via SQ ring
    338 * @afu:	AFU associated with the host.
    339 * @cmd:	AFU command to send.
    340 *
    341 * Return:
    342 *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
    343 */
    344static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
    345{
    346	struct cxlflash_cfg *cfg = afu->parent;
    347	struct device *dev = &cfg->dev->dev;
    348	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
    349	int rc = 0;
    350	int newval;
    351	ulong lock_flags;
    352
    353	newval = atomic_dec_if_positive(&hwq->hsq_credits);
    354	if (newval <= 0) {
    355		rc = SCSI_MLQUEUE_HOST_BUSY;
    356		goto out;
    357	}
    358
    359	cmd->rcb.ioasa = &cmd->sa;
    360
    361	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    362
    363	*hwq->hsq_curr = cmd->rcb;
    364	if (hwq->hsq_curr < hwq->hsq_end)
    365		hwq->hsq_curr++;
    366	else
    367		hwq->hsq_curr = hwq->hsq_start;
    368
    369	list_add(&cmd->list, &hwq->pending_cmds);
    370	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
    371
    372	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    373out:
    374	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
    375	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
    376	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
    377	       readq_be(&hwq->host_map->sq_head),
    378	       readq_be(&hwq->host_map->sq_tail));
    379	return rc;
    380}
    381
    382/**
    383 * wait_resp() - polls for a response or timeout to a sent AFU command
    384 * @afu:	AFU associated with the host.
    385 * @cmd:	AFU command that was sent.
    386 *
    387 * Return: 0 on success, -errno on failure
    388 */
    389static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
    390{
    391	struct cxlflash_cfg *cfg = afu->parent;
    392	struct device *dev = &cfg->dev->dev;
    393	int rc = 0;
    394	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
    395
    396	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
    397	if (!timeout)
    398		rc = -ETIMEDOUT;
    399
    400	if (cmd->cmd_aborted)
    401		rc = -EAGAIN;
    402
    403	if (unlikely(cmd->sa.ioasc != 0)) {
    404		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
    405			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
    406		rc = -EIO;
    407	}
    408
    409	return rc;
    410}
    411
    412/**
    413 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
    414 * @host:	SCSI host associated with device.
    415 * @scp:	SCSI command to send.
    416 * @afu:	SCSI command to send.
    417 *
    418 * Hashes a command based upon the hardware queue mode.
    419 *
    420 * Return: Trusted index of target hardware queue
    421 */
    422static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
    423			     struct afu *afu)
    424{
    425	u32 tag;
    426	u32 hwq = 0;
    427
    428	if (afu->num_hwqs == 1)
    429		return 0;
    430
    431	switch (afu->hwq_mode) {
    432	case HWQ_MODE_RR:
    433		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
    434		break;
    435	case HWQ_MODE_TAG:
    436		tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp));
    437		hwq = blk_mq_unique_tag_to_hwq(tag);
    438		break;
    439	case HWQ_MODE_CPU:
    440		hwq = smp_processor_id() % afu->num_hwqs;
    441		break;
    442	default:
    443		WARN_ON_ONCE(1);
    444	}
    445
    446	return hwq;
    447}
    448
    449/**
    450 * send_tmf() - sends a Task Management Function (TMF)
    451 * @cfg:	Internal structure associated with the host.
    452 * @sdev:	SCSI device destined for TMF.
    453 * @tmfcmd:	TMF command to send.
    454 *
    455 * Return:
    456 *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
    457 */
    458static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
    459		    u64 tmfcmd)
    460{
    461	struct afu *afu = cfg->afu;
    462	struct afu_cmd *cmd = NULL;
    463	struct device *dev = &cfg->dev->dev;
    464	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
    465	bool needs_deletion = false;
    466	char *buf = NULL;
    467	ulong lock_flags;
    468	int rc = 0;
    469	ulong to;
    470
    471	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
    472	if (unlikely(!buf)) {
    473		dev_err(dev, "%s: no memory for command\n", __func__);
    474		rc = -ENOMEM;
    475		goto out;
    476	}
    477
    478	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
    479	INIT_LIST_HEAD(&cmd->queue);
    480
    481	/* When Task Management Function is active do not send another */
    482	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    483	if (cfg->tmf_active)
    484		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
    485						  !cfg->tmf_active,
    486						  cfg->tmf_slock);
    487	cfg->tmf_active = true;
    488	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    489
    490	cmd->parent = afu;
    491	cmd->cmd_tmf = true;
    492	cmd->hwq_index = hwq->index;
    493
    494	cmd->rcb.ctx_id = hwq->ctx_hndl;
    495	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
    496	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
    497	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
    498	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
    499			      SISL_REQ_FLAGS_SUP_UNDERRUN |
    500			      SISL_REQ_FLAGS_TMF_CMD);
    501	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
    502
    503	rc = afu->send_cmd(afu, cmd);
    504	if (unlikely(rc)) {
    505		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    506		cfg->tmf_active = false;
    507		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    508		goto out;
    509	}
    510
    511	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    512	to = msecs_to_jiffies(5000);
    513	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
    514						       !cfg->tmf_active,
    515						       cfg->tmf_slock,
    516						       to);
    517	if (!to) {
    518		dev_err(dev, "%s: TMF timed out\n", __func__);
    519		rc = -ETIMEDOUT;
    520		needs_deletion = true;
    521	} else if (cmd->cmd_aborted) {
    522		dev_err(dev, "%s: TMF aborted\n", __func__);
    523		rc = -EAGAIN;
    524	} else if (cmd->sa.ioasc) {
    525		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
    526			__func__, cmd->sa.ioasc);
    527		rc = -EIO;
    528	}
    529	cfg->tmf_active = false;
    530	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    531
    532	if (needs_deletion) {
    533		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    534		list_del(&cmd->list);
    535		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    536	}
    537out:
    538	kfree(buf);
    539	return rc;
    540}
    541
    542/**
    543 * cxlflash_driver_info() - information handler for this host driver
    544 * @host:	SCSI host associated with device.
    545 *
    546 * Return: A string describing the device.
    547 */
    548static const char *cxlflash_driver_info(struct Scsi_Host *host)
    549{
    550	return CXLFLASH_ADAPTER_NAME;
    551}
    552
    553/**
    554 * cxlflash_queuecommand() - sends a mid-layer request
    555 * @host:	SCSI host associated with device.
    556 * @scp:	SCSI command to send.
    557 *
    558 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
    559 */
    560static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
    561{
    562	struct cxlflash_cfg *cfg = shost_priv(host);
    563	struct afu *afu = cfg->afu;
    564	struct device *dev = &cfg->dev->dev;
    565	struct afu_cmd *cmd = sc_to_afuci(scp);
    566	struct scatterlist *sg = scsi_sglist(scp);
    567	int hwq_index = cmd_to_target_hwq(host, scp, afu);
    568	struct hwq *hwq = get_hwq(afu, hwq_index);
    569	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
    570	ulong lock_flags;
    571	int rc = 0;
    572
    573	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
    574			    "cdb=(%08x-%08x-%08x-%08x)\n",
    575			    __func__, scp, host->host_no, scp->device->channel,
    576			    scp->device->id, scp->device->lun,
    577			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
    578			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
    579			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
    580			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
    581
    582	/*
    583	 * If a Task Management Function is active, wait for it to complete
    584	 * before continuing with regular commands.
    585	 */
    586	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    587	if (cfg->tmf_active) {
    588		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    589		rc = SCSI_MLQUEUE_HOST_BUSY;
    590		goto out;
    591	}
    592	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    593
    594	switch (cfg->state) {
    595	case STATE_PROBING:
    596	case STATE_PROBED:
    597	case STATE_RESET:
    598		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
    599		rc = SCSI_MLQUEUE_HOST_BUSY;
    600		goto out;
    601	case STATE_FAILTERM:
    602		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
    603		scp->result = (DID_NO_CONNECT << 16);
    604		scsi_done(scp);
    605		rc = 0;
    606		goto out;
    607	default:
    608		atomic_inc(&afu->cmds_active);
    609		break;
    610	}
    611
    612	if (likely(sg)) {
    613		cmd->rcb.data_len = sg->length;
    614		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
    615	}
    616
    617	cmd->scp = scp;
    618	cmd->parent = afu;
    619	cmd->hwq_index = hwq_index;
    620
    621	cmd->sa.ioasc = 0;
    622	cmd->rcb.ctx_id = hwq->ctx_hndl;
    623	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
    624	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
    625	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
    626
    627	if (scp->sc_data_direction == DMA_TO_DEVICE)
    628		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
    629
    630	cmd->rcb.req_flags = req_flags;
    631	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
    632
    633	rc = afu->send_cmd(afu, cmd);
    634	atomic_dec(&afu->cmds_active);
    635out:
    636	return rc;
    637}
    638
    639/**
    640 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
    641 * @cfg:	Internal structure associated with the host.
    642 */
    643static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
    644{
    645	struct pci_dev *pdev = cfg->dev;
    646
    647	if (pci_channel_offline(pdev))
    648		wait_event_timeout(cfg->reset_waitq,
    649				   !pci_channel_offline(pdev),
    650				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
    651}
    652
    653/**
    654 * free_mem() - free memory associated with the AFU
    655 * @cfg:	Internal structure associated with the host.
    656 */
    657static void free_mem(struct cxlflash_cfg *cfg)
    658{
    659	struct afu *afu = cfg->afu;
    660
    661	if (cfg->afu) {
    662		free_pages((ulong)afu, get_order(sizeof(struct afu)));
    663		cfg->afu = NULL;
    664	}
    665}
    666
    667/**
    668 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
    669 * @cfg:	Internal structure associated with the host.
    670 */
    671static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
    672{
    673	if (cfg->async_reset_cookie == 0)
    674		return;
    675
    676	/* Wait until all async calls prior to this cookie have completed */
    677	async_synchronize_cookie(cfg->async_reset_cookie + 1);
    678	cfg->async_reset_cookie = 0;
    679}
    680
    681/**
    682 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
    683 * @cfg:	Internal structure associated with the host.
    684 *
    685 * Safe to call with AFU in a partially allocated/initialized state.
    686 *
    687 * Cancels scheduled worker threads, waits for any active internal AFU
    688 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
    689 */
    690static void stop_afu(struct cxlflash_cfg *cfg)
    691{
    692	struct afu *afu = cfg->afu;
    693	struct hwq *hwq;
    694	int i;
    695
    696	cancel_work_sync(&cfg->work_q);
    697	if (!current_is_async())
    698		cxlflash_reset_sync(cfg);
    699
    700	if (likely(afu)) {
    701		while (atomic_read(&afu->cmds_active))
    702			ssleep(1);
    703
    704		if (afu_is_irqpoll_enabled(afu)) {
    705			for (i = 0; i < afu->num_hwqs; i++) {
    706				hwq = get_hwq(afu, i);
    707
    708				irq_poll_disable(&hwq->irqpoll);
    709			}
    710		}
    711
    712		if (likely(afu->afu_map)) {
    713			cfg->ops->psa_unmap(afu->afu_map);
    714			afu->afu_map = NULL;
    715		}
    716	}
    717}
    718
    719/**
    720 * term_intr() - disables all AFU interrupts
    721 * @cfg:	Internal structure associated with the host.
    722 * @level:	Depth of allocation, where to begin waterfall tear down.
    723 * @index:	Index of the hardware queue.
    724 *
    725 * Safe to call with AFU/MC in partially allocated/initialized state.
    726 */
    727static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
    728		      u32 index)
    729{
    730	struct afu *afu = cfg->afu;
    731	struct device *dev = &cfg->dev->dev;
    732	struct hwq *hwq;
    733
    734	if (!afu) {
    735		dev_err(dev, "%s: returning with NULL afu\n", __func__);
    736		return;
    737	}
    738
    739	hwq = get_hwq(afu, index);
    740
    741	if (!hwq->ctx_cookie) {
    742		dev_err(dev, "%s: returning with NULL MC\n", __func__);
    743		return;
    744	}
    745
    746	switch (level) {
    747	case UNMAP_THREE:
    748		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
    749		if (index == PRIMARY_HWQ)
    750			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
    751		fallthrough;
    752	case UNMAP_TWO:
    753		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
    754		fallthrough;
    755	case UNMAP_ONE:
    756		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
    757		fallthrough;
    758	case FREE_IRQ:
    759		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
    760		fallthrough;
    761	case UNDO_NOOP:
    762		/* No action required */
    763		break;
    764	}
    765}
    766
    767/**
    768 * term_mc() - terminates the master context
    769 * @cfg:	Internal structure associated with the host.
    770 * @index:	Index of the hardware queue.
    771 *
    772 * Safe to call with AFU/MC in partially allocated/initialized state.
    773 */
    774static void term_mc(struct cxlflash_cfg *cfg, u32 index)
    775{
    776	struct afu *afu = cfg->afu;
    777	struct device *dev = &cfg->dev->dev;
    778	struct hwq *hwq;
    779	ulong lock_flags;
    780
    781	if (!afu) {
    782		dev_err(dev, "%s: returning with NULL afu\n", __func__);
    783		return;
    784	}
    785
    786	hwq = get_hwq(afu, index);
    787
    788	if (!hwq->ctx_cookie) {
    789		dev_err(dev, "%s: returning with NULL MC\n", __func__);
    790		return;
    791	}
    792
    793	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
    794	if (index != PRIMARY_HWQ)
    795		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
    796	hwq->ctx_cookie = NULL;
    797
    798	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
    799	hwq->hrrq_online = false;
    800	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
    801
    802	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
    803	flush_pending_cmds(hwq);
    804	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
    805}
    806
    807/**
    808 * term_afu() - terminates the AFU
    809 * @cfg:	Internal structure associated with the host.
    810 *
    811 * Safe to call with AFU/MC in partially allocated/initialized state.
    812 */
    813static void term_afu(struct cxlflash_cfg *cfg)
    814{
    815	struct device *dev = &cfg->dev->dev;
    816	int k;
    817
    818	/*
    819	 * Tear down is carefully orchestrated to ensure
    820	 * no interrupts can come in when the problem state
    821	 * area is unmapped.
    822	 *
    823	 * 1) Disable all AFU interrupts for each master
    824	 * 2) Unmap the problem state area
    825	 * 3) Stop each master context
    826	 */
    827	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
    828		term_intr(cfg, UNMAP_THREE, k);
    829
    830	stop_afu(cfg);
    831
    832	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
    833		term_mc(cfg, k);
    834
    835	dev_dbg(dev, "%s: returning\n", __func__);
    836}
    837
    838/**
    839 * notify_shutdown() - notifies device of pending shutdown
    840 * @cfg:	Internal structure associated with the host.
    841 * @wait:	Whether to wait for shutdown processing to complete.
    842 *
    843 * This function will notify the AFU that the adapter is being shutdown
    844 * and will wait for shutdown processing to complete if wait is true.
    845 * This notification should flush pending I/Os to the device and halt
    846 * further I/Os until the next AFU reset is issued and device restarted.
    847 */
    848static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
    849{
    850	struct afu *afu = cfg->afu;
    851	struct device *dev = &cfg->dev->dev;
    852	struct dev_dependent_vals *ddv;
    853	__be64 __iomem *fc_port_regs;
    854	u64 reg, status;
    855	int i, retry_cnt = 0;
    856
    857	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
    858	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
    859		return;
    860
    861	if (!afu || !afu->afu_map) {
    862		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
    863		return;
    864	}
    865
    866	/* Notify AFU */
    867	for (i = 0; i < cfg->num_fc_ports; i++) {
    868		fc_port_regs = get_fc_port_regs(cfg, i);
    869
    870		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
    871		reg |= SISL_FC_SHUTDOWN_NORMAL;
    872		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
    873	}
    874
    875	if (!wait)
    876		return;
    877
    878	/* Wait up to 1.5 seconds for shutdown processing to complete */
    879	for (i = 0; i < cfg->num_fc_ports; i++) {
    880		fc_port_regs = get_fc_port_regs(cfg, i);
    881		retry_cnt = 0;
    882
    883		while (true) {
    884			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
    885			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
    886				break;
    887			if (++retry_cnt >= MC_RETRY_CNT) {
    888				dev_dbg(dev, "%s: port %d shutdown processing "
    889					"not yet completed\n", __func__, i);
    890				break;
    891			}
    892			msleep(100 * retry_cnt);
    893		}
    894	}
    895}
    896
    897/**
    898 * cxlflash_get_minor() - gets the first available minor number
    899 *
    900 * Return: Unique minor number that can be used to create the character device.
    901 */
    902static int cxlflash_get_minor(void)
    903{
    904	int minor;
    905	long bit;
    906
    907	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
    908	if (bit >= CXLFLASH_MAX_ADAPTERS)
    909		return -1;
    910
    911	minor = bit & MINORMASK;
    912	set_bit(minor, cxlflash_minor);
    913	return minor;
    914}
    915
    916/**
    917 * cxlflash_put_minor() - releases the minor number
    918 * @minor:	Minor number that is no longer needed.
    919 */
    920static void cxlflash_put_minor(int minor)
    921{
    922	clear_bit(minor, cxlflash_minor);
    923}
    924
    925/**
    926 * cxlflash_release_chrdev() - release the character device for the host
    927 * @cfg:	Internal structure associated with the host.
    928 */
    929static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
    930{
    931	device_unregister(cfg->chardev);
    932	cfg->chardev = NULL;
    933	cdev_del(&cfg->cdev);
    934	cxlflash_put_minor(MINOR(cfg->cdev.dev));
    935}
    936
    937/**
    938 * cxlflash_remove() - PCI entry point to tear down host
    939 * @pdev:	PCI device associated with the host.
    940 *
    941 * Safe to use as a cleanup in partially allocated/initialized state. Note that
    942 * the reset_waitq is flushed as part of the stop/termination of user contexts.
    943 */
    944static void cxlflash_remove(struct pci_dev *pdev)
    945{
    946	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
    947	struct device *dev = &pdev->dev;
    948	ulong lock_flags;
    949
    950	if (!pci_is_enabled(pdev)) {
    951		dev_dbg(dev, "%s: Device is disabled\n", __func__);
    952		return;
    953	}
    954
    955	/* Yield to running recovery threads before continuing with remove */
    956	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
    957				     cfg->state != STATE_PROBING);
    958	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
    959	if (cfg->tmf_active)
    960		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
    961						  !cfg->tmf_active,
    962						  cfg->tmf_slock);
    963	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
    964
    965	/* Notify AFU and wait for shutdown processing to complete */
    966	notify_shutdown(cfg, true);
    967
    968	cfg->state = STATE_FAILTERM;
    969	cxlflash_stop_term_user_contexts(cfg);
    970
    971	switch (cfg->init_state) {
    972	case INIT_STATE_CDEV:
    973		cxlflash_release_chrdev(cfg);
    974		fallthrough;
    975	case INIT_STATE_SCSI:
    976		cxlflash_term_local_luns(cfg);
    977		scsi_remove_host(cfg->host);
    978		fallthrough;
    979	case INIT_STATE_AFU:
    980		term_afu(cfg);
    981		fallthrough;
    982	case INIT_STATE_PCI:
    983		cfg->ops->destroy_afu(cfg->afu_cookie);
    984		pci_disable_device(pdev);
    985		fallthrough;
    986	case INIT_STATE_NONE:
    987		free_mem(cfg);
    988		scsi_host_put(cfg->host);
    989		break;
    990	}
    991
    992	dev_dbg(dev, "%s: returning\n", __func__);
    993}
    994
    995/**
    996 * alloc_mem() - allocates the AFU and its command pool
    997 * @cfg:	Internal structure associated with the host.
    998 *
    999 * A partially allocated state remains on failure.
   1000 *
   1001 * Return:
   1002 *	0 on success
   1003 *	-ENOMEM on failure to allocate memory
   1004 */
   1005static int alloc_mem(struct cxlflash_cfg *cfg)
   1006{
   1007	int rc = 0;
   1008	struct device *dev = &cfg->dev->dev;
   1009
   1010	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
   1011	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
   1012					    get_order(sizeof(struct afu)));
   1013	if (unlikely(!cfg->afu)) {
   1014		dev_err(dev, "%s: cannot get %d free pages\n",
   1015			__func__, get_order(sizeof(struct afu)));
   1016		rc = -ENOMEM;
   1017		goto out;
   1018	}
   1019	cfg->afu->parent = cfg;
   1020	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
   1021	cfg->afu->afu_map = NULL;
   1022out:
   1023	return rc;
   1024}
   1025
   1026/**
   1027 * init_pci() - initializes the host as a PCI device
   1028 * @cfg:	Internal structure associated with the host.
   1029 *
   1030 * Return: 0 on success, -errno on failure
   1031 */
   1032static int init_pci(struct cxlflash_cfg *cfg)
   1033{
   1034	struct pci_dev *pdev = cfg->dev;
   1035	struct device *dev = &cfg->dev->dev;
   1036	int rc = 0;
   1037
   1038	rc = pci_enable_device(pdev);
   1039	if (rc || pci_channel_offline(pdev)) {
   1040		if (pci_channel_offline(pdev)) {
   1041			cxlflash_wait_for_pci_err_recovery(cfg);
   1042			rc = pci_enable_device(pdev);
   1043		}
   1044
   1045		if (rc) {
   1046			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
   1047			cxlflash_wait_for_pci_err_recovery(cfg);
   1048			goto out;
   1049		}
   1050	}
   1051
   1052out:
   1053	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1054	return rc;
   1055}
   1056
   1057/**
   1058 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
   1059 * @cfg:	Internal structure associated with the host.
   1060 *
   1061 * Return: 0 on success, -errno on failure
   1062 */
   1063static int init_scsi(struct cxlflash_cfg *cfg)
   1064{
   1065	struct pci_dev *pdev = cfg->dev;
   1066	struct device *dev = &cfg->dev->dev;
   1067	int rc = 0;
   1068
   1069	rc = scsi_add_host(cfg->host, &pdev->dev);
   1070	if (rc) {
   1071		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
   1072		goto out;
   1073	}
   1074
   1075	scsi_scan_host(cfg->host);
   1076
   1077out:
   1078	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1079	return rc;
   1080}
   1081
   1082/**
   1083 * set_port_online() - transitions the specified host FC port to online state
   1084 * @fc_regs:	Top of MMIO region defined for specified port.
   1085 *
   1086 * The provided MMIO region must be mapped prior to call. Online state means
   1087 * that the FC link layer has synced, completed the handshaking process, and
   1088 * is ready for login to start.
   1089 */
   1090static void set_port_online(__be64 __iomem *fc_regs)
   1091{
   1092	u64 cmdcfg;
   1093
   1094	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
   1095	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
   1096	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
   1097	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
   1098}
   1099
   1100/**
   1101 * set_port_offline() - transitions the specified host FC port to offline state
   1102 * @fc_regs:	Top of MMIO region defined for specified port.
   1103 *
   1104 * The provided MMIO region must be mapped prior to call.
   1105 */
   1106static void set_port_offline(__be64 __iomem *fc_regs)
   1107{
   1108	u64 cmdcfg;
   1109
   1110	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
   1111	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
   1112	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
   1113	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
   1114}
   1115
   1116/**
   1117 * wait_port_online() - waits for the specified host FC port come online
   1118 * @fc_regs:	Top of MMIO region defined for specified port.
   1119 * @delay_us:	Number of microseconds to delay between reading port status.
   1120 * @nretry:	Number of cycles to retry reading port status.
   1121 *
   1122 * The provided MMIO region must be mapped prior to call. This will timeout
   1123 * when the cable is not plugged in.
   1124 *
   1125 * Return:
   1126 *	TRUE (1) when the specified port is online
   1127 *	FALSE (0) when the specified port fails to come online after timeout
   1128 */
   1129static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
   1130{
   1131	u64 status;
   1132
   1133	WARN_ON(delay_us < 1000);
   1134
   1135	do {
   1136		msleep(delay_us / 1000);
   1137		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
   1138		if (status == U64_MAX)
   1139			nretry /= 2;
   1140	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
   1141		 nretry--);
   1142
   1143	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
   1144}
   1145
   1146/**
   1147 * wait_port_offline() - waits for the specified host FC port go offline
   1148 * @fc_regs:	Top of MMIO region defined for specified port.
   1149 * @delay_us:	Number of microseconds to delay between reading port status.
   1150 * @nretry:	Number of cycles to retry reading port status.
   1151 *
   1152 * The provided MMIO region must be mapped prior to call.
   1153 *
   1154 * Return:
   1155 *	TRUE (1) when the specified port is offline
   1156 *	FALSE (0) when the specified port fails to go offline after timeout
   1157 */
   1158static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
   1159{
   1160	u64 status;
   1161
   1162	WARN_ON(delay_us < 1000);
   1163
   1164	do {
   1165		msleep(delay_us / 1000);
   1166		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
   1167		if (status == U64_MAX)
   1168			nretry /= 2;
   1169	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
   1170		 nretry--);
   1171
   1172	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
   1173}
   1174
   1175/**
   1176 * afu_set_wwpn() - configures the WWPN for the specified host FC port
   1177 * @afu:	AFU associated with the host that owns the specified FC port.
   1178 * @port:	Port number being configured.
   1179 * @fc_regs:	Top of MMIO region defined for specified port.
   1180 * @wwpn:	The world-wide-port-number previously discovered for port.
   1181 *
   1182 * The provided MMIO region must be mapped prior to call. As part of the
   1183 * sequence to configure the WWPN, the port is toggled offline and then back
   1184 * online. This toggling action can cause this routine to delay up to a few
   1185 * seconds. When configured to use the internal LUN feature of the AFU, a
   1186 * failure to come online is overridden.
   1187 */
   1188static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
   1189			 u64 wwpn)
   1190{
   1191	struct cxlflash_cfg *cfg = afu->parent;
   1192	struct device *dev = &cfg->dev->dev;
   1193
   1194	set_port_offline(fc_regs);
   1195	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
   1196			       FC_PORT_STATUS_RETRY_CNT)) {
   1197		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
   1198			__func__, port);
   1199	}
   1200
   1201	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
   1202
   1203	set_port_online(fc_regs);
   1204	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
   1205			      FC_PORT_STATUS_RETRY_CNT)) {
   1206		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
   1207			__func__, port);
   1208	}
   1209}
   1210
   1211/**
   1212 * afu_link_reset() - resets the specified host FC port
   1213 * @afu:	AFU associated with the host that owns the specified FC port.
   1214 * @port:	Port number being configured.
   1215 * @fc_regs:	Top of MMIO region defined for specified port.
   1216 *
   1217 * The provided MMIO region must be mapped prior to call. The sequence to
   1218 * reset the port involves toggling it offline and then back online. This
   1219 * action can cause this routine to delay up to a few seconds. An effort
   1220 * is made to maintain link with the device by switching to host to use
   1221 * the alternate port exclusively while the reset takes place.
   1222 * failure to come online is overridden.
   1223 */
   1224static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
   1225{
   1226	struct cxlflash_cfg *cfg = afu->parent;
   1227	struct device *dev = &cfg->dev->dev;
   1228	u64 port_sel;
   1229
   1230	/* first switch the AFU to the other links, if any */
   1231	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
   1232	port_sel &= ~(1ULL << port);
   1233	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
   1234	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
   1235
   1236	set_port_offline(fc_regs);
   1237	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
   1238			       FC_PORT_STATUS_RETRY_CNT))
   1239		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
   1240			__func__, port);
   1241
   1242	set_port_online(fc_regs);
   1243	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
   1244			      FC_PORT_STATUS_RETRY_CNT))
   1245		dev_err(dev, "%s: wait on port %d to go online timed out\n",
   1246			__func__, port);
   1247
   1248	/* switch back to include this port */
   1249	port_sel |= (1ULL << port);
   1250	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
   1251	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
   1252
   1253	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
   1254}
   1255
   1256/**
   1257 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
   1258 * @afu:	AFU associated with the host.
   1259 */
   1260static void afu_err_intr_init(struct afu *afu)
   1261{
   1262	struct cxlflash_cfg *cfg = afu->parent;
   1263	__be64 __iomem *fc_port_regs;
   1264	int i;
   1265	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
   1266	u64 reg;
   1267
   1268	/* global async interrupts: AFU clears afu_ctrl on context exit
   1269	 * if async interrupts were sent to that context. This prevents
   1270	 * the AFU form sending further async interrupts when
   1271	 * there is
   1272	 * nobody to receive them.
   1273	 */
   1274
   1275	/* mask all */
   1276	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
   1277	/* set LISN# to send and point to primary master context */
   1278	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
   1279
   1280	if (afu->internal_lun)
   1281		reg |= 1;	/* Bit 63 indicates local lun */
   1282	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
   1283	/* clear all */
   1284	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
   1285	/* unmask bits that are of interest */
   1286	/* note: afu can send an interrupt after this step */
   1287	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
   1288	/* clear again in case a bit came on after previous clear but before */
   1289	/* unmask */
   1290	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
   1291
   1292	/* Clear/Set internal lun bits */
   1293	fc_port_regs = get_fc_port_regs(cfg, 0);
   1294	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
   1295	reg &= SISL_FC_INTERNAL_MASK;
   1296	if (afu->internal_lun)
   1297		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
   1298	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
   1299
   1300	/* now clear FC errors */
   1301	for (i = 0; i < cfg->num_fc_ports; i++) {
   1302		fc_port_regs = get_fc_port_regs(cfg, i);
   1303
   1304		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
   1305		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
   1306	}
   1307
   1308	/* sync interrupts for master's IOARRIN write */
   1309	/* note that unlike asyncs, there can be no pending sync interrupts */
   1310	/* at this time (this is a fresh context and master has not written */
   1311	/* IOARRIN yet), so there is nothing to clear. */
   1312
   1313	/* set LISN#, it is always sent to the context that wrote IOARRIN */
   1314	for (i = 0; i < afu->num_hwqs; i++) {
   1315		hwq = get_hwq(afu, i);
   1316
   1317		reg = readq_be(&hwq->host_map->ctx_ctrl);
   1318		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
   1319		reg |= SISL_MSI_SYNC_ERROR;
   1320		writeq_be(reg, &hwq->host_map->ctx_ctrl);
   1321		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
   1322	}
   1323}
   1324
   1325/**
   1326 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
   1327 * @irq:	Interrupt number.
   1328 * @data:	Private data provided at interrupt registration, the AFU.
   1329 *
   1330 * Return: Always return IRQ_HANDLED.
   1331 */
   1332static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
   1333{
   1334	struct hwq *hwq = (struct hwq *)data;
   1335	struct cxlflash_cfg *cfg = hwq->afu->parent;
   1336	struct device *dev = &cfg->dev->dev;
   1337	u64 reg;
   1338	u64 reg_unmasked;
   1339
   1340	reg = readq_be(&hwq->host_map->intr_status);
   1341	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
   1342
   1343	if (reg_unmasked == 0UL) {
   1344		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
   1345			__func__, reg);
   1346		goto cxlflash_sync_err_irq_exit;
   1347	}
   1348
   1349	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
   1350		__func__, reg);
   1351
   1352	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
   1353
   1354cxlflash_sync_err_irq_exit:
   1355	return IRQ_HANDLED;
   1356}
   1357
   1358/**
   1359 * process_hrrq() - process the read-response queue
   1360 * @hwq:	HWQ associated with the host.
   1361 * @doneq:	Queue of commands harvested from the RRQ.
   1362 * @budget:	Threshold of RRQ entries to process.
   1363 *
   1364 * This routine must be called holding the disabled RRQ spin lock.
   1365 *
   1366 * Return: The number of entries processed.
   1367 */
   1368static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
   1369{
   1370	struct afu *afu = hwq->afu;
   1371	struct afu_cmd *cmd;
   1372	struct sisl_ioasa *ioasa;
   1373	struct sisl_ioarcb *ioarcb;
   1374	bool toggle = hwq->toggle;
   1375	int num_hrrq = 0;
   1376	u64 entry,
   1377	    *hrrq_start = hwq->hrrq_start,
   1378	    *hrrq_end = hwq->hrrq_end,
   1379	    *hrrq_curr = hwq->hrrq_curr;
   1380
   1381	/* Process ready RRQ entries up to the specified budget (if any) */
   1382	while (true) {
   1383		entry = *hrrq_curr;
   1384
   1385		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
   1386			break;
   1387
   1388		entry &= ~SISL_RESP_HANDLE_T_BIT;
   1389
   1390		if (afu_is_sq_cmd_mode(afu)) {
   1391			ioasa = (struct sisl_ioasa *)entry;
   1392			cmd = container_of(ioasa, struct afu_cmd, sa);
   1393		} else {
   1394			ioarcb = (struct sisl_ioarcb *)entry;
   1395			cmd = container_of(ioarcb, struct afu_cmd, rcb);
   1396		}
   1397
   1398		list_add_tail(&cmd->queue, doneq);
   1399
   1400		/* Advance to next entry or wrap and flip the toggle bit */
   1401		if (hrrq_curr < hrrq_end)
   1402			hrrq_curr++;
   1403		else {
   1404			hrrq_curr = hrrq_start;
   1405			toggle ^= SISL_RESP_HANDLE_T_BIT;
   1406		}
   1407
   1408		atomic_inc(&hwq->hsq_credits);
   1409		num_hrrq++;
   1410
   1411		if (budget > 0 && num_hrrq >= budget)
   1412			break;
   1413	}
   1414
   1415	hwq->hrrq_curr = hrrq_curr;
   1416	hwq->toggle = toggle;
   1417
   1418	return num_hrrq;
   1419}
   1420
   1421/**
   1422 * process_cmd_doneq() - process a queue of harvested RRQ commands
   1423 * @doneq:	Queue of completed commands.
   1424 *
   1425 * Note that upon return the queue can no longer be trusted.
   1426 */
   1427static void process_cmd_doneq(struct list_head *doneq)
   1428{
   1429	struct afu_cmd *cmd, *tmp;
   1430
   1431	WARN_ON(list_empty(doneq));
   1432
   1433	list_for_each_entry_safe(cmd, tmp, doneq, queue)
   1434		cmd_complete(cmd);
   1435}
   1436
   1437/**
   1438 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
   1439 * @irqpoll:	IRQ poll structure associated with queue to poll.
   1440 * @budget:	Threshold of RRQ entries to process per poll.
   1441 *
   1442 * Return: The number of entries processed.
   1443 */
   1444static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
   1445{
   1446	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
   1447	unsigned long hrrq_flags;
   1448	LIST_HEAD(doneq);
   1449	int num_entries = 0;
   1450
   1451	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
   1452
   1453	num_entries = process_hrrq(hwq, &doneq, budget);
   1454	if (num_entries < budget)
   1455		irq_poll_complete(irqpoll);
   1456
   1457	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
   1458
   1459	process_cmd_doneq(&doneq);
   1460	return num_entries;
   1461}
   1462
   1463/**
   1464 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
   1465 * @irq:	Interrupt number.
   1466 * @data:	Private data provided at interrupt registration, the AFU.
   1467 *
   1468 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
   1469 */
   1470static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
   1471{
   1472	struct hwq *hwq = (struct hwq *)data;
   1473	struct afu *afu = hwq->afu;
   1474	unsigned long hrrq_flags;
   1475	LIST_HEAD(doneq);
   1476	int num_entries = 0;
   1477
   1478	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
   1479
   1480	/* Silently drop spurious interrupts when queue is not online */
   1481	if (!hwq->hrrq_online) {
   1482		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
   1483		return IRQ_HANDLED;
   1484	}
   1485
   1486	if (afu_is_irqpoll_enabled(afu)) {
   1487		irq_poll_sched(&hwq->irqpoll);
   1488		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
   1489		return IRQ_HANDLED;
   1490	}
   1491
   1492	num_entries = process_hrrq(hwq, &doneq, -1);
   1493	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
   1494
   1495	if (num_entries == 0)
   1496		return IRQ_NONE;
   1497
   1498	process_cmd_doneq(&doneq);
   1499	return IRQ_HANDLED;
   1500}
   1501
   1502/*
   1503 * Asynchronous interrupt information table
   1504 *
   1505 * NOTE:
   1506 *	- Order matters here as this array is indexed by bit position.
   1507 *
   1508 *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
   1509 *	  as complex and complains due to a lack of parentheses/braces.
   1510 */
   1511#define ASTATUS_FC(_a, _b, _c, _d)					 \
   1512	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
   1513
   1514#define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
   1515	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
   1516	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
   1517	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
   1518	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
   1519	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
   1520	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
   1521	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
   1522	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
   1523
   1524static const struct asyc_intr_info ainfo[] = {
   1525	BUILD_SISL_ASTATUS_FC_PORT(1),
   1526	BUILD_SISL_ASTATUS_FC_PORT(0),
   1527	BUILD_SISL_ASTATUS_FC_PORT(3),
   1528	BUILD_SISL_ASTATUS_FC_PORT(2)
   1529};
   1530
   1531/**
   1532 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
   1533 * @irq:	Interrupt number.
   1534 * @data:	Private data provided at interrupt registration, the AFU.
   1535 *
   1536 * Return: Always return IRQ_HANDLED.
   1537 */
   1538static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
   1539{
   1540	struct hwq *hwq = (struct hwq *)data;
   1541	struct afu *afu = hwq->afu;
   1542	struct cxlflash_cfg *cfg = afu->parent;
   1543	struct device *dev = &cfg->dev->dev;
   1544	const struct asyc_intr_info *info;
   1545	struct sisl_global_map __iomem *global = &afu->afu_map->global;
   1546	__be64 __iomem *fc_port_regs;
   1547	u64 reg_unmasked;
   1548	u64 reg;
   1549	u64 bit;
   1550	u8 port;
   1551
   1552	reg = readq_be(&global->regs.aintr_status);
   1553	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
   1554
   1555	if (unlikely(reg_unmasked == 0)) {
   1556		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
   1557			__func__, reg);
   1558		goto out;
   1559	}
   1560
   1561	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
   1562	writeq_be(reg_unmasked, &global->regs.aintr_clear);
   1563
   1564	/* Check each bit that is on */
   1565	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
   1566		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
   1567			WARN_ON_ONCE(1);
   1568			continue;
   1569		}
   1570
   1571		info = &ainfo[bit];
   1572		if (unlikely(info->status != 1ULL << bit)) {
   1573			WARN_ON_ONCE(1);
   1574			continue;
   1575		}
   1576
   1577		port = info->port;
   1578		fc_port_regs = get_fc_port_regs(cfg, port);
   1579
   1580		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
   1581			__func__, port, info->desc,
   1582		       readq_be(&fc_port_regs[FC_STATUS / 8]));
   1583
   1584		/*
   1585		 * Do link reset first, some OTHER errors will set FC_ERROR
   1586		 * again if cleared before or w/o a reset
   1587		 */
   1588		if (info->action & LINK_RESET) {
   1589			dev_err(dev, "%s: FC Port %d: resetting link\n",
   1590				__func__, port);
   1591			cfg->lr_state = LINK_RESET_REQUIRED;
   1592			cfg->lr_port = port;
   1593			schedule_work(&cfg->work_q);
   1594		}
   1595
   1596		if (info->action & CLR_FC_ERROR) {
   1597			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
   1598
   1599			/*
   1600			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
   1601			 * should be the same and tracing one is sufficient.
   1602			 */
   1603
   1604			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
   1605				__func__, port, reg);
   1606
   1607			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
   1608			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
   1609		}
   1610
   1611		if (info->action & SCAN_HOST) {
   1612			atomic_inc(&cfg->scan_host_needed);
   1613			schedule_work(&cfg->work_q);
   1614		}
   1615	}
   1616
   1617out:
   1618	return IRQ_HANDLED;
   1619}
   1620
   1621/**
   1622 * read_vpd() - obtains the WWPNs from VPD
   1623 * @cfg:	Internal structure associated with the host.
   1624 * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
   1625 *
   1626 * Return: 0 on success, -errno on failure
   1627 */
   1628static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
   1629{
   1630	struct device *dev = &cfg->dev->dev;
   1631	struct pci_dev *pdev = cfg->dev;
   1632	int i, k, rc = 0;
   1633	unsigned int kw_size;
   1634	ssize_t vpd_size;
   1635	char vpd_data[CXLFLASH_VPD_LEN];
   1636	char tmp_buf[WWPN_BUF_LEN] = { 0 };
   1637	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
   1638						cfg->dev_id->driver_data;
   1639	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
   1640	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
   1641
   1642	/* Get the VPD data from the device */
   1643	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
   1644	if (unlikely(vpd_size <= 0)) {
   1645		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
   1646			__func__, vpd_size);
   1647		rc = -ENODEV;
   1648		goto out;
   1649	}
   1650
   1651	/*
   1652	 * Find the offset of the WWPN tag within the read only
   1653	 * VPD data and validate the found field (partials are
   1654	 * no good to us). Convert the ASCII data to an integer
   1655	 * value. Note that we must copy to a temporary buffer
   1656	 * because the conversion service requires that the ASCII
   1657	 * string be terminated.
   1658	 *
   1659	 * Allow for WWPN not being found for all devices, setting
   1660	 * the returned WWPN to zero when not found. Notify with a
   1661	 * log error for cards that should have had WWPN keywords
   1662	 * in the VPD - cards requiring WWPN will not have their
   1663	 * ports programmed and operate in an undefined state.
   1664	 */
   1665	for (k = 0; k < cfg->num_fc_ports; k++) {
   1666		i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
   1667						 wwpn_vpd_tags[k], &kw_size);
   1668		if (i == -ENOENT) {
   1669			if (wwpn_vpd_required)
   1670				dev_err(dev, "%s: Port %d WWPN not found\n",
   1671					__func__, k);
   1672			wwpn[k] = 0ULL;
   1673			continue;
   1674		}
   1675
   1676		if (i < 0 || kw_size != WWPN_LEN) {
   1677			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
   1678				__func__, k);
   1679			rc = -ENODEV;
   1680			goto out;
   1681		}
   1682
   1683		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
   1684		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
   1685		if (unlikely(rc)) {
   1686			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
   1687				__func__, k);
   1688			rc = -ENODEV;
   1689			goto out;
   1690		}
   1691
   1692		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
   1693	}
   1694
   1695out:
   1696	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1697	return rc;
   1698}
   1699
   1700/**
   1701 * init_pcr() - initialize the provisioning and control registers
   1702 * @cfg:	Internal structure associated with the host.
   1703 *
   1704 * Also sets up fast access to the mapped registers and initializes AFU
   1705 * command fields that never change.
   1706 */
   1707static void init_pcr(struct cxlflash_cfg *cfg)
   1708{
   1709	struct afu *afu = cfg->afu;
   1710	struct sisl_ctrl_map __iomem *ctrl_map;
   1711	struct hwq *hwq;
   1712	void *cookie;
   1713	int i;
   1714
   1715	for (i = 0; i < MAX_CONTEXT; i++) {
   1716		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
   1717		/* Disrupt any clients that could be running */
   1718		/* e.g. clients that survived a master restart */
   1719		writeq_be(0, &ctrl_map->rht_start);
   1720		writeq_be(0, &ctrl_map->rht_cnt_id);
   1721		writeq_be(0, &ctrl_map->ctx_cap);
   1722	}
   1723
   1724	/* Copy frequently used fields into hwq */
   1725	for (i = 0; i < afu->num_hwqs; i++) {
   1726		hwq = get_hwq(afu, i);
   1727		cookie = hwq->ctx_cookie;
   1728
   1729		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
   1730		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
   1731		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
   1732
   1733		/* Program the Endian Control for the master context */
   1734		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
   1735	}
   1736}
   1737
   1738/**
   1739 * init_global() - initialize AFU global registers
   1740 * @cfg:	Internal structure associated with the host.
   1741 */
   1742static int init_global(struct cxlflash_cfg *cfg)
   1743{
   1744	struct afu *afu = cfg->afu;
   1745	struct device *dev = &cfg->dev->dev;
   1746	struct hwq *hwq;
   1747	struct sisl_host_map __iomem *hmap;
   1748	__be64 __iomem *fc_port_regs;
   1749	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
   1750	int i = 0, num_ports = 0;
   1751	int rc = 0;
   1752	int j;
   1753	void *ctx;
   1754	u64 reg;
   1755
   1756	rc = read_vpd(cfg, &wwpn[0]);
   1757	if (rc) {
   1758		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
   1759		goto out;
   1760	}
   1761
   1762	/* Set up RRQ and SQ in HWQ for master issued cmds */
   1763	for (i = 0; i < afu->num_hwqs; i++) {
   1764		hwq = get_hwq(afu, i);
   1765		hmap = hwq->host_map;
   1766
   1767		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
   1768		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
   1769		hwq->hrrq_online = true;
   1770
   1771		if (afu_is_sq_cmd_mode(afu)) {
   1772			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
   1773			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
   1774		}
   1775	}
   1776
   1777	/* AFU configuration */
   1778	reg = readq_be(&afu->afu_map->global.regs.afu_config);
   1779	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
   1780	/* enable all auto retry options and control endianness */
   1781	/* leave others at default: */
   1782	/* CTX_CAP write protected, mbox_r does not clear on read and */
   1783	/* checker on if dual afu */
   1784	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
   1785
   1786	/* Global port select: select either port */
   1787	if (afu->internal_lun) {
   1788		/* Only use port 0 */
   1789		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
   1790		num_ports = 0;
   1791	} else {
   1792		writeq_be(PORT_MASK(cfg->num_fc_ports),
   1793			  &afu->afu_map->global.regs.afu_port_sel);
   1794		num_ports = cfg->num_fc_ports;
   1795	}
   1796
   1797	for (i = 0; i < num_ports; i++) {
   1798		fc_port_regs = get_fc_port_regs(cfg, i);
   1799
   1800		/* Unmask all errors (but they are still masked at AFU) */
   1801		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
   1802		/* Clear CRC error cnt & set a threshold */
   1803		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
   1804		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
   1805
   1806		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
   1807		if (wwpn[i] != 0)
   1808			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
   1809		/* Programming WWPN back to back causes additional
   1810		 * offline/online transitions and a PLOGI
   1811		 */
   1812		msleep(100);
   1813	}
   1814
   1815	if (afu_is_ocxl_lisn(afu)) {
   1816		/* Set up the LISN effective address for each master */
   1817		for (i = 0; i < afu->num_hwqs; i++) {
   1818			hwq = get_hwq(afu, i);
   1819			ctx = hwq->ctx_cookie;
   1820
   1821			for (j = 0; j < hwq->num_irqs; j++) {
   1822				reg = cfg->ops->get_irq_objhndl(ctx, j);
   1823				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
   1824			}
   1825
   1826			reg = hwq->ctx_hndl;
   1827			writeq_be(SISL_LISN_PASID(reg, reg),
   1828				  &hwq->ctrl_map->lisn_pasid[0]);
   1829			writeq_be(SISL_LISN_PASID(0UL, reg),
   1830				  &hwq->ctrl_map->lisn_pasid[1]);
   1831		}
   1832	}
   1833
   1834	/* Set up master's own CTX_CAP to allow real mode, host translation */
   1835	/* tables, afu cmds and read/write GSCSI cmds. */
   1836	/* First, unlock ctx_cap write by reading mbox */
   1837	for (i = 0; i < afu->num_hwqs; i++) {
   1838		hwq = get_hwq(afu, i);
   1839
   1840		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
   1841		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
   1842			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
   1843			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
   1844			&hwq->ctrl_map->ctx_cap);
   1845	}
   1846
   1847	/*
   1848	 * Determine write-same unmap support for host by evaluating the unmap
   1849	 * sector support bit of the context control register associated with
   1850	 * the primary hardware queue. Note that while this status is reflected
   1851	 * in a context register, the outcome can be assumed to be host-wide.
   1852	 */
   1853	hwq = get_hwq(afu, PRIMARY_HWQ);
   1854	reg = readq_be(&hwq->host_map->ctx_ctrl);
   1855	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
   1856		cfg->ws_unmap = true;
   1857
   1858	/* Initialize heartbeat */
   1859	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
   1860out:
   1861	return rc;
   1862}
   1863
   1864/**
   1865 * start_afu() - initializes and starts the AFU
   1866 * @cfg:	Internal structure associated with the host.
   1867 */
   1868static int start_afu(struct cxlflash_cfg *cfg)
   1869{
   1870	struct afu *afu = cfg->afu;
   1871	struct device *dev = &cfg->dev->dev;
   1872	struct hwq *hwq;
   1873	int rc = 0;
   1874	int i;
   1875
   1876	init_pcr(cfg);
   1877
   1878	/* Initialize each HWQ */
   1879	for (i = 0; i < afu->num_hwqs; i++) {
   1880		hwq = get_hwq(afu, i);
   1881
   1882		/* After an AFU reset, RRQ entries are stale, clear them */
   1883		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
   1884
   1885		/* Initialize RRQ pointers */
   1886		hwq->hrrq_start = &hwq->rrq_entry[0];
   1887		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
   1888		hwq->hrrq_curr = hwq->hrrq_start;
   1889		hwq->toggle = 1;
   1890
   1891		/* Initialize spin locks */
   1892		spin_lock_init(&hwq->hrrq_slock);
   1893		spin_lock_init(&hwq->hsq_slock);
   1894
   1895		/* Initialize SQ */
   1896		if (afu_is_sq_cmd_mode(afu)) {
   1897			memset(&hwq->sq, 0, sizeof(hwq->sq));
   1898			hwq->hsq_start = &hwq->sq[0];
   1899			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
   1900			hwq->hsq_curr = hwq->hsq_start;
   1901
   1902			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
   1903		}
   1904
   1905		/* Initialize IRQ poll */
   1906		if (afu_is_irqpoll_enabled(afu))
   1907			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
   1908				      cxlflash_irqpoll);
   1909
   1910	}
   1911
   1912	rc = init_global(cfg);
   1913
   1914	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1915	return rc;
   1916}
   1917
   1918/**
   1919 * init_intr() - setup interrupt handlers for the master context
   1920 * @cfg:	Internal structure associated with the host.
   1921 * @hwq:	Hardware queue to initialize.
   1922 *
   1923 * Return: 0 on success, -errno on failure
   1924 */
   1925static enum undo_level init_intr(struct cxlflash_cfg *cfg,
   1926				 struct hwq *hwq)
   1927{
   1928	struct device *dev = &cfg->dev->dev;
   1929	void *ctx = hwq->ctx_cookie;
   1930	int rc = 0;
   1931	enum undo_level level = UNDO_NOOP;
   1932	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
   1933	int num_irqs = hwq->num_irqs;
   1934
   1935	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
   1936	if (unlikely(rc)) {
   1937		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
   1938			__func__, rc);
   1939		level = UNDO_NOOP;
   1940		goto out;
   1941	}
   1942
   1943	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
   1944				   "SISL_MSI_SYNC_ERROR");
   1945	if (unlikely(rc <= 0)) {
   1946		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
   1947		level = FREE_IRQ;
   1948		goto out;
   1949	}
   1950
   1951	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
   1952				   "SISL_MSI_RRQ_UPDATED");
   1953	if (unlikely(rc <= 0)) {
   1954		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
   1955		level = UNMAP_ONE;
   1956		goto out;
   1957	}
   1958
   1959	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
   1960	if (!is_primary_hwq)
   1961		goto out;
   1962
   1963	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
   1964				   "SISL_MSI_ASYNC_ERROR");
   1965	if (unlikely(rc <= 0)) {
   1966		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
   1967		level = UNMAP_TWO;
   1968		goto out;
   1969	}
   1970out:
   1971	return level;
   1972}
   1973
   1974/**
   1975 * init_mc() - create and register as the master context
   1976 * @cfg:	Internal structure associated with the host.
   1977 * @index:	HWQ Index of the master context.
   1978 *
   1979 * Return: 0 on success, -errno on failure
   1980 */
   1981static int init_mc(struct cxlflash_cfg *cfg, u32 index)
   1982{
   1983	void *ctx;
   1984	struct device *dev = &cfg->dev->dev;
   1985	struct hwq *hwq = get_hwq(cfg->afu, index);
   1986	int rc = 0;
   1987	int num_irqs;
   1988	enum undo_level level;
   1989
   1990	hwq->afu = cfg->afu;
   1991	hwq->index = index;
   1992	INIT_LIST_HEAD(&hwq->pending_cmds);
   1993
   1994	if (index == PRIMARY_HWQ) {
   1995		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
   1996		num_irqs = 3;
   1997	} else {
   1998		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
   1999		num_irqs = 2;
   2000	}
   2001	if (IS_ERR_OR_NULL(ctx)) {
   2002		rc = -ENOMEM;
   2003		goto err1;
   2004	}
   2005
   2006	WARN_ON(hwq->ctx_cookie);
   2007	hwq->ctx_cookie = ctx;
   2008	hwq->num_irqs = num_irqs;
   2009
   2010	/* Set it up as a master with the CXL */
   2011	cfg->ops->set_master(ctx);
   2012
   2013	/* Reset AFU when initializing primary context */
   2014	if (index == PRIMARY_HWQ) {
   2015		rc = cfg->ops->afu_reset(ctx);
   2016		if (unlikely(rc)) {
   2017			dev_err(dev, "%s: AFU reset failed rc=%d\n",
   2018				      __func__, rc);
   2019			goto err1;
   2020		}
   2021	}
   2022
   2023	level = init_intr(cfg, hwq);
   2024	if (unlikely(level)) {
   2025		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
   2026		goto err2;
   2027	}
   2028
   2029	/* Finally, activate the context by starting it */
   2030	rc = cfg->ops->start_context(hwq->ctx_cookie);
   2031	if (unlikely(rc)) {
   2032		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
   2033		level = UNMAP_THREE;
   2034		goto err2;
   2035	}
   2036
   2037out:
   2038	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2039	return rc;
   2040err2:
   2041	term_intr(cfg, level, index);
   2042	if (index != PRIMARY_HWQ)
   2043		cfg->ops->release_context(ctx);
   2044err1:
   2045	hwq->ctx_cookie = NULL;
   2046	goto out;
   2047}
   2048
   2049/**
   2050 * get_num_afu_ports() - determines and configures the number of AFU ports
   2051 * @cfg:	Internal structure associated with the host.
   2052 *
   2053 * This routine determines the number of AFU ports by converting the global
   2054 * port selection mask. The converted value is only valid following an AFU
   2055 * reset (explicit or power-on). This routine must be invoked shortly after
   2056 * mapping as other routines are dependent on the number of ports during the
   2057 * initialization sequence.
   2058 *
   2059 * To support legacy AFUs that might not have reflected an initial global
   2060 * port mask (value read is 0), default to the number of ports originally
   2061 * supported by the cxlflash driver (2) before hardware with other port
   2062 * offerings was introduced.
   2063 */
   2064static void get_num_afu_ports(struct cxlflash_cfg *cfg)
   2065{
   2066	struct afu *afu = cfg->afu;
   2067	struct device *dev = &cfg->dev->dev;
   2068	u64 port_mask;
   2069	int num_fc_ports = LEGACY_FC_PORTS;
   2070
   2071	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
   2072	if (port_mask != 0ULL)
   2073		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
   2074
   2075	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
   2076		__func__, port_mask, num_fc_ports);
   2077
   2078	cfg->num_fc_ports = num_fc_ports;
   2079	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
   2080}
   2081
   2082/**
   2083 * init_afu() - setup as master context and start AFU
   2084 * @cfg:	Internal structure associated with the host.
   2085 *
   2086 * This routine is a higher level of control for configuring the
   2087 * AFU on probe and reset paths.
   2088 *
   2089 * Return: 0 on success, -errno on failure
   2090 */
   2091static int init_afu(struct cxlflash_cfg *cfg)
   2092{
   2093	u64 reg;
   2094	int rc = 0;
   2095	struct afu *afu = cfg->afu;
   2096	struct device *dev = &cfg->dev->dev;
   2097	struct hwq *hwq;
   2098	int i;
   2099
   2100	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
   2101
   2102	mutex_init(&afu->sync_active);
   2103	afu->num_hwqs = afu->desired_hwqs;
   2104	for (i = 0; i < afu->num_hwqs; i++) {
   2105		rc = init_mc(cfg, i);
   2106		if (rc) {
   2107			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
   2108				__func__, rc, i);
   2109			goto err1;
   2110		}
   2111	}
   2112
   2113	/* Map the entire MMIO space of the AFU using the first context */
   2114	hwq = get_hwq(afu, PRIMARY_HWQ);
   2115	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
   2116	if (!afu->afu_map) {
   2117		dev_err(dev, "%s: psa_map failed\n", __func__);
   2118		rc = -ENOMEM;
   2119		goto err1;
   2120	}
   2121
   2122	/* No byte reverse on reading afu_version or string will be backwards */
   2123	reg = readq(&afu->afu_map->global.regs.afu_version);
   2124	memcpy(afu->version, &reg, sizeof(reg));
   2125	afu->interface_version =
   2126	    readq_be(&afu->afu_map->global.regs.interface_version);
   2127	if ((afu->interface_version + 1) == 0) {
   2128		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
   2129			"interface version %016llx\n", afu->version,
   2130		       afu->interface_version);
   2131		rc = -EINVAL;
   2132		goto err1;
   2133	}
   2134
   2135	if (afu_is_sq_cmd_mode(afu)) {
   2136		afu->send_cmd = send_cmd_sq;
   2137		afu->context_reset = context_reset_sq;
   2138	} else {
   2139		afu->send_cmd = send_cmd_ioarrin;
   2140		afu->context_reset = context_reset_ioarrin;
   2141	}
   2142
   2143	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
   2144		afu->version, afu->interface_version);
   2145
   2146	get_num_afu_ports(cfg);
   2147
   2148	rc = start_afu(cfg);
   2149	if (rc) {
   2150		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
   2151		goto err1;
   2152	}
   2153
   2154	afu_err_intr_init(cfg->afu);
   2155	for (i = 0; i < afu->num_hwqs; i++) {
   2156		hwq = get_hwq(afu, i);
   2157
   2158		hwq->room = readq_be(&hwq->host_map->cmd_room);
   2159	}
   2160
   2161	/* Restore the LUN mappings */
   2162	cxlflash_restore_luntable(cfg);
   2163out:
   2164	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2165	return rc;
   2166
   2167err1:
   2168	for (i = afu->num_hwqs - 1; i >= 0; i--) {
   2169		term_intr(cfg, UNMAP_THREE, i);
   2170		term_mc(cfg, i);
   2171	}
   2172	goto out;
   2173}
   2174
   2175/**
   2176 * afu_reset() - resets the AFU
   2177 * @cfg:	Internal structure associated with the host.
   2178 *
   2179 * Return: 0 on success, -errno on failure
   2180 */
   2181static int afu_reset(struct cxlflash_cfg *cfg)
   2182{
   2183	struct device *dev = &cfg->dev->dev;
   2184	int rc = 0;
   2185
   2186	/* Stop the context before the reset. Since the context is
   2187	 * no longer available restart it after the reset is complete
   2188	 */
   2189	term_afu(cfg);
   2190
   2191	rc = init_afu(cfg);
   2192
   2193	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2194	return rc;
   2195}
   2196
   2197/**
   2198 * drain_ioctls() - wait until all currently executing ioctls have completed
   2199 * @cfg:	Internal structure associated with the host.
   2200 *
   2201 * Obtain write access to read/write semaphore that wraps ioctl
   2202 * handling to 'drain' ioctls currently executing.
   2203 */
   2204static void drain_ioctls(struct cxlflash_cfg *cfg)
   2205{
   2206	down_write(&cfg->ioctl_rwsem);
   2207	up_write(&cfg->ioctl_rwsem);
   2208}
   2209
   2210/**
   2211 * cxlflash_async_reset_host() - asynchronous host reset handler
   2212 * @data:	Private data provided while scheduling reset.
   2213 * @cookie:	Cookie that can be used for checkpointing.
   2214 */
   2215static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
   2216{
   2217	struct cxlflash_cfg *cfg = data;
   2218	struct device *dev = &cfg->dev->dev;
   2219	int rc = 0;
   2220
   2221	if (cfg->state != STATE_RESET) {
   2222		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
   2223			__func__, cfg->state);
   2224		goto out;
   2225	}
   2226
   2227	drain_ioctls(cfg);
   2228	cxlflash_mark_contexts_error(cfg);
   2229	rc = afu_reset(cfg);
   2230	if (rc)
   2231		cfg->state = STATE_FAILTERM;
   2232	else
   2233		cfg->state = STATE_NORMAL;
   2234	wake_up_all(&cfg->reset_waitq);
   2235
   2236out:
   2237	scsi_unblock_requests(cfg->host);
   2238}
   2239
   2240/**
   2241 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
   2242 * @cfg:	Internal structure associated with the host.
   2243 */
   2244static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
   2245{
   2246	struct device *dev = &cfg->dev->dev;
   2247
   2248	if (cfg->state != STATE_NORMAL) {
   2249		dev_dbg(dev, "%s: Not performing reset state=%d\n",
   2250			__func__, cfg->state);
   2251		return;
   2252	}
   2253
   2254	cfg->state = STATE_RESET;
   2255	scsi_block_requests(cfg->host);
   2256	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
   2257						 cfg);
   2258}
   2259
   2260/**
   2261 * send_afu_cmd() - builds and sends an internal AFU command
   2262 * @afu:	AFU associated with the host.
   2263 * @rcb:	Pre-populated IOARCB describing command to send.
   2264 *
   2265 * The AFU can only take one internal AFU command at a time. This limitation is
   2266 * enforced by using a mutex to provide exclusive access to the AFU during the
   2267 * operation. This design point requires calling threads to not be on interrupt
   2268 * context due to the possibility of sleeping during concurrent AFU operations.
   2269 *
   2270 * The command status is optionally passed back to the caller when the caller
   2271 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
   2272 *
   2273 * Return:
   2274 *	0 on success, -errno on failure
   2275 */
   2276static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
   2277{
   2278	struct cxlflash_cfg *cfg = afu->parent;
   2279	struct device *dev = &cfg->dev->dev;
   2280	struct afu_cmd *cmd = NULL;
   2281	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
   2282	ulong lock_flags;
   2283	char *buf = NULL;
   2284	int rc = 0;
   2285	int nretry = 0;
   2286
   2287	if (cfg->state != STATE_NORMAL) {
   2288		dev_dbg(dev, "%s: Sync not required state=%u\n",
   2289			__func__, cfg->state);
   2290		return 0;
   2291	}
   2292
   2293	mutex_lock(&afu->sync_active);
   2294	atomic_inc(&afu->cmds_active);
   2295	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
   2296	if (unlikely(!buf)) {
   2297		dev_err(dev, "%s: no memory for command\n", __func__);
   2298		rc = -ENOMEM;
   2299		goto out;
   2300	}
   2301
   2302	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
   2303
   2304retry:
   2305	memset(cmd, 0, sizeof(*cmd));
   2306	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
   2307	INIT_LIST_HEAD(&cmd->queue);
   2308	init_completion(&cmd->cevent);
   2309	cmd->parent = afu;
   2310	cmd->hwq_index = hwq->index;
   2311	cmd->rcb.ctx_id = hwq->ctx_hndl;
   2312
   2313	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
   2314		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
   2315
   2316	rc = afu->send_cmd(afu, cmd);
   2317	if (unlikely(rc)) {
   2318		rc = -ENOBUFS;
   2319		goto out;
   2320	}
   2321
   2322	rc = wait_resp(afu, cmd);
   2323	switch (rc) {
   2324	case -ETIMEDOUT:
   2325		rc = afu->context_reset(hwq);
   2326		if (rc) {
   2327			/* Delete the command from pending_cmds list */
   2328			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
   2329			list_del(&cmd->list);
   2330			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
   2331
   2332			cxlflash_schedule_async_reset(cfg);
   2333			break;
   2334		}
   2335		fallthrough;	/* to retry */
   2336	case -EAGAIN:
   2337		if (++nretry < 2)
   2338			goto retry;
   2339		fallthrough;	/* to exit */
   2340	default:
   2341		break;
   2342	}
   2343
   2344	if (rcb->ioasa)
   2345		*rcb->ioasa = cmd->sa;
   2346out:
   2347	atomic_dec(&afu->cmds_active);
   2348	mutex_unlock(&afu->sync_active);
   2349	kfree(buf);
   2350	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2351	return rc;
   2352}
   2353
   2354/**
   2355 * cxlflash_afu_sync() - builds and sends an AFU sync command
   2356 * @afu:	AFU associated with the host.
   2357 * @ctx:	Identifies context requesting sync.
   2358 * @res:	Identifies resource requesting sync.
   2359 * @mode:	Type of sync to issue (lightweight, heavyweight, global).
   2360 *
   2361 * AFU sync operations are only necessary and allowed when the device is
   2362 * operating normally. When not operating normally, sync requests can occur as
   2363 * part of cleaning up resources associated with an adapter prior to removal.
   2364 * In this scenario, these requests are simply ignored (safe due to the AFU
   2365 * going away).
   2366 *
   2367 * Return:
   2368 *	0 on success, -errno on failure
   2369 */
   2370int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
   2371{
   2372	struct cxlflash_cfg *cfg = afu->parent;
   2373	struct device *dev = &cfg->dev->dev;
   2374	struct sisl_ioarcb rcb = { 0 };
   2375
   2376	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
   2377		__func__, afu, ctx, res, mode);
   2378
   2379	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
   2380	rcb.msi = SISL_MSI_RRQ_UPDATED;
   2381	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
   2382
   2383	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
   2384	rcb.cdb[1] = mode;
   2385	put_unaligned_be16(ctx, &rcb.cdb[2]);
   2386	put_unaligned_be32(res, &rcb.cdb[4]);
   2387
   2388	return send_afu_cmd(afu, &rcb);
   2389}
   2390
   2391/**
   2392 * cxlflash_eh_abort_handler() - abort a SCSI command
   2393 * @scp:	SCSI command to abort.
   2394 *
   2395 * CXL Flash devices do not support a single command abort. Reset the context
   2396 * as per SISLite specification. Flush any pending commands in the hardware
   2397 * queue before the reset.
   2398 *
   2399 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
   2400 */
   2401static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
   2402{
   2403	int rc = FAILED;
   2404	struct Scsi_Host *host = scp->device->host;
   2405	struct cxlflash_cfg *cfg = shost_priv(host);
   2406	struct afu_cmd *cmd = sc_to_afuc(scp);
   2407	struct device *dev = &cfg->dev->dev;
   2408	struct afu *afu = cfg->afu;
   2409	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
   2410
   2411	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
   2412		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
   2413		scp->device->channel, scp->device->id, scp->device->lun,
   2414		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
   2415		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
   2416		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
   2417		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
   2418
   2419	/* When the state is not normal, another reset/reload is in progress.
   2420	 * Return failed and the mid-layer will invoke host reset handler.
   2421	 */
   2422	if (cfg->state != STATE_NORMAL) {
   2423		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
   2424			__func__, cfg->state);
   2425		goto out;
   2426	}
   2427
   2428	rc = afu->context_reset(hwq);
   2429	if (unlikely(rc))
   2430		goto out;
   2431
   2432	rc = SUCCESS;
   2433
   2434out:
   2435	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2436	return rc;
   2437}
   2438
   2439/**
   2440 * cxlflash_eh_device_reset_handler() - reset a single LUN
   2441 * @scp:	SCSI command to send.
   2442 *
   2443 * Return:
   2444 *	SUCCESS as defined in scsi/scsi.h
   2445 *	FAILED as defined in scsi/scsi.h
   2446 */
   2447static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
   2448{
   2449	int rc = SUCCESS;
   2450	struct scsi_device *sdev = scp->device;
   2451	struct Scsi_Host *host = sdev->host;
   2452	struct cxlflash_cfg *cfg = shost_priv(host);
   2453	struct device *dev = &cfg->dev->dev;
   2454	int rcr = 0;
   2455
   2456	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
   2457		host->host_no, sdev->channel, sdev->id, sdev->lun);
   2458retry:
   2459	switch (cfg->state) {
   2460	case STATE_NORMAL:
   2461		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
   2462		if (unlikely(rcr))
   2463			rc = FAILED;
   2464		break;
   2465	case STATE_RESET:
   2466		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
   2467		goto retry;
   2468	default:
   2469		rc = FAILED;
   2470		break;
   2471	}
   2472
   2473	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2474	return rc;
   2475}
   2476
   2477/**
   2478 * cxlflash_eh_host_reset_handler() - reset the host adapter
   2479 * @scp:	SCSI command from stack identifying host.
   2480 *
   2481 * Following a reset, the state is evaluated again in case an EEH occurred
   2482 * during the reset. In such a scenario, the host reset will either yield
   2483 * until the EEH recovery is complete or return success or failure based
   2484 * upon the current device state.
   2485 *
   2486 * Return:
   2487 *	SUCCESS as defined in scsi/scsi.h
   2488 *	FAILED as defined in scsi/scsi.h
   2489 */
   2490static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
   2491{
   2492	int rc = SUCCESS;
   2493	int rcr = 0;
   2494	struct Scsi_Host *host = scp->device->host;
   2495	struct cxlflash_cfg *cfg = shost_priv(host);
   2496	struct device *dev = &cfg->dev->dev;
   2497
   2498	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
   2499
   2500	switch (cfg->state) {
   2501	case STATE_NORMAL:
   2502		cfg->state = STATE_RESET;
   2503		drain_ioctls(cfg);
   2504		cxlflash_mark_contexts_error(cfg);
   2505		rcr = afu_reset(cfg);
   2506		if (rcr) {
   2507			rc = FAILED;
   2508			cfg->state = STATE_FAILTERM;
   2509		} else
   2510			cfg->state = STATE_NORMAL;
   2511		wake_up_all(&cfg->reset_waitq);
   2512		ssleep(1);
   2513		fallthrough;
   2514	case STATE_RESET:
   2515		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
   2516		if (cfg->state == STATE_NORMAL)
   2517			break;
   2518		fallthrough;
   2519	default:
   2520		rc = FAILED;
   2521		break;
   2522	}
   2523
   2524	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   2525	return rc;
   2526}
   2527
   2528/**
   2529 * cxlflash_change_queue_depth() - change the queue depth for the device
   2530 * @sdev:	SCSI device destined for queue depth change.
   2531 * @qdepth:	Requested queue depth value to set.
   2532 *
   2533 * The requested queue depth is capped to the maximum supported value.
   2534 *
   2535 * Return: The actual queue depth set.
   2536 */
   2537static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
   2538{
   2539
   2540	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
   2541		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
   2542
   2543	scsi_change_queue_depth(sdev, qdepth);
   2544	return sdev->queue_depth;
   2545}
   2546
   2547/**
   2548 * cxlflash_show_port_status() - queries and presents the current port status
   2549 * @port:	Desired port for status reporting.
   2550 * @cfg:	Internal structure associated with the host.
   2551 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2552 *
   2553 * Return: The size of the ASCII string returned in @buf or -EINVAL.
   2554 */
   2555static ssize_t cxlflash_show_port_status(u32 port,
   2556					 struct cxlflash_cfg *cfg,
   2557					 char *buf)
   2558{
   2559	struct device *dev = &cfg->dev->dev;
   2560	char *disp_status;
   2561	u64 status;
   2562	__be64 __iomem *fc_port_regs;
   2563
   2564	WARN_ON(port >= MAX_FC_PORTS);
   2565
   2566	if (port >= cfg->num_fc_ports) {
   2567		dev_info(dev, "%s: Port %d not supported on this card.\n",
   2568			__func__, port);
   2569		return -EINVAL;
   2570	}
   2571
   2572	fc_port_regs = get_fc_port_regs(cfg, port);
   2573	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
   2574	status &= FC_MTIP_STATUS_MASK;
   2575
   2576	if (status == FC_MTIP_STATUS_ONLINE)
   2577		disp_status = "online";
   2578	else if (status == FC_MTIP_STATUS_OFFLINE)
   2579		disp_status = "offline";
   2580	else
   2581		disp_status = "unknown";
   2582
   2583	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
   2584}
   2585
   2586/**
   2587 * port0_show() - queries and presents the current status of port 0
   2588 * @dev:	Generic device associated with the host owning the port.
   2589 * @attr:	Device attribute representing the port.
   2590 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2591 *
   2592 * Return: The size of the ASCII string returned in @buf.
   2593 */
   2594static ssize_t port0_show(struct device *dev,
   2595			  struct device_attribute *attr,
   2596			  char *buf)
   2597{
   2598	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2599
   2600	return cxlflash_show_port_status(0, cfg, buf);
   2601}
   2602
   2603/**
   2604 * port1_show() - queries and presents the current status of port 1
   2605 * @dev:	Generic device associated with the host owning the port.
   2606 * @attr:	Device attribute representing the port.
   2607 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2608 *
   2609 * Return: The size of the ASCII string returned in @buf.
   2610 */
   2611static ssize_t port1_show(struct device *dev,
   2612			  struct device_attribute *attr,
   2613			  char *buf)
   2614{
   2615	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2616
   2617	return cxlflash_show_port_status(1, cfg, buf);
   2618}
   2619
   2620/**
   2621 * port2_show() - queries and presents the current status of port 2
   2622 * @dev:	Generic device associated with the host owning the port.
   2623 * @attr:	Device attribute representing the port.
   2624 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2625 *
   2626 * Return: The size of the ASCII string returned in @buf.
   2627 */
   2628static ssize_t port2_show(struct device *dev,
   2629			  struct device_attribute *attr,
   2630			  char *buf)
   2631{
   2632	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2633
   2634	return cxlflash_show_port_status(2, cfg, buf);
   2635}
   2636
   2637/**
   2638 * port3_show() - queries and presents the current status of port 3
   2639 * @dev:	Generic device associated with the host owning the port.
   2640 * @attr:	Device attribute representing the port.
   2641 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2642 *
   2643 * Return: The size of the ASCII string returned in @buf.
   2644 */
   2645static ssize_t port3_show(struct device *dev,
   2646			  struct device_attribute *attr,
   2647			  char *buf)
   2648{
   2649	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2650
   2651	return cxlflash_show_port_status(3, cfg, buf);
   2652}
   2653
   2654/**
   2655 * lun_mode_show() - presents the current LUN mode of the host
   2656 * @dev:	Generic device associated with the host.
   2657 * @attr:	Device attribute representing the LUN mode.
   2658 * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
   2659 *
   2660 * Return: The size of the ASCII string returned in @buf.
   2661 */
   2662static ssize_t lun_mode_show(struct device *dev,
   2663			     struct device_attribute *attr, char *buf)
   2664{
   2665	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2666	struct afu *afu = cfg->afu;
   2667
   2668	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
   2669}
   2670
   2671/**
   2672 * lun_mode_store() - sets the LUN mode of the host
   2673 * @dev:	Generic device associated with the host.
   2674 * @attr:	Device attribute representing the LUN mode.
   2675 * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
   2676 * @count:	Length of data resizing in @buf.
   2677 *
   2678 * The CXL Flash AFU supports a dummy LUN mode where the external
   2679 * links and storage are not required. Space on the FPGA is used
   2680 * to create 1 or 2 small LUNs which are presented to the system
   2681 * as if they were a normal storage device. This feature is useful
   2682 * during development and also provides manufacturing with a way
   2683 * to test the AFU without an actual device.
   2684 *
   2685 * 0 = external LUN[s] (default)
   2686 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
   2687 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
   2688 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
   2689 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
   2690 *
   2691 * Return: The size of the ASCII string returned in @buf.
   2692 */
   2693static ssize_t lun_mode_store(struct device *dev,
   2694			      struct device_attribute *attr,
   2695			      const char *buf, size_t count)
   2696{
   2697	struct Scsi_Host *shost = class_to_shost(dev);
   2698	struct cxlflash_cfg *cfg = shost_priv(shost);
   2699	struct afu *afu = cfg->afu;
   2700	int rc;
   2701	u32 lun_mode;
   2702
   2703	rc = kstrtouint(buf, 10, &lun_mode);
   2704	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
   2705		afu->internal_lun = lun_mode;
   2706
   2707		/*
   2708		 * When configured for internal LUN, there is only one channel,
   2709		 * channel number 0, else there will be one less than the number
   2710		 * of fc ports for this card.
   2711		 */
   2712		if (afu->internal_lun)
   2713			shost->max_channel = 0;
   2714		else
   2715			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
   2716
   2717		afu_reset(cfg);
   2718		scsi_scan_host(cfg->host);
   2719	}
   2720
   2721	return count;
   2722}
   2723
   2724/**
   2725 * ioctl_version_show() - presents the current ioctl version of the host
   2726 * @dev:	Generic device associated with the host.
   2727 * @attr:	Device attribute representing the ioctl version.
   2728 * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
   2729 *
   2730 * Return: The size of the ASCII string returned in @buf.
   2731 */
   2732static ssize_t ioctl_version_show(struct device *dev,
   2733				  struct device_attribute *attr, char *buf)
   2734{
   2735	ssize_t bytes = 0;
   2736
   2737	bytes = scnprintf(buf, PAGE_SIZE,
   2738			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
   2739	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
   2740			   "host: %u\n", HT_CXLFLASH_VERSION_0);
   2741
   2742	return bytes;
   2743}
   2744
   2745/**
   2746 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
   2747 * @port:	Desired port for status reporting.
   2748 * @cfg:	Internal structure associated with the host.
   2749 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2750 *
   2751 * Return: The size of the ASCII string returned in @buf or -EINVAL.
   2752 */
   2753static ssize_t cxlflash_show_port_lun_table(u32 port,
   2754					    struct cxlflash_cfg *cfg,
   2755					    char *buf)
   2756{
   2757	struct device *dev = &cfg->dev->dev;
   2758	__be64 __iomem *fc_port_luns;
   2759	int i;
   2760	ssize_t bytes = 0;
   2761
   2762	WARN_ON(port >= MAX_FC_PORTS);
   2763
   2764	if (port >= cfg->num_fc_ports) {
   2765		dev_info(dev, "%s: Port %d not supported on this card.\n",
   2766			__func__, port);
   2767		return -EINVAL;
   2768	}
   2769
   2770	fc_port_luns = get_fc_port_luns(cfg, port);
   2771
   2772	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
   2773		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
   2774				   "%03d: %016llx\n",
   2775				   i, readq_be(&fc_port_luns[i]));
   2776	return bytes;
   2777}
   2778
   2779/**
   2780 * port0_lun_table_show() - presents the current LUN table of port 0
   2781 * @dev:	Generic device associated with the host owning the port.
   2782 * @attr:	Device attribute representing the port.
   2783 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2784 *
   2785 * Return: The size of the ASCII string returned in @buf.
   2786 */
   2787static ssize_t port0_lun_table_show(struct device *dev,
   2788				    struct device_attribute *attr,
   2789				    char *buf)
   2790{
   2791	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2792
   2793	return cxlflash_show_port_lun_table(0, cfg, buf);
   2794}
   2795
   2796/**
   2797 * port1_lun_table_show() - presents the current LUN table of port 1
   2798 * @dev:	Generic device associated with the host owning the port.
   2799 * @attr:	Device attribute representing the port.
   2800 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2801 *
   2802 * Return: The size of the ASCII string returned in @buf.
   2803 */
   2804static ssize_t port1_lun_table_show(struct device *dev,
   2805				    struct device_attribute *attr,
   2806				    char *buf)
   2807{
   2808	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2809
   2810	return cxlflash_show_port_lun_table(1, cfg, buf);
   2811}
   2812
   2813/**
   2814 * port2_lun_table_show() - presents the current LUN table of port 2
   2815 * @dev:	Generic device associated with the host owning the port.
   2816 * @attr:	Device attribute representing the port.
   2817 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2818 *
   2819 * Return: The size of the ASCII string returned in @buf.
   2820 */
   2821static ssize_t port2_lun_table_show(struct device *dev,
   2822				    struct device_attribute *attr,
   2823				    char *buf)
   2824{
   2825	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2826
   2827	return cxlflash_show_port_lun_table(2, cfg, buf);
   2828}
   2829
   2830/**
   2831 * port3_lun_table_show() - presents the current LUN table of port 3
   2832 * @dev:	Generic device associated with the host owning the port.
   2833 * @attr:	Device attribute representing the port.
   2834 * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
   2835 *
   2836 * Return: The size of the ASCII string returned in @buf.
   2837 */
   2838static ssize_t port3_lun_table_show(struct device *dev,
   2839				    struct device_attribute *attr,
   2840				    char *buf)
   2841{
   2842	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2843
   2844	return cxlflash_show_port_lun_table(3, cfg, buf);
   2845}
   2846
   2847/**
   2848 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
   2849 * @dev:	Generic device associated with the host.
   2850 * @attr:	Device attribute representing the IRQ poll weight.
   2851 * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
   2852 *		weight in ASCII.
   2853 *
   2854 * An IRQ poll weight of 0 indicates polling is disabled.
   2855 *
   2856 * Return: The size of the ASCII string returned in @buf.
   2857 */
   2858static ssize_t irqpoll_weight_show(struct device *dev,
   2859				   struct device_attribute *attr, char *buf)
   2860{
   2861	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2862	struct afu *afu = cfg->afu;
   2863
   2864	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
   2865}
   2866
   2867/**
   2868 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
   2869 * @dev:	Generic device associated with the host.
   2870 * @attr:	Device attribute representing the IRQ poll weight.
   2871 * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
   2872 *		weight in ASCII.
   2873 * @count:	Length of data resizing in @buf.
   2874 *
   2875 * An IRQ poll weight of 0 indicates polling is disabled.
   2876 *
   2877 * Return: The size of the ASCII string returned in @buf.
   2878 */
   2879static ssize_t irqpoll_weight_store(struct device *dev,
   2880				    struct device_attribute *attr,
   2881				    const char *buf, size_t count)
   2882{
   2883	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2884	struct device *cfgdev = &cfg->dev->dev;
   2885	struct afu *afu = cfg->afu;
   2886	struct hwq *hwq;
   2887	u32 weight;
   2888	int rc, i;
   2889
   2890	rc = kstrtouint(buf, 10, &weight);
   2891	if (rc)
   2892		return -EINVAL;
   2893
   2894	if (weight > 256) {
   2895		dev_info(cfgdev,
   2896			 "Invalid IRQ poll weight. It must be 256 or less.\n");
   2897		return -EINVAL;
   2898	}
   2899
   2900	if (weight == afu->irqpoll_weight) {
   2901		dev_info(cfgdev,
   2902			 "Current IRQ poll weight has the same weight.\n");
   2903		return -EINVAL;
   2904	}
   2905
   2906	if (afu_is_irqpoll_enabled(afu)) {
   2907		for (i = 0; i < afu->num_hwqs; i++) {
   2908			hwq = get_hwq(afu, i);
   2909
   2910			irq_poll_disable(&hwq->irqpoll);
   2911		}
   2912	}
   2913
   2914	afu->irqpoll_weight = weight;
   2915
   2916	if (weight > 0) {
   2917		for (i = 0; i < afu->num_hwqs; i++) {
   2918			hwq = get_hwq(afu, i);
   2919
   2920			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
   2921		}
   2922	}
   2923
   2924	return count;
   2925}
   2926
   2927/**
   2928 * num_hwqs_show() - presents the number of hardware queues for the host
   2929 * @dev:	Generic device associated with the host.
   2930 * @attr:	Device attribute representing the number of hardware queues.
   2931 * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
   2932 *		queues in ASCII.
   2933 *
   2934 * Return: The size of the ASCII string returned in @buf.
   2935 */
   2936static ssize_t num_hwqs_show(struct device *dev,
   2937			     struct device_attribute *attr, char *buf)
   2938{
   2939	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2940	struct afu *afu = cfg->afu;
   2941
   2942	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
   2943}
   2944
   2945/**
   2946 * num_hwqs_store() - sets the number of hardware queues for the host
   2947 * @dev:	Generic device associated with the host.
   2948 * @attr:	Device attribute representing the number of hardware queues.
   2949 * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
   2950 *		queues in ASCII.
   2951 * @count:	Length of data resizing in @buf.
   2952 *
   2953 * n > 0: num_hwqs = n
   2954 * n = 0: num_hwqs = num_online_cpus()
   2955 * n < 0: num_online_cpus() / abs(n)
   2956 *
   2957 * Return: The size of the ASCII string returned in @buf.
   2958 */
   2959static ssize_t num_hwqs_store(struct device *dev,
   2960			      struct device_attribute *attr,
   2961			      const char *buf, size_t count)
   2962{
   2963	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   2964	struct afu *afu = cfg->afu;
   2965	int rc;
   2966	int nhwqs, num_hwqs;
   2967
   2968	rc = kstrtoint(buf, 10, &nhwqs);
   2969	if (rc)
   2970		return -EINVAL;
   2971
   2972	if (nhwqs >= 1)
   2973		num_hwqs = nhwqs;
   2974	else if (nhwqs == 0)
   2975		num_hwqs = num_online_cpus();
   2976	else
   2977		num_hwqs = num_online_cpus() / abs(nhwqs);
   2978
   2979	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
   2980	WARN_ON_ONCE(afu->desired_hwqs == 0);
   2981
   2982retry:
   2983	switch (cfg->state) {
   2984	case STATE_NORMAL:
   2985		cfg->state = STATE_RESET;
   2986		drain_ioctls(cfg);
   2987		cxlflash_mark_contexts_error(cfg);
   2988		rc = afu_reset(cfg);
   2989		if (rc)
   2990			cfg->state = STATE_FAILTERM;
   2991		else
   2992			cfg->state = STATE_NORMAL;
   2993		wake_up_all(&cfg->reset_waitq);
   2994		break;
   2995	case STATE_RESET:
   2996		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
   2997		if (cfg->state == STATE_NORMAL)
   2998			goto retry;
   2999		fallthrough;
   3000	default:
   3001		/* Ideally should not happen */
   3002		dev_err(dev, "%s: Device is not ready, state=%d\n",
   3003			__func__, cfg->state);
   3004		break;
   3005	}
   3006
   3007	return count;
   3008}
   3009
   3010static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
   3011
   3012/**
   3013 * hwq_mode_show() - presents the HWQ steering mode for the host
   3014 * @dev:	Generic device associated with the host.
   3015 * @attr:	Device attribute representing the HWQ steering mode.
   3016 * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
   3017 *		as a character string.
   3018 *
   3019 * Return: The size of the ASCII string returned in @buf.
   3020 */
   3021static ssize_t hwq_mode_show(struct device *dev,
   3022			     struct device_attribute *attr, char *buf)
   3023{
   3024	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
   3025	struct afu *afu = cfg->afu;
   3026
   3027	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
   3028}
   3029
   3030/**
   3031 * hwq_mode_store() - sets the HWQ steering mode for the host
   3032 * @dev:	Generic device associated with the host.
   3033 * @attr:	Device attribute representing the HWQ steering mode.
   3034 * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
   3035 *		as a character string.
   3036 * @count:	Length of data resizing in @buf.
   3037 *
   3038 * rr = Round-Robin
   3039 * tag = Block MQ Tagging
   3040 * cpu = CPU Affinity
   3041 *
   3042 * Return: The size of the ASCII string returned in @buf.
   3043 */
   3044static ssize_t hwq_mode_store(struct device *dev,
   3045			      struct device_attribute *attr,
   3046			      const char *buf, size_t count)
   3047{
   3048	struct Scsi_Host *shost = class_to_shost(dev);
   3049	struct cxlflash_cfg *cfg = shost_priv(shost);
   3050	struct device *cfgdev = &cfg->dev->dev;
   3051	struct afu *afu = cfg->afu;
   3052	int i;
   3053	u32 mode = MAX_HWQ_MODE;
   3054
   3055	for (i = 0; i < MAX_HWQ_MODE; i++) {
   3056		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
   3057			mode = i;
   3058			break;
   3059		}
   3060	}
   3061
   3062	if (mode >= MAX_HWQ_MODE) {
   3063		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
   3064		return -EINVAL;
   3065	}
   3066
   3067	afu->hwq_mode = mode;
   3068
   3069	return count;
   3070}
   3071
   3072/**
   3073 * mode_show() - presents the current mode of the device
   3074 * @dev:	Generic device associated with the device.
   3075 * @attr:	Device attribute representing the device mode.
   3076 * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
   3077 *
   3078 * Return: The size of the ASCII string returned in @buf.
   3079 */
   3080static ssize_t mode_show(struct device *dev,
   3081			 struct device_attribute *attr, char *buf)
   3082{
   3083	struct scsi_device *sdev = to_scsi_device(dev);
   3084
   3085	return scnprintf(buf, PAGE_SIZE, "%s\n",
   3086			 sdev->hostdata ? "superpipe" : "legacy");
   3087}
   3088
   3089/*
   3090 * Host attributes
   3091 */
   3092static DEVICE_ATTR_RO(port0);
   3093static DEVICE_ATTR_RO(port1);
   3094static DEVICE_ATTR_RO(port2);
   3095static DEVICE_ATTR_RO(port3);
   3096static DEVICE_ATTR_RW(lun_mode);
   3097static DEVICE_ATTR_RO(ioctl_version);
   3098static DEVICE_ATTR_RO(port0_lun_table);
   3099static DEVICE_ATTR_RO(port1_lun_table);
   3100static DEVICE_ATTR_RO(port2_lun_table);
   3101static DEVICE_ATTR_RO(port3_lun_table);
   3102static DEVICE_ATTR_RW(irqpoll_weight);
   3103static DEVICE_ATTR_RW(num_hwqs);
   3104static DEVICE_ATTR_RW(hwq_mode);
   3105
   3106static struct attribute *cxlflash_host_attrs[] = {
   3107	&dev_attr_port0.attr,
   3108	&dev_attr_port1.attr,
   3109	&dev_attr_port2.attr,
   3110	&dev_attr_port3.attr,
   3111	&dev_attr_lun_mode.attr,
   3112	&dev_attr_ioctl_version.attr,
   3113	&dev_attr_port0_lun_table.attr,
   3114	&dev_attr_port1_lun_table.attr,
   3115	&dev_attr_port2_lun_table.attr,
   3116	&dev_attr_port3_lun_table.attr,
   3117	&dev_attr_irqpoll_weight.attr,
   3118	&dev_attr_num_hwqs.attr,
   3119	&dev_attr_hwq_mode.attr,
   3120	NULL
   3121};
   3122
   3123ATTRIBUTE_GROUPS(cxlflash_host);
   3124
   3125/*
   3126 * Device attributes
   3127 */
   3128static DEVICE_ATTR_RO(mode);
   3129
   3130static struct attribute *cxlflash_dev_attrs[] = {
   3131	&dev_attr_mode.attr,
   3132	NULL
   3133};
   3134
   3135ATTRIBUTE_GROUPS(cxlflash_dev);
   3136
   3137/*
   3138 * Host template
   3139 */
   3140static struct scsi_host_template driver_template = {
   3141	.module = THIS_MODULE,
   3142	.name = CXLFLASH_ADAPTER_NAME,
   3143	.info = cxlflash_driver_info,
   3144	.ioctl = cxlflash_ioctl,
   3145	.proc_name = CXLFLASH_NAME,
   3146	.queuecommand = cxlflash_queuecommand,
   3147	.eh_abort_handler = cxlflash_eh_abort_handler,
   3148	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
   3149	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
   3150	.change_queue_depth = cxlflash_change_queue_depth,
   3151	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
   3152	.can_queue = CXLFLASH_MAX_CMDS,
   3153	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
   3154	.this_id = -1,
   3155	.sg_tablesize = 1,	/* No scatter gather support */
   3156	.max_sectors = CXLFLASH_MAX_SECTORS,
   3157	.shost_groups = cxlflash_host_groups,
   3158	.sdev_groups = cxlflash_dev_groups,
   3159};
   3160
   3161/*
   3162 * Device dependent values
   3163 */
   3164static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
   3165					CXLFLASH_WWPN_VPD_REQUIRED };
   3166static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
   3167					CXLFLASH_NOTIFY_SHUTDOWN };
   3168static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
   3169					(CXLFLASH_NOTIFY_SHUTDOWN |
   3170					CXLFLASH_OCXL_DEV) };
   3171
   3172/*
   3173 * PCI device binding table
   3174 */
   3175static struct pci_device_id cxlflash_pci_table[] = {
   3176	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
   3177	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
   3178	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
   3179	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
   3180	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
   3181	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
   3182	{}
   3183};
   3184
   3185MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
   3186
   3187/**
   3188 * cxlflash_worker_thread() - work thread handler for the AFU
   3189 * @work:	Work structure contained within cxlflash associated with host.
   3190 *
   3191 * Handles the following events:
   3192 * - Link reset which cannot be performed on interrupt context due to
   3193 * blocking up to a few seconds
   3194 * - Rescan the host
   3195 */
   3196static void cxlflash_worker_thread(struct work_struct *work)
   3197{
   3198	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
   3199						work_q);
   3200	struct afu *afu = cfg->afu;
   3201	struct device *dev = &cfg->dev->dev;
   3202	__be64 __iomem *fc_port_regs;
   3203	int port;
   3204	ulong lock_flags;
   3205
   3206	/* Avoid MMIO if the device has failed */
   3207
   3208	if (cfg->state != STATE_NORMAL)
   3209		return;
   3210
   3211	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
   3212
   3213	if (cfg->lr_state == LINK_RESET_REQUIRED) {
   3214		port = cfg->lr_port;
   3215		if (port < 0)
   3216			dev_err(dev, "%s: invalid port index %d\n",
   3217				__func__, port);
   3218		else {
   3219			spin_unlock_irqrestore(cfg->host->host_lock,
   3220					       lock_flags);
   3221
   3222			/* The reset can block... */
   3223			fc_port_regs = get_fc_port_regs(cfg, port);
   3224			afu_link_reset(afu, port, fc_port_regs);
   3225			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
   3226		}
   3227
   3228		cfg->lr_state = LINK_RESET_COMPLETE;
   3229	}
   3230
   3231	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
   3232
   3233	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
   3234		scsi_scan_host(cfg->host);
   3235}
   3236
   3237/**
   3238 * cxlflash_chr_open() - character device open handler
   3239 * @inode:	Device inode associated with this character device.
   3240 * @file:	File pointer for this device.
   3241 *
   3242 * Only users with admin privileges are allowed to open the character device.
   3243 *
   3244 * Return: 0 on success, -errno on failure
   3245 */
   3246static int cxlflash_chr_open(struct inode *inode, struct file *file)
   3247{
   3248	struct cxlflash_cfg *cfg;
   3249
   3250	if (!capable(CAP_SYS_ADMIN))
   3251		return -EACCES;
   3252
   3253	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
   3254	file->private_data = cfg;
   3255
   3256	return 0;
   3257}
   3258
   3259/**
   3260 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
   3261 * @cmd:        The host ioctl command to decode.
   3262 *
   3263 * Return: A string identifying the decoded host ioctl.
   3264 */
   3265static char *decode_hioctl(unsigned int cmd)
   3266{
   3267	switch (cmd) {
   3268	case HT_CXLFLASH_LUN_PROVISION:
   3269		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
   3270	}
   3271
   3272	return "UNKNOWN";
   3273}
   3274
   3275/**
   3276 * cxlflash_lun_provision() - host LUN provisioning handler
   3277 * @cfg:	Internal structure associated with the host.
   3278 * @lunprov:	Kernel copy of userspace ioctl data structure.
   3279 *
   3280 * Return: 0 on success, -errno on failure
   3281 */
   3282static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
   3283				  struct ht_cxlflash_lun_provision *lunprov)
   3284{
   3285	struct afu *afu = cfg->afu;
   3286	struct device *dev = &cfg->dev->dev;
   3287	struct sisl_ioarcb rcb;
   3288	struct sisl_ioasa asa;
   3289	__be64 __iomem *fc_port_regs;
   3290	u16 port = lunprov->port;
   3291	u16 scmd = lunprov->hdr.subcmd;
   3292	u16 type;
   3293	u64 reg;
   3294	u64 size;
   3295	u64 lun_id;
   3296	int rc = 0;
   3297
   3298	if (!afu_is_lun_provision(afu)) {
   3299		rc = -ENOTSUPP;
   3300		goto out;
   3301	}
   3302
   3303	if (port >= cfg->num_fc_ports) {
   3304		rc = -EINVAL;
   3305		goto out;
   3306	}
   3307
   3308	switch (scmd) {
   3309	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
   3310		type = SISL_AFU_LUN_PROVISION_CREATE;
   3311		size = lunprov->size;
   3312		lun_id = 0;
   3313		break;
   3314	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
   3315		type = SISL_AFU_LUN_PROVISION_DELETE;
   3316		size = 0;
   3317		lun_id = lunprov->lun_id;
   3318		break;
   3319	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
   3320		fc_port_regs = get_fc_port_regs(cfg, port);
   3321
   3322		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
   3323		lunprov->max_num_luns = reg;
   3324		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
   3325		lunprov->cur_num_luns = reg;
   3326		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
   3327		lunprov->max_cap_port = reg;
   3328		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
   3329		lunprov->cur_cap_port = reg;
   3330
   3331		goto out;
   3332	default:
   3333		rc = -EINVAL;
   3334		goto out;
   3335	}
   3336
   3337	memset(&rcb, 0, sizeof(rcb));
   3338	memset(&asa, 0, sizeof(asa));
   3339	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
   3340	rcb.lun_id = lun_id;
   3341	rcb.msi = SISL_MSI_RRQ_UPDATED;
   3342	rcb.timeout = MC_LUN_PROV_TIMEOUT;
   3343	rcb.ioasa = &asa;
   3344
   3345	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
   3346	rcb.cdb[1] = type;
   3347	rcb.cdb[2] = port;
   3348	put_unaligned_be64(size, &rcb.cdb[8]);
   3349
   3350	rc = send_afu_cmd(afu, &rcb);
   3351	if (rc) {
   3352		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
   3353			__func__, rc, asa.ioasc, asa.afu_extra);
   3354		goto out;
   3355	}
   3356
   3357	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
   3358		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
   3359		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
   3360	}
   3361out:
   3362	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   3363	return rc;
   3364}
   3365
   3366/**
   3367 * cxlflash_afu_debug() - host AFU debug handler
   3368 * @cfg:	Internal structure associated with the host.
   3369 * @afu_dbg:	Kernel copy of userspace ioctl data structure.
   3370 *
   3371 * For debug requests requiring a data buffer, always provide an aligned
   3372 * (cache line) buffer to the AFU to appease any alignment requirements.
   3373 *
   3374 * Return: 0 on success, -errno on failure
   3375 */
   3376static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
   3377			      struct ht_cxlflash_afu_debug *afu_dbg)
   3378{
   3379	struct afu *afu = cfg->afu;
   3380	struct device *dev = &cfg->dev->dev;
   3381	struct sisl_ioarcb rcb;
   3382	struct sisl_ioasa asa;
   3383	char *buf = NULL;
   3384	char *kbuf = NULL;
   3385	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
   3386	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
   3387	u32 ulen = afu_dbg->data_len;
   3388	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
   3389	int rc = 0;
   3390
   3391	if (!afu_is_afu_debug(afu)) {
   3392		rc = -ENOTSUPP;
   3393		goto out;
   3394	}
   3395
   3396	if (ulen) {
   3397		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
   3398
   3399		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
   3400			rc = -EINVAL;
   3401			goto out;
   3402		}
   3403
   3404		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
   3405		if (unlikely(!buf)) {
   3406			rc = -ENOMEM;
   3407			goto out;
   3408		}
   3409
   3410		kbuf = PTR_ALIGN(buf, cache_line_size());
   3411
   3412		if (is_write) {
   3413			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
   3414
   3415			if (copy_from_user(kbuf, ubuf, ulen)) {
   3416				rc = -EFAULT;
   3417				goto out;
   3418			}
   3419		}
   3420	}
   3421
   3422	memset(&rcb, 0, sizeof(rcb));
   3423	memset(&asa, 0, sizeof(asa));
   3424
   3425	rcb.req_flags = req_flags;
   3426	rcb.msi = SISL_MSI_RRQ_UPDATED;
   3427	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
   3428	rcb.ioasa = &asa;
   3429
   3430	if (ulen) {
   3431		rcb.data_len = ulen;
   3432		rcb.data_ea = (uintptr_t)kbuf;
   3433	}
   3434
   3435	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
   3436	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
   3437	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
   3438
   3439	rc = send_afu_cmd(afu, &rcb);
   3440	if (rc) {
   3441		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
   3442			__func__, rc, asa.ioasc, asa.afu_extra);
   3443		goto out;
   3444	}
   3445
   3446	if (ulen && !is_write) {
   3447		if (copy_to_user(ubuf, kbuf, ulen))
   3448			rc = -EFAULT;
   3449	}
   3450out:
   3451	kfree(buf);
   3452	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   3453	return rc;
   3454}
   3455
   3456/**
   3457 * cxlflash_chr_ioctl() - character device IOCTL handler
   3458 * @file:	File pointer for this device.
   3459 * @cmd:	IOCTL command.
   3460 * @arg:	Userspace ioctl data structure.
   3461 *
   3462 * A read/write semaphore is used to implement a 'drain' of currently
   3463 * running ioctls. The read semaphore is taken at the beginning of each
   3464 * ioctl thread and released upon concluding execution. Additionally the
   3465 * semaphore should be released and then reacquired in any ioctl execution
   3466 * path which will wait for an event to occur that is outside the scope of
   3467 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
   3468 * a thread simply needs to acquire the write semaphore.
   3469 *
   3470 * Return: 0 on success, -errno on failure
   3471 */
   3472static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
   3473			       unsigned long arg)
   3474{
   3475	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
   3476
   3477	struct cxlflash_cfg *cfg = file->private_data;
   3478	struct device *dev = &cfg->dev->dev;
   3479	char buf[sizeof(union cxlflash_ht_ioctls)];
   3480	void __user *uarg = (void __user *)arg;
   3481	struct ht_cxlflash_hdr *hdr;
   3482	size_t size = 0;
   3483	bool known_ioctl = false;
   3484	int idx = 0;
   3485	int rc = 0;
   3486	hioctl do_ioctl = NULL;
   3487
   3488	static const struct {
   3489		size_t size;
   3490		hioctl ioctl;
   3491	} ioctl_tbl[] = {	/* NOTE: order matters here */
   3492	{ sizeof(struct ht_cxlflash_lun_provision),
   3493		(hioctl)cxlflash_lun_provision },
   3494	{ sizeof(struct ht_cxlflash_afu_debug),
   3495		(hioctl)cxlflash_afu_debug },
   3496	};
   3497
   3498	/* Hold read semaphore so we can drain if needed */
   3499	down_read(&cfg->ioctl_rwsem);
   3500
   3501	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
   3502		__func__, cmd, idx, sizeof(ioctl_tbl));
   3503
   3504	switch (cmd) {
   3505	case HT_CXLFLASH_LUN_PROVISION:
   3506	case HT_CXLFLASH_AFU_DEBUG:
   3507		known_ioctl = true;
   3508		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
   3509		size = ioctl_tbl[idx].size;
   3510		do_ioctl = ioctl_tbl[idx].ioctl;
   3511
   3512		if (likely(do_ioctl))
   3513			break;
   3514
   3515		fallthrough;
   3516	default:
   3517		rc = -EINVAL;
   3518		goto out;
   3519	}
   3520
   3521	if (unlikely(copy_from_user(&buf, uarg, size))) {
   3522		dev_err(dev, "%s: copy_from_user() fail "
   3523			"size=%lu cmd=%d (%s) uarg=%p\n",
   3524			__func__, size, cmd, decode_hioctl(cmd), uarg);
   3525		rc = -EFAULT;
   3526		goto out;
   3527	}
   3528
   3529	hdr = (struct ht_cxlflash_hdr *)&buf;
   3530	if (hdr->version != HT_CXLFLASH_VERSION_0) {
   3531		dev_dbg(dev, "%s: Version %u not supported for %s\n",
   3532			__func__, hdr->version, decode_hioctl(cmd));
   3533		rc = -EINVAL;
   3534		goto out;
   3535	}
   3536
   3537	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
   3538		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
   3539		rc = -EINVAL;
   3540		goto out;
   3541	}
   3542
   3543	rc = do_ioctl(cfg, (void *)&buf);
   3544	if (likely(!rc))
   3545		if (unlikely(copy_to_user(uarg, &buf, size))) {
   3546			dev_err(dev, "%s: copy_to_user() fail "
   3547				"size=%lu cmd=%d (%s) uarg=%p\n",
   3548				__func__, size, cmd, decode_hioctl(cmd), uarg);
   3549			rc = -EFAULT;
   3550		}
   3551
   3552	/* fall through to exit */
   3553
   3554out:
   3555	up_read(&cfg->ioctl_rwsem);
   3556	if (unlikely(rc && known_ioctl))
   3557		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
   3558			__func__, decode_hioctl(cmd), cmd, rc);
   3559	else
   3560		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
   3561			__func__, decode_hioctl(cmd), cmd, rc);
   3562	return rc;
   3563}
   3564
   3565/*
   3566 * Character device file operations
   3567 */
   3568static const struct file_operations cxlflash_chr_fops = {
   3569	.owner          = THIS_MODULE,
   3570	.open           = cxlflash_chr_open,
   3571	.unlocked_ioctl	= cxlflash_chr_ioctl,
   3572	.compat_ioctl	= compat_ptr_ioctl,
   3573};
   3574
   3575/**
   3576 * init_chrdev() - initialize the character device for the host
   3577 * @cfg:	Internal structure associated with the host.
   3578 *
   3579 * Return: 0 on success, -errno on failure
   3580 */
   3581static int init_chrdev(struct cxlflash_cfg *cfg)
   3582{
   3583	struct device *dev = &cfg->dev->dev;
   3584	struct device *char_dev;
   3585	dev_t devno;
   3586	int minor;
   3587	int rc = 0;
   3588
   3589	minor = cxlflash_get_minor();
   3590	if (unlikely(minor < 0)) {
   3591		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
   3592		rc = -ENOSPC;
   3593		goto out;
   3594	}
   3595
   3596	devno = MKDEV(cxlflash_major, minor);
   3597	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
   3598
   3599	rc = cdev_add(&cfg->cdev, devno, 1);
   3600	if (rc) {
   3601		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
   3602		goto err1;
   3603	}
   3604
   3605	char_dev = device_create(cxlflash_class, NULL, devno,
   3606				 NULL, "cxlflash%d", minor);
   3607	if (IS_ERR(char_dev)) {
   3608		rc = PTR_ERR(char_dev);
   3609		dev_err(dev, "%s: device_create failed rc=%d\n",
   3610			__func__, rc);
   3611		goto err2;
   3612	}
   3613
   3614	cfg->chardev = char_dev;
   3615out:
   3616	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   3617	return rc;
   3618err2:
   3619	cdev_del(&cfg->cdev);
   3620err1:
   3621	cxlflash_put_minor(minor);
   3622	goto out;
   3623}
   3624
   3625/**
   3626 * cxlflash_probe() - PCI entry point to add host
   3627 * @pdev:	PCI device associated with the host.
   3628 * @dev_id:	PCI device id associated with device.
   3629 *
   3630 * The device will initially start out in a 'probing' state and
   3631 * transition to the 'normal' state at the end of a successful
   3632 * probe. Should an EEH event occur during probe, the notification
   3633 * thread (error_detected()) will wait until the probe handler
   3634 * is nearly complete. At that time, the device will be moved to
   3635 * a 'probed' state and the EEH thread woken up to drive the slot
   3636 * reset and recovery (device moves to 'normal' state). Meanwhile,
   3637 * the probe will be allowed to exit successfully.
   3638 *
   3639 * Return: 0 on success, -errno on failure
   3640 */
   3641static int cxlflash_probe(struct pci_dev *pdev,
   3642			  const struct pci_device_id *dev_id)
   3643{
   3644	struct Scsi_Host *host;
   3645	struct cxlflash_cfg *cfg = NULL;
   3646	struct device *dev = &pdev->dev;
   3647	struct dev_dependent_vals *ddv;
   3648	int rc = 0;
   3649	int k;
   3650
   3651	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
   3652		__func__, pdev->irq);
   3653
   3654	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
   3655	driver_template.max_sectors = ddv->max_sectors;
   3656
   3657	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
   3658	if (!host) {
   3659		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
   3660		rc = -ENOMEM;
   3661		goto out;
   3662	}
   3663
   3664	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
   3665	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
   3666	host->unique_id = host->host_no;
   3667	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
   3668
   3669	cfg = shost_priv(host);
   3670	cfg->state = STATE_PROBING;
   3671	cfg->host = host;
   3672	rc = alloc_mem(cfg);
   3673	if (rc) {
   3674		dev_err(dev, "%s: alloc_mem failed\n", __func__);
   3675		rc = -ENOMEM;
   3676		scsi_host_put(cfg->host);
   3677		goto out;
   3678	}
   3679
   3680	cfg->init_state = INIT_STATE_NONE;
   3681	cfg->dev = pdev;
   3682	cfg->cxl_fops = cxlflash_cxl_fops;
   3683	cfg->ops = cxlflash_assign_ops(ddv);
   3684	WARN_ON_ONCE(!cfg->ops);
   3685
   3686	/*
   3687	 * Promoted LUNs move to the top of the LUN table. The rest stay on
   3688	 * the bottom half. The bottom half grows from the end (index = 255),
   3689	 * whereas the top half grows from the beginning (index = 0).
   3690	 *
   3691	 * Initialize the last LUN index for all possible ports.
   3692	 */
   3693	cfg->promote_lun_index = 0;
   3694
   3695	for (k = 0; k < MAX_FC_PORTS; k++)
   3696		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
   3697
   3698	cfg->dev_id = (struct pci_device_id *)dev_id;
   3699
   3700	init_waitqueue_head(&cfg->tmf_waitq);
   3701	init_waitqueue_head(&cfg->reset_waitq);
   3702
   3703	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
   3704	cfg->lr_state = LINK_RESET_INVALID;
   3705	cfg->lr_port = -1;
   3706	spin_lock_init(&cfg->tmf_slock);
   3707	mutex_init(&cfg->ctx_tbl_list_mutex);
   3708	mutex_init(&cfg->ctx_recovery_mutex);
   3709	init_rwsem(&cfg->ioctl_rwsem);
   3710	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
   3711	INIT_LIST_HEAD(&cfg->lluns);
   3712
   3713	pci_set_drvdata(pdev, cfg);
   3714
   3715	rc = init_pci(cfg);
   3716	if (rc) {
   3717		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
   3718		goto out_remove;
   3719	}
   3720	cfg->init_state = INIT_STATE_PCI;
   3721
   3722	cfg->afu_cookie = cfg->ops->create_afu(pdev);
   3723	if (unlikely(!cfg->afu_cookie)) {
   3724		dev_err(dev, "%s: create_afu failed\n", __func__);
   3725		rc = -ENOMEM;
   3726		goto out_remove;
   3727	}
   3728
   3729	rc = init_afu(cfg);
   3730	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
   3731		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
   3732		goto out_remove;
   3733	}
   3734	cfg->init_state = INIT_STATE_AFU;
   3735
   3736	rc = init_scsi(cfg);
   3737	if (rc) {
   3738		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
   3739		goto out_remove;
   3740	}
   3741	cfg->init_state = INIT_STATE_SCSI;
   3742
   3743	rc = init_chrdev(cfg);
   3744	if (rc) {
   3745		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
   3746		goto out_remove;
   3747	}
   3748	cfg->init_state = INIT_STATE_CDEV;
   3749
   3750	if (wq_has_sleeper(&cfg->reset_waitq)) {
   3751		cfg->state = STATE_PROBED;
   3752		wake_up_all(&cfg->reset_waitq);
   3753	} else
   3754		cfg->state = STATE_NORMAL;
   3755out:
   3756	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   3757	return rc;
   3758
   3759out_remove:
   3760	cfg->state = STATE_PROBED;
   3761	cxlflash_remove(pdev);
   3762	goto out;
   3763}
   3764
   3765/**
   3766 * cxlflash_pci_error_detected() - called when a PCI error is detected
   3767 * @pdev:	PCI device struct.
   3768 * @state:	PCI channel state.
   3769 *
   3770 * When an EEH occurs during an active reset, wait until the reset is
   3771 * complete and then take action based upon the device state.
   3772 *
   3773 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
   3774 */
   3775static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
   3776						    pci_channel_state_t state)
   3777{
   3778	int rc = 0;
   3779	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
   3780	struct device *dev = &cfg->dev->dev;
   3781
   3782	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
   3783
   3784	switch (state) {
   3785	case pci_channel_io_frozen:
   3786		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
   3787					     cfg->state != STATE_PROBING);
   3788		if (cfg->state == STATE_FAILTERM)
   3789			return PCI_ERS_RESULT_DISCONNECT;
   3790
   3791		cfg->state = STATE_RESET;
   3792		scsi_block_requests(cfg->host);
   3793		drain_ioctls(cfg);
   3794		rc = cxlflash_mark_contexts_error(cfg);
   3795		if (unlikely(rc))
   3796			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
   3797				__func__, rc);
   3798		term_afu(cfg);
   3799		return PCI_ERS_RESULT_NEED_RESET;
   3800	case pci_channel_io_perm_failure:
   3801		cfg->state = STATE_FAILTERM;
   3802		wake_up_all(&cfg->reset_waitq);
   3803		scsi_unblock_requests(cfg->host);
   3804		return PCI_ERS_RESULT_DISCONNECT;
   3805	default:
   3806		break;
   3807	}
   3808	return PCI_ERS_RESULT_NEED_RESET;
   3809}
   3810
   3811/**
   3812 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
   3813 * @pdev:	PCI device struct.
   3814 *
   3815 * This routine is called by the pci error recovery code after the PCI
   3816 * slot has been reset, just before we should resume normal operations.
   3817 *
   3818 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
   3819 */
   3820static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
   3821{
   3822	int rc = 0;
   3823	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
   3824	struct device *dev = &cfg->dev->dev;
   3825
   3826	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
   3827
   3828	rc = init_afu(cfg);
   3829	if (unlikely(rc)) {
   3830		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
   3831		return PCI_ERS_RESULT_DISCONNECT;
   3832	}
   3833
   3834	return PCI_ERS_RESULT_RECOVERED;
   3835}
   3836
   3837/**
   3838 * cxlflash_pci_resume() - called when normal operation can resume
   3839 * @pdev:	PCI device struct
   3840 */
   3841static void cxlflash_pci_resume(struct pci_dev *pdev)
   3842{
   3843	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
   3844	struct device *dev = &cfg->dev->dev;
   3845
   3846	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
   3847
   3848	cfg->state = STATE_NORMAL;
   3849	wake_up_all(&cfg->reset_waitq);
   3850	scsi_unblock_requests(cfg->host);
   3851}
   3852
   3853/**
   3854 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
   3855 * @dev:	Character device.
   3856 * @mode:	Mode that can be used to verify access.
   3857 *
   3858 * Return: Allocated string describing the devtmpfs structure.
   3859 */
   3860static char *cxlflash_devnode(struct device *dev, umode_t *mode)
   3861{
   3862	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
   3863}
   3864
   3865/**
   3866 * cxlflash_class_init() - create character device class
   3867 *
   3868 * Return: 0 on success, -errno on failure
   3869 */
   3870static int cxlflash_class_init(void)
   3871{
   3872	dev_t devno;
   3873	int rc = 0;
   3874
   3875	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
   3876	if (unlikely(rc)) {
   3877		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
   3878		goto out;
   3879	}
   3880
   3881	cxlflash_major = MAJOR(devno);
   3882
   3883	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
   3884	if (IS_ERR(cxlflash_class)) {
   3885		rc = PTR_ERR(cxlflash_class);
   3886		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
   3887		goto err;
   3888	}
   3889
   3890	cxlflash_class->devnode = cxlflash_devnode;
   3891out:
   3892	pr_debug("%s: returning rc=%d\n", __func__, rc);
   3893	return rc;
   3894err:
   3895	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
   3896	goto out;
   3897}
   3898
   3899/**
   3900 * cxlflash_class_exit() - destroy character device class
   3901 */
   3902static void cxlflash_class_exit(void)
   3903{
   3904	dev_t devno = MKDEV(cxlflash_major, 0);
   3905
   3906	class_destroy(cxlflash_class);
   3907	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
   3908}
   3909
   3910static const struct pci_error_handlers cxlflash_err_handler = {
   3911	.error_detected = cxlflash_pci_error_detected,
   3912	.slot_reset = cxlflash_pci_slot_reset,
   3913	.resume = cxlflash_pci_resume,
   3914};
   3915
   3916/*
   3917 * PCI device structure
   3918 */
   3919static struct pci_driver cxlflash_driver = {
   3920	.name = CXLFLASH_NAME,
   3921	.id_table = cxlflash_pci_table,
   3922	.probe = cxlflash_probe,
   3923	.remove = cxlflash_remove,
   3924	.shutdown = cxlflash_remove,
   3925	.err_handler = &cxlflash_err_handler,
   3926};
   3927
   3928/**
   3929 * init_cxlflash() - module entry point
   3930 *
   3931 * Return: 0 on success, -errno on failure
   3932 */
   3933static int __init init_cxlflash(void)
   3934{
   3935	int rc;
   3936
   3937	check_sizes();
   3938	cxlflash_list_init();
   3939	rc = cxlflash_class_init();
   3940	if (unlikely(rc))
   3941		goto out;
   3942
   3943	rc = pci_register_driver(&cxlflash_driver);
   3944	if (unlikely(rc))
   3945		goto err;
   3946out:
   3947	pr_debug("%s: returning rc=%d\n", __func__, rc);
   3948	return rc;
   3949err:
   3950	cxlflash_class_exit();
   3951	goto out;
   3952}
   3953
   3954/**
   3955 * exit_cxlflash() - module exit point
   3956 */
   3957static void __exit exit_cxlflash(void)
   3958{
   3959	cxlflash_term_global_luns();
   3960	cxlflash_free_errpage();
   3961
   3962	pci_unregister_driver(&cxlflash_driver);
   3963	cxlflash_class_exit();
   3964}
   3965
   3966module_init(init_cxlflash);
   3967module_exit(exit_cxlflash);