cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vlun.c (37003B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * CXL Flash Device Driver
      4 *
      5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
      6 *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
      7 *
      8 * Copyright (C) 2015 IBM Corporation
      9 */
     10
     11#include <linux/interrupt.h>
     12#include <linux/pci.h>
     13#include <linux/syscalls.h>
     14#include <asm/unaligned.h>
     15#include <asm/bitsperlong.h>
     16
     17#include <scsi/scsi_cmnd.h>
     18#include <scsi/scsi_host.h>
     19#include <uapi/scsi/cxlflash_ioctl.h>
     20
     21#include "sislite.h"
     22#include "common.h"
     23#include "vlun.h"
     24#include "superpipe.h"
     25
     26/**
     27 * marshal_virt_to_resize() - translate uvirtual to resize structure
     28 * @virt:	Source structure from which to translate/copy.
     29 * @resize:	Destination structure for the translate/copy.
     30 */
     31static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt,
     32				   struct dk_cxlflash_resize *resize)
     33{
     34	resize->hdr = virt->hdr;
     35	resize->context_id = virt->context_id;
     36	resize->rsrc_handle = virt->rsrc_handle;
     37	resize->req_size = virt->lun_size;
     38	resize->last_lba = virt->last_lba;
     39}
     40
     41/**
     42 * marshal_clone_to_rele() - translate clone to release structure
     43 * @clone:	Source structure from which to translate/copy.
     44 * @release:	Destination structure for the translate/copy.
     45 */
     46static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone,
     47				  struct dk_cxlflash_release *release)
     48{
     49	release->hdr = clone->hdr;
     50	release->context_id = clone->context_id_dst;
     51}
     52
     53/**
     54 * ba_init() - initializes a block allocator
     55 * @ba_lun:	Block allocator to initialize.
     56 *
     57 * Return: 0 on success, -errno on failure
     58 */
     59static int ba_init(struct ba_lun *ba_lun)
     60{
     61	struct ba_lun_info *bali = NULL;
     62	int lun_size_au = 0, i = 0;
     63	int last_word_underflow = 0;
     64	u64 *lam;
     65
     66	pr_debug("%s: Initializing LUN: lun_id=%016llx "
     67		 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n",
     68		__func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size);
     69
     70	/* Calculate bit map size */
     71	lun_size_au = ba_lun->lsize / ba_lun->au_size;
     72	if (lun_size_au == 0) {
     73		pr_debug("%s: Requested LUN size of 0!\n", __func__);
     74		return -EINVAL;
     75	}
     76
     77	/* Allocate lun information container */
     78	bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL);
     79	if (unlikely(!bali)) {
     80		pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n",
     81		       __func__, ba_lun->lun_id);
     82		return -ENOMEM;
     83	}
     84
     85	bali->total_aus = lun_size_au;
     86	bali->lun_bmap_size = lun_size_au / BITS_PER_LONG;
     87
     88	if (lun_size_au % BITS_PER_LONG)
     89		bali->lun_bmap_size++;
     90
     91	/* Allocate bitmap space */
     92	bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)),
     93				      GFP_KERNEL);
     94	if (unlikely(!bali->lun_alloc_map)) {
     95		pr_err("%s: Failed to allocate lun allocation map: "
     96		       "lun_id=%016llx\n", __func__, ba_lun->lun_id);
     97		kfree(bali);
     98		return -ENOMEM;
     99	}
    100
    101	/* Initialize the bit map size and set all bits to '1' */
    102	bali->free_aun_cnt = lun_size_au;
    103
    104	for (i = 0; i < bali->lun_bmap_size; i++)
    105		bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL;
    106
    107	/* If the last word not fully utilized, mark extra bits as allocated */
    108	last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG);
    109	last_word_underflow -= bali->free_aun_cnt;
    110	if (last_word_underflow > 0) {
    111		lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1];
    112		for (i = (HIBIT - last_word_underflow + 1);
    113		     i < BITS_PER_LONG;
    114		     i++)
    115			clear_bit(i, (ulong *)lam);
    116	}
    117
    118	/* Initialize high elevator index, low/curr already at 0 from kzalloc */
    119	bali->free_high_idx = bali->lun_bmap_size;
    120
    121	/* Allocate clone map */
    122	bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)),
    123				      GFP_KERNEL);
    124	if (unlikely(!bali->aun_clone_map)) {
    125		pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n",
    126		       __func__, ba_lun->lun_id);
    127		kfree(bali->lun_alloc_map);
    128		kfree(bali);
    129		return -ENOMEM;
    130	}
    131
    132	/* Pass the allocated LUN info as a handle to the user */
    133	ba_lun->ba_lun_handle = bali;
    134
    135	pr_debug("%s: Successfully initialized the LUN: "
    136		 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n",
    137		__func__, ba_lun->lun_id, bali->lun_bmap_size,
    138		bali->free_aun_cnt);
    139	return 0;
    140}
    141
    142/**
    143 * find_free_range() - locates a free bit within the block allocator
    144 * @low:	First word in block allocator to start search.
    145 * @high:	Last word in block allocator to search.
    146 * @bali:	LUN information structure owning the block allocator to search.
    147 * @bit_word:	Passes back the word in the block allocator owning the free bit.
    148 *
    149 * Return: The bit position within the passed back word, -1 on failure
    150 */
    151static int find_free_range(u32 low,
    152			   u32 high,
    153			   struct ba_lun_info *bali, int *bit_word)
    154{
    155	int i;
    156	u64 bit_pos = -1;
    157	ulong *lam, num_bits;
    158
    159	for (i = low; i < high; i++)
    160		if (bali->lun_alloc_map[i] != 0) {
    161			lam = (ulong *)&bali->lun_alloc_map[i];
    162			num_bits = (sizeof(*lam) * BITS_PER_BYTE);
    163			bit_pos = find_first_bit(lam, num_bits);
    164
    165			pr_devel("%s: Found free bit %llu in LUN "
    166				 "map entry %016llx at bitmap index = %d\n",
    167				 __func__, bit_pos, bali->lun_alloc_map[i], i);
    168
    169			*bit_word = i;
    170			bali->free_aun_cnt--;
    171			clear_bit(bit_pos, lam);
    172			break;
    173		}
    174
    175	return bit_pos;
    176}
    177
    178/**
    179 * ba_alloc() - allocates a block from the block allocator
    180 * @ba_lun:	Block allocator from which to allocate a block.
    181 *
    182 * Return: The allocated block, -1 on failure
    183 */
    184static u64 ba_alloc(struct ba_lun *ba_lun)
    185{
    186	u64 bit_pos = -1;
    187	int bit_word = 0;
    188	struct ba_lun_info *bali = NULL;
    189
    190	bali = ba_lun->ba_lun_handle;
    191
    192	pr_debug("%s: Received block allocation request: "
    193		 "lun_id=%016llx free_aun_cnt=%llx\n",
    194		 __func__, ba_lun->lun_id, bali->free_aun_cnt);
    195
    196	if (bali->free_aun_cnt == 0) {
    197		pr_debug("%s: No space left on LUN: lun_id=%016llx\n",
    198			 __func__, ba_lun->lun_id);
    199		return -1ULL;
    200	}
    201
    202	/* Search to find a free entry, curr->high then low->curr */
    203	bit_pos = find_free_range(bali->free_curr_idx,
    204				  bali->free_high_idx, bali, &bit_word);
    205	if (bit_pos == -1) {
    206		bit_pos = find_free_range(bali->free_low_idx,
    207					  bali->free_curr_idx,
    208					  bali, &bit_word);
    209		if (bit_pos == -1) {
    210			pr_debug("%s: Could not find an allocation unit on LUN:"
    211				 " lun_id=%016llx\n", __func__, ba_lun->lun_id);
    212			return -1ULL;
    213		}
    214	}
    215
    216	/* Update the free_curr_idx */
    217	if (bit_pos == HIBIT)
    218		bali->free_curr_idx = bit_word + 1;
    219	else
    220		bali->free_curr_idx = bit_word;
    221
    222	pr_debug("%s: Allocating AU number=%llx lun_id=%016llx "
    223		 "free_aun_cnt=%llx\n", __func__,
    224		 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id,
    225		 bali->free_aun_cnt);
    226
    227	return (u64) ((bit_word * BITS_PER_LONG) + bit_pos);
    228}
    229
    230/**
    231 * validate_alloc() - validates the specified block has been allocated
    232 * @bali:		LUN info owning the block allocator.
    233 * @aun:		Block to validate.
    234 *
    235 * Return: 0 on success, -1 on failure
    236 */
    237static int validate_alloc(struct ba_lun_info *bali, u64 aun)
    238{
    239	int idx = 0, bit_pos = 0;
    240
    241	idx = aun / BITS_PER_LONG;
    242	bit_pos = aun % BITS_PER_LONG;
    243
    244	if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]))
    245		return -1;
    246
    247	return 0;
    248}
    249
    250/**
    251 * ba_free() - frees a block from the block allocator
    252 * @ba_lun:	Block allocator from which to allocate a block.
    253 * @to_free:	Block to free.
    254 *
    255 * Return: 0 on success, -1 on failure
    256 */
    257static int ba_free(struct ba_lun *ba_lun, u64 to_free)
    258{
    259	int idx = 0, bit_pos = 0;
    260	struct ba_lun_info *bali = NULL;
    261
    262	bali = ba_lun->ba_lun_handle;
    263
    264	if (validate_alloc(bali, to_free)) {
    265		pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n",
    266			 __func__, to_free, ba_lun->lun_id);
    267		return -1;
    268	}
    269
    270	pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx "
    271		 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id,
    272		 bali->free_aun_cnt);
    273
    274	if (bali->aun_clone_map[to_free] > 0) {
    275		pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n",
    276			 __func__, to_free, ba_lun->lun_id,
    277			 bali->aun_clone_map[to_free]);
    278		bali->aun_clone_map[to_free]--;
    279		return 0;
    280	}
    281
    282	idx = to_free / BITS_PER_LONG;
    283	bit_pos = to_free % BITS_PER_LONG;
    284
    285	set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]);
    286	bali->free_aun_cnt++;
    287
    288	if (idx < bali->free_low_idx)
    289		bali->free_low_idx = idx;
    290	else if (idx > bali->free_high_idx)
    291		bali->free_high_idx = idx;
    292
    293	pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x "
    294		 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx,
    295		 ba_lun->lun_id, bali->free_aun_cnt);
    296
    297	return 0;
    298}
    299
    300/**
    301 * ba_clone() - Clone a chunk of the block allocation table
    302 * @ba_lun:	Block allocator from which to allocate a block.
    303 * @to_clone:	Block to clone.
    304 *
    305 * Return: 0 on success, -1 on failure
    306 */
    307static int ba_clone(struct ba_lun *ba_lun, u64 to_clone)
    308{
    309	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
    310
    311	if (validate_alloc(bali, to_clone)) {
    312		pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n",
    313			 __func__, to_clone, ba_lun->lun_id);
    314		return -1;
    315	}
    316
    317	pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n",
    318		 __func__, to_clone, ba_lun->lun_id);
    319
    320	if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) {
    321		pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n",
    322			 __func__, to_clone, ba_lun->lun_id);
    323		return -1;
    324	}
    325
    326	bali->aun_clone_map[to_clone]++;
    327
    328	return 0;
    329}
    330
    331/**
    332 * ba_space() - returns the amount of free space left in the block allocator
    333 * @ba_lun:	Block allocator.
    334 *
    335 * Return: Amount of free space in block allocator
    336 */
    337static u64 ba_space(struct ba_lun *ba_lun)
    338{
    339	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
    340
    341	return bali->free_aun_cnt;
    342}
    343
    344/**
    345 * cxlflash_ba_terminate() - frees resources associated with the block allocator
    346 * @ba_lun:	Block allocator.
    347 *
    348 * Safe to call in a partially allocated state.
    349 */
    350void cxlflash_ba_terminate(struct ba_lun *ba_lun)
    351{
    352	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
    353
    354	if (bali) {
    355		kfree(bali->aun_clone_map);
    356		kfree(bali->lun_alloc_map);
    357		kfree(bali);
    358		ba_lun->ba_lun_handle = NULL;
    359	}
    360}
    361
    362/**
    363 * init_vlun() - initializes a LUN for virtual use
    364 * @lli:	LUN information structure that owns the block allocator.
    365 *
    366 * Return: 0 on success, -errno on failure
    367 */
    368static int init_vlun(struct llun_info *lli)
    369{
    370	int rc = 0;
    371	struct glun_info *gli = lli->parent;
    372	struct blka *blka = &gli->blka;
    373
    374	memset(blka, 0, sizeof(*blka));
    375	mutex_init(&blka->mutex);
    376
    377	/* LUN IDs are unique per port, save the index instead */
    378	blka->ba_lun.lun_id = lli->lun_index;
    379	blka->ba_lun.lsize = gli->max_lba + 1;
    380	blka->ba_lun.lba_size = gli->blk_len;
    381
    382	blka->ba_lun.au_size = MC_CHUNK_SIZE;
    383	blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE;
    384
    385	rc = ba_init(&blka->ba_lun);
    386	if (unlikely(rc))
    387		pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc);
    388
    389	pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli);
    390	return rc;
    391}
    392
    393/**
    394 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN
    395 * @sdev:	SCSI device associated with LUN.
    396 * @lba:	Logical block address to start write same.
    397 * @nblks:	Number of logical blocks to write same.
    398 *
    399 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur
    400 * while in scsi_execute(), the EEH handler will attempt to recover. As part of
    401 * the recovery, the handler drains all currently running ioctls, waiting until
    402 * they have completed before proceeding with a reset. As this routine is used
    403 * on the ioctl path, this can create a condition where the EEH handler becomes
    404 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior,
    405 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read
    406 * semaphore. This will allow the EEH handler to proceed with a recovery while
    407 * this thread is still running. Once the scsi_execute() returns, reacquire the
    408 * ioctl read semaphore and check the adapter state in case it changed while
    409 * inside of scsi_execute(). The state check will wait if the adapter is still
    410 * being recovered or return a failure if the recovery failed. In the event that
    411 * the adapter reset failed, simply return the failure as the ioctl would be
    412 * unable to continue.
    413 *
    414 * Note that the above puts a requirement on this routine to only be called on
    415 * an ioctl thread.
    416 *
    417 * Return: 0 on success, -errno on failure
    418 */
    419static int write_same16(struct scsi_device *sdev,
    420			u64 lba,
    421			u32 nblks)
    422{
    423	u8 *cmd_buf = NULL;
    424	u8 *scsi_cmd = NULL;
    425	int rc = 0;
    426	int result = 0;
    427	u64 offset = lba;
    428	int left = nblks;
    429	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
    430	struct device *dev = &cfg->dev->dev;
    431	const u32 s = ilog2(sdev->sector_size) - 9;
    432	const u32 to = sdev->request_queue->rq_timeout;
    433	const u32 ws_limit =
    434		sdev->request_queue->limits.max_write_zeroes_sectors >> s;
    435
    436	cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL);
    437	scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL);
    438	if (unlikely(!cmd_buf || !scsi_cmd)) {
    439		rc = -ENOMEM;
    440		goto out;
    441	}
    442
    443	while (left > 0) {
    444
    445		scsi_cmd[0] = WRITE_SAME_16;
    446		scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0;
    447		put_unaligned_be64(offset, &scsi_cmd[2]);
    448		put_unaligned_be32(ws_limit < left ? ws_limit : left,
    449				   &scsi_cmd[10]);
    450
    451		/* Drop the ioctl read semahpore across lengthy call */
    452		up_read(&cfg->ioctl_rwsem);
    453		result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf,
    454				      CMD_BUFSIZE, NULL, NULL, to,
    455				      CMD_RETRIES, 0, 0, NULL);
    456		down_read(&cfg->ioctl_rwsem);
    457		rc = check_state(cfg);
    458		if (rc) {
    459			dev_err(dev, "%s: Failed state result=%08x\n",
    460				__func__, result);
    461			rc = -ENODEV;
    462			goto out;
    463		}
    464
    465		if (result) {
    466			dev_err_ratelimited(dev, "%s: command failed for "
    467					    "offset=%lld result=%08x\n",
    468					    __func__, offset, result);
    469			rc = -EIO;
    470			goto out;
    471		}
    472		left -= ws_limit;
    473		offset += ws_limit;
    474	}
    475
    476out:
    477	kfree(cmd_buf);
    478	kfree(scsi_cmd);
    479	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
    480	return rc;
    481}
    482
    483/**
    484 * grow_lxt() - expands the translation table associated with the specified RHTE
    485 * @afu:	AFU associated with the host.
    486 * @sdev:	SCSI device associated with LUN.
    487 * @ctxid:	Context ID of context owning the RHTE.
    488 * @rhndl:	Resource handle associated with the RHTE.
    489 * @rhte:	Resource handle entry (RHTE).
    490 * @new_size:	Number of translation entries associated with RHTE.
    491 *
    492 * By design, this routine employs a 'best attempt' allocation and will
    493 * truncate the requested size down if there is not sufficient space in
    494 * the block allocator to satisfy the request but there does exist some
    495 * amount of space. The user is made aware of this by returning the size
    496 * allocated.
    497 *
    498 * Return: 0 on success, -errno on failure
    499 */
    500static int grow_lxt(struct afu *afu,
    501		    struct scsi_device *sdev,
    502		    ctx_hndl_t ctxid,
    503		    res_hndl_t rhndl,
    504		    struct sisl_rht_entry *rhte,
    505		    u64 *new_size)
    506{
    507	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
    508	struct device *dev = &cfg->dev->dev;
    509	struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL;
    510	struct llun_info *lli = sdev->hostdata;
    511	struct glun_info *gli = lli->parent;
    512	struct blka *blka = &gli->blka;
    513	u32 av_size;
    514	u32 ngrps, ngrps_old;
    515	u64 aun;		/* chunk# allocated by block allocator */
    516	u64 delta = *new_size - rhte->lxt_cnt;
    517	u64 my_new_size;
    518	int i, rc = 0;
    519
    520	/*
    521	 * Check what is available in the block allocator before re-allocating
    522	 * LXT array. This is done up front under the mutex which must not be
    523	 * released until after allocation is complete.
    524	 */
    525	mutex_lock(&blka->mutex);
    526	av_size = ba_space(&blka->ba_lun);
    527	if (unlikely(av_size <= 0)) {
    528		dev_dbg(dev, "%s: ba_space error av_size=%d\n",
    529			__func__, av_size);
    530		mutex_unlock(&blka->mutex);
    531		rc = -ENOSPC;
    532		goto out;
    533	}
    534
    535	if (av_size < delta)
    536		delta = av_size;
    537
    538	lxt_old = rhte->lxt_start;
    539	ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt);
    540	ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta);
    541
    542	if (ngrps != ngrps_old) {
    543		/* reallocate to fit new size */
    544		lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
    545			      GFP_KERNEL);
    546		if (unlikely(!lxt)) {
    547			mutex_unlock(&blka->mutex);
    548			rc = -ENOMEM;
    549			goto out;
    550		}
    551
    552		/* copy over all old entries */
    553		memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt));
    554	} else
    555		lxt = lxt_old;
    556
    557	/* nothing can fail from now on */
    558	my_new_size = rhte->lxt_cnt + delta;
    559
    560	/* add new entries to the end */
    561	for (i = rhte->lxt_cnt; i < my_new_size; i++) {
    562		/*
    563		 * Due to the earlier check of available space, ba_alloc
    564		 * cannot fail here. If it did due to internal error,
    565		 * leave a rlba_base of -1u which will likely be a
    566		 * invalid LUN (too large).
    567		 */
    568		aun = ba_alloc(&blka->ba_lun);
    569		if ((aun == -1ULL) || (aun >= blka->nchunk))
    570			dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu "
    571				"max=%llu\n", __func__, aun, blka->nchunk - 1);
    572
    573		/* select both ports, use r/w perms from RHT */
    574		lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) |
    575				    (lli->lun_index << LXT_LUNIDX_SHIFT) |
    576				    (RHT_PERM_RW << LXT_PERM_SHIFT |
    577				     lli->port_sel));
    578	}
    579
    580	mutex_unlock(&blka->mutex);
    581
    582	/*
    583	 * The following sequence is prescribed in the SISlite spec
    584	 * for syncing up with the AFU when adding LXT entries.
    585	 */
    586	dma_wmb(); /* Make LXT updates are visible */
    587
    588	rhte->lxt_start = lxt;
    589	dma_wmb(); /* Make RHT entry's LXT table update visible */
    590
    591	rhte->lxt_cnt = my_new_size;
    592	dma_wmb(); /* Make RHT entry's LXT table size update visible */
    593
    594	rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC);
    595	if (unlikely(rc))
    596		rc = -EAGAIN;
    597
    598	/* free old lxt if reallocated */
    599	if (lxt != lxt_old)
    600		kfree(lxt_old);
    601	*new_size = my_new_size;
    602out:
    603	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
    604	return rc;
    605}
    606
    607/**
    608 * shrink_lxt() - reduces translation table associated with the specified RHTE
    609 * @afu:	AFU associated with the host.
    610 * @sdev:	SCSI device associated with LUN.
    611 * @rhndl:	Resource handle associated with the RHTE.
    612 * @rhte:	Resource handle entry (RHTE).
    613 * @ctxi:	Context owning resources.
    614 * @new_size:	Number of translation entries associated with RHTE.
    615 *
    616 * Return: 0 on success, -errno on failure
    617 */
    618static int shrink_lxt(struct afu *afu,
    619		      struct scsi_device *sdev,
    620		      res_hndl_t rhndl,
    621		      struct sisl_rht_entry *rhte,
    622		      struct ctx_info *ctxi,
    623		      u64 *new_size)
    624{
    625	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
    626	struct device *dev = &cfg->dev->dev;
    627	struct sisl_lxt_entry *lxt, *lxt_old;
    628	struct llun_info *lli = sdev->hostdata;
    629	struct glun_info *gli = lli->parent;
    630	struct blka *blka = &gli->blka;
    631	ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid);
    632	bool needs_ws = ctxi->rht_needs_ws[rhndl];
    633	bool needs_sync = !ctxi->err_recovery_active;
    634	u32 ngrps, ngrps_old;
    635	u64 aun;		/* chunk# allocated by block allocator */
    636	u64 delta = rhte->lxt_cnt - *new_size;
    637	u64 my_new_size;
    638	int i, rc = 0;
    639
    640	lxt_old = rhte->lxt_start;
    641	ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt);
    642	ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta);
    643
    644	if (ngrps != ngrps_old) {
    645		/* Reallocate to fit new size unless new size is 0 */
    646		if (ngrps) {
    647			lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
    648				      GFP_KERNEL);
    649			if (unlikely(!lxt)) {
    650				rc = -ENOMEM;
    651				goto out;
    652			}
    653
    654			/* Copy over old entries that will remain */
    655			memcpy(lxt, lxt_old,
    656			       (sizeof(*lxt) * (rhte->lxt_cnt - delta)));
    657		} else
    658			lxt = NULL;
    659	} else
    660		lxt = lxt_old;
    661
    662	/* Nothing can fail from now on */
    663	my_new_size = rhte->lxt_cnt - delta;
    664
    665	/*
    666	 * The following sequence is prescribed in the SISlite spec
    667	 * for syncing up with the AFU when removing LXT entries.
    668	 */
    669	rhte->lxt_cnt = my_new_size;
    670	dma_wmb(); /* Make RHT entry's LXT table size update visible */
    671
    672	rhte->lxt_start = lxt;
    673	dma_wmb(); /* Make RHT entry's LXT table update visible */
    674
    675	if (needs_sync) {
    676		rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC);
    677		if (unlikely(rc))
    678			rc = -EAGAIN;
    679	}
    680
    681	if (needs_ws) {
    682		/*
    683		 * Mark the context as unavailable, so that we can release
    684		 * the mutex safely.
    685		 */
    686		ctxi->unavail = true;
    687		mutex_unlock(&ctxi->mutex);
    688	}
    689
    690	/* Free LBAs allocated to freed chunks */
    691	mutex_lock(&blka->mutex);
    692	for (i = delta - 1; i >= 0; i--) {
    693		aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT;
    694		if (needs_ws)
    695			write_same16(sdev, aun, MC_CHUNK_SIZE);
    696		ba_free(&blka->ba_lun, aun);
    697	}
    698	mutex_unlock(&blka->mutex);
    699
    700	if (needs_ws) {
    701		/* Make the context visible again */
    702		mutex_lock(&ctxi->mutex);
    703		ctxi->unavail = false;
    704	}
    705
    706	/* Free old lxt if reallocated */
    707	if (lxt != lxt_old)
    708		kfree(lxt_old);
    709	*new_size = my_new_size;
    710out:
    711	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
    712	return rc;
    713}
    714
    715/**
    716 * _cxlflash_vlun_resize() - changes the size of a virtual LUN
    717 * @sdev:	SCSI device associated with LUN owning virtual LUN.
    718 * @ctxi:	Context owning resources.
    719 * @resize:	Resize ioctl data structure.
    720 *
    721 * On successful return, the user is informed of the new size (in blocks)
    722 * of the virtual LUN in last LBA format. When the size of the virtual
    723 * LUN is zero, the last LBA is reflected as -1. See comment in the
    724 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts
    725 * on the error recovery list.
    726 *
    727 * Return: 0 on success, -errno on failure
    728 */
    729int _cxlflash_vlun_resize(struct scsi_device *sdev,
    730			  struct ctx_info *ctxi,
    731			  struct dk_cxlflash_resize *resize)
    732{
    733	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
    734	struct device *dev = &cfg->dev->dev;
    735	struct llun_info *lli = sdev->hostdata;
    736	struct glun_info *gli = lli->parent;
    737	struct afu *afu = cfg->afu;
    738	bool put_ctx = false;
    739
    740	res_hndl_t rhndl = resize->rsrc_handle;
    741	u64 new_size;
    742	u64 nsectors;
    743	u64 ctxid = DECODE_CTXID(resize->context_id),
    744	    rctxid = resize->context_id;
    745
    746	struct sisl_rht_entry *rhte;
    747
    748	int rc = 0;
    749
    750	/*
    751	 * The requested size (req_size) is always assumed to be in 4k blocks,
    752	 * so we have to convert it here from 4k to chunk size.
    753	 */
    754	nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len;
    755	new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE);
    756
    757	dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n",
    758		__func__, ctxid, resize->rsrc_handle, resize->req_size,
    759		new_size);
    760
    761	if (unlikely(gli->mode != MODE_VIRTUAL)) {
    762		dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n",
    763			__func__, gli->mode);
    764		rc = -EINVAL;
    765		goto out;
    766
    767	}
    768
    769	if (!ctxi) {
    770		ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK);
    771		if (unlikely(!ctxi)) {
    772			dev_dbg(dev, "%s: Bad context ctxid=%llu\n",
    773				__func__, ctxid);
    774			rc = -EINVAL;
    775			goto out;
    776		}
    777
    778		put_ctx = true;
    779	}
    780
    781	rhte = get_rhte(ctxi, rhndl, lli);
    782	if (unlikely(!rhte)) {
    783		dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n",
    784			__func__, rhndl);
    785		rc = -EINVAL;
    786		goto out;
    787	}
    788
    789	if (new_size > rhte->lxt_cnt)
    790		rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size);
    791	else if (new_size < rhte->lxt_cnt)
    792		rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size);
    793	else {
    794		/*
    795		 * Rare case where there is already sufficient space, just
    796		 * need to perform a translation sync with the AFU. This
    797		 * scenario likely follows a previous sync failure during
    798		 * a resize operation. Accordingly, perform the heavyweight
    799		 * form of translation sync as it is unknown which type of
    800		 * resize failed previously.
    801		 */
    802		rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC);
    803		if (unlikely(rc)) {
    804			rc = -EAGAIN;
    805			goto out;
    806		}
    807	}
    808
    809	resize->hdr.return_flags = 0;
    810	resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len);
    811	resize->last_lba /= CXLFLASH_BLOCK_SIZE;
    812	resize->last_lba--;
    813
    814out:
    815	if (put_ctx)
    816		put_context(ctxi);
    817	dev_dbg(dev, "%s: resized to %llu returning rc=%d\n",
    818		__func__, resize->last_lba, rc);
    819	return rc;
    820}
    821
    822int cxlflash_vlun_resize(struct scsi_device *sdev,
    823			 struct dk_cxlflash_resize *resize)
    824{
    825	return _cxlflash_vlun_resize(sdev, NULL, resize);
    826}
    827
    828/**
    829 * cxlflash_restore_luntable() - Restore LUN table to prior state
    830 * @cfg:	Internal structure associated with the host.
    831 */
    832void cxlflash_restore_luntable(struct cxlflash_cfg *cfg)
    833{
    834	struct llun_info *lli, *temp;
    835	u32 lind;
    836	int k;
    837	struct device *dev = &cfg->dev->dev;
    838	__be64 __iomem *fc_port_luns;
    839
    840	mutex_lock(&global.mutex);
    841
    842	list_for_each_entry_safe(lli, temp, &cfg->lluns, list) {
    843		if (!lli->in_table)
    844			continue;
    845
    846		lind = lli->lun_index;
    847		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind);
    848
    849		for (k = 0; k < cfg->num_fc_ports; k++)
    850			if (lli->port_sel & (1 << k)) {
    851				fc_port_luns = get_fc_port_luns(cfg, k);
    852				writeq_be(lli->lun_id[k], &fc_port_luns[lind]);
    853				dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]);
    854			}
    855	}
    856
    857	mutex_unlock(&global.mutex);
    858}
    859
    860/**
    861 * get_num_ports() - compute number of ports from port selection mask
    862 * @psm:	Port selection mask.
    863 *
    864 * Return: Population count of port selection mask
    865 */
    866static inline u8 get_num_ports(u32 psm)
    867{
    868	static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
    869				     1, 2, 2, 3, 2, 3, 3, 4 };
    870
    871	return bits[psm & 0xf];
    872}
    873
    874/**
    875 * init_luntable() - write an entry in the LUN table
    876 * @cfg:	Internal structure associated with the host.
    877 * @lli:	Per adapter LUN information structure.
    878 *
    879 * On successful return, a LUN table entry is created:
    880 *	- at the top for LUNs visible on multiple ports.
    881 *	- at the bottom for LUNs visible only on one port.
    882 *
    883 * Return: 0 on success, -errno on failure
    884 */
    885static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli)
    886{
    887	u32 chan;
    888	u32 lind;
    889	u32 nports;
    890	int rc = 0;
    891	int k;
    892	struct device *dev = &cfg->dev->dev;
    893	__be64 __iomem *fc_port_luns;
    894
    895	mutex_lock(&global.mutex);
    896
    897	if (lli->in_table)
    898		goto out;
    899
    900	nports = get_num_ports(lli->port_sel);
    901	if (nports == 0 || nports > cfg->num_fc_ports) {
    902		WARN(1, "Unsupported port configuration nports=%u", nports);
    903		rc = -EIO;
    904		goto out;
    905	}
    906
    907	if (nports > 1) {
    908		/*
    909		 * When LUN is visible from multiple ports, we will put
    910		 * it in the top half of the LUN table.
    911		 */
    912		for (k = 0; k < cfg->num_fc_ports; k++) {
    913			if (!(lli->port_sel & (1 << k)))
    914				continue;
    915
    916			if (cfg->promote_lun_index == cfg->last_lun_index[k]) {
    917				rc = -ENOSPC;
    918				goto out;
    919			}
    920		}
    921
    922		lind = lli->lun_index = cfg->promote_lun_index;
    923		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind);
    924
    925		for (k = 0; k < cfg->num_fc_ports; k++) {
    926			if (!(lli->port_sel & (1 << k)))
    927				continue;
    928
    929			fc_port_luns = get_fc_port_luns(cfg, k);
    930			writeq_be(lli->lun_id[k], &fc_port_luns[lind]);
    931			dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]);
    932		}
    933
    934		cfg->promote_lun_index++;
    935	} else {
    936		/*
    937		 * When LUN is visible only from one port, we will put
    938		 * it in the bottom half of the LUN table.
    939		 */
    940		chan = PORTMASK2CHAN(lli->port_sel);
    941		if (cfg->promote_lun_index == cfg->last_lun_index[chan]) {
    942			rc = -ENOSPC;
    943			goto out;
    944		}
    945
    946		lind = lli->lun_index = cfg->last_lun_index[chan];
    947		fc_port_luns = get_fc_port_luns(cfg, chan);
    948		writeq_be(lli->lun_id[chan], &fc_port_luns[lind]);
    949		cfg->last_lun_index[chan]--;
    950		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n",
    951			__func__, lind, chan, lli->lun_id[chan]);
    952	}
    953
    954	lli->in_table = true;
    955out:
    956	mutex_unlock(&global.mutex);
    957	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
    958	return rc;
    959}
    960
    961/**
    962 * cxlflash_disk_virtual_open() - open a virtual disk of specified size
    963 * @sdev:	SCSI device associated with LUN owning virtual LUN.
    964 * @arg:	UVirtual ioctl data structure.
    965 *
    966 * On successful return, the user is informed of the resource handle
    967 * to be used to identify the virtual LUN and the size (in blocks) of
    968 * the virtual LUN in last LBA format. When the size of the virtual LUN
    969 * is zero, the last LBA is reflected as -1.
    970 *
    971 * Return: 0 on success, -errno on failure
    972 */
    973int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg)
    974{
    975	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
    976	struct device *dev = &cfg->dev->dev;
    977	struct llun_info *lli = sdev->hostdata;
    978	struct glun_info *gli = lli->parent;
    979
    980	struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg;
    981	struct dk_cxlflash_resize resize;
    982
    983	u64 ctxid = DECODE_CTXID(virt->context_id),
    984	    rctxid = virt->context_id;
    985	u64 lun_size = virt->lun_size;
    986	u64 last_lba = 0;
    987	u64 rsrc_handle = -1;
    988
    989	int rc = 0;
    990
    991	struct ctx_info *ctxi = NULL;
    992	struct sisl_rht_entry *rhte = NULL;
    993
    994	dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size);
    995
    996	/* Setup the LUNs block allocator on first call */
    997	mutex_lock(&gli->mutex);
    998	if (gli->mode == MODE_NONE) {
    999		rc = init_vlun(lli);
   1000		if (rc) {
   1001			dev_err(dev, "%s: init_vlun failed rc=%d\n",
   1002				__func__, rc);
   1003			rc = -ENOMEM;
   1004			goto err0;
   1005		}
   1006	}
   1007
   1008	rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true);
   1009	if (unlikely(rc)) {
   1010		dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__);
   1011		goto err0;
   1012	}
   1013	mutex_unlock(&gli->mutex);
   1014
   1015	rc = init_luntable(cfg, lli);
   1016	if (rc) {
   1017		dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc);
   1018		goto err1;
   1019	}
   1020
   1021	ctxi = get_context(cfg, rctxid, lli, 0);
   1022	if (unlikely(!ctxi)) {
   1023		dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid);
   1024		rc = -EINVAL;
   1025		goto err1;
   1026	}
   1027
   1028	rhte = rhte_checkout(ctxi, lli);
   1029	if (unlikely(!rhte)) {
   1030		dev_err(dev, "%s: too many opens ctxid=%llu\n",
   1031			__func__, ctxid);
   1032		rc = -EMFILE;	/* too many opens  */
   1033		goto err1;
   1034	}
   1035
   1036	rsrc_handle = (rhte - ctxi->rht_start);
   1037
   1038	/* Populate RHT format 0 */
   1039	rhte->nmask = MC_RHT_NMASK;
   1040	rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms);
   1041
   1042	/* Resize even if requested size is 0 */
   1043	marshal_virt_to_resize(virt, &resize);
   1044	resize.rsrc_handle = rsrc_handle;
   1045	rc = _cxlflash_vlun_resize(sdev, ctxi, &resize);
   1046	if (rc) {
   1047		dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc);
   1048		goto err2;
   1049	}
   1050	last_lba = resize.last_lba;
   1051
   1052	if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME)
   1053		ctxi->rht_needs_ws[rsrc_handle] = true;
   1054
   1055	virt->hdr.return_flags = 0;
   1056	virt->last_lba = last_lba;
   1057	virt->rsrc_handle = rsrc_handle;
   1058
   1059	if (get_num_ports(lli->port_sel) > 1)
   1060		virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE;
   1061out:
   1062	if (likely(ctxi))
   1063		put_context(ctxi);
   1064	dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n",
   1065		__func__, rsrc_handle, rc, last_lba);
   1066	return rc;
   1067
   1068err2:
   1069	rhte_checkin(ctxi, rhte);
   1070err1:
   1071	cxlflash_lun_detach(gli);
   1072	goto out;
   1073err0:
   1074	/* Special common cleanup prior to successful LUN attach */
   1075	cxlflash_ba_terminate(&gli->blka.ba_lun);
   1076	mutex_unlock(&gli->mutex);
   1077	goto out;
   1078}
   1079
   1080/**
   1081 * clone_lxt() - copies translation tables from source to destination RHTE
   1082 * @afu:	AFU associated with the host.
   1083 * @blka:	Block allocator associated with LUN.
   1084 * @ctxid:	Context ID of context owning the RHTE.
   1085 * @rhndl:	Resource handle associated with the RHTE.
   1086 * @rhte:	Destination resource handle entry (RHTE).
   1087 * @rhte_src:	Source resource handle entry (RHTE).
   1088 *
   1089 * Return: 0 on success, -errno on failure
   1090 */
   1091static int clone_lxt(struct afu *afu,
   1092		     struct blka *blka,
   1093		     ctx_hndl_t ctxid,
   1094		     res_hndl_t rhndl,
   1095		     struct sisl_rht_entry *rhte,
   1096		     struct sisl_rht_entry *rhte_src)
   1097{
   1098	struct cxlflash_cfg *cfg = afu->parent;
   1099	struct device *dev = &cfg->dev->dev;
   1100	struct sisl_lxt_entry *lxt = NULL;
   1101	bool locked = false;
   1102	u32 ngrps;
   1103	u64 aun;		/* chunk# allocated by block allocator */
   1104	int j;
   1105	int i = 0;
   1106	int rc = 0;
   1107
   1108	ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt);
   1109
   1110	if (ngrps) {
   1111		/* allocate new LXTs for clone */
   1112		lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
   1113				GFP_KERNEL);
   1114		if (unlikely(!lxt)) {
   1115			rc = -ENOMEM;
   1116			goto out;
   1117		}
   1118
   1119		/* copy over */
   1120		memcpy(lxt, rhte_src->lxt_start,
   1121		       (sizeof(*lxt) * rhte_src->lxt_cnt));
   1122
   1123		/* clone the LBAs in block allocator via ref_cnt, note that the
   1124		 * block allocator mutex must be held until it is established
   1125		 * that this routine will complete without the need for a
   1126		 * cleanup.
   1127		 */
   1128		mutex_lock(&blka->mutex);
   1129		locked = true;
   1130		for (i = 0; i < rhte_src->lxt_cnt; i++) {
   1131			aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT);
   1132			if (ba_clone(&blka->ba_lun, aun) == -1ULL) {
   1133				rc = -EIO;
   1134				goto err;
   1135			}
   1136		}
   1137	}
   1138
   1139	/*
   1140	 * The following sequence is prescribed in the SISlite spec
   1141	 * for syncing up with the AFU when adding LXT entries.
   1142	 */
   1143	dma_wmb(); /* Make LXT updates are visible */
   1144
   1145	rhte->lxt_start = lxt;
   1146	dma_wmb(); /* Make RHT entry's LXT table update visible */
   1147
   1148	rhte->lxt_cnt = rhte_src->lxt_cnt;
   1149	dma_wmb(); /* Make RHT entry's LXT table size update visible */
   1150
   1151	rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC);
   1152	if (unlikely(rc)) {
   1153		rc = -EAGAIN;
   1154		goto err2;
   1155	}
   1156
   1157out:
   1158	if (locked)
   1159		mutex_unlock(&blka->mutex);
   1160	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1161	return rc;
   1162err2:
   1163	/* Reset the RHTE */
   1164	rhte->lxt_cnt = 0;
   1165	dma_wmb();
   1166	rhte->lxt_start = NULL;
   1167	dma_wmb();
   1168err:
   1169	/* free the clones already made */
   1170	for (j = 0; j < i; j++) {
   1171		aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT);
   1172		ba_free(&blka->ba_lun, aun);
   1173	}
   1174	kfree(lxt);
   1175	goto out;
   1176}
   1177
   1178/**
   1179 * cxlflash_disk_clone() - clone a context by making snapshot of another
   1180 * @sdev:	SCSI device associated with LUN owning virtual LUN.
   1181 * @clone:	Clone ioctl data structure.
   1182 *
   1183 * This routine effectively performs cxlflash_disk_open operation for each
   1184 * in-use virtual resource in the source context. Note that the destination
   1185 * context must be in pristine state and cannot have any resource handles
   1186 * open at the time of the clone.
   1187 *
   1188 * Return: 0 on success, -errno on failure
   1189 */
   1190int cxlflash_disk_clone(struct scsi_device *sdev,
   1191			struct dk_cxlflash_clone *clone)
   1192{
   1193	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
   1194	struct device *dev = &cfg->dev->dev;
   1195	struct llun_info *lli = sdev->hostdata;
   1196	struct glun_info *gli = lli->parent;
   1197	struct blka *blka = &gli->blka;
   1198	struct afu *afu = cfg->afu;
   1199	struct dk_cxlflash_release release = { { 0 }, 0 };
   1200
   1201	struct ctx_info *ctxi_src = NULL,
   1202			*ctxi_dst = NULL;
   1203	struct lun_access *lun_access_src, *lun_access_dst;
   1204	u32 perms;
   1205	u64 ctxid_src = DECODE_CTXID(clone->context_id_src),
   1206	    ctxid_dst = DECODE_CTXID(clone->context_id_dst),
   1207	    rctxid_src = clone->context_id_src,
   1208	    rctxid_dst = clone->context_id_dst;
   1209	int i, j;
   1210	int rc = 0;
   1211	bool found;
   1212	LIST_HEAD(sidecar);
   1213
   1214	dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n",
   1215		__func__, ctxid_src, ctxid_dst);
   1216
   1217	/* Do not clone yourself */
   1218	if (unlikely(rctxid_src == rctxid_dst)) {
   1219		rc = -EINVAL;
   1220		goto out;
   1221	}
   1222
   1223	if (unlikely(gli->mode != MODE_VIRTUAL)) {
   1224		rc = -EINVAL;
   1225		dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n",
   1226			__func__, gli->mode);
   1227		goto out;
   1228	}
   1229
   1230	ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE);
   1231	ctxi_dst = get_context(cfg, rctxid_dst, lli, 0);
   1232	if (unlikely(!ctxi_src || !ctxi_dst)) {
   1233		dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n",
   1234			__func__, ctxid_src, ctxid_dst);
   1235		rc = -EINVAL;
   1236		goto out;
   1237	}
   1238
   1239	/* Verify there is no open resource handle in the destination context */
   1240	for (i = 0; i < MAX_RHT_PER_CONTEXT; i++)
   1241		if (ctxi_dst->rht_start[i].nmask != 0) {
   1242			rc = -EINVAL;
   1243			goto out;
   1244		}
   1245
   1246	/* Clone LUN access list */
   1247	list_for_each_entry(lun_access_src, &ctxi_src->luns, list) {
   1248		found = false;
   1249		list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list)
   1250			if (lun_access_dst->sdev == lun_access_src->sdev) {
   1251				found = true;
   1252				break;
   1253			}
   1254
   1255		if (!found) {
   1256			lun_access_dst = kzalloc(sizeof(*lun_access_dst),
   1257						 GFP_KERNEL);
   1258			if (unlikely(!lun_access_dst)) {
   1259				dev_err(dev, "%s: lun_access allocation fail\n",
   1260					__func__);
   1261				rc = -ENOMEM;
   1262				goto out;
   1263			}
   1264
   1265			*lun_access_dst = *lun_access_src;
   1266			list_add(&lun_access_dst->list, &sidecar);
   1267		}
   1268	}
   1269
   1270	if (unlikely(!ctxi_src->rht_out)) {
   1271		dev_dbg(dev, "%s: Nothing to clone\n", __func__);
   1272		goto out_success;
   1273	}
   1274
   1275	/* User specified permission on attach */
   1276	perms = ctxi_dst->rht_perms;
   1277
   1278	/*
   1279	 * Copy over checked-out RHT (and their associated LXT) entries by
   1280	 * hand, stopping after we've copied all outstanding entries and
   1281	 * cleaning up if the clone fails.
   1282	 *
   1283	 * Note: This loop is equivalent to performing cxlflash_disk_open and
   1284	 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into
   1285	 * account by attaching after each successful RHT entry clone. In the
   1286	 * event that a clone failure is experienced, the LUN detach is handled
   1287	 * via the cleanup performed by _cxlflash_disk_release.
   1288	 */
   1289	for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) {
   1290		if (ctxi_src->rht_out == ctxi_dst->rht_out)
   1291			break;
   1292		if (ctxi_src->rht_start[i].nmask == 0)
   1293			continue;
   1294
   1295		/* Consume a destination RHT entry */
   1296		ctxi_dst->rht_out++;
   1297		ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask;
   1298		ctxi_dst->rht_start[i].fp =
   1299		    SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms);
   1300		ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i];
   1301
   1302		rc = clone_lxt(afu, blka, ctxid_dst, i,
   1303			       &ctxi_dst->rht_start[i],
   1304			       &ctxi_src->rht_start[i]);
   1305		if (rc) {
   1306			marshal_clone_to_rele(clone, &release);
   1307			for (j = 0; j < i; j++) {
   1308				release.rsrc_handle = j;
   1309				_cxlflash_disk_release(sdev, ctxi_dst,
   1310						       &release);
   1311			}
   1312
   1313			/* Put back the one we failed on */
   1314			rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]);
   1315			goto err;
   1316		}
   1317
   1318		cxlflash_lun_attach(gli, gli->mode, false);
   1319	}
   1320
   1321out_success:
   1322	list_splice(&sidecar, &ctxi_dst->luns);
   1323
   1324	/* fall through */
   1325out:
   1326	if (ctxi_src)
   1327		put_context(ctxi_src);
   1328	if (ctxi_dst)
   1329		put_context(ctxi_dst);
   1330	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
   1331	return rc;
   1332
   1333err:
   1334	list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list)
   1335		kfree(lun_access_src);
   1336	goto out;
   1337}