cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hpsa.c (280269B)


      1/*
      2 *    Disk Array driver for HP Smart Array SAS controllers
      3 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
      4 *    Copyright 2016 Microsemi Corporation
      5 *    Copyright 2014-2015 PMC-Sierra, Inc.
      6 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
      7 *
      8 *    This program is free software; you can redistribute it and/or modify
      9 *    it under the terms of the GNU General Public License as published by
     10 *    the Free Software Foundation; version 2 of the License.
     11 *
     12 *    This program is distributed in the hope that it will be useful,
     13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
     15 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
     16 *
     17 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
     18 *
     19 */
     20
     21#include <linux/module.h>
     22#include <linux/interrupt.h>
     23#include <linux/types.h>
     24#include <linux/pci.h>
     25#include <linux/kernel.h>
     26#include <linux/slab.h>
     27#include <linux/delay.h>
     28#include <linux/fs.h>
     29#include <linux/timer.h>
     30#include <linux/init.h>
     31#include <linux/spinlock.h>
     32#include <linux/compat.h>
     33#include <linux/blktrace_api.h>
     34#include <linux/uaccess.h>
     35#include <linux/io.h>
     36#include <linux/dma-mapping.h>
     37#include <linux/completion.h>
     38#include <linux/moduleparam.h>
     39#include <scsi/scsi.h>
     40#include <scsi/scsi_cmnd.h>
     41#include <scsi/scsi_device.h>
     42#include <scsi/scsi_host.h>
     43#include <scsi/scsi_tcq.h>
     44#include <scsi/scsi_eh.h>
     45#include <scsi/scsi_transport_sas.h>
     46#include <scsi/scsi_dbg.h>
     47#include <linux/cciss_ioctl.h>
     48#include <linux/string.h>
     49#include <linux/bitmap.h>
     50#include <linux/atomic.h>
     51#include <linux/jiffies.h>
     52#include <linux/percpu-defs.h>
     53#include <linux/percpu.h>
     54#include <asm/unaligned.h>
     55#include <asm/div64.h>
     56#include "hpsa_cmd.h"
     57#include "hpsa.h"
     58
     59/*
     60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
     61 * with an optional trailing '-' followed by a byte value (0-255).
     62 */
     63#define HPSA_DRIVER_VERSION "3.4.20-200"
     64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
     65#define HPSA "hpsa"
     66
     67/* How long to wait for CISS doorbell communication */
     68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
     69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
     70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
     71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
     72#define MAX_IOCTL_CONFIG_WAIT 1000
     73
     74/*define how many times we will try a command because of bus resets */
     75#define MAX_CMD_RETRIES 3
     76/* How long to wait before giving up on a command */
     77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
     78
     79/* Embedded module documentation macros - see modules.h */
     80MODULE_AUTHOR("Hewlett-Packard Company");
     81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
     82	HPSA_DRIVER_VERSION);
     83MODULE_VERSION(HPSA_DRIVER_VERSION);
     84MODULE_LICENSE("GPL");
     85MODULE_ALIAS("cciss");
     86
     87static int hpsa_simple_mode;
     88module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
     89MODULE_PARM_DESC(hpsa_simple_mode,
     90	"Use 'simple mode' rather than 'performant mode'");
     91
     92/* define the PCI info for the cards we can control */
     93static const struct pci_device_id hpsa_pci_device_id[] = {
     94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
     95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
     96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
     97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
     98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
     99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
    100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
    101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
    102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
    103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
    104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
    105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
    106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
    107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
    108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
    109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
    110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
    111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
    112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
    113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
    114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
    115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
    116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
    117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
    118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
    119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
    120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
    121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
    122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
    123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
    124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
    125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
    126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
    127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
    128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
    129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
    130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
    131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
    132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
    133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
    134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
    135	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
    136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
    137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
    138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
    139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
    140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
    141	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
    142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
    143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
    144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
    145	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
    146	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
    147	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
    148		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
    149	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
    150		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
    151	{0,}
    152};
    153
    154MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
    155
    156/*  board_id = Subsystem Device ID & Vendor ID
    157 *  product = Marketing Name for the board
    158 *  access = Address of the struct of function pointers
    159 */
    160static struct board_type products[] = {
    161	{0x40700E11, "Smart Array 5300", &SA5A_access},
    162	{0x40800E11, "Smart Array 5i", &SA5B_access},
    163	{0x40820E11, "Smart Array 532", &SA5B_access},
    164	{0x40830E11, "Smart Array 5312", &SA5B_access},
    165	{0x409A0E11, "Smart Array 641", &SA5A_access},
    166	{0x409B0E11, "Smart Array 642", &SA5A_access},
    167	{0x409C0E11, "Smart Array 6400", &SA5A_access},
    168	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
    169	{0x40910E11, "Smart Array 6i", &SA5A_access},
    170	{0x3225103C, "Smart Array P600", &SA5A_access},
    171	{0x3223103C, "Smart Array P800", &SA5A_access},
    172	{0x3234103C, "Smart Array P400", &SA5A_access},
    173	{0x3235103C, "Smart Array P400i", &SA5A_access},
    174	{0x3211103C, "Smart Array E200i", &SA5A_access},
    175	{0x3212103C, "Smart Array E200", &SA5A_access},
    176	{0x3213103C, "Smart Array E200i", &SA5A_access},
    177	{0x3214103C, "Smart Array E200i", &SA5A_access},
    178	{0x3215103C, "Smart Array E200i", &SA5A_access},
    179	{0x3237103C, "Smart Array E500", &SA5A_access},
    180	{0x323D103C, "Smart Array P700m", &SA5A_access},
    181	{0x3241103C, "Smart Array P212", &SA5_access},
    182	{0x3243103C, "Smart Array P410", &SA5_access},
    183	{0x3245103C, "Smart Array P410i", &SA5_access},
    184	{0x3247103C, "Smart Array P411", &SA5_access},
    185	{0x3249103C, "Smart Array P812", &SA5_access},
    186	{0x324A103C, "Smart Array P712m", &SA5_access},
    187	{0x324B103C, "Smart Array P711m", &SA5_access},
    188	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
    189	{0x3350103C, "Smart Array P222", &SA5_access},
    190	{0x3351103C, "Smart Array P420", &SA5_access},
    191	{0x3352103C, "Smart Array P421", &SA5_access},
    192	{0x3353103C, "Smart Array P822", &SA5_access},
    193	{0x3354103C, "Smart Array P420i", &SA5_access},
    194	{0x3355103C, "Smart Array P220i", &SA5_access},
    195	{0x3356103C, "Smart Array P721m", &SA5_access},
    196	{0x1920103C, "Smart Array P430i", &SA5_access},
    197	{0x1921103C, "Smart Array P830i", &SA5_access},
    198	{0x1922103C, "Smart Array P430", &SA5_access},
    199	{0x1923103C, "Smart Array P431", &SA5_access},
    200	{0x1924103C, "Smart Array P830", &SA5_access},
    201	{0x1925103C, "Smart Array P831", &SA5_access},
    202	{0x1926103C, "Smart Array P731m", &SA5_access},
    203	{0x1928103C, "Smart Array P230i", &SA5_access},
    204	{0x1929103C, "Smart Array P530", &SA5_access},
    205	{0x21BD103C, "Smart Array P244br", &SA5_access},
    206	{0x21BE103C, "Smart Array P741m", &SA5_access},
    207	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
    208	{0x21C0103C, "Smart Array P440ar", &SA5_access},
    209	{0x21C1103C, "Smart Array P840ar", &SA5_access},
    210	{0x21C2103C, "Smart Array P440", &SA5_access},
    211	{0x21C3103C, "Smart Array P441", &SA5_access},
    212	{0x21C4103C, "Smart Array", &SA5_access},
    213	{0x21C5103C, "Smart Array P841", &SA5_access},
    214	{0x21C6103C, "Smart HBA H244br", &SA5_access},
    215	{0x21C7103C, "Smart HBA H240", &SA5_access},
    216	{0x21C8103C, "Smart HBA H241", &SA5_access},
    217	{0x21C9103C, "Smart Array", &SA5_access},
    218	{0x21CA103C, "Smart Array P246br", &SA5_access},
    219	{0x21CB103C, "Smart Array P840", &SA5_access},
    220	{0x21CC103C, "Smart Array", &SA5_access},
    221	{0x21CD103C, "Smart Array", &SA5_access},
    222	{0x21CE103C, "Smart HBA", &SA5_access},
    223	{0x05809005, "SmartHBA-SA", &SA5_access},
    224	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
    225	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
    226	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
    227	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
    228	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
    229	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
    230	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
    231	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
    232	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
    233	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
    234	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
    235};
    236
    237static struct scsi_transport_template *hpsa_sas_transport_template;
    238static int hpsa_add_sas_host(struct ctlr_info *h);
    239static void hpsa_delete_sas_host(struct ctlr_info *h);
    240static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
    241			struct hpsa_scsi_dev_t *device);
    242static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
    243static struct hpsa_scsi_dev_t
    244	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
    245		struct sas_rphy *rphy);
    246
    247#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
    248static const struct scsi_cmnd hpsa_cmd_busy;
    249#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
    250static const struct scsi_cmnd hpsa_cmd_idle;
    251static int number_of_controllers;
    252
    253static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
    254static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
    255static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
    256		      void __user *arg);
    257static int hpsa_passthru_ioctl(struct ctlr_info *h,
    258			       IOCTL_Command_struct *iocommand);
    259static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
    260				   BIG_IOCTL_Command_struct *ioc);
    261
    262#ifdef CONFIG_COMPAT
    263static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
    264	void __user *arg);
    265#endif
    266
    267static void cmd_free(struct ctlr_info *h, struct CommandList *c);
    268static struct CommandList *cmd_alloc(struct ctlr_info *h);
    269static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
    270static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
    271					    struct scsi_cmnd *scmd);
    272static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
    273	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
    274	int cmd_type);
    275static void hpsa_free_cmd_pool(struct ctlr_info *h);
    276#define VPD_PAGE (1 << 8)
    277#define HPSA_SIMPLE_ERROR_BITS 0x03
    278
    279static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
    280static void hpsa_scan_start(struct Scsi_Host *);
    281static int hpsa_scan_finished(struct Scsi_Host *sh,
    282	unsigned long elapsed_time);
    283static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
    284
    285static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
    286static int hpsa_slave_alloc(struct scsi_device *sdev);
    287static int hpsa_slave_configure(struct scsi_device *sdev);
    288static void hpsa_slave_destroy(struct scsi_device *sdev);
    289
    290static void hpsa_update_scsi_devices(struct ctlr_info *h);
    291static int check_for_unit_attention(struct ctlr_info *h,
    292	struct CommandList *c);
    293static void check_ioctl_unit_attention(struct ctlr_info *h,
    294	struct CommandList *c);
    295/* performant mode helper functions */
    296static void calc_bucket_map(int *bucket, int num_buckets,
    297	int nsgs, int min_blocks, u32 *bucket_map);
    298static void hpsa_free_performant_mode(struct ctlr_info *h);
    299static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
    300static inline u32 next_command(struct ctlr_info *h, u8 q);
    301static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
    302			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
    303			       u64 *cfg_offset);
    304static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
    305				    unsigned long *memory_bar);
    306static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
    307				bool *legacy_board);
    308static int wait_for_device_to_become_ready(struct ctlr_info *h,
    309					   unsigned char lunaddr[],
    310					   int reply_queue);
    311static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
    312				     int wait_for_ready);
    313static inline void finish_cmd(struct CommandList *c);
    314static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
    315#define BOARD_NOT_READY 0
    316#define BOARD_READY 1
    317static void hpsa_drain_accel_commands(struct ctlr_info *h);
    318static void hpsa_flush_cache(struct ctlr_info *h);
    319static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
    320	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
    321	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
    322static void hpsa_command_resubmit_worker(struct work_struct *work);
    323static u32 lockup_detected(struct ctlr_info *h);
    324static int detect_controller_lockup(struct ctlr_info *h);
    325static void hpsa_disable_rld_caching(struct ctlr_info *h);
    326static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
    327	struct ReportExtendedLUNdata *buf, int bufsize);
    328static bool hpsa_vpd_page_supported(struct ctlr_info *h,
    329	unsigned char scsi3addr[], u8 page);
    330static int hpsa_luns_changed(struct ctlr_info *h);
    331static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
    332			       struct hpsa_scsi_dev_t *dev,
    333			       unsigned char *scsi3addr);
    334
    335static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
    336{
    337	unsigned long *priv = shost_priv(sdev->host);
    338	return (struct ctlr_info *) *priv;
    339}
    340
    341static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
    342{
    343	unsigned long *priv = shost_priv(sh);
    344	return (struct ctlr_info *) *priv;
    345}
    346
    347static inline bool hpsa_is_cmd_idle(struct CommandList *c)
    348{
    349	return c->scsi_cmd == SCSI_CMD_IDLE;
    350}
    351
    352/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
    353static void decode_sense_data(const u8 *sense_data, int sense_data_len,
    354			u8 *sense_key, u8 *asc, u8 *ascq)
    355{
    356	struct scsi_sense_hdr sshdr;
    357	bool rc;
    358
    359	*sense_key = -1;
    360	*asc = -1;
    361	*ascq = -1;
    362
    363	if (sense_data_len < 1)
    364		return;
    365
    366	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
    367	if (rc) {
    368		*sense_key = sshdr.sense_key;
    369		*asc = sshdr.asc;
    370		*ascq = sshdr.ascq;
    371	}
    372}
    373
    374static int check_for_unit_attention(struct ctlr_info *h,
    375	struct CommandList *c)
    376{
    377	u8 sense_key, asc, ascq;
    378	int sense_len;
    379
    380	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
    381		sense_len = sizeof(c->err_info->SenseInfo);
    382	else
    383		sense_len = c->err_info->SenseLen;
    384
    385	decode_sense_data(c->err_info->SenseInfo, sense_len,
    386				&sense_key, &asc, &ascq);
    387	if (sense_key != UNIT_ATTENTION || asc == 0xff)
    388		return 0;
    389
    390	switch (asc) {
    391	case STATE_CHANGED:
    392		dev_warn(&h->pdev->dev,
    393			"%s: a state change detected, command retried\n",
    394			h->devname);
    395		break;
    396	case LUN_FAILED:
    397		dev_warn(&h->pdev->dev,
    398			"%s: LUN failure detected\n", h->devname);
    399		break;
    400	case REPORT_LUNS_CHANGED:
    401		dev_warn(&h->pdev->dev,
    402			"%s: report LUN data changed\n", h->devname);
    403	/*
    404	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
    405	 * target (array) devices.
    406	 */
    407		break;
    408	case POWER_OR_RESET:
    409		dev_warn(&h->pdev->dev,
    410			"%s: a power on or device reset detected\n",
    411			h->devname);
    412		break;
    413	case UNIT_ATTENTION_CLEARED:
    414		dev_warn(&h->pdev->dev,
    415			"%s: unit attention cleared by another initiator\n",
    416			h->devname);
    417		break;
    418	default:
    419		dev_warn(&h->pdev->dev,
    420			"%s: unknown unit attention detected\n",
    421			h->devname);
    422		break;
    423	}
    424	return 1;
    425}
    426
    427static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
    428{
    429	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
    430		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
    431		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
    432		return 0;
    433	dev_warn(&h->pdev->dev, HPSA "device busy");
    434	return 1;
    435}
    436
    437static u32 lockup_detected(struct ctlr_info *h);
    438static ssize_t host_show_lockup_detected(struct device *dev,
    439		struct device_attribute *attr, char *buf)
    440{
    441	int ld;
    442	struct ctlr_info *h;
    443	struct Scsi_Host *shost = class_to_shost(dev);
    444
    445	h = shost_to_hba(shost);
    446	ld = lockup_detected(h);
    447
    448	return sprintf(buf, "ld=%d\n", ld);
    449}
    450
    451static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
    452					 struct device_attribute *attr,
    453					 const char *buf, size_t count)
    454{
    455	int status, len;
    456	struct ctlr_info *h;
    457	struct Scsi_Host *shost = class_to_shost(dev);
    458	char tmpbuf[10];
    459
    460	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
    461		return -EACCES;
    462	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
    463	strncpy(tmpbuf, buf, len);
    464	tmpbuf[len] = '\0';
    465	if (sscanf(tmpbuf, "%d", &status) != 1)
    466		return -EINVAL;
    467	h = shost_to_hba(shost);
    468	h->acciopath_status = !!status;
    469	dev_warn(&h->pdev->dev,
    470		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
    471		h->acciopath_status ? "enabled" : "disabled");
    472	return count;
    473}
    474
    475static ssize_t host_store_raid_offload_debug(struct device *dev,
    476					 struct device_attribute *attr,
    477					 const char *buf, size_t count)
    478{
    479	int debug_level, len;
    480	struct ctlr_info *h;
    481	struct Scsi_Host *shost = class_to_shost(dev);
    482	char tmpbuf[10];
    483
    484	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
    485		return -EACCES;
    486	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
    487	strncpy(tmpbuf, buf, len);
    488	tmpbuf[len] = '\0';
    489	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
    490		return -EINVAL;
    491	if (debug_level < 0)
    492		debug_level = 0;
    493	h = shost_to_hba(shost);
    494	h->raid_offload_debug = debug_level;
    495	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
    496		h->raid_offload_debug);
    497	return count;
    498}
    499
    500static ssize_t host_store_rescan(struct device *dev,
    501				 struct device_attribute *attr,
    502				 const char *buf, size_t count)
    503{
    504	struct ctlr_info *h;
    505	struct Scsi_Host *shost = class_to_shost(dev);
    506	h = shost_to_hba(shost);
    507	hpsa_scan_start(h->scsi_host);
    508	return count;
    509}
    510
    511static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
    512{
    513	device->offload_enabled = 0;
    514	device->offload_to_be_enabled = 0;
    515}
    516
    517static ssize_t host_show_firmware_revision(struct device *dev,
    518	     struct device_attribute *attr, char *buf)
    519{
    520	struct ctlr_info *h;
    521	struct Scsi_Host *shost = class_to_shost(dev);
    522	unsigned char *fwrev;
    523
    524	h = shost_to_hba(shost);
    525	if (!h->hba_inquiry_data)
    526		return 0;
    527	fwrev = &h->hba_inquiry_data[32];
    528	return snprintf(buf, 20, "%c%c%c%c\n",
    529		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
    530}
    531
    532static ssize_t host_show_commands_outstanding(struct device *dev,
    533	     struct device_attribute *attr, char *buf)
    534{
    535	struct Scsi_Host *shost = class_to_shost(dev);
    536	struct ctlr_info *h = shost_to_hba(shost);
    537
    538	return snprintf(buf, 20, "%d\n",
    539			atomic_read(&h->commands_outstanding));
    540}
    541
    542static ssize_t host_show_transport_mode(struct device *dev,
    543	struct device_attribute *attr, char *buf)
    544{
    545	struct ctlr_info *h;
    546	struct Scsi_Host *shost = class_to_shost(dev);
    547
    548	h = shost_to_hba(shost);
    549	return snprintf(buf, 20, "%s\n",
    550		h->transMethod & CFGTBL_Trans_Performant ?
    551			"performant" : "simple");
    552}
    553
    554static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
    555	struct device_attribute *attr, char *buf)
    556{
    557	struct ctlr_info *h;
    558	struct Scsi_Host *shost = class_to_shost(dev);
    559
    560	h = shost_to_hba(shost);
    561	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
    562		(h->acciopath_status == 1) ?  "enabled" : "disabled");
    563}
    564
    565/* List of controllers which cannot be hard reset on kexec with reset_devices */
    566static u32 unresettable_controller[] = {
    567	0x324a103C, /* Smart Array P712m */
    568	0x324b103C, /* Smart Array P711m */
    569	0x3223103C, /* Smart Array P800 */
    570	0x3234103C, /* Smart Array P400 */
    571	0x3235103C, /* Smart Array P400i */
    572	0x3211103C, /* Smart Array E200i */
    573	0x3212103C, /* Smart Array E200 */
    574	0x3213103C, /* Smart Array E200i */
    575	0x3214103C, /* Smart Array E200i */
    576	0x3215103C, /* Smart Array E200i */
    577	0x3237103C, /* Smart Array E500 */
    578	0x323D103C, /* Smart Array P700m */
    579	0x40800E11, /* Smart Array 5i */
    580	0x409C0E11, /* Smart Array 6400 */
    581	0x409D0E11, /* Smart Array 6400 EM */
    582	0x40700E11, /* Smart Array 5300 */
    583	0x40820E11, /* Smart Array 532 */
    584	0x40830E11, /* Smart Array 5312 */
    585	0x409A0E11, /* Smart Array 641 */
    586	0x409B0E11, /* Smart Array 642 */
    587	0x40910E11, /* Smart Array 6i */
    588};
    589
    590/* List of controllers which cannot even be soft reset */
    591static u32 soft_unresettable_controller[] = {
    592	0x40800E11, /* Smart Array 5i */
    593	0x40700E11, /* Smart Array 5300 */
    594	0x40820E11, /* Smart Array 532 */
    595	0x40830E11, /* Smart Array 5312 */
    596	0x409A0E11, /* Smart Array 641 */
    597	0x409B0E11, /* Smart Array 642 */
    598	0x40910E11, /* Smart Array 6i */
    599	/* Exclude 640x boards.  These are two pci devices in one slot
    600	 * which share a battery backed cache module.  One controls the
    601	 * cache, the other accesses the cache through the one that controls
    602	 * it.  If we reset the one controlling the cache, the other will
    603	 * likely not be happy.  Just forbid resetting this conjoined mess.
    604	 * The 640x isn't really supported by hpsa anyway.
    605	 */
    606	0x409C0E11, /* Smart Array 6400 */
    607	0x409D0E11, /* Smart Array 6400 EM */
    608};
    609
    610static int board_id_in_array(u32 a[], int nelems, u32 board_id)
    611{
    612	int i;
    613
    614	for (i = 0; i < nelems; i++)
    615		if (a[i] == board_id)
    616			return 1;
    617	return 0;
    618}
    619
    620static int ctlr_is_hard_resettable(u32 board_id)
    621{
    622	return !board_id_in_array(unresettable_controller,
    623			ARRAY_SIZE(unresettable_controller), board_id);
    624}
    625
    626static int ctlr_is_soft_resettable(u32 board_id)
    627{
    628	return !board_id_in_array(soft_unresettable_controller,
    629			ARRAY_SIZE(soft_unresettable_controller), board_id);
    630}
    631
    632static int ctlr_is_resettable(u32 board_id)
    633{
    634	return ctlr_is_hard_resettable(board_id) ||
    635		ctlr_is_soft_resettable(board_id);
    636}
    637
    638static ssize_t host_show_resettable(struct device *dev,
    639	struct device_attribute *attr, char *buf)
    640{
    641	struct ctlr_info *h;
    642	struct Scsi_Host *shost = class_to_shost(dev);
    643
    644	h = shost_to_hba(shost);
    645	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
    646}
    647
    648static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
    649{
    650	return (scsi3addr[3] & 0xC0) == 0x40;
    651}
    652
    653static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
    654	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
    655};
    656#define HPSA_RAID_0	0
    657#define HPSA_RAID_4	1
    658#define HPSA_RAID_1	2	/* also used for RAID 10 */
    659#define HPSA_RAID_5	3	/* also used for RAID 50 */
    660#define HPSA_RAID_51	4
    661#define HPSA_RAID_6	5	/* also used for RAID 60 */
    662#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
    663#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
    664#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
    665
    666static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
    667{
    668	return !device->physical_device;
    669}
    670
    671static ssize_t raid_level_show(struct device *dev,
    672	     struct device_attribute *attr, char *buf)
    673{
    674	ssize_t l = 0;
    675	unsigned char rlevel;
    676	struct ctlr_info *h;
    677	struct scsi_device *sdev;
    678	struct hpsa_scsi_dev_t *hdev;
    679	unsigned long flags;
    680
    681	sdev = to_scsi_device(dev);
    682	h = sdev_to_hba(sdev);
    683	spin_lock_irqsave(&h->lock, flags);
    684	hdev = sdev->hostdata;
    685	if (!hdev) {
    686		spin_unlock_irqrestore(&h->lock, flags);
    687		return -ENODEV;
    688	}
    689
    690	/* Is this even a logical drive? */
    691	if (!is_logical_device(hdev)) {
    692		spin_unlock_irqrestore(&h->lock, flags);
    693		l = snprintf(buf, PAGE_SIZE, "N/A\n");
    694		return l;
    695	}
    696
    697	rlevel = hdev->raid_level;
    698	spin_unlock_irqrestore(&h->lock, flags);
    699	if (rlevel > RAID_UNKNOWN)
    700		rlevel = RAID_UNKNOWN;
    701	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
    702	return l;
    703}
    704
    705static ssize_t lunid_show(struct device *dev,
    706	     struct device_attribute *attr, char *buf)
    707{
    708	struct ctlr_info *h;
    709	struct scsi_device *sdev;
    710	struct hpsa_scsi_dev_t *hdev;
    711	unsigned long flags;
    712	unsigned char lunid[8];
    713
    714	sdev = to_scsi_device(dev);
    715	h = sdev_to_hba(sdev);
    716	spin_lock_irqsave(&h->lock, flags);
    717	hdev = sdev->hostdata;
    718	if (!hdev) {
    719		spin_unlock_irqrestore(&h->lock, flags);
    720		return -ENODEV;
    721	}
    722	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
    723	spin_unlock_irqrestore(&h->lock, flags);
    724	return snprintf(buf, 20, "0x%8phN\n", lunid);
    725}
    726
    727static ssize_t unique_id_show(struct device *dev,
    728	     struct device_attribute *attr, char *buf)
    729{
    730	struct ctlr_info *h;
    731	struct scsi_device *sdev;
    732	struct hpsa_scsi_dev_t *hdev;
    733	unsigned long flags;
    734	unsigned char sn[16];
    735
    736	sdev = to_scsi_device(dev);
    737	h = sdev_to_hba(sdev);
    738	spin_lock_irqsave(&h->lock, flags);
    739	hdev = sdev->hostdata;
    740	if (!hdev) {
    741		spin_unlock_irqrestore(&h->lock, flags);
    742		return -ENODEV;
    743	}
    744	memcpy(sn, hdev->device_id, sizeof(sn));
    745	spin_unlock_irqrestore(&h->lock, flags);
    746	return snprintf(buf, 16 * 2 + 2,
    747			"%02X%02X%02X%02X%02X%02X%02X%02X"
    748			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
    749			sn[0], sn[1], sn[2], sn[3],
    750			sn[4], sn[5], sn[6], sn[7],
    751			sn[8], sn[9], sn[10], sn[11],
    752			sn[12], sn[13], sn[14], sn[15]);
    753}
    754
    755static ssize_t sas_address_show(struct device *dev,
    756	      struct device_attribute *attr, char *buf)
    757{
    758	struct ctlr_info *h;
    759	struct scsi_device *sdev;
    760	struct hpsa_scsi_dev_t *hdev;
    761	unsigned long flags;
    762	u64 sas_address;
    763
    764	sdev = to_scsi_device(dev);
    765	h = sdev_to_hba(sdev);
    766	spin_lock_irqsave(&h->lock, flags);
    767	hdev = sdev->hostdata;
    768	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
    769		spin_unlock_irqrestore(&h->lock, flags);
    770		return -ENODEV;
    771	}
    772	sas_address = hdev->sas_address;
    773	spin_unlock_irqrestore(&h->lock, flags);
    774
    775	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
    776}
    777
    778static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
    779	     struct device_attribute *attr, char *buf)
    780{
    781	struct ctlr_info *h;
    782	struct scsi_device *sdev;
    783	struct hpsa_scsi_dev_t *hdev;
    784	unsigned long flags;
    785	int offload_enabled;
    786
    787	sdev = to_scsi_device(dev);
    788	h = sdev_to_hba(sdev);
    789	spin_lock_irqsave(&h->lock, flags);
    790	hdev = sdev->hostdata;
    791	if (!hdev) {
    792		spin_unlock_irqrestore(&h->lock, flags);
    793		return -ENODEV;
    794	}
    795	offload_enabled = hdev->offload_enabled;
    796	spin_unlock_irqrestore(&h->lock, flags);
    797
    798	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
    799		return snprintf(buf, 20, "%d\n", offload_enabled);
    800	else
    801		return snprintf(buf, 40, "%s\n",
    802				"Not applicable for a controller");
    803}
    804
    805#define MAX_PATHS 8
    806static ssize_t path_info_show(struct device *dev,
    807	     struct device_attribute *attr, char *buf)
    808{
    809	struct ctlr_info *h;
    810	struct scsi_device *sdev;
    811	struct hpsa_scsi_dev_t *hdev;
    812	unsigned long flags;
    813	int i;
    814	int output_len = 0;
    815	u8 box;
    816	u8 bay;
    817	u8 path_map_index = 0;
    818	char *active;
    819	unsigned char phys_connector[2];
    820
    821	sdev = to_scsi_device(dev);
    822	h = sdev_to_hba(sdev);
    823	spin_lock_irqsave(&h->devlock, flags);
    824	hdev = sdev->hostdata;
    825	if (!hdev) {
    826		spin_unlock_irqrestore(&h->devlock, flags);
    827		return -ENODEV;
    828	}
    829
    830	bay = hdev->bay;
    831	for (i = 0; i < MAX_PATHS; i++) {
    832		path_map_index = 1<<i;
    833		if (i == hdev->active_path_index)
    834			active = "Active";
    835		else if (hdev->path_map & path_map_index)
    836			active = "Inactive";
    837		else
    838			continue;
    839
    840		output_len += scnprintf(buf + output_len,
    841				PAGE_SIZE - output_len,
    842				"[%d:%d:%d:%d] %20.20s ",
    843				h->scsi_host->host_no,
    844				hdev->bus, hdev->target, hdev->lun,
    845				scsi_device_type(hdev->devtype));
    846
    847		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
    848			output_len += scnprintf(buf + output_len,
    849						PAGE_SIZE - output_len,
    850						"%s\n", active);
    851			continue;
    852		}
    853
    854		box = hdev->box[i];
    855		memcpy(&phys_connector, &hdev->phys_connector[i],
    856			sizeof(phys_connector));
    857		if (phys_connector[0] < '0')
    858			phys_connector[0] = '0';
    859		if (phys_connector[1] < '0')
    860			phys_connector[1] = '0';
    861		output_len += scnprintf(buf + output_len,
    862				PAGE_SIZE - output_len,
    863				"PORT: %.2s ",
    864				phys_connector);
    865		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
    866			hdev->expose_device) {
    867			if (box == 0 || box == 0xFF) {
    868				output_len += scnprintf(buf + output_len,
    869					PAGE_SIZE - output_len,
    870					"BAY: %hhu %s\n",
    871					bay, active);
    872			} else {
    873				output_len += scnprintf(buf + output_len,
    874					PAGE_SIZE - output_len,
    875					"BOX: %hhu BAY: %hhu %s\n",
    876					box, bay, active);
    877			}
    878		} else if (box != 0 && box != 0xFF) {
    879			output_len += scnprintf(buf + output_len,
    880				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
    881				box, active);
    882		} else
    883			output_len += scnprintf(buf + output_len,
    884				PAGE_SIZE - output_len, "%s\n", active);
    885	}
    886
    887	spin_unlock_irqrestore(&h->devlock, flags);
    888	return output_len;
    889}
    890
    891static ssize_t host_show_ctlr_num(struct device *dev,
    892	struct device_attribute *attr, char *buf)
    893{
    894	struct ctlr_info *h;
    895	struct Scsi_Host *shost = class_to_shost(dev);
    896
    897	h = shost_to_hba(shost);
    898	return snprintf(buf, 20, "%d\n", h->ctlr);
    899}
    900
    901static ssize_t host_show_legacy_board(struct device *dev,
    902	struct device_attribute *attr, char *buf)
    903{
    904	struct ctlr_info *h;
    905	struct Scsi_Host *shost = class_to_shost(dev);
    906
    907	h = shost_to_hba(shost);
    908	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
    909}
    910
    911static DEVICE_ATTR_RO(raid_level);
    912static DEVICE_ATTR_RO(lunid);
    913static DEVICE_ATTR_RO(unique_id);
    914static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
    915static DEVICE_ATTR_RO(sas_address);
    916static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
    917			host_show_hp_ssd_smart_path_enabled, NULL);
    918static DEVICE_ATTR_RO(path_info);
    919static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
    920		host_show_hp_ssd_smart_path_status,
    921		host_store_hp_ssd_smart_path_status);
    922static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
    923			host_store_raid_offload_debug);
    924static DEVICE_ATTR(firmware_revision, S_IRUGO,
    925	host_show_firmware_revision, NULL);
    926static DEVICE_ATTR(commands_outstanding, S_IRUGO,
    927	host_show_commands_outstanding, NULL);
    928static DEVICE_ATTR(transport_mode, S_IRUGO,
    929	host_show_transport_mode, NULL);
    930static DEVICE_ATTR(resettable, S_IRUGO,
    931	host_show_resettable, NULL);
    932static DEVICE_ATTR(lockup_detected, S_IRUGO,
    933	host_show_lockup_detected, NULL);
    934static DEVICE_ATTR(ctlr_num, S_IRUGO,
    935	host_show_ctlr_num, NULL);
    936static DEVICE_ATTR(legacy_board, S_IRUGO,
    937	host_show_legacy_board, NULL);
    938
    939static struct attribute *hpsa_sdev_attrs[] = {
    940	&dev_attr_raid_level.attr,
    941	&dev_attr_lunid.attr,
    942	&dev_attr_unique_id.attr,
    943	&dev_attr_hp_ssd_smart_path_enabled.attr,
    944	&dev_attr_path_info.attr,
    945	&dev_attr_sas_address.attr,
    946	NULL,
    947};
    948
    949ATTRIBUTE_GROUPS(hpsa_sdev);
    950
    951static struct attribute *hpsa_shost_attrs[] = {
    952	&dev_attr_rescan.attr,
    953	&dev_attr_firmware_revision.attr,
    954	&dev_attr_commands_outstanding.attr,
    955	&dev_attr_transport_mode.attr,
    956	&dev_attr_resettable.attr,
    957	&dev_attr_hp_ssd_smart_path_status.attr,
    958	&dev_attr_raid_offload_debug.attr,
    959	&dev_attr_lockup_detected.attr,
    960	&dev_attr_ctlr_num.attr,
    961	&dev_attr_legacy_board.attr,
    962	NULL,
    963};
    964
    965ATTRIBUTE_GROUPS(hpsa_shost);
    966
    967#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
    968				 HPSA_MAX_CONCURRENT_PASSTHRUS)
    969
    970static struct scsi_host_template hpsa_driver_template = {
    971	.module			= THIS_MODULE,
    972	.name			= HPSA,
    973	.proc_name		= HPSA,
    974	.queuecommand		= hpsa_scsi_queue_command,
    975	.scan_start		= hpsa_scan_start,
    976	.scan_finished		= hpsa_scan_finished,
    977	.change_queue_depth	= hpsa_change_queue_depth,
    978	.this_id		= -1,
    979	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
    980	.ioctl			= hpsa_ioctl,
    981	.slave_alloc		= hpsa_slave_alloc,
    982	.slave_configure	= hpsa_slave_configure,
    983	.slave_destroy		= hpsa_slave_destroy,
    984#ifdef CONFIG_COMPAT
    985	.compat_ioctl		= hpsa_compat_ioctl,
    986#endif
    987	.sdev_groups = hpsa_sdev_groups,
    988	.shost_groups = hpsa_shost_groups,
    989	.max_sectors = 2048,
    990	.no_write_same = 1,
    991};
    992
    993static inline u32 next_command(struct ctlr_info *h, u8 q)
    994{
    995	u32 a;
    996	struct reply_queue_buffer *rq = &h->reply_queue[q];
    997
    998	if (h->transMethod & CFGTBL_Trans_io_accel1)
    999		return h->access.command_completed(h, q);
   1000
   1001	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
   1002		return h->access.command_completed(h, q);
   1003
   1004	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
   1005		a = rq->head[rq->current_entry];
   1006		rq->current_entry++;
   1007		atomic_dec(&h->commands_outstanding);
   1008	} else {
   1009		a = FIFO_EMPTY;
   1010	}
   1011	/* Check for wraparound */
   1012	if (rq->current_entry == h->max_commands) {
   1013		rq->current_entry = 0;
   1014		rq->wraparound ^= 1;
   1015	}
   1016	return a;
   1017}
   1018
   1019/*
   1020 * There are some special bits in the bus address of the
   1021 * command that we have to set for the controller to know
   1022 * how to process the command:
   1023 *
   1024 * Normal performant mode:
   1025 * bit 0: 1 means performant mode, 0 means simple mode.
   1026 * bits 1-3 = block fetch table entry
   1027 * bits 4-6 = command type (== 0)
   1028 *
   1029 * ioaccel1 mode:
   1030 * bit 0 = "performant mode" bit.
   1031 * bits 1-3 = block fetch table entry
   1032 * bits 4-6 = command type (== 110)
   1033 * (command type is needed because ioaccel1 mode
   1034 * commands are submitted through the same register as normal
   1035 * mode commands, so this is how the controller knows whether
   1036 * the command is normal mode or ioaccel1 mode.)
   1037 *
   1038 * ioaccel2 mode:
   1039 * bit 0 = "performant mode" bit.
   1040 * bits 1-4 = block fetch table entry (note extra bit)
   1041 * bits 4-6 = not needed, because ioaccel2 mode has
   1042 * a separate special register for submitting commands.
   1043 */
   1044
   1045/*
   1046 * set_performant_mode: Modify the tag for cciss performant
   1047 * set bit 0 for pull model, bits 3-1 for block fetch
   1048 * register number
   1049 */
   1050#define DEFAULT_REPLY_QUEUE (-1)
   1051static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
   1052					int reply_queue)
   1053{
   1054	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
   1055		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
   1056		if (unlikely(!h->msix_vectors))
   1057			return;
   1058		c->Header.ReplyQueue = reply_queue;
   1059	}
   1060}
   1061
   1062static void set_ioaccel1_performant_mode(struct ctlr_info *h,
   1063						struct CommandList *c,
   1064						int reply_queue)
   1065{
   1066	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
   1067
   1068	/*
   1069	 * Tell the controller to post the reply to the queue for this
   1070	 * processor.  This seems to give the best I/O throughput.
   1071	 */
   1072	cp->ReplyQueue = reply_queue;
   1073	/*
   1074	 * Set the bits in the address sent down to include:
   1075	 *  - performant mode bit (bit 0)
   1076	 *  - pull count (bits 1-3)
   1077	 *  - command type (bits 4-6)
   1078	 */
   1079	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
   1080					IOACCEL1_BUSADDR_CMDTYPE;
   1081}
   1082
   1083static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
   1084						struct CommandList *c,
   1085						int reply_queue)
   1086{
   1087	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
   1088		&h->ioaccel2_cmd_pool[c->cmdindex];
   1089
   1090	/* Tell the controller to post the reply to the queue for this
   1091	 * processor.  This seems to give the best I/O throughput.
   1092	 */
   1093	cp->reply_queue = reply_queue;
   1094	/* Set the bits in the address sent down to include:
   1095	 *  - performant mode bit not used in ioaccel mode 2
   1096	 *  - pull count (bits 0-3)
   1097	 *  - command type isn't needed for ioaccel2
   1098	 */
   1099	c->busaddr |= h->ioaccel2_blockFetchTable[0];
   1100}
   1101
   1102static void set_ioaccel2_performant_mode(struct ctlr_info *h,
   1103						struct CommandList *c,
   1104						int reply_queue)
   1105{
   1106	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
   1107
   1108	/*
   1109	 * Tell the controller to post the reply to the queue for this
   1110	 * processor.  This seems to give the best I/O throughput.
   1111	 */
   1112	cp->reply_queue = reply_queue;
   1113	/*
   1114	 * Set the bits in the address sent down to include:
   1115	 *  - performant mode bit not used in ioaccel mode 2
   1116	 *  - pull count (bits 0-3)
   1117	 *  - command type isn't needed for ioaccel2
   1118	 */
   1119	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
   1120}
   1121
   1122static int is_firmware_flash_cmd(u8 *cdb)
   1123{
   1124	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
   1125}
   1126
   1127/*
   1128 * During firmware flash, the heartbeat register may not update as frequently
   1129 * as it should.  So we dial down lockup detection during firmware flash. and
   1130 * dial it back up when firmware flash completes.
   1131 */
   1132#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
   1133#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
   1134#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
   1135static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
   1136		struct CommandList *c)
   1137{
   1138	if (!is_firmware_flash_cmd(c->Request.CDB))
   1139		return;
   1140	atomic_inc(&h->firmware_flash_in_progress);
   1141	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
   1142}
   1143
   1144static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
   1145		struct CommandList *c)
   1146{
   1147	if (is_firmware_flash_cmd(c->Request.CDB) &&
   1148		atomic_dec_and_test(&h->firmware_flash_in_progress))
   1149		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
   1150}
   1151
   1152static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
   1153	struct CommandList *c, int reply_queue)
   1154{
   1155	dial_down_lockup_detection_during_fw_flash(h, c);
   1156	atomic_inc(&h->commands_outstanding);
   1157	/*
   1158	 * Check to see if the command is being retried.
   1159	 */
   1160	if (c->device && !c->retry_pending)
   1161		atomic_inc(&c->device->commands_outstanding);
   1162
   1163	reply_queue = h->reply_map[raw_smp_processor_id()];
   1164	switch (c->cmd_type) {
   1165	case CMD_IOACCEL1:
   1166		set_ioaccel1_performant_mode(h, c, reply_queue);
   1167		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
   1168		break;
   1169	case CMD_IOACCEL2:
   1170		set_ioaccel2_performant_mode(h, c, reply_queue);
   1171		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
   1172		break;
   1173	case IOACCEL2_TMF:
   1174		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
   1175		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
   1176		break;
   1177	default:
   1178		set_performant_mode(h, c, reply_queue);
   1179		h->access.submit_command(h, c);
   1180	}
   1181}
   1182
   1183static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
   1184{
   1185	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
   1186}
   1187
   1188static inline int is_hba_lunid(unsigned char scsi3addr[])
   1189{
   1190	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
   1191}
   1192
   1193static inline int is_scsi_rev_5(struct ctlr_info *h)
   1194{
   1195	if (!h->hba_inquiry_data)
   1196		return 0;
   1197	if ((h->hba_inquiry_data[2] & 0x07) == 5)
   1198		return 1;
   1199	return 0;
   1200}
   1201
   1202static int hpsa_find_target_lun(struct ctlr_info *h,
   1203	unsigned char scsi3addr[], int bus, int *target, int *lun)
   1204{
   1205	/* finds an unused bus, target, lun for a new physical device
   1206	 * assumes h->devlock is held
   1207	 */
   1208	int i, found = 0;
   1209	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
   1210
   1211	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
   1212
   1213	for (i = 0; i < h->ndevices; i++) {
   1214		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
   1215			__set_bit(h->dev[i]->target, lun_taken);
   1216	}
   1217
   1218	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
   1219	if (i < HPSA_MAX_DEVICES) {
   1220		/* *bus = 1; */
   1221		*target = i;
   1222		*lun = 0;
   1223		found = 1;
   1224	}
   1225	return !found;
   1226}
   1227
   1228static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
   1229	struct hpsa_scsi_dev_t *dev, char *description)
   1230{
   1231#define LABEL_SIZE 25
   1232	char label[LABEL_SIZE];
   1233
   1234	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
   1235		return;
   1236
   1237	switch (dev->devtype) {
   1238	case TYPE_RAID:
   1239		snprintf(label, LABEL_SIZE, "controller");
   1240		break;
   1241	case TYPE_ENCLOSURE:
   1242		snprintf(label, LABEL_SIZE, "enclosure");
   1243		break;
   1244	case TYPE_DISK:
   1245	case TYPE_ZBC:
   1246		if (dev->external)
   1247			snprintf(label, LABEL_SIZE, "external");
   1248		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
   1249			snprintf(label, LABEL_SIZE, "%s",
   1250				raid_label[PHYSICAL_DRIVE]);
   1251		else
   1252			snprintf(label, LABEL_SIZE, "RAID-%s",
   1253				dev->raid_level > RAID_UNKNOWN ? "?" :
   1254				raid_label[dev->raid_level]);
   1255		break;
   1256	case TYPE_ROM:
   1257		snprintf(label, LABEL_SIZE, "rom");
   1258		break;
   1259	case TYPE_TAPE:
   1260		snprintf(label, LABEL_SIZE, "tape");
   1261		break;
   1262	case TYPE_MEDIUM_CHANGER:
   1263		snprintf(label, LABEL_SIZE, "changer");
   1264		break;
   1265	default:
   1266		snprintf(label, LABEL_SIZE, "UNKNOWN");
   1267		break;
   1268	}
   1269
   1270	dev_printk(level, &h->pdev->dev,
   1271			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
   1272			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
   1273			description,
   1274			scsi_device_type(dev->devtype),
   1275			dev->vendor,
   1276			dev->model,
   1277			label,
   1278			dev->offload_config ? '+' : '-',
   1279			dev->offload_to_be_enabled ? '+' : '-',
   1280			dev->expose_device);
   1281}
   1282
   1283/* Add an entry into h->dev[] array. */
   1284static int hpsa_scsi_add_entry(struct ctlr_info *h,
   1285		struct hpsa_scsi_dev_t *device,
   1286		struct hpsa_scsi_dev_t *added[], int *nadded)
   1287{
   1288	/* assumes h->devlock is held */
   1289	int n = h->ndevices;
   1290	int i;
   1291	unsigned char addr1[8], addr2[8];
   1292	struct hpsa_scsi_dev_t *sd;
   1293
   1294	if (n >= HPSA_MAX_DEVICES) {
   1295		dev_err(&h->pdev->dev, "too many devices, some will be "
   1296			"inaccessible.\n");
   1297		return -1;
   1298	}
   1299
   1300	/* physical devices do not have lun or target assigned until now. */
   1301	if (device->lun != -1)
   1302		/* Logical device, lun is already assigned. */
   1303		goto lun_assigned;
   1304
   1305	/* If this device a non-zero lun of a multi-lun device
   1306	 * byte 4 of the 8-byte LUN addr will contain the logical
   1307	 * unit no, zero otherwise.
   1308	 */
   1309	if (device->scsi3addr[4] == 0) {
   1310		/* This is not a non-zero lun of a multi-lun device */
   1311		if (hpsa_find_target_lun(h, device->scsi3addr,
   1312			device->bus, &device->target, &device->lun) != 0)
   1313			return -1;
   1314		goto lun_assigned;
   1315	}
   1316
   1317	/* This is a non-zero lun of a multi-lun device.
   1318	 * Search through our list and find the device which
   1319	 * has the same 8 byte LUN address, excepting byte 4 and 5.
   1320	 * Assign the same bus and target for this new LUN.
   1321	 * Use the logical unit number from the firmware.
   1322	 */
   1323	memcpy(addr1, device->scsi3addr, 8);
   1324	addr1[4] = 0;
   1325	addr1[5] = 0;
   1326	for (i = 0; i < n; i++) {
   1327		sd = h->dev[i];
   1328		memcpy(addr2, sd->scsi3addr, 8);
   1329		addr2[4] = 0;
   1330		addr2[5] = 0;
   1331		/* differ only in byte 4 and 5? */
   1332		if (memcmp(addr1, addr2, 8) == 0) {
   1333			device->bus = sd->bus;
   1334			device->target = sd->target;
   1335			device->lun = device->scsi3addr[4];
   1336			break;
   1337		}
   1338	}
   1339	if (device->lun == -1) {
   1340		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
   1341			" suspect firmware bug or unsupported hardware "
   1342			"configuration.\n");
   1343		return -1;
   1344	}
   1345
   1346lun_assigned:
   1347
   1348	h->dev[n] = device;
   1349	h->ndevices++;
   1350	added[*nadded] = device;
   1351	(*nadded)++;
   1352	hpsa_show_dev_msg(KERN_INFO, h, device,
   1353		device->expose_device ? "added" : "masked");
   1354	return 0;
   1355}
   1356
   1357/*
   1358 * Called during a scan operation.
   1359 *
   1360 * Update an entry in h->dev[] array.
   1361 */
   1362static void hpsa_scsi_update_entry(struct ctlr_info *h,
   1363	int entry, struct hpsa_scsi_dev_t *new_entry)
   1364{
   1365	/* assumes h->devlock is held */
   1366	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
   1367
   1368	/* Raid level changed. */
   1369	h->dev[entry]->raid_level = new_entry->raid_level;
   1370
   1371	/*
   1372	 * ioacccel_handle may have changed for a dual domain disk
   1373	 */
   1374	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
   1375
   1376	/* Raid offload parameters changed.  Careful about the ordering. */
   1377	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
   1378		/*
   1379		 * if drive is newly offload_enabled, we want to copy the
   1380		 * raid map data first.  If previously offload_enabled and
   1381		 * offload_config were set, raid map data had better be
   1382		 * the same as it was before. If raid map data has changed
   1383		 * then it had better be the case that
   1384		 * h->dev[entry]->offload_enabled is currently 0.
   1385		 */
   1386		h->dev[entry]->raid_map = new_entry->raid_map;
   1387		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
   1388	}
   1389	if (new_entry->offload_to_be_enabled) {
   1390		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
   1391		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
   1392	}
   1393	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
   1394	h->dev[entry]->offload_config = new_entry->offload_config;
   1395	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
   1396	h->dev[entry]->queue_depth = new_entry->queue_depth;
   1397
   1398	/*
   1399	 * We can turn off ioaccel offload now, but need to delay turning
   1400	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
   1401	 * can't do that until all the devices are updated.
   1402	 */
   1403	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
   1404
   1405	/*
   1406	 * turn ioaccel off immediately if told to do so.
   1407	 */
   1408	if (!new_entry->offload_to_be_enabled)
   1409		h->dev[entry]->offload_enabled = 0;
   1410
   1411	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
   1412}
   1413
   1414/* Replace an entry from h->dev[] array. */
   1415static void hpsa_scsi_replace_entry(struct ctlr_info *h,
   1416	int entry, struct hpsa_scsi_dev_t *new_entry,
   1417	struct hpsa_scsi_dev_t *added[], int *nadded,
   1418	struct hpsa_scsi_dev_t *removed[], int *nremoved)
   1419{
   1420	/* assumes h->devlock is held */
   1421	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
   1422	removed[*nremoved] = h->dev[entry];
   1423	(*nremoved)++;
   1424
   1425	/*
   1426	 * New physical devices won't have target/lun assigned yet
   1427	 * so we need to preserve the values in the slot we are replacing.
   1428	 */
   1429	if (new_entry->target == -1) {
   1430		new_entry->target = h->dev[entry]->target;
   1431		new_entry->lun = h->dev[entry]->lun;
   1432	}
   1433
   1434	h->dev[entry] = new_entry;
   1435	added[*nadded] = new_entry;
   1436	(*nadded)++;
   1437
   1438	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
   1439}
   1440
   1441/* Remove an entry from h->dev[] array. */
   1442static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
   1443	struct hpsa_scsi_dev_t *removed[], int *nremoved)
   1444{
   1445	/* assumes h->devlock is held */
   1446	int i;
   1447	struct hpsa_scsi_dev_t *sd;
   1448
   1449	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
   1450
   1451	sd = h->dev[entry];
   1452	removed[*nremoved] = h->dev[entry];
   1453	(*nremoved)++;
   1454
   1455	for (i = entry; i < h->ndevices-1; i++)
   1456		h->dev[i] = h->dev[i+1];
   1457	h->ndevices--;
   1458	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
   1459}
   1460
   1461#define SCSI3ADDR_EQ(a, b) ( \
   1462	(a)[7] == (b)[7] && \
   1463	(a)[6] == (b)[6] && \
   1464	(a)[5] == (b)[5] && \
   1465	(a)[4] == (b)[4] && \
   1466	(a)[3] == (b)[3] && \
   1467	(a)[2] == (b)[2] && \
   1468	(a)[1] == (b)[1] && \
   1469	(a)[0] == (b)[0])
   1470
   1471static void fixup_botched_add(struct ctlr_info *h,
   1472	struct hpsa_scsi_dev_t *added)
   1473{
   1474	/* called when scsi_add_device fails in order to re-adjust
   1475	 * h->dev[] to match the mid layer's view.
   1476	 */
   1477	unsigned long flags;
   1478	int i, j;
   1479
   1480	spin_lock_irqsave(&h->lock, flags);
   1481	for (i = 0; i < h->ndevices; i++) {
   1482		if (h->dev[i] == added) {
   1483			for (j = i; j < h->ndevices-1; j++)
   1484				h->dev[j] = h->dev[j+1];
   1485			h->ndevices--;
   1486			break;
   1487		}
   1488	}
   1489	spin_unlock_irqrestore(&h->lock, flags);
   1490	kfree(added);
   1491}
   1492
   1493static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
   1494	struct hpsa_scsi_dev_t *dev2)
   1495{
   1496	/* we compare everything except lun and target as these
   1497	 * are not yet assigned.  Compare parts likely
   1498	 * to differ first
   1499	 */
   1500	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
   1501		sizeof(dev1->scsi3addr)) != 0)
   1502		return 0;
   1503	if (memcmp(dev1->device_id, dev2->device_id,
   1504		sizeof(dev1->device_id)) != 0)
   1505		return 0;
   1506	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
   1507		return 0;
   1508	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
   1509		return 0;
   1510	if (dev1->devtype != dev2->devtype)
   1511		return 0;
   1512	if (dev1->bus != dev2->bus)
   1513		return 0;
   1514	return 1;
   1515}
   1516
   1517static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
   1518	struct hpsa_scsi_dev_t *dev2)
   1519{
   1520	/* Device attributes that can change, but don't mean
   1521	 * that the device is a different device, nor that the OS
   1522	 * needs to be told anything about the change.
   1523	 */
   1524	if (dev1->raid_level != dev2->raid_level)
   1525		return 1;
   1526	if (dev1->offload_config != dev2->offload_config)
   1527		return 1;
   1528	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
   1529		return 1;
   1530	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
   1531		if (dev1->queue_depth != dev2->queue_depth)
   1532			return 1;
   1533	/*
   1534	 * This can happen for dual domain devices. An active
   1535	 * path change causes the ioaccel handle to change
   1536	 *
   1537	 * for example note the handle differences between p0 and p1
   1538	 * Device                    WWN               ,WWN hash,Handle
   1539	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
   1540	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
   1541	 */
   1542	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
   1543		return 1;
   1544	return 0;
   1545}
   1546
   1547/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
   1548 * and return needle location in *index.  If scsi3addr matches, but not
   1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
   1550 * location in *index.
   1551 * In the case of a minor device attribute change, such as RAID level, just
   1552 * return DEVICE_UPDATED, along with the updated device's location in index.
   1553 * If needle not found, return DEVICE_NOT_FOUND.
   1554 */
   1555static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
   1556	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
   1557	int *index)
   1558{
   1559	int i;
   1560#define DEVICE_NOT_FOUND 0
   1561#define DEVICE_CHANGED 1
   1562#define DEVICE_SAME 2
   1563#define DEVICE_UPDATED 3
   1564	if (needle == NULL)
   1565		return DEVICE_NOT_FOUND;
   1566
   1567	for (i = 0; i < haystack_size; i++) {
   1568		if (haystack[i] == NULL) /* previously removed. */
   1569			continue;
   1570		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
   1571			*index = i;
   1572			if (device_is_the_same(needle, haystack[i])) {
   1573				if (device_updated(needle, haystack[i]))
   1574					return DEVICE_UPDATED;
   1575				return DEVICE_SAME;
   1576			} else {
   1577				/* Keep offline devices offline */
   1578				if (needle->volume_offline)
   1579					return DEVICE_NOT_FOUND;
   1580				return DEVICE_CHANGED;
   1581			}
   1582		}
   1583	}
   1584	*index = -1;
   1585	return DEVICE_NOT_FOUND;
   1586}
   1587
   1588static void hpsa_monitor_offline_device(struct ctlr_info *h,
   1589					unsigned char scsi3addr[])
   1590{
   1591	struct offline_device_entry *device;
   1592	unsigned long flags;
   1593
   1594	/* Check to see if device is already on the list */
   1595	spin_lock_irqsave(&h->offline_device_lock, flags);
   1596	list_for_each_entry(device, &h->offline_device_list, offline_list) {
   1597		if (memcmp(device->scsi3addr, scsi3addr,
   1598			sizeof(device->scsi3addr)) == 0) {
   1599			spin_unlock_irqrestore(&h->offline_device_lock, flags);
   1600			return;
   1601		}
   1602	}
   1603	spin_unlock_irqrestore(&h->offline_device_lock, flags);
   1604
   1605	/* Device is not on the list, add it. */
   1606	device = kmalloc(sizeof(*device), GFP_KERNEL);
   1607	if (!device)
   1608		return;
   1609
   1610	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
   1611	spin_lock_irqsave(&h->offline_device_lock, flags);
   1612	list_add_tail(&device->offline_list, &h->offline_device_list);
   1613	spin_unlock_irqrestore(&h->offline_device_lock, flags);
   1614}
   1615
   1616/* Print a message explaining various offline volume states */
   1617static void hpsa_show_volume_status(struct ctlr_info *h,
   1618	struct hpsa_scsi_dev_t *sd)
   1619{
   1620	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
   1621		dev_info(&h->pdev->dev,
   1622			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
   1623			h->scsi_host->host_no,
   1624			sd->bus, sd->target, sd->lun);
   1625	switch (sd->volume_offline) {
   1626	case HPSA_LV_OK:
   1627		break;
   1628	case HPSA_LV_UNDERGOING_ERASE:
   1629		dev_info(&h->pdev->dev,
   1630			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
   1631			h->scsi_host->host_no,
   1632			sd->bus, sd->target, sd->lun);
   1633		break;
   1634	case HPSA_LV_NOT_AVAILABLE:
   1635		dev_info(&h->pdev->dev,
   1636			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
   1637			h->scsi_host->host_no,
   1638			sd->bus, sd->target, sd->lun);
   1639		break;
   1640	case HPSA_LV_UNDERGOING_RPI:
   1641		dev_info(&h->pdev->dev,
   1642			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
   1643			h->scsi_host->host_no,
   1644			sd->bus, sd->target, sd->lun);
   1645		break;
   1646	case HPSA_LV_PENDING_RPI:
   1647		dev_info(&h->pdev->dev,
   1648			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
   1649			h->scsi_host->host_no,
   1650			sd->bus, sd->target, sd->lun);
   1651		break;
   1652	case HPSA_LV_ENCRYPTED_NO_KEY:
   1653		dev_info(&h->pdev->dev,
   1654			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
   1655			h->scsi_host->host_no,
   1656			sd->bus, sd->target, sd->lun);
   1657		break;
   1658	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
   1659		dev_info(&h->pdev->dev,
   1660			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
   1661			h->scsi_host->host_no,
   1662			sd->bus, sd->target, sd->lun);
   1663		break;
   1664	case HPSA_LV_UNDERGOING_ENCRYPTION:
   1665		dev_info(&h->pdev->dev,
   1666			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
   1667			h->scsi_host->host_no,
   1668			sd->bus, sd->target, sd->lun);
   1669		break;
   1670	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
   1671		dev_info(&h->pdev->dev,
   1672			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
   1673			h->scsi_host->host_no,
   1674			sd->bus, sd->target, sd->lun);
   1675		break;
   1676	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
   1677		dev_info(&h->pdev->dev,
   1678			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
   1679			h->scsi_host->host_no,
   1680			sd->bus, sd->target, sd->lun);
   1681		break;
   1682	case HPSA_LV_PENDING_ENCRYPTION:
   1683		dev_info(&h->pdev->dev,
   1684			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
   1685			h->scsi_host->host_no,
   1686			sd->bus, sd->target, sd->lun);
   1687		break;
   1688	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
   1689		dev_info(&h->pdev->dev,
   1690			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
   1691			h->scsi_host->host_no,
   1692			sd->bus, sd->target, sd->lun);
   1693		break;
   1694	}
   1695}
   1696
   1697/*
   1698 * Figure the list of physical drive pointers for a logical drive with
   1699 * raid offload configured.
   1700 */
   1701static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
   1702				struct hpsa_scsi_dev_t *dev[], int ndevices,
   1703				struct hpsa_scsi_dev_t *logical_drive)
   1704{
   1705	struct raid_map_data *map = &logical_drive->raid_map;
   1706	struct raid_map_disk_data *dd = &map->data[0];
   1707	int i, j;
   1708	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
   1709				le16_to_cpu(map->metadata_disks_per_row);
   1710	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
   1711				le16_to_cpu(map->layout_map_count) *
   1712				total_disks_per_row;
   1713	int nphys_disk = le16_to_cpu(map->layout_map_count) *
   1714				total_disks_per_row;
   1715	int qdepth;
   1716
   1717	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
   1718		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
   1719
   1720	logical_drive->nphysical_disks = nraid_map_entries;
   1721
   1722	qdepth = 0;
   1723	for (i = 0; i < nraid_map_entries; i++) {
   1724		logical_drive->phys_disk[i] = NULL;
   1725		if (!logical_drive->offload_config)
   1726			continue;
   1727		for (j = 0; j < ndevices; j++) {
   1728			if (dev[j] == NULL)
   1729				continue;
   1730			if (dev[j]->devtype != TYPE_DISK &&
   1731			    dev[j]->devtype != TYPE_ZBC)
   1732				continue;
   1733			if (is_logical_device(dev[j]))
   1734				continue;
   1735			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
   1736				continue;
   1737
   1738			logical_drive->phys_disk[i] = dev[j];
   1739			if (i < nphys_disk)
   1740				qdepth = min(h->nr_cmds, qdepth +
   1741				    logical_drive->phys_disk[i]->queue_depth);
   1742			break;
   1743		}
   1744
   1745		/*
   1746		 * This can happen if a physical drive is removed and
   1747		 * the logical drive is degraded.  In that case, the RAID
   1748		 * map data will refer to a physical disk which isn't actually
   1749		 * present.  And in that case offload_enabled should already
   1750		 * be 0, but we'll turn it off here just in case
   1751		 */
   1752		if (!logical_drive->phys_disk[i]) {
   1753			dev_warn(&h->pdev->dev,
   1754				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
   1755				__func__,
   1756				h->scsi_host->host_no, logical_drive->bus,
   1757				logical_drive->target, logical_drive->lun);
   1758			hpsa_turn_off_ioaccel_for_device(logical_drive);
   1759			logical_drive->queue_depth = 8;
   1760		}
   1761	}
   1762	if (nraid_map_entries)
   1763		/*
   1764		 * This is correct for reads, too high for full stripe writes,
   1765		 * way too high for partial stripe writes
   1766		 */
   1767		logical_drive->queue_depth = qdepth;
   1768	else {
   1769		if (logical_drive->external)
   1770			logical_drive->queue_depth = EXTERNAL_QD;
   1771		else
   1772			logical_drive->queue_depth = h->nr_cmds;
   1773	}
   1774}
   1775
   1776static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
   1777				struct hpsa_scsi_dev_t *dev[], int ndevices)
   1778{
   1779	int i;
   1780
   1781	for (i = 0; i < ndevices; i++) {
   1782		if (dev[i] == NULL)
   1783			continue;
   1784		if (dev[i]->devtype != TYPE_DISK &&
   1785		    dev[i]->devtype != TYPE_ZBC)
   1786			continue;
   1787		if (!is_logical_device(dev[i]))
   1788			continue;
   1789
   1790		/*
   1791		 * If offload is currently enabled, the RAID map and
   1792		 * phys_disk[] assignment *better* not be changing
   1793		 * because we would be changing ioaccel phsy_disk[] pointers
   1794		 * on a ioaccel volume processing I/O requests.
   1795		 *
   1796		 * If an ioaccel volume status changed, initially because it was
   1797		 * re-configured and thus underwent a transformation, or
   1798		 * a drive failed, we would have received a state change
   1799		 * request and ioaccel should have been turned off. When the
   1800		 * transformation completes, we get another state change
   1801		 * request to turn ioaccel back on. In this case, we need
   1802		 * to update the ioaccel information.
   1803		 *
   1804		 * Thus: If it is not currently enabled, but will be after
   1805		 * the scan completes, make sure the ioaccel pointers
   1806		 * are up to date.
   1807		 */
   1808
   1809		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
   1810			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
   1811	}
   1812}
   1813
   1814static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
   1815{
   1816	int rc = 0;
   1817
   1818	if (!h->scsi_host)
   1819		return 1;
   1820
   1821	if (is_logical_device(device)) /* RAID */
   1822		rc = scsi_add_device(h->scsi_host, device->bus,
   1823					device->target, device->lun);
   1824	else /* HBA */
   1825		rc = hpsa_add_sas_device(h->sas_host, device);
   1826
   1827	return rc;
   1828}
   1829
   1830static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
   1831						struct hpsa_scsi_dev_t *dev)
   1832{
   1833	int i;
   1834	int count = 0;
   1835
   1836	for (i = 0; i < h->nr_cmds; i++) {
   1837		struct CommandList *c = h->cmd_pool + i;
   1838		int refcount = atomic_inc_return(&c->refcount);
   1839
   1840		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
   1841				dev->scsi3addr)) {
   1842			unsigned long flags;
   1843
   1844			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
   1845			if (!hpsa_is_cmd_idle(c))
   1846				++count;
   1847			spin_unlock_irqrestore(&h->lock, flags);
   1848		}
   1849
   1850		cmd_free(h, c);
   1851	}
   1852
   1853	return count;
   1854}
   1855
   1856#define NUM_WAIT 20
   1857static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
   1858						struct hpsa_scsi_dev_t *device)
   1859{
   1860	int cmds = 0;
   1861	int waits = 0;
   1862	int num_wait = NUM_WAIT;
   1863
   1864	if (device->external)
   1865		num_wait = HPSA_EH_PTRAID_TIMEOUT;
   1866
   1867	while (1) {
   1868		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
   1869		if (cmds == 0)
   1870			break;
   1871		if (++waits > num_wait)
   1872			break;
   1873		msleep(1000);
   1874	}
   1875
   1876	if (waits > num_wait) {
   1877		dev_warn(&h->pdev->dev,
   1878			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
   1879			__func__,
   1880			h->scsi_host->host_no,
   1881			device->bus, device->target, device->lun, cmds);
   1882	}
   1883}
   1884
   1885static void hpsa_remove_device(struct ctlr_info *h,
   1886			struct hpsa_scsi_dev_t *device)
   1887{
   1888	struct scsi_device *sdev = NULL;
   1889
   1890	if (!h->scsi_host)
   1891		return;
   1892
   1893	/*
   1894	 * Allow for commands to drain
   1895	 */
   1896	device->removed = 1;
   1897	hpsa_wait_for_outstanding_commands_for_dev(h, device);
   1898
   1899	if (is_logical_device(device)) { /* RAID */
   1900		sdev = scsi_device_lookup(h->scsi_host, device->bus,
   1901						device->target, device->lun);
   1902		if (sdev) {
   1903			scsi_remove_device(sdev);
   1904			scsi_device_put(sdev);
   1905		} else {
   1906			/*
   1907			 * We don't expect to get here.  Future commands
   1908			 * to this device will get a selection timeout as
   1909			 * if the device were gone.
   1910			 */
   1911			hpsa_show_dev_msg(KERN_WARNING, h, device,
   1912					"didn't find device for removal.");
   1913		}
   1914	} else { /* HBA */
   1915
   1916		hpsa_remove_sas_device(device);
   1917	}
   1918}
   1919
   1920static void adjust_hpsa_scsi_table(struct ctlr_info *h,
   1921	struct hpsa_scsi_dev_t *sd[], int nsds)
   1922{
   1923	/* sd contains scsi3 addresses and devtypes, and inquiry
   1924	 * data.  This function takes what's in sd to be the current
   1925	 * reality and updates h->dev[] to reflect that reality.
   1926	 */
   1927	int i, entry, device_change, changes = 0;
   1928	struct hpsa_scsi_dev_t *csd;
   1929	unsigned long flags;
   1930	struct hpsa_scsi_dev_t **added, **removed;
   1931	int nadded, nremoved;
   1932
   1933	/*
   1934	 * A reset can cause a device status to change
   1935	 * re-schedule the scan to see what happened.
   1936	 */
   1937	spin_lock_irqsave(&h->reset_lock, flags);
   1938	if (h->reset_in_progress) {
   1939		h->drv_req_rescan = 1;
   1940		spin_unlock_irqrestore(&h->reset_lock, flags);
   1941		return;
   1942	}
   1943	spin_unlock_irqrestore(&h->reset_lock, flags);
   1944
   1945	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
   1946	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
   1947
   1948	if (!added || !removed) {
   1949		dev_warn(&h->pdev->dev, "out of memory in "
   1950			"adjust_hpsa_scsi_table\n");
   1951		goto free_and_out;
   1952	}
   1953
   1954	spin_lock_irqsave(&h->devlock, flags);
   1955
   1956	/* find any devices in h->dev[] that are not in
   1957	 * sd[] and remove them from h->dev[], and for any
   1958	 * devices which have changed, remove the old device
   1959	 * info and add the new device info.
   1960	 * If minor device attributes change, just update
   1961	 * the existing device structure.
   1962	 */
   1963	i = 0;
   1964	nremoved = 0;
   1965	nadded = 0;
   1966	while (i < h->ndevices) {
   1967		csd = h->dev[i];
   1968		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
   1969		if (device_change == DEVICE_NOT_FOUND) {
   1970			changes++;
   1971			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
   1972			continue; /* remove ^^^, hence i not incremented */
   1973		} else if (device_change == DEVICE_CHANGED) {
   1974			changes++;
   1975			hpsa_scsi_replace_entry(h, i, sd[entry],
   1976				added, &nadded, removed, &nremoved);
   1977			/* Set it to NULL to prevent it from being freed
   1978			 * at the bottom of hpsa_update_scsi_devices()
   1979			 */
   1980			sd[entry] = NULL;
   1981		} else if (device_change == DEVICE_UPDATED) {
   1982			hpsa_scsi_update_entry(h, i, sd[entry]);
   1983		}
   1984		i++;
   1985	}
   1986
   1987	/* Now, make sure every device listed in sd[] is also
   1988	 * listed in h->dev[], adding them if they aren't found
   1989	 */
   1990
   1991	for (i = 0; i < nsds; i++) {
   1992		if (!sd[i]) /* if already added above. */
   1993			continue;
   1994
   1995		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
   1996		 * as the SCSI mid-layer does not handle such devices well.
   1997		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
   1998		 * at 160Hz, and prevents the system from coming up.
   1999		 */
   2000		if (sd[i]->volume_offline) {
   2001			hpsa_show_volume_status(h, sd[i]);
   2002			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
   2003			continue;
   2004		}
   2005
   2006		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
   2007					h->ndevices, &entry);
   2008		if (device_change == DEVICE_NOT_FOUND) {
   2009			changes++;
   2010			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
   2011				break;
   2012			sd[i] = NULL; /* prevent from being freed later. */
   2013		} else if (device_change == DEVICE_CHANGED) {
   2014			/* should never happen... */
   2015			changes++;
   2016			dev_warn(&h->pdev->dev,
   2017				"device unexpectedly changed.\n");
   2018			/* but if it does happen, we just ignore that device */
   2019		}
   2020	}
   2021	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
   2022
   2023	/*
   2024	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
   2025	 * any logical drives that need it enabled.
   2026	 *
   2027	 * The raid map should be current by now.
   2028	 *
   2029	 * We are updating the device list used for I/O requests.
   2030	 */
   2031	for (i = 0; i < h->ndevices; i++) {
   2032		if (h->dev[i] == NULL)
   2033			continue;
   2034		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
   2035	}
   2036
   2037	spin_unlock_irqrestore(&h->devlock, flags);
   2038
   2039	/* Monitor devices which are in one of several NOT READY states to be
   2040	 * brought online later. This must be done without holding h->devlock,
   2041	 * so don't touch h->dev[]
   2042	 */
   2043	for (i = 0; i < nsds; i++) {
   2044		if (!sd[i]) /* if already added above. */
   2045			continue;
   2046		if (sd[i]->volume_offline)
   2047			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
   2048	}
   2049
   2050	/* Don't notify scsi mid layer of any changes the first time through
   2051	 * (or if there are no changes) scsi_scan_host will do it later the
   2052	 * first time through.
   2053	 */
   2054	if (!changes)
   2055		goto free_and_out;
   2056
   2057	/* Notify scsi mid layer of any removed devices */
   2058	for (i = 0; i < nremoved; i++) {
   2059		if (removed[i] == NULL)
   2060			continue;
   2061		if (removed[i]->expose_device)
   2062			hpsa_remove_device(h, removed[i]);
   2063		kfree(removed[i]);
   2064		removed[i] = NULL;
   2065	}
   2066
   2067	/* Notify scsi mid layer of any added devices */
   2068	for (i = 0; i < nadded; i++) {
   2069		int rc = 0;
   2070
   2071		if (added[i] == NULL)
   2072			continue;
   2073		if (!(added[i]->expose_device))
   2074			continue;
   2075		rc = hpsa_add_device(h, added[i]);
   2076		if (!rc)
   2077			continue;
   2078		dev_warn(&h->pdev->dev,
   2079			"addition failed %d, device not added.", rc);
   2080		/* now we have to remove it from h->dev,
   2081		 * since it didn't get added to scsi mid layer
   2082		 */
   2083		fixup_botched_add(h, added[i]);
   2084		h->drv_req_rescan = 1;
   2085	}
   2086
   2087free_and_out:
   2088	kfree(added);
   2089	kfree(removed);
   2090}
   2091
   2092/*
   2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
   2094 * Assume's h->devlock is held.
   2095 */
   2096static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
   2097	int bus, int target, int lun)
   2098{
   2099	int i;
   2100	struct hpsa_scsi_dev_t *sd;
   2101
   2102	for (i = 0; i < h->ndevices; i++) {
   2103		sd = h->dev[i];
   2104		if (sd->bus == bus && sd->target == target && sd->lun == lun)
   2105			return sd;
   2106	}
   2107	return NULL;
   2108}
   2109
   2110static int hpsa_slave_alloc(struct scsi_device *sdev)
   2111{
   2112	struct hpsa_scsi_dev_t *sd = NULL;
   2113	unsigned long flags;
   2114	struct ctlr_info *h;
   2115
   2116	h = sdev_to_hba(sdev);
   2117	spin_lock_irqsave(&h->devlock, flags);
   2118	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
   2119		struct scsi_target *starget;
   2120		struct sas_rphy *rphy;
   2121
   2122		starget = scsi_target(sdev);
   2123		rphy = target_to_rphy(starget);
   2124		sd = hpsa_find_device_by_sas_rphy(h, rphy);
   2125		if (sd) {
   2126			sd->target = sdev_id(sdev);
   2127			sd->lun = sdev->lun;
   2128		}
   2129	}
   2130	if (!sd)
   2131		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
   2132					sdev_id(sdev), sdev->lun);
   2133
   2134	if (sd && sd->expose_device) {
   2135		atomic_set(&sd->ioaccel_cmds_out, 0);
   2136		sdev->hostdata = sd;
   2137	} else
   2138		sdev->hostdata = NULL;
   2139	spin_unlock_irqrestore(&h->devlock, flags);
   2140	return 0;
   2141}
   2142
   2143/* configure scsi device based on internal per-device structure */
   2144#define CTLR_TIMEOUT (120 * HZ)
   2145static int hpsa_slave_configure(struct scsi_device *sdev)
   2146{
   2147	struct hpsa_scsi_dev_t *sd;
   2148	int queue_depth;
   2149
   2150	sd = sdev->hostdata;
   2151	sdev->no_uld_attach = !sd || !sd->expose_device;
   2152
   2153	if (sd) {
   2154		sd->was_removed = 0;
   2155		queue_depth = sd->queue_depth != 0 ?
   2156				sd->queue_depth : sdev->host->can_queue;
   2157		if (sd->external) {
   2158			queue_depth = EXTERNAL_QD;
   2159			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
   2160			blk_queue_rq_timeout(sdev->request_queue,
   2161						HPSA_EH_PTRAID_TIMEOUT);
   2162		}
   2163		if (is_hba_lunid(sd->scsi3addr)) {
   2164			sdev->eh_timeout = CTLR_TIMEOUT;
   2165			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
   2166		}
   2167	} else {
   2168		queue_depth = sdev->host->can_queue;
   2169	}
   2170
   2171	scsi_change_queue_depth(sdev, queue_depth);
   2172
   2173	return 0;
   2174}
   2175
   2176static void hpsa_slave_destroy(struct scsi_device *sdev)
   2177{
   2178	struct hpsa_scsi_dev_t *hdev = NULL;
   2179
   2180	hdev = sdev->hostdata;
   2181
   2182	if (hdev)
   2183		hdev->was_removed = 1;
   2184}
   2185
   2186static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
   2187{
   2188	int i;
   2189
   2190	if (!h->ioaccel2_cmd_sg_list)
   2191		return;
   2192	for (i = 0; i < h->nr_cmds; i++) {
   2193		kfree(h->ioaccel2_cmd_sg_list[i]);
   2194		h->ioaccel2_cmd_sg_list[i] = NULL;
   2195	}
   2196	kfree(h->ioaccel2_cmd_sg_list);
   2197	h->ioaccel2_cmd_sg_list = NULL;
   2198}
   2199
   2200static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
   2201{
   2202	int i;
   2203
   2204	if (h->chainsize <= 0)
   2205		return 0;
   2206
   2207	h->ioaccel2_cmd_sg_list =
   2208		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
   2209					GFP_KERNEL);
   2210	if (!h->ioaccel2_cmd_sg_list)
   2211		return -ENOMEM;
   2212	for (i = 0; i < h->nr_cmds; i++) {
   2213		h->ioaccel2_cmd_sg_list[i] =
   2214			kmalloc_array(h->maxsgentries,
   2215				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
   2216				      GFP_KERNEL);
   2217		if (!h->ioaccel2_cmd_sg_list[i])
   2218			goto clean;
   2219	}
   2220	return 0;
   2221
   2222clean:
   2223	hpsa_free_ioaccel2_sg_chain_blocks(h);
   2224	return -ENOMEM;
   2225}
   2226
   2227static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
   2228{
   2229	int i;
   2230
   2231	if (!h->cmd_sg_list)
   2232		return;
   2233	for (i = 0; i < h->nr_cmds; i++) {
   2234		kfree(h->cmd_sg_list[i]);
   2235		h->cmd_sg_list[i] = NULL;
   2236	}
   2237	kfree(h->cmd_sg_list);
   2238	h->cmd_sg_list = NULL;
   2239}
   2240
   2241static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
   2242{
   2243	int i;
   2244
   2245	if (h->chainsize <= 0)
   2246		return 0;
   2247
   2248	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
   2249				 GFP_KERNEL);
   2250	if (!h->cmd_sg_list)
   2251		return -ENOMEM;
   2252
   2253	for (i = 0; i < h->nr_cmds; i++) {
   2254		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
   2255						  sizeof(*h->cmd_sg_list[i]),
   2256						  GFP_KERNEL);
   2257		if (!h->cmd_sg_list[i])
   2258			goto clean;
   2259
   2260	}
   2261	return 0;
   2262
   2263clean:
   2264	hpsa_free_sg_chain_blocks(h);
   2265	return -ENOMEM;
   2266}
   2267
   2268static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
   2269	struct io_accel2_cmd *cp, struct CommandList *c)
   2270{
   2271	struct ioaccel2_sg_element *chain_block;
   2272	u64 temp64;
   2273	u32 chain_size;
   2274
   2275	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
   2276	chain_size = le32_to_cpu(cp->sg[0].length);
   2277	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
   2278				DMA_TO_DEVICE);
   2279	if (dma_mapping_error(&h->pdev->dev, temp64)) {
   2280		/* prevent subsequent unmapping */
   2281		cp->sg->address = 0;
   2282		return -1;
   2283	}
   2284	cp->sg->address = cpu_to_le64(temp64);
   2285	return 0;
   2286}
   2287
   2288static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
   2289	struct io_accel2_cmd *cp)
   2290{
   2291	struct ioaccel2_sg_element *chain_sg;
   2292	u64 temp64;
   2293	u32 chain_size;
   2294
   2295	chain_sg = cp->sg;
   2296	temp64 = le64_to_cpu(chain_sg->address);
   2297	chain_size = le32_to_cpu(cp->sg[0].length);
   2298	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
   2299}
   2300
   2301static int hpsa_map_sg_chain_block(struct ctlr_info *h,
   2302	struct CommandList *c)
   2303{
   2304	struct SGDescriptor *chain_sg, *chain_block;
   2305	u64 temp64;
   2306	u32 chain_len;
   2307
   2308	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
   2309	chain_block = h->cmd_sg_list[c->cmdindex];
   2310	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
   2311	chain_len = sizeof(*chain_sg) *
   2312		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
   2313	chain_sg->Len = cpu_to_le32(chain_len);
   2314	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
   2315				DMA_TO_DEVICE);
   2316	if (dma_mapping_error(&h->pdev->dev, temp64)) {
   2317		/* prevent subsequent unmapping */
   2318		chain_sg->Addr = cpu_to_le64(0);
   2319		return -1;
   2320	}
   2321	chain_sg->Addr = cpu_to_le64(temp64);
   2322	return 0;
   2323}
   2324
   2325static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
   2326	struct CommandList *c)
   2327{
   2328	struct SGDescriptor *chain_sg;
   2329
   2330	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
   2331		return;
   2332
   2333	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
   2334	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
   2335			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
   2336}
   2337
   2338
   2339/* Decode the various types of errors on ioaccel2 path.
   2340 * Return 1 for any error that should generate a RAID path retry.
   2341 * Return 0 for errors that don't require a RAID path retry.
   2342 */
   2343static int handle_ioaccel_mode2_error(struct ctlr_info *h,
   2344					struct CommandList *c,
   2345					struct scsi_cmnd *cmd,
   2346					struct io_accel2_cmd *c2,
   2347					struct hpsa_scsi_dev_t *dev)
   2348{
   2349	int data_len;
   2350	int retry = 0;
   2351	u32 ioaccel2_resid = 0;
   2352
   2353	switch (c2->error_data.serv_response) {
   2354	case IOACCEL2_SERV_RESPONSE_COMPLETE:
   2355		switch (c2->error_data.status) {
   2356		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
   2357			if (cmd)
   2358				cmd->result = 0;
   2359			break;
   2360		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
   2361			cmd->result |= SAM_STAT_CHECK_CONDITION;
   2362			if (c2->error_data.data_present !=
   2363					IOACCEL2_SENSE_DATA_PRESENT) {
   2364				memset(cmd->sense_buffer, 0,
   2365					SCSI_SENSE_BUFFERSIZE);
   2366				break;
   2367			}
   2368			/* copy the sense data */
   2369			data_len = c2->error_data.sense_data_len;
   2370			if (data_len > SCSI_SENSE_BUFFERSIZE)
   2371				data_len = SCSI_SENSE_BUFFERSIZE;
   2372			if (data_len > sizeof(c2->error_data.sense_data_buff))
   2373				data_len =
   2374					sizeof(c2->error_data.sense_data_buff);
   2375			memcpy(cmd->sense_buffer,
   2376				c2->error_data.sense_data_buff, data_len);
   2377			retry = 1;
   2378			break;
   2379		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
   2380			retry = 1;
   2381			break;
   2382		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
   2383			retry = 1;
   2384			break;
   2385		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
   2386			retry = 1;
   2387			break;
   2388		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
   2389			retry = 1;
   2390			break;
   2391		default:
   2392			retry = 1;
   2393			break;
   2394		}
   2395		break;
   2396	case IOACCEL2_SERV_RESPONSE_FAILURE:
   2397		switch (c2->error_data.status) {
   2398		case IOACCEL2_STATUS_SR_IO_ERROR:
   2399		case IOACCEL2_STATUS_SR_IO_ABORTED:
   2400		case IOACCEL2_STATUS_SR_OVERRUN:
   2401			retry = 1;
   2402			break;
   2403		case IOACCEL2_STATUS_SR_UNDERRUN:
   2404			cmd->result = (DID_OK << 16);		/* host byte */
   2405			ioaccel2_resid = get_unaligned_le32(
   2406						&c2->error_data.resid_cnt[0]);
   2407			scsi_set_resid(cmd, ioaccel2_resid);
   2408			break;
   2409		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
   2410		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
   2411		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
   2412			/*
   2413			 * Did an HBA disk disappear? We will eventually
   2414			 * get a state change event from the controller but
   2415			 * in the meantime, we need to tell the OS that the
   2416			 * HBA disk is no longer there and stop I/O
   2417			 * from going down. This allows the potential re-insert
   2418			 * of the disk to get the same device node.
   2419			 */
   2420			if (dev->physical_device && dev->expose_device) {
   2421				cmd->result = DID_NO_CONNECT << 16;
   2422				dev->removed = 1;
   2423				h->drv_req_rescan = 1;
   2424				dev_warn(&h->pdev->dev,
   2425					"%s: device is gone!\n", __func__);
   2426			} else
   2427				/*
   2428				 * Retry by sending down the RAID path.
   2429				 * We will get an event from ctlr to
   2430				 * trigger rescan regardless.
   2431				 */
   2432				retry = 1;
   2433			break;
   2434		default:
   2435			retry = 1;
   2436		}
   2437		break;
   2438	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
   2439		break;
   2440	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
   2441		break;
   2442	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
   2443		retry = 1;
   2444		break;
   2445	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
   2446		break;
   2447	default:
   2448		retry = 1;
   2449		break;
   2450	}
   2451
   2452	if (dev->in_reset)
   2453		retry = 0;
   2454
   2455	return retry;	/* retry on raid path? */
   2456}
   2457
   2458static void hpsa_cmd_resolve_events(struct ctlr_info *h,
   2459		struct CommandList *c)
   2460{
   2461	struct hpsa_scsi_dev_t *dev = c->device;
   2462
   2463	/*
   2464	 * Reset c->scsi_cmd here so that the reset handler will know
   2465	 * this command has completed.  Then, check to see if the handler is
   2466	 * waiting for this command, and, if so, wake it.
   2467	 */
   2468	c->scsi_cmd = SCSI_CMD_IDLE;
   2469	mb();	/* Declare command idle before checking for pending events. */
   2470	if (dev) {
   2471		atomic_dec(&dev->commands_outstanding);
   2472		if (dev->in_reset &&
   2473			atomic_read(&dev->commands_outstanding) <= 0)
   2474			wake_up_all(&h->event_sync_wait_queue);
   2475	}
   2476}
   2477
   2478static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
   2479				      struct CommandList *c)
   2480{
   2481	hpsa_cmd_resolve_events(h, c);
   2482	cmd_tagged_free(h, c);
   2483}
   2484
   2485static void hpsa_cmd_free_and_done(struct ctlr_info *h,
   2486		struct CommandList *c, struct scsi_cmnd *cmd)
   2487{
   2488	hpsa_cmd_resolve_and_free(h, c);
   2489	if (cmd)
   2490		scsi_done(cmd);
   2491}
   2492
   2493static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
   2494{
   2495	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
   2496	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
   2497}
   2498
   2499static void process_ioaccel2_completion(struct ctlr_info *h,
   2500		struct CommandList *c, struct scsi_cmnd *cmd,
   2501		struct hpsa_scsi_dev_t *dev)
   2502{
   2503	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
   2504
   2505	/* check for good status */
   2506	if (likely(c2->error_data.serv_response == 0 &&
   2507			c2->error_data.status == 0)) {
   2508		cmd->result = 0;
   2509		return hpsa_cmd_free_and_done(h, c, cmd);
   2510	}
   2511
   2512	/*
   2513	 * Any RAID offload error results in retry which will use
   2514	 * the normal I/O path so the controller can handle whatever is
   2515	 * wrong.
   2516	 */
   2517	if (is_logical_device(dev) &&
   2518		c2->error_data.serv_response ==
   2519			IOACCEL2_SERV_RESPONSE_FAILURE) {
   2520		if (c2->error_data.status ==
   2521			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
   2522			hpsa_turn_off_ioaccel_for_device(dev);
   2523		}
   2524
   2525		if (dev->in_reset) {
   2526			cmd->result = DID_RESET << 16;
   2527			return hpsa_cmd_free_and_done(h, c, cmd);
   2528		}
   2529
   2530		return hpsa_retry_cmd(h, c);
   2531	}
   2532
   2533	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
   2534		return hpsa_retry_cmd(h, c);
   2535
   2536	return hpsa_cmd_free_and_done(h, c, cmd);
   2537}
   2538
   2539/* Returns 0 on success, < 0 otherwise. */
   2540static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
   2541					struct CommandList *cp)
   2542{
   2543	u8 tmf_status = cp->err_info->ScsiStatus;
   2544
   2545	switch (tmf_status) {
   2546	case CISS_TMF_COMPLETE:
   2547		/*
   2548		 * CISS_TMF_COMPLETE never happens, instead,
   2549		 * ei->CommandStatus == 0 for this case.
   2550		 */
   2551	case CISS_TMF_SUCCESS:
   2552		return 0;
   2553	case CISS_TMF_INVALID_FRAME:
   2554	case CISS_TMF_NOT_SUPPORTED:
   2555	case CISS_TMF_FAILED:
   2556	case CISS_TMF_WRONG_LUN:
   2557	case CISS_TMF_OVERLAPPED_TAG:
   2558		break;
   2559	default:
   2560		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
   2561				tmf_status);
   2562		break;
   2563	}
   2564	return -tmf_status;
   2565}
   2566
   2567static void complete_scsi_command(struct CommandList *cp)
   2568{
   2569	struct scsi_cmnd *cmd;
   2570	struct ctlr_info *h;
   2571	struct ErrorInfo *ei;
   2572	struct hpsa_scsi_dev_t *dev;
   2573	struct io_accel2_cmd *c2;
   2574
   2575	u8 sense_key;
   2576	u8 asc;      /* additional sense code */
   2577	u8 ascq;     /* additional sense code qualifier */
   2578	unsigned long sense_data_size;
   2579
   2580	ei = cp->err_info;
   2581	cmd = cp->scsi_cmd;
   2582	h = cp->h;
   2583
   2584	if (!cmd->device) {
   2585		cmd->result = DID_NO_CONNECT << 16;
   2586		return hpsa_cmd_free_and_done(h, cp, cmd);
   2587	}
   2588
   2589	dev = cmd->device->hostdata;
   2590	if (!dev) {
   2591		cmd->result = DID_NO_CONNECT << 16;
   2592		return hpsa_cmd_free_and_done(h, cp, cmd);
   2593	}
   2594	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
   2595
   2596	scsi_dma_unmap(cmd); /* undo the DMA mappings */
   2597	if ((cp->cmd_type == CMD_SCSI) &&
   2598		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
   2599		hpsa_unmap_sg_chain_block(h, cp);
   2600
   2601	if ((cp->cmd_type == CMD_IOACCEL2) &&
   2602		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
   2603		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
   2604
   2605	cmd->result = (DID_OK << 16);		/* host byte */
   2606
   2607	/* SCSI command has already been cleaned up in SML */
   2608	if (dev->was_removed) {
   2609		hpsa_cmd_resolve_and_free(h, cp);
   2610		return;
   2611	}
   2612
   2613	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
   2614		if (dev->physical_device && dev->expose_device &&
   2615			dev->removed) {
   2616			cmd->result = DID_NO_CONNECT << 16;
   2617			return hpsa_cmd_free_and_done(h, cp, cmd);
   2618		}
   2619		if (likely(cp->phys_disk != NULL))
   2620			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
   2621	}
   2622
   2623	/*
   2624	 * We check for lockup status here as it may be set for
   2625	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
   2626	 * fail_all_oustanding_cmds()
   2627	 */
   2628	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
   2629		/* DID_NO_CONNECT will prevent a retry */
   2630		cmd->result = DID_NO_CONNECT << 16;
   2631		return hpsa_cmd_free_and_done(h, cp, cmd);
   2632	}
   2633
   2634	if (cp->cmd_type == CMD_IOACCEL2)
   2635		return process_ioaccel2_completion(h, cp, cmd, dev);
   2636
   2637	scsi_set_resid(cmd, ei->ResidualCnt);
   2638	if (ei->CommandStatus == 0)
   2639		return hpsa_cmd_free_and_done(h, cp, cmd);
   2640
   2641	/* For I/O accelerator commands, copy over some fields to the normal
   2642	 * CISS header used below for error handling.
   2643	 */
   2644	if (cp->cmd_type == CMD_IOACCEL1) {
   2645		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
   2646		cp->Header.SGList = scsi_sg_count(cmd);
   2647		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
   2648		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
   2649			IOACCEL1_IOFLAGS_CDBLEN_MASK;
   2650		cp->Header.tag = c->tag;
   2651		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
   2652		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
   2653
   2654		/* Any RAID offload error results in retry which will use
   2655		 * the normal I/O path so the controller can handle whatever's
   2656		 * wrong.
   2657		 */
   2658		if (is_logical_device(dev)) {
   2659			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
   2660				dev->offload_enabled = 0;
   2661			return hpsa_retry_cmd(h, cp);
   2662		}
   2663	}
   2664
   2665	/* an error has occurred */
   2666	switch (ei->CommandStatus) {
   2667
   2668	case CMD_TARGET_STATUS:
   2669		cmd->result |= ei->ScsiStatus;
   2670		/* copy the sense data */
   2671		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
   2672			sense_data_size = SCSI_SENSE_BUFFERSIZE;
   2673		else
   2674			sense_data_size = sizeof(ei->SenseInfo);
   2675		if (ei->SenseLen < sense_data_size)
   2676			sense_data_size = ei->SenseLen;
   2677		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
   2678		if (ei->ScsiStatus)
   2679			decode_sense_data(ei->SenseInfo, sense_data_size,
   2680				&sense_key, &asc, &ascq);
   2681		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
   2682			switch (sense_key) {
   2683			case ABORTED_COMMAND:
   2684				cmd->result |= DID_SOFT_ERROR << 16;
   2685				break;
   2686			case UNIT_ATTENTION:
   2687				if (asc == 0x3F && ascq == 0x0E)
   2688					h->drv_req_rescan = 1;
   2689				break;
   2690			case ILLEGAL_REQUEST:
   2691				if (asc == 0x25 && ascq == 0x00) {
   2692					dev->removed = 1;
   2693					cmd->result = DID_NO_CONNECT << 16;
   2694				}
   2695				break;
   2696			}
   2697			break;
   2698		}
   2699		/* Problem was not a check condition
   2700		 * Pass it up to the upper layers...
   2701		 */
   2702		if (ei->ScsiStatus) {
   2703			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
   2704				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
   2705				"Returning result: 0x%x\n",
   2706				cp, ei->ScsiStatus,
   2707				sense_key, asc, ascq,
   2708				cmd->result);
   2709		} else {  /* scsi status is zero??? How??? */
   2710			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
   2711				"Returning no connection.\n", cp),
   2712
   2713			/* Ordinarily, this case should never happen,
   2714			 * but there is a bug in some released firmware
   2715			 * revisions that allows it to happen if, for
   2716			 * example, a 4100 backplane loses power and
   2717			 * the tape drive is in it.  We assume that
   2718			 * it's a fatal error of some kind because we
   2719			 * can't show that it wasn't. We will make it
   2720			 * look like selection timeout since that is
   2721			 * the most common reason for this to occur,
   2722			 * and it's severe enough.
   2723			 */
   2724
   2725			cmd->result = DID_NO_CONNECT << 16;
   2726		}
   2727		break;
   2728
   2729	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
   2730		break;
   2731	case CMD_DATA_OVERRUN:
   2732		dev_warn(&h->pdev->dev,
   2733			"CDB %16phN data overrun\n", cp->Request.CDB);
   2734		break;
   2735	case CMD_INVALID: {
   2736		/* print_bytes(cp, sizeof(*cp), 1, 0);
   2737		print_cmd(cp); */
   2738		/* We get CMD_INVALID if you address a non-existent device
   2739		 * instead of a selection timeout (no response).  You will
   2740		 * see this if you yank out a drive, then try to access it.
   2741		 * This is kind of a shame because it means that any other
   2742		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
   2743		 * missing target. */
   2744		cmd->result = DID_NO_CONNECT << 16;
   2745	}
   2746		break;
   2747	case CMD_PROTOCOL_ERR:
   2748		cmd->result = DID_ERROR << 16;
   2749		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
   2750				cp->Request.CDB);
   2751		break;
   2752	case CMD_HARDWARE_ERR:
   2753		cmd->result = DID_ERROR << 16;
   2754		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
   2755			cp->Request.CDB);
   2756		break;
   2757	case CMD_CONNECTION_LOST:
   2758		cmd->result = DID_ERROR << 16;
   2759		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
   2760			cp->Request.CDB);
   2761		break;
   2762	case CMD_ABORTED:
   2763		cmd->result = DID_ABORT << 16;
   2764		break;
   2765	case CMD_ABORT_FAILED:
   2766		cmd->result = DID_ERROR << 16;
   2767		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
   2768			cp->Request.CDB);
   2769		break;
   2770	case CMD_UNSOLICITED_ABORT:
   2771		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
   2772		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
   2773			cp->Request.CDB);
   2774		break;
   2775	case CMD_TIMEOUT:
   2776		cmd->result = DID_TIME_OUT << 16;
   2777		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
   2778			cp->Request.CDB);
   2779		break;
   2780	case CMD_UNABORTABLE:
   2781		cmd->result = DID_ERROR << 16;
   2782		dev_warn(&h->pdev->dev, "Command unabortable\n");
   2783		break;
   2784	case CMD_TMF_STATUS:
   2785		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
   2786			cmd->result = DID_ERROR << 16;
   2787		break;
   2788	case CMD_IOACCEL_DISABLED:
   2789		/* This only handles the direct pass-through case since RAID
   2790		 * offload is handled above.  Just attempt a retry.
   2791		 */
   2792		cmd->result = DID_SOFT_ERROR << 16;
   2793		dev_warn(&h->pdev->dev,
   2794				"cp %p had HP SSD Smart Path error\n", cp);
   2795		break;
   2796	default:
   2797		cmd->result = DID_ERROR << 16;
   2798		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
   2799				cp, ei->CommandStatus);
   2800	}
   2801
   2802	return hpsa_cmd_free_and_done(h, cp, cmd);
   2803}
   2804
   2805static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
   2806		int sg_used, enum dma_data_direction data_direction)
   2807{
   2808	int i;
   2809
   2810	for (i = 0; i < sg_used; i++)
   2811		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
   2812				le32_to_cpu(c->SG[i].Len),
   2813				data_direction);
   2814}
   2815
   2816static int hpsa_map_one(struct pci_dev *pdev,
   2817		struct CommandList *cp,
   2818		unsigned char *buf,
   2819		size_t buflen,
   2820		enum dma_data_direction data_direction)
   2821{
   2822	u64 addr64;
   2823
   2824	if (buflen == 0 || data_direction == DMA_NONE) {
   2825		cp->Header.SGList = 0;
   2826		cp->Header.SGTotal = cpu_to_le16(0);
   2827		return 0;
   2828	}
   2829
   2830	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
   2831	if (dma_mapping_error(&pdev->dev, addr64)) {
   2832		/* Prevent subsequent unmap of something never mapped */
   2833		cp->Header.SGList = 0;
   2834		cp->Header.SGTotal = cpu_to_le16(0);
   2835		return -1;
   2836	}
   2837	cp->SG[0].Addr = cpu_to_le64(addr64);
   2838	cp->SG[0].Len = cpu_to_le32(buflen);
   2839	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
   2840	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
   2841	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
   2842	return 0;
   2843}
   2844
   2845#define NO_TIMEOUT ((unsigned long) -1)
   2846#define DEFAULT_TIMEOUT 30000 /* milliseconds */
   2847static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
   2848	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
   2849{
   2850	DECLARE_COMPLETION_ONSTACK(wait);
   2851
   2852	c->waiting = &wait;
   2853	__enqueue_cmd_and_start_io(h, c, reply_queue);
   2854	if (timeout_msecs == NO_TIMEOUT) {
   2855		/* TODO: get rid of this no-timeout thing */
   2856		wait_for_completion_io(&wait);
   2857		return IO_OK;
   2858	}
   2859	if (!wait_for_completion_io_timeout(&wait,
   2860					msecs_to_jiffies(timeout_msecs))) {
   2861		dev_warn(&h->pdev->dev, "Command timed out.\n");
   2862		return -ETIMEDOUT;
   2863	}
   2864	return IO_OK;
   2865}
   2866
   2867static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
   2868				   int reply_queue, unsigned long timeout_msecs)
   2869{
   2870	if (unlikely(lockup_detected(h))) {
   2871		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
   2872		return IO_OK;
   2873	}
   2874	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
   2875}
   2876
   2877static u32 lockup_detected(struct ctlr_info *h)
   2878{
   2879	int cpu;
   2880	u32 rc, *lockup_detected;
   2881
   2882	cpu = get_cpu();
   2883	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
   2884	rc = *lockup_detected;
   2885	put_cpu();
   2886	return rc;
   2887}
   2888
   2889#define MAX_DRIVER_CMD_RETRIES 25
   2890static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
   2891		struct CommandList *c, enum dma_data_direction data_direction,
   2892		unsigned long timeout_msecs)
   2893{
   2894	int backoff_time = 10, retry_count = 0;
   2895	int rc;
   2896
   2897	do {
   2898		memset(c->err_info, 0, sizeof(*c->err_info));
   2899		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
   2900						  timeout_msecs);
   2901		if (rc)
   2902			break;
   2903		retry_count++;
   2904		if (retry_count > 3) {
   2905			msleep(backoff_time);
   2906			if (backoff_time < 1000)
   2907				backoff_time *= 2;
   2908		}
   2909	} while ((check_for_unit_attention(h, c) ||
   2910			check_for_busy(h, c)) &&
   2911			retry_count <= MAX_DRIVER_CMD_RETRIES);
   2912	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
   2913	if (retry_count > MAX_DRIVER_CMD_RETRIES)
   2914		rc = -EIO;
   2915	return rc;
   2916}
   2917
   2918static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
   2919				struct CommandList *c)
   2920{
   2921	const u8 *cdb = c->Request.CDB;
   2922	const u8 *lun = c->Header.LUN.LunAddrBytes;
   2923
   2924	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
   2925		 txt, lun, cdb);
   2926}
   2927
   2928static void hpsa_scsi_interpret_error(struct ctlr_info *h,
   2929			struct CommandList *cp)
   2930{
   2931	const struct ErrorInfo *ei = cp->err_info;
   2932	struct device *d = &cp->h->pdev->dev;
   2933	u8 sense_key, asc, ascq;
   2934	int sense_len;
   2935
   2936	switch (ei->CommandStatus) {
   2937	case CMD_TARGET_STATUS:
   2938		if (ei->SenseLen > sizeof(ei->SenseInfo))
   2939			sense_len = sizeof(ei->SenseInfo);
   2940		else
   2941			sense_len = ei->SenseLen;
   2942		decode_sense_data(ei->SenseInfo, sense_len,
   2943					&sense_key, &asc, &ascq);
   2944		hpsa_print_cmd(h, "SCSI status", cp);
   2945		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
   2946			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
   2947				sense_key, asc, ascq);
   2948		else
   2949			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
   2950		if (ei->ScsiStatus == 0)
   2951			dev_warn(d, "SCSI status is abnormally zero.  "
   2952			"(probably indicates selection timeout "
   2953			"reported incorrectly due to a known "
   2954			"firmware bug, circa July, 2001.)\n");
   2955		break;
   2956	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
   2957		break;
   2958	case CMD_DATA_OVERRUN:
   2959		hpsa_print_cmd(h, "overrun condition", cp);
   2960		break;
   2961	case CMD_INVALID: {
   2962		/* controller unfortunately reports SCSI passthru's
   2963		 * to non-existent targets as invalid commands.
   2964		 */
   2965		hpsa_print_cmd(h, "invalid command", cp);
   2966		dev_warn(d, "probably means device no longer present\n");
   2967		}
   2968		break;
   2969	case CMD_PROTOCOL_ERR:
   2970		hpsa_print_cmd(h, "protocol error", cp);
   2971		break;
   2972	case CMD_HARDWARE_ERR:
   2973		hpsa_print_cmd(h, "hardware error", cp);
   2974		break;
   2975	case CMD_CONNECTION_LOST:
   2976		hpsa_print_cmd(h, "connection lost", cp);
   2977		break;
   2978	case CMD_ABORTED:
   2979		hpsa_print_cmd(h, "aborted", cp);
   2980		break;
   2981	case CMD_ABORT_FAILED:
   2982		hpsa_print_cmd(h, "abort failed", cp);
   2983		break;
   2984	case CMD_UNSOLICITED_ABORT:
   2985		hpsa_print_cmd(h, "unsolicited abort", cp);
   2986		break;
   2987	case CMD_TIMEOUT:
   2988		hpsa_print_cmd(h, "timed out", cp);
   2989		break;
   2990	case CMD_UNABORTABLE:
   2991		hpsa_print_cmd(h, "unabortable", cp);
   2992		break;
   2993	case CMD_CTLR_LOCKUP:
   2994		hpsa_print_cmd(h, "controller lockup detected", cp);
   2995		break;
   2996	default:
   2997		hpsa_print_cmd(h, "unknown status", cp);
   2998		dev_warn(d, "Unknown command status %x\n",
   2999				ei->CommandStatus);
   3000	}
   3001}
   3002
   3003static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
   3004					u8 page, u8 *buf, size_t bufsize)
   3005{
   3006	int rc = IO_OK;
   3007	struct CommandList *c;
   3008	struct ErrorInfo *ei;
   3009
   3010	c = cmd_alloc(h);
   3011	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
   3012			page, scsi3addr, TYPE_CMD)) {
   3013		rc = -1;
   3014		goto out;
   3015	}
   3016	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3017			NO_TIMEOUT);
   3018	if (rc)
   3019		goto out;
   3020	ei = c->err_info;
   3021	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3022		hpsa_scsi_interpret_error(h, c);
   3023		rc = -1;
   3024	}
   3025out:
   3026	cmd_free(h, c);
   3027	return rc;
   3028}
   3029
   3030static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
   3031						u8 *scsi3addr)
   3032{
   3033	u8 *buf;
   3034	u64 sa = 0;
   3035	int rc = 0;
   3036
   3037	buf = kzalloc(1024, GFP_KERNEL);
   3038	if (!buf)
   3039		return 0;
   3040
   3041	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
   3042					buf, 1024);
   3043
   3044	if (rc)
   3045		goto out;
   3046
   3047	sa = get_unaligned_be64(buf+12);
   3048
   3049out:
   3050	kfree(buf);
   3051	return sa;
   3052}
   3053
   3054static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
   3055			u16 page, unsigned char *buf,
   3056			unsigned char bufsize)
   3057{
   3058	int rc = IO_OK;
   3059	struct CommandList *c;
   3060	struct ErrorInfo *ei;
   3061
   3062	c = cmd_alloc(h);
   3063
   3064	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
   3065			page, scsi3addr, TYPE_CMD)) {
   3066		rc = -1;
   3067		goto out;
   3068	}
   3069	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3070			NO_TIMEOUT);
   3071	if (rc)
   3072		goto out;
   3073	ei = c->err_info;
   3074	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3075		hpsa_scsi_interpret_error(h, c);
   3076		rc = -1;
   3077	}
   3078out:
   3079	cmd_free(h, c);
   3080	return rc;
   3081}
   3082
   3083static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
   3084	u8 reset_type, int reply_queue)
   3085{
   3086	int rc = IO_OK;
   3087	struct CommandList *c;
   3088	struct ErrorInfo *ei;
   3089
   3090	c = cmd_alloc(h);
   3091	c->device = dev;
   3092
   3093	/* fill_cmd can't fail here, no data buffer to map. */
   3094	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
   3095	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
   3096	if (rc) {
   3097		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
   3098		goto out;
   3099	}
   3100	/* no unmap needed here because no data xfer. */
   3101
   3102	ei = c->err_info;
   3103	if (ei->CommandStatus != 0) {
   3104		hpsa_scsi_interpret_error(h, c);
   3105		rc = -1;
   3106	}
   3107out:
   3108	cmd_free(h, c);
   3109	return rc;
   3110}
   3111
   3112static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
   3113			       struct hpsa_scsi_dev_t *dev,
   3114			       unsigned char *scsi3addr)
   3115{
   3116	int i;
   3117	bool match = false;
   3118	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
   3119	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
   3120
   3121	if (hpsa_is_cmd_idle(c))
   3122		return false;
   3123
   3124	switch (c->cmd_type) {
   3125	case CMD_SCSI:
   3126	case CMD_IOCTL_PEND:
   3127		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
   3128				sizeof(c->Header.LUN.LunAddrBytes));
   3129		break;
   3130
   3131	case CMD_IOACCEL1:
   3132	case CMD_IOACCEL2:
   3133		if (c->phys_disk == dev) {
   3134			/* HBA mode match */
   3135			match = true;
   3136		} else {
   3137			/* Possible RAID mode -- check each phys dev. */
   3138			/* FIXME:  Do we need to take out a lock here?  If
   3139			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
   3140			 * instead. */
   3141			for (i = 0; i < dev->nphysical_disks && !match; i++) {
   3142				/* FIXME: an alternate test might be
   3143				 *
   3144				 * match = dev->phys_disk[i]->ioaccel_handle
   3145				 *              == c2->scsi_nexus;      */
   3146				match = dev->phys_disk[i] == c->phys_disk;
   3147			}
   3148		}
   3149		break;
   3150
   3151	case IOACCEL2_TMF:
   3152		for (i = 0; i < dev->nphysical_disks && !match; i++) {
   3153			match = dev->phys_disk[i]->ioaccel_handle ==
   3154					le32_to_cpu(ac->it_nexus);
   3155		}
   3156		break;
   3157
   3158	case 0:		/* The command is in the middle of being initialized. */
   3159		match = false;
   3160		break;
   3161
   3162	default:
   3163		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
   3164			c->cmd_type);
   3165		BUG();
   3166	}
   3167
   3168	return match;
   3169}
   3170
   3171static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
   3172	u8 reset_type, int reply_queue)
   3173{
   3174	int rc = 0;
   3175
   3176	/* We can really only handle one reset at a time */
   3177	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
   3178		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
   3179		return -EINTR;
   3180	}
   3181
   3182	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
   3183	if (!rc) {
   3184		/* incremented by sending the reset request */
   3185		atomic_dec(&dev->commands_outstanding);
   3186		wait_event(h->event_sync_wait_queue,
   3187			atomic_read(&dev->commands_outstanding) <= 0 ||
   3188			lockup_detected(h));
   3189	}
   3190
   3191	if (unlikely(lockup_detected(h))) {
   3192		dev_warn(&h->pdev->dev,
   3193			 "Controller lockup detected during reset wait\n");
   3194		rc = -ENODEV;
   3195	}
   3196
   3197	if (!rc)
   3198		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
   3199
   3200	mutex_unlock(&h->reset_mutex);
   3201	return rc;
   3202}
   3203
   3204static void hpsa_get_raid_level(struct ctlr_info *h,
   3205	unsigned char *scsi3addr, unsigned char *raid_level)
   3206{
   3207	int rc;
   3208	unsigned char *buf;
   3209
   3210	*raid_level = RAID_UNKNOWN;
   3211	buf = kzalloc(64, GFP_KERNEL);
   3212	if (!buf)
   3213		return;
   3214
   3215	if (!hpsa_vpd_page_supported(h, scsi3addr,
   3216		HPSA_VPD_LV_DEVICE_GEOMETRY))
   3217		goto exit;
   3218
   3219	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
   3220		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
   3221
   3222	if (rc == 0)
   3223		*raid_level = buf[8];
   3224	if (*raid_level > RAID_UNKNOWN)
   3225		*raid_level = RAID_UNKNOWN;
   3226exit:
   3227	kfree(buf);
   3228	return;
   3229}
   3230
   3231#define HPSA_MAP_DEBUG
   3232#ifdef HPSA_MAP_DEBUG
   3233static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
   3234				struct raid_map_data *map_buff)
   3235{
   3236	struct raid_map_disk_data *dd = &map_buff->data[0];
   3237	int map, row, col;
   3238	u16 map_cnt, row_cnt, disks_per_row;
   3239
   3240	if (rc != 0)
   3241		return;
   3242
   3243	/* Show details only if debugging has been activated. */
   3244	if (h->raid_offload_debug < 2)
   3245		return;
   3246
   3247	dev_info(&h->pdev->dev, "structure_size = %u\n",
   3248				le32_to_cpu(map_buff->structure_size));
   3249	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
   3250			le32_to_cpu(map_buff->volume_blk_size));
   3251	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
   3252			le64_to_cpu(map_buff->volume_blk_cnt));
   3253	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
   3254			map_buff->phys_blk_shift);
   3255	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
   3256			map_buff->parity_rotation_shift);
   3257	dev_info(&h->pdev->dev, "strip_size = %u\n",
   3258			le16_to_cpu(map_buff->strip_size));
   3259	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
   3260			le64_to_cpu(map_buff->disk_starting_blk));
   3261	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
   3262			le64_to_cpu(map_buff->disk_blk_cnt));
   3263	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
   3264			le16_to_cpu(map_buff->data_disks_per_row));
   3265	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
   3266			le16_to_cpu(map_buff->metadata_disks_per_row));
   3267	dev_info(&h->pdev->dev, "row_cnt = %u\n",
   3268			le16_to_cpu(map_buff->row_cnt));
   3269	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
   3270			le16_to_cpu(map_buff->layout_map_count));
   3271	dev_info(&h->pdev->dev, "flags = 0x%x\n",
   3272			le16_to_cpu(map_buff->flags));
   3273	dev_info(&h->pdev->dev, "encryption = %s\n",
   3274			le16_to_cpu(map_buff->flags) &
   3275			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
   3276	dev_info(&h->pdev->dev, "dekindex = %u\n",
   3277			le16_to_cpu(map_buff->dekindex));
   3278	map_cnt = le16_to_cpu(map_buff->layout_map_count);
   3279	for (map = 0; map < map_cnt; map++) {
   3280		dev_info(&h->pdev->dev, "Map%u:\n", map);
   3281		row_cnt = le16_to_cpu(map_buff->row_cnt);
   3282		for (row = 0; row < row_cnt; row++) {
   3283			dev_info(&h->pdev->dev, "  Row%u:\n", row);
   3284			disks_per_row =
   3285				le16_to_cpu(map_buff->data_disks_per_row);
   3286			for (col = 0; col < disks_per_row; col++, dd++)
   3287				dev_info(&h->pdev->dev,
   3288					"    D%02u: h=0x%04x xor=%u,%u\n",
   3289					col, dd->ioaccel_handle,
   3290					dd->xor_mult[0], dd->xor_mult[1]);
   3291			disks_per_row =
   3292				le16_to_cpu(map_buff->metadata_disks_per_row);
   3293			for (col = 0; col < disks_per_row; col++, dd++)
   3294				dev_info(&h->pdev->dev,
   3295					"    M%02u: h=0x%04x xor=%u,%u\n",
   3296					col, dd->ioaccel_handle,
   3297					dd->xor_mult[0], dd->xor_mult[1]);
   3298		}
   3299	}
   3300}
   3301#else
   3302static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
   3303			__attribute__((unused)) int rc,
   3304			__attribute__((unused)) struct raid_map_data *map_buff)
   3305{
   3306}
   3307#endif
   3308
   3309static int hpsa_get_raid_map(struct ctlr_info *h,
   3310	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
   3311{
   3312	int rc = 0;
   3313	struct CommandList *c;
   3314	struct ErrorInfo *ei;
   3315
   3316	c = cmd_alloc(h);
   3317
   3318	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
   3319			sizeof(this_device->raid_map), 0,
   3320			scsi3addr, TYPE_CMD)) {
   3321		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
   3322		cmd_free(h, c);
   3323		return -1;
   3324	}
   3325	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3326			NO_TIMEOUT);
   3327	if (rc)
   3328		goto out;
   3329	ei = c->err_info;
   3330	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3331		hpsa_scsi_interpret_error(h, c);
   3332		rc = -1;
   3333		goto out;
   3334	}
   3335	cmd_free(h, c);
   3336
   3337	/* @todo in the future, dynamically allocate RAID map memory */
   3338	if (le32_to_cpu(this_device->raid_map.structure_size) >
   3339				sizeof(this_device->raid_map)) {
   3340		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
   3341		rc = -1;
   3342	}
   3343	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
   3344	return rc;
   3345out:
   3346	cmd_free(h, c);
   3347	return rc;
   3348}
   3349
   3350static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
   3351		unsigned char scsi3addr[], u16 bmic_device_index,
   3352		struct bmic_sense_subsystem_info *buf, size_t bufsize)
   3353{
   3354	int rc = IO_OK;
   3355	struct CommandList *c;
   3356	struct ErrorInfo *ei;
   3357
   3358	c = cmd_alloc(h);
   3359
   3360	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
   3361		0, RAID_CTLR_LUNID, TYPE_CMD);
   3362	if (rc)
   3363		goto out;
   3364
   3365	c->Request.CDB[2] = bmic_device_index & 0xff;
   3366	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
   3367
   3368	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3369			NO_TIMEOUT);
   3370	if (rc)
   3371		goto out;
   3372	ei = c->err_info;
   3373	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3374		hpsa_scsi_interpret_error(h, c);
   3375		rc = -1;
   3376	}
   3377out:
   3378	cmd_free(h, c);
   3379	return rc;
   3380}
   3381
   3382static int hpsa_bmic_id_controller(struct ctlr_info *h,
   3383	struct bmic_identify_controller *buf, size_t bufsize)
   3384{
   3385	int rc = IO_OK;
   3386	struct CommandList *c;
   3387	struct ErrorInfo *ei;
   3388
   3389	c = cmd_alloc(h);
   3390
   3391	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
   3392		0, RAID_CTLR_LUNID, TYPE_CMD);
   3393	if (rc)
   3394		goto out;
   3395
   3396	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3397			NO_TIMEOUT);
   3398	if (rc)
   3399		goto out;
   3400	ei = c->err_info;
   3401	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3402		hpsa_scsi_interpret_error(h, c);
   3403		rc = -1;
   3404	}
   3405out:
   3406	cmd_free(h, c);
   3407	return rc;
   3408}
   3409
   3410static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
   3411		unsigned char scsi3addr[], u16 bmic_device_index,
   3412		struct bmic_identify_physical_device *buf, size_t bufsize)
   3413{
   3414	int rc = IO_OK;
   3415	struct CommandList *c;
   3416	struct ErrorInfo *ei;
   3417
   3418	c = cmd_alloc(h);
   3419	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
   3420		0, RAID_CTLR_LUNID, TYPE_CMD);
   3421	if (rc)
   3422		goto out;
   3423
   3424	c->Request.CDB[2] = bmic_device_index & 0xff;
   3425	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
   3426
   3427	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3428						NO_TIMEOUT);
   3429	ei = c->err_info;
   3430	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3431		hpsa_scsi_interpret_error(h, c);
   3432		rc = -1;
   3433	}
   3434out:
   3435	cmd_free(h, c);
   3436
   3437	return rc;
   3438}
   3439
   3440/*
   3441 * get enclosure information
   3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
   3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
   3444 * Uses id_physical_device to determine the box_index.
   3445 */
   3446static void hpsa_get_enclosure_info(struct ctlr_info *h,
   3447			unsigned char *scsi3addr,
   3448			struct ReportExtendedLUNdata *rlep, int rle_index,
   3449			struct hpsa_scsi_dev_t *encl_dev)
   3450{
   3451	int rc = -1;
   3452	struct CommandList *c = NULL;
   3453	struct ErrorInfo *ei = NULL;
   3454	struct bmic_sense_storage_box_params *bssbp = NULL;
   3455	struct bmic_identify_physical_device *id_phys = NULL;
   3456	struct ext_report_lun_entry *rle;
   3457	u16 bmic_device_index = 0;
   3458
   3459	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
   3460		return;
   3461
   3462	rle = &rlep->LUN[rle_index];
   3463
   3464	encl_dev->eli =
   3465		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
   3466
   3467	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
   3468
   3469	if (encl_dev->target == -1 || encl_dev->lun == -1) {
   3470		rc = IO_OK;
   3471		goto out;
   3472	}
   3473
   3474	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
   3475		rc = IO_OK;
   3476		goto out;
   3477	}
   3478
   3479	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
   3480	if (!bssbp)
   3481		goto out;
   3482
   3483	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
   3484	if (!id_phys)
   3485		goto out;
   3486
   3487	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
   3488						id_phys, sizeof(*id_phys));
   3489	if (rc) {
   3490		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
   3491			__func__, encl_dev->external, bmic_device_index);
   3492		goto out;
   3493	}
   3494
   3495	c = cmd_alloc(h);
   3496
   3497	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
   3498			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
   3499
   3500	if (rc)
   3501		goto out;
   3502
   3503	if (id_phys->phys_connector[1] == 'E')
   3504		c->Request.CDB[5] = id_phys->box_index;
   3505	else
   3506		c->Request.CDB[5] = 0;
   3507
   3508	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3509						NO_TIMEOUT);
   3510	if (rc)
   3511		goto out;
   3512
   3513	ei = c->err_info;
   3514	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3515		rc = -1;
   3516		goto out;
   3517	}
   3518
   3519	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
   3520	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
   3521		bssbp->phys_connector, sizeof(bssbp->phys_connector));
   3522
   3523	rc = IO_OK;
   3524out:
   3525	kfree(bssbp);
   3526	kfree(id_phys);
   3527
   3528	if (c)
   3529		cmd_free(h, c);
   3530
   3531	if (rc != IO_OK)
   3532		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
   3533			"Error, could not get enclosure information");
   3534}
   3535
   3536static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
   3537						unsigned char *scsi3addr)
   3538{
   3539	struct ReportExtendedLUNdata *physdev;
   3540	u32 nphysicals;
   3541	u64 sa = 0;
   3542	int i;
   3543
   3544	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
   3545	if (!physdev)
   3546		return 0;
   3547
   3548	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
   3549		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
   3550		kfree(physdev);
   3551		return 0;
   3552	}
   3553	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
   3554
   3555	for (i = 0; i < nphysicals; i++)
   3556		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
   3557			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
   3558			break;
   3559		}
   3560
   3561	kfree(physdev);
   3562
   3563	return sa;
   3564}
   3565
   3566static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
   3567					struct hpsa_scsi_dev_t *dev)
   3568{
   3569	int rc;
   3570	u64 sa = 0;
   3571
   3572	if (is_hba_lunid(scsi3addr)) {
   3573		struct bmic_sense_subsystem_info *ssi;
   3574
   3575		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
   3576		if (!ssi)
   3577			return;
   3578
   3579		rc = hpsa_bmic_sense_subsystem_information(h,
   3580					scsi3addr, 0, ssi, sizeof(*ssi));
   3581		if (rc == 0) {
   3582			sa = get_unaligned_be64(ssi->primary_world_wide_id);
   3583			h->sas_address = sa;
   3584		}
   3585
   3586		kfree(ssi);
   3587	} else
   3588		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
   3589
   3590	dev->sas_address = sa;
   3591}
   3592
   3593static void hpsa_ext_ctrl_present(struct ctlr_info *h,
   3594	struct ReportExtendedLUNdata *physdev)
   3595{
   3596	u32 nphysicals;
   3597	int i;
   3598
   3599	if (h->discovery_polling)
   3600		return;
   3601
   3602	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
   3603
   3604	for (i = 0; i < nphysicals; i++) {
   3605		if (physdev->LUN[i].device_type ==
   3606			BMIC_DEVICE_TYPE_CONTROLLER
   3607			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
   3608			dev_info(&h->pdev->dev,
   3609				"External controller present, activate discovery polling and disable rld caching\n");
   3610			hpsa_disable_rld_caching(h);
   3611			h->discovery_polling = 1;
   3612			break;
   3613		}
   3614	}
   3615}
   3616
   3617/* Get a device id from inquiry page 0x83 */
   3618static bool hpsa_vpd_page_supported(struct ctlr_info *h,
   3619	unsigned char scsi3addr[], u8 page)
   3620{
   3621	int rc;
   3622	int i;
   3623	int pages;
   3624	unsigned char *buf, bufsize;
   3625
   3626	buf = kzalloc(256, GFP_KERNEL);
   3627	if (!buf)
   3628		return false;
   3629
   3630	/* Get the size of the page list first */
   3631	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
   3632				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
   3633				buf, HPSA_VPD_HEADER_SZ);
   3634	if (rc != 0)
   3635		goto exit_unsupported;
   3636	pages = buf[3];
   3637	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
   3638		bufsize = pages + HPSA_VPD_HEADER_SZ;
   3639	else
   3640		bufsize = 255;
   3641
   3642	/* Get the whole VPD page list */
   3643	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
   3644				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
   3645				buf, bufsize);
   3646	if (rc != 0)
   3647		goto exit_unsupported;
   3648
   3649	pages = buf[3];
   3650	for (i = 1; i <= pages; i++)
   3651		if (buf[3 + i] == page)
   3652			goto exit_supported;
   3653exit_unsupported:
   3654	kfree(buf);
   3655	return false;
   3656exit_supported:
   3657	kfree(buf);
   3658	return true;
   3659}
   3660
   3661/*
   3662 * Called during a scan operation.
   3663 * Sets ioaccel status on the new device list, not the existing device list
   3664 *
   3665 * The device list used during I/O will be updated later in
   3666 * adjust_hpsa_scsi_table.
   3667 */
   3668static void hpsa_get_ioaccel_status(struct ctlr_info *h,
   3669	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
   3670{
   3671	int rc;
   3672	unsigned char *buf;
   3673	u8 ioaccel_status;
   3674
   3675	this_device->offload_config = 0;
   3676	this_device->offload_enabled = 0;
   3677	this_device->offload_to_be_enabled = 0;
   3678
   3679	buf = kzalloc(64, GFP_KERNEL);
   3680	if (!buf)
   3681		return;
   3682	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
   3683		goto out;
   3684	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
   3685			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
   3686	if (rc != 0)
   3687		goto out;
   3688
   3689#define IOACCEL_STATUS_BYTE 4
   3690#define OFFLOAD_CONFIGURED_BIT 0x01
   3691#define OFFLOAD_ENABLED_BIT 0x02
   3692	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
   3693	this_device->offload_config =
   3694		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
   3695	if (this_device->offload_config) {
   3696		bool offload_enabled =
   3697			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
   3698		/*
   3699		 * Check to see if offload can be enabled.
   3700		 */
   3701		if (offload_enabled) {
   3702			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
   3703			if (rc) /* could not load raid_map */
   3704				goto out;
   3705			this_device->offload_to_be_enabled = 1;
   3706		}
   3707	}
   3708
   3709out:
   3710	kfree(buf);
   3711	return;
   3712}
   3713
   3714/* Get the device id from inquiry page 0x83 */
   3715static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
   3716	unsigned char *device_id, int index, int buflen)
   3717{
   3718	int rc;
   3719	unsigned char *buf;
   3720
   3721	/* Does controller have VPD for device id? */
   3722	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
   3723		return 1; /* not supported */
   3724
   3725	buf = kzalloc(64, GFP_KERNEL);
   3726	if (!buf)
   3727		return -ENOMEM;
   3728
   3729	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
   3730					HPSA_VPD_LV_DEVICE_ID, buf, 64);
   3731	if (rc == 0) {
   3732		if (buflen > 16)
   3733			buflen = 16;
   3734		memcpy(device_id, &buf[8], buflen);
   3735	}
   3736
   3737	kfree(buf);
   3738
   3739	return rc; /*0 - got id,  otherwise, didn't */
   3740}
   3741
   3742static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
   3743		void *buf, int bufsize,
   3744		int extended_response)
   3745{
   3746	int rc = IO_OK;
   3747	struct CommandList *c;
   3748	unsigned char scsi3addr[8];
   3749	struct ErrorInfo *ei;
   3750
   3751	c = cmd_alloc(h);
   3752
   3753	/* address the controller */
   3754	memset(scsi3addr, 0, sizeof(scsi3addr));
   3755	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
   3756		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
   3757		rc = -EAGAIN;
   3758		goto out;
   3759	}
   3760	if (extended_response)
   3761		c->Request.CDB[1] = extended_response;
   3762	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   3763			NO_TIMEOUT);
   3764	if (rc)
   3765		goto out;
   3766	ei = c->err_info;
   3767	if (ei->CommandStatus != 0 &&
   3768	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
   3769		hpsa_scsi_interpret_error(h, c);
   3770		rc = -EIO;
   3771	} else {
   3772		struct ReportLUNdata *rld = buf;
   3773
   3774		if (rld->extended_response_flag != extended_response) {
   3775			if (!h->legacy_board) {
   3776				dev_err(&h->pdev->dev,
   3777					"report luns requested format %u, got %u\n",
   3778					extended_response,
   3779					rld->extended_response_flag);
   3780				rc = -EINVAL;
   3781			} else
   3782				rc = -EOPNOTSUPP;
   3783		}
   3784	}
   3785out:
   3786	cmd_free(h, c);
   3787	return rc;
   3788}
   3789
   3790static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
   3791		struct ReportExtendedLUNdata *buf, int bufsize)
   3792{
   3793	int rc;
   3794	struct ReportLUNdata *lbuf;
   3795
   3796	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
   3797				      HPSA_REPORT_PHYS_EXTENDED);
   3798	if (!rc || rc != -EOPNOTSUPP)
   3799		return rc;
   3800
   3801	/* REPORT PHYS EXTENDED is not supported */
   3802	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
   3803	if (!lbuf)
   3804		return -ENOMEM;
   3805
   3806	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
   3807	if (!rc) {
   3808		int i;
   3809		u32 nphys;
   3810
   3811		/* Copy ReportLUNdata header */
   3812		memcpy(buf, lbuf, 8);
   3813		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
   3814		for (i = 0; i < nphys; i++)
   3815			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
   3816	}
   3817	kfree(lbuf);
   3818	return rc;
   3819}
   3820
   3821static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
   3822		struct ReportLUNdata *buf, int bufsize)
   3823{
   3824	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
   3825}
   3826
   3827static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
   3828	int bus, int target, int lun)
   3829{
   3830	device->bus = bus;
   3831	device->target = target;
   3832	device->lun = lun;
   3833}
   3834
   3835/* Use VPD inquiry to get details of volume status */
   3836static int hpsa_get_volume_status(struct ctlr_info *h,
   3837					unsigned char scsi3addr[])
   3838{
   3839	int rc;
   3840	int status;
   3841	int size;
   3842	unsigned char *buf;
   3843
   3844	buf = kzalloc(64, GFP_KERNEL);
   3845	if (!buf)
   3846		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
   3847
   3848	/* Does controller have VPD for logical volume status? */
   3849	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
   3850		goto exit_failed;
   3851
   3852	/* Get the size of the VPD return buffer */
   3853	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
   3854					buf, HPSA_VPD_HEADER_SZ);
   3855	if (rc != 0)
   3856		goto exit_failed;
   3857	size = buf[3];
   3858
   3859	/* Now get the whole VPD buffer */
   3860	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
   3861					buf, size + HPSA_VPD_HEADER_SZ);
   3862	if (rc != 0)
   3863		goto exit_failed;
   3864	status = buf[4]; /* status byte */
   3865
   3866	kfree(buf);
   3867	return status;
   3868exit_failed:
   3869	kfree(buf);
   3870	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
   3871}
   3872
   3873/* Determine offline status of a volume.
   3874 * Return either:
   3875 *  0 (not offline)
   3876 *  0xff (offline for unknown reasons)
   3877 *  # (integer code indicating one of several NOT READY states
   3878 *     describing why a volume is to be kept offline)
   3879 */
   3880static unsigned char hpsa_volume_offline(struct ctlr_info *h,
   3881					unsigned char scsi3addr[])
   3882{
   3883	struct CommandList *c;
   3884	unsigned char *sense;
   3885	u8 sense_key, asc, ascq;
   3886	int sense_len;
   3887	int rc, ldstat = 0;
   3888#define ASC_LUN_NOT_READY 0x04
   3889#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
   3890#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
   3891
   3892	c = cmd_alloc(h);
   3893
   3894	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
   3895	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
   3896					NO_TIMEOUT);
   3897	if (rc) {
   3898		cmd_free(h, c);
   3899		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
   3900	}
   3901	sense = c->err_info->SenseInfo;
   3902	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
   3903		sense_len = sizeof(c->err_info->SenseInfo);
   3904	else
   3905		sense_len = c->err_info->SenseLen;
   3906	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
   3907	cmd_free(h, c);
   3908
   3909	/* Determine the reason for not ready state */
   3910	ldstat = hpsa_get_volume_status(h, scsi3addr);
   3911
   3912	/* Keep volume offline in certain cases: */
   3913	switch (ldstat) {
   3914	case HPSA_LV_FAILED:
   3915	case HPSA_LV_UNDERGOING_ERASE:
   3916	case HPSA_LV_NOT_AVAILABLE:
   3917	case HPSA_LV_UNDERGOING_RPI:
   3918	case HPSA_LV_PENDING_RPI:
   3919	case HPSA_LV_ENCRYPTED_NO_KEY:
   3920	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
   3921	case HPSA_LV_UNDERGOING_ENCRYPTION:
   3922	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
   3923	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
   3924		return ldstat;
   3925	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
   3926		/* If VPD status page isn't available,
   3927		 * use ASC/ASCQ to determine state
   3928		 */
   3929		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
   3930			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
   3931			return ldstat;
   3932		break;
   3933	default:
   3934		break;
   3935	}
   3936	return HPSA_LV_OK;
   3937}
   3938
   3939static int hpsa_update_device_info(struct ctlr_info *h,
   3940	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
   3941	unsigned char *is_OBDR_device)
   3942{
   3943
   3944#define OBDR_SIG_OFFSET 43
   3945#define OBDR_TAPE_SIG "$DR-10"
   3946#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
   3947#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
   3948
   3949	unsigned char *inq_buff;
   3950	unsigned char *obdr_sig;
   3951	int rc = 0;
   3952
   3953	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
   3954	if (!inq_buff) {
   3955		rc = -ENOMEM;
   3956		goto bail_out;
   3957	}
   3958
   3959	/* Do an inquiry to the device to see what it is. */
   3960	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
   3961		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
   3962		dev_err(&h->pdev->dev,
   3963			"%s: inquiry failed, device will be skipped.\n",
   3964			__func__);
   3965		rc = HPSA_INQUIRY_FAILED;
   3966		goto bail_out;
   3967	}
   3968
   3969	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
   3970	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
   3971
   3972	this_device->devtype = (inq_buff[0] & 0x1f);
   3973	memcpy(this_device->scsi3addr, scsi3addr, 8);
   3974	memcpy(this_device->vendor, &inq_buff[8],
   3975		sizeof(this_device->vendor));
   3976	memcpy(this_device->model, &inq_buff[16],
   3977		sizeof(this_device->model));
   3978	this_device->rev = inq_buff[2];
   3979	memset(this_device->device_id, 0,
   3980		sizeof(this_device->device_id));
   3981	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
   3982		sizeof(this_device->device_id)) < 0) {
   3983		dev_err(&h->pdev->dev,
   3984			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
   3985			h->ctlr, __func__,
   3986			h->scsi_host->host_no,
   3987			this_device->bus, this_device->target,
   3988			this_device->lun,
   3989			scsi_device_type(this_device->devtype),
   3990			this_device->model);
   3991		rc = HPSA_LV_FAILED;
   3992		goto bail_out;
   3993	}
   3994
   3995	if ((this_device->devtype == TYPE_DISK ||
   3996		this_device->devtype == TYPE_ZBC) &&
   3997		is_logical_dev_addr_mode(scsi3addr)) {
   3998		unsigned char volume_offline;
   3999
   4000		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
   4001		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
   4002			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
   4003		volume_offline = hpsa_volume_offline(h, scsi3addr);
   4004		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
   4005		    h->legacy_board) {
   4006			/*
   4007			 * Legacy boards might not support volume status
   4008			 */
   4009			dev_info(&h->pdev->dev,
   4010				 "C0:T%d:L%d Volume status not available, assuming online.\n",
   4011				 this_device->target, this_device->lun);
   4012			volume_offline = 0;
   4013		}
   4014		this_device->volume_offline = volume_offline;
   4015		if (volume_offline == HPSA_LV_FAILED) {
   4016			rc = HPSA_LV_FAILED;
   4017			dev_err(&h->pdev->dev,
   4018				"%s: LV failed, device will be skipped.\n",
   4019				__func__);
   4020			goto bail_out;
   4021		}
   4022	} else {
   4023		this_device->raid_level = RAID_UNKNOWN;
   4024		this_device->offload_config = 0;
   4025		hpsa_turn_off_ioaccel_for_device(this_device);
   4026		this_device->hba_ioaccel_enabled = 0;
   4027		this_device->volume_offline = 0;
   4028		this_device->queue_depth = h->nr_cmds;
   4029	}
   4030
   4031	if (this_device->external)
   4032		this_device->queue_depth = EXTERNAL_QD;
   4033
   4034	if (is_OBDR_device) {
   4035		/* See if this is a One-Button-Disaster-Recovery device
   4036		 * by looking for "$DR-10" at offset 43 in inquiry data.
   4037		 */
   4038		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
   4039		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
   4040					strncmp(obdr_sig, OBDR_TAPE_SIG,
   4041						OBDR_SIG_LEN) == 0);
   4042	}
   4043	kfree(inq_buff);
   4044	return 0;
   4045
   4046bail_out:
   4047	kfree(inq_buff);
   4048	return rc;
   4049}
   4050
   4051/*
   4052 * Helper function to assign bus, target, lun mapping of devices.
   4053 * Logical drive target and lun are assigned at this time, but
   4054 * physical device lun and target assignment are deferred (assigned
   4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
   4056*/
   4057static void figure_bus_target_lun(struct ctlr_info *h,
   4058	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
   4059{
   4060	u32 lunid = get_unaligned_le32(lunaddrbytes);
   4061
   4062	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
   4063		/* physical device, target and lun filled in later */
   4064		if (is_hba_lunid(lunaddrbytes)) {
   4065			int bus = HPSA_HBA_BUS;
   4066
   4067			if (!device->rev)
   4068				bus = HPSA_LEGACY_HBA_BUS;
   4069			hpsa_set_bus_target_lun(device,
   4070					bus, 0, lunid & 0x3fff);
   4071		} else
   4072			/* defer target, lun assignment for physical devices */
   4073			hpsa_set_bus_target_lun(device,
   4074					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
   4075		return;
   4076	}
   4077	/* It's a logical device */
   4078	if (device->external) {
   4079		hpsa_set_bus_target_lun(device,
   4080			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
   4081			lunid & 0x00ff);
   4082		return;
   4083	}
   4084	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
   4085				0, lunid & 0x3fff);
   4086}
   4087
   4088static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
   4089	int i, int nphysicals, int nlocal_logicals)
   4090{
   4091	/* In report logicals, local logicals are listed first,
   4092	* then any externals.
   4093	*/
   4094	int logicals_start = nphysicals + (raid_ctlr_position == 0);
   4095
   4096	if (i == raid_ctlr_position)
   4097		return 0;
   4098
   4099	if (i < logicals_start)
   4100		return 0;
   4101
   4102	/* i is in logicals range, but still within local logicals */
   4103	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
   4104		return 0;
   4105
   4106	return 1; /* it's an external lun */
   4107}
   4108
   4109/*
   4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
   4111 * logdev.  The number of luns in physdev and logdev are returned in
   4112 * *nphysicals and *nlogicals, respectively.
   4113 * Returns 0 on success, -1 otherwise.
   4114 */
   4115static int hpsa_gather_lun_info(struct ctlr_info *h,
   4116	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
   4117	struct ReportLUNdata *logdev, u32 *nlogicals)
   4118{
   4119	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
   4120		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
   4121		return -1;
   4122	}
   4123	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
   4124	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
   4125		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
   4126			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
   4127		*nphysicals = HPSA_MAX_PHYS_LUN;
   4128	}
   4129	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
   4130		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
   4131		return -1;
   4132	}
   4133	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
   4134	/* Reject Logicals in excess of our max capability. */
   4135	if (*nlogicals > HPSA_MAX_LUN) {
   4136		dev_warn(&h->pdev->dev,
   4137			"maximum logical LUNs (%d) exceeded.  "
   4138			"%d LUNs ignored.\n", HPSA_MAX_LUN,
   4139			*nlogicals - HPSA_MAX_LUN);
   4140		*nlogicals = HPSA_MAX_LUN;
   4141	}
   4142	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
   4143		dev_warn(&h->pdev->dev,
   4144			"maximum logical + physical LUNs (%d) exceeded. "
   4145			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
   4146			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
   4147		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
   4148	}
   4149	return 0;
   4150}
   4151
   4152static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
   4153	int i, int nphysicals, int nlogicals,
   4154	struct ReportExtendedLUNdata *physdev_list,
   4155	struct ReportLUNdata *logdev_list)
   4156{
   4157	/* Helper function, figure out where the LUN ID info is coming from
   4158	 * given index i, lists of physical and logical devices, where in
   4159	 * the list the raid controller is supposed to appear (first or last)
   4160	 */
   4161
   4162	int logicals_start = nphysicals + (raid_ctlr_position == 0);
   4163	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
   4164
   4165	if (i == raid_ctlr_position)
   4166		return RAID_CTLR_LUNID;
   4167
   4168	if (i < logicals_start)
   4169		return &physdev_list->LUN[i -
   4170				(raid_ctlr_position == 0)].lunid[0];
   4171
   4172	if (i < last_device)
   4173		return &logdev_list->LUN[i - nphysicals -
   4174			(raid_ctlr_position == 0)][0];
   4175	BUG();
   4176	return NULL;
   4177}
   4178
   4179/* get physical drive ioaccel handle and queue depth */
   4180static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
   4181		struct hpsa_scsi_dev_t *dev,
   4182		struct ReportExtendedLUNdata *rlep, int rle_index,
   4183		struct bmic_identify_physical_device *id_phys)
   4184{
   4185	int rc;
   4186	struct ext_report_lun_entry *rle;
   4187
   4188	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
   4189		return;
   4190
   4191	rle = &rlep->LUN[rle_index];
   4192
   4193	dev->ioaccel_handle = rle->ioaccel_handle;
   4194	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
   4195		dev->hba_ioaccel_enabled = 1;
   4196	memset(id_phys, 0, sizeof(*id_phys));
   4197	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
   4198			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
   4199			sizeof(*id_phys));
   4200	if (!rc)
   4201		/* Reserve space for FW operations */
   4202#define DRIVE_CMDS_RESERVED_FOR_FW 2
   4203#define DRIVE_QUEUE_DEPTH 7
   4204		dev->queue_depth =
   4205			le16_to_cpu(id_phys->current_queue_depth_limit) -
   4206				DRIVE_CMDS_RESERVED_FOR_FW;
   4207	else
   4208		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
   4209}
   4210
   4211static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
   4212	struct ReportExtendedLUNdata *rlep, int rle_index,
   4213	struct bmic_identify_physical_device *id_phys)
   4214{
   4215	struct ext_report_lun_entry *rle;
   4216
   4217	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
   4218		return;
   4219
   4220	rle = &rlep->LUN[rle_index];
   4221
   4222	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
   4223		this_device->hba_ioaccel_enabled = 1;
   4224
   4225	memcpy(&this_device->active_path_index,
   4226		&id_phys->active_path_number,
   4227		sizeof(this_device->active_path_index));
   4228	memcpy(&this_device->path_map,
   4229		&id_phys->redundant_path_present_map,
   4230		sizeof(this_device->path_map));
   4231	memcpy(&this_device->box,
   4232		&id_phys->alternate_paths_phys_box_on_port,
   4233		sizeof(this_device->box));
   4234	memcpy(&this_device->phys_connector,
   4235		&id_phys->alternate_paths_phys_connector,
   4236		sizeof(this_device->phys_connector));
   4237	memcpy(&this_device->bay,
   4238		&id_phys->phys_bay_in_box,
   4239		sizeof(this_device->bay));
   4240}
   4241
   4242/* get number of local logical disks. */
   4243static int hpsa_set_local_logical_count(struct ctlr_info *h,
   4244	struct bmic_identify_controller *id_ctlr,
   4245	u32 *nlocals)
   4246{
   4247	int rc;
   4248
   4249	if (!id_ctlr) {
   4250		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
   4251			__func__);
   4252		return -ENOMEM;
   4253	}
   4254	memset(id_ctlr, 0, sizeof(*id_ctlr));
   4255	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
   4256	if (!rc)
   4257		if (id_ctlr->configured_logical_drive_count < 255)
   4258			*nlocals = id_ctlr->configured_logical_drive_count;
   4259		else
   4260			*nlocals = le16_to_cpu(
   4261					id_ctlr->extended_logical_unit_count);
   4262	else
   4263		*nlocals = -1;
   4264	return rc;
   4265}
   4266
   4267static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
   4268{
   4269	struct bmic_identify_physical_device *id_phys;
   4270	bool is_spare = false;
   4271	int rc;
   4272
   4273	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
   4274	if (!id_phys)
   4275		return false;
   4276
   4277	rc = hpsa_bmic_id_physical_device(h,
   4278					lunaddrbytes,
   4279					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
   4280					id_phys, sizeof(*id_phys));
   4281	if (rc == 0)
   4282		is_spare = (id_phys->more_flags >> 6) & 0x01;
   4283
   4284	kfree(id_phys);
   4285	return is_spare;
   4286}
   4287
   4288#define RPL_DEV_FLAG_NON_DISK                           0x1
   4289#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
   4290#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
   4291
   4292#define BMIC_DEVICE_TYPE_ENCLOSURE  6
   4293
   4294static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
   4295				struct ext_report_lun_entry *rle)
   4296{
   4297	u8 device_flags;
   4298	u8 device_type;
   4299
   4300	if (!MASKED_DEVICE(lunaddrbytes))
   4301		return false;
   4302
   4303	device_flags = rle->device_flags;
   4304	device_type = rle->device_type;
   4305
   4306	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
   4307		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
   4308			return false;
   4309		return true;
   4310	}
   4311
   4312	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
   4313		return false;
   4314
   4315	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
   4316		return false;
   4317
   4318	/*
   4319	 * Spares may be spun down, we do not want to
   4320	 * do an Inquiry to a RAID set spare drive as
   4321	 * that would have them spun up, that is a
   4322	 * performance hit because I/O to the RAID device
   4323	 * stops while the spin up occurs which can take
   4324	 * over 50 seconds.
   4325	 */
   4326	if (hpsa_is_disk_spare(h, lunaddrbytes))
   4327		return true;
   4328
   4329	return false;
   4330}
   4331
   4332static void hpsa_update_scsi_devices(struct ctlr_info *h)
   4333{
   4334	/* the idea here is we could get notified
   4335	 * that some devices have changed, so we do a report
   4336	 * physical luns and report logical luns cmd, and adjust
   4337	 * our list of devices accordingly.
   4338	 *
   4339	 * The scsi3addr's of devices won't change so long as the
   4340	 * adapter is not reset.  That means we can rescan and
   4341	 * tell which devices we already know about, vs. new
   4342	 * devices, vs.  disappearing devices.
   4343	 */
   4344	struct ReportExtendedLUNdata *physdev_list = NULL;
   4345	struct ReportLUNdata *logdev_list = NULL;
   4346	struct bmic_identify_physical_device *id_phys = NULL;
   4347	struct bmic_identify_controller *id_ctlr = NULL;
   4348	u32 nphysicals = 0;
   4349	u32 nlogicals = 0;
   4350	u32 nlocal_logicals = 0;
   4351	u32 ndev_allocated = 0;
   4352	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
   4353	int ncurrent = 0;
   4354	int i, ndevs_to_allocate;
   4355	int raid_ctlr_position;
   4356	bool physical_device;
   4357
   4358	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
   4359	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
   4360	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
   4361	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
   4362	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
   4363	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
   4364
   4365	if (!currentsd || !physdev_list || !logdev_list ||
   4366		!tmpdevice || !id_phys || !id_ctlr) {
   4367		dev_err(&h->pdev->dev, "out of memory\n");
   4368		goto out;
   4369	}
   4370
   4371	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
   4372
   4373	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
   4374			logdev_list, &nlogicals)) {
   4375		h->drv_req_rescan = 1;
   4376		goto out;
   4377	}
   4378
   4379	/* Set number of local logicals (non PTRAID) */
   4380	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
   4381		dev_warn(&h->pdev->dev,
   4382			"%s: Can't determine number of local logical devices.\n",
   4383			__func__);
   4384	}
   4385
   4386	/* We might see up to the maximum number of logical and physical disks
   4387	 * plus external target devices, and a device for the local RAID
   4388	 * controller.
   4389	 */
   4390	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
   4391
   4392	hpsa_ext_ctrl_present(h, physdev_list);
   4393
   4394	/* Allocate the per device structures */
   4395	for (i = 0; i < ndevs_to_allocate; i++) {
   4396		if (i >= HPSA_MAX_DEVICES) {
   4397			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
   4398				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
   4399				ndevs_to_allocate - HPSA_MAX_DEVICES);
   4400			break;
   4401		}
   4402
   4403		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
   4404		if (!currentsd[i]) {
   4405			h->drv_req_rescan = 1;
   4406			goto out;
   4407		}
   4408		ndev_allocated++;
   4409	}
   4410
   4411	if (is_scsi_rev_5(h))
   4412		raid_ctlr_position = 0;
   4413	else
   4414		raid_ctlr_position = nphysicals + nlogicals;
   4415
   4416	/* adjust our table of devices */
   4417	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
   4418		u8 *lunaddrbytes, is_OBDR = 0;
   4419		int rc = 0;
   4420		int phys_dev_index = i - (raid_ctlr_position == 0);
   4421		bool skip_device = false;
   4422
   4423		memset(tmpdevice, 0, sizeof(*tmpdevice));
   4424
   4425		physical_device = i < nphysicals + (raid_ctlr_position == 0);
   4426
   4427		/* Figure out where the LUN ID info is coming from */
   4428		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
   4429			i, nphysicals, nlogicals, physdev_list, logdev_list);
   4430
   4431		/* Determine if this is a lun from an external target array */
   4432		tmpdevice->external =
   4433			figure_external_status(h, raid_ctlr_position, i,
   4434						nphysicals, nlocal_logicals);
   4435
   4436		/*
   4437		 * Skip over some devices such as a spare.
   4438		 */
   4439		if (phys_dev_index >= 0 && !tmpdevice->external &&
   4440			physical_device) {
   4441			skip_device = hpsa_skip_device(h, lunaddrbytes,
   4442					&physdev_list->LUN[phys_dev_index]);
   4443			if (skip_device)
   4444				continue;
   4445		}
   4446
   4447		/* Get device type, vendor, model, device id, raid_map */
   4448		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
   4449							&is_OBDR);
   4450		if (rc == -ENOMEM) {
   4451			dev_warn(&h->pdev->dev,
   4452				"Out of memory, rescan deferred.\n");
   4453			h->drv_req_rescan = 1;
   4454			goto out;
   4455		}
   4456		if (rc) {
   4457			h->drv_req_rescan = 1;
   4458			continue;
   4459		}
   4460
   4461		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
   4462		this_device = currentsd[ncurrent];
   4463
   4464		*this_device = *tmpdevice;
   4465		this_device->physical_device = physical_device;
   4466
   4467		/*
   4468		 * Expose all devices except for physical devices that
   4469		 * are masked.
   4470		 */
   4471		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
   4472			this_device->expose_device = 0;
   4473		else
   4474			this_device->expose_device = 1;
   4475
   4476
   4477		/*
   4478		 * Get the SAS address for physical devices that are exposed.
   4479		 */
   4480		if (this_device->physical_device && this_device->expose_device)
   4481			hpsa_get_sas_address(h, lunaddrbytes, this_device);
   4482
   4483		switch (this_device->devtype) {
   4484		case TYPE_ROM:
   4485			/* We don't *really* support actual CD-ROM devices,
   4486			 * just "One Button Disaster Recovery" tape drive
   4487			 * which temporarily pretends to be a CD-ROM drive.
   4488			 * So we check that the device is really an OBDR tape
   4489			 * device by checking for "$DR-10" in bytes 43-48 of
   4490			 * the inquiry data.
   4491			 */
   4492			if (is_OBDR)
   4493				ncurrent++;
   4494			break;
   4495		case TYPE_DISK:
   4496		case TYPE_ZBC:
   4497			if (this_device->physical_device) {
   4498				/* The disk is in HBA mode. */
   4499				/* Never use RAID mapper in HBA mode. */
   4500				this_device->offload_enabled = 0;
   4501				hpsa_get_ioaccel_drive_info(h, this_device,
   4502					physdev_list, phys_dev_index, id_phys);
   4503				hpsa_get_path_info(this_device,
   4504					physdev_list, phys_dev_index, id_phys);
   4505			}
   4506			ncurrent++;
   4507			break;
   4508		case TYPE_TAPE:
   4509		case TYPE_MEDIUM_CHANGER:
   4510			ncurrent++;
   4511			break;
   4512		case TYPE_ENCLOSURE:
   4513			if (!this_device->external)
   4514				hpsa_get_enclosure_info(h, lunaddrbytes,
   4515						physdev_list, phys_dev_index,
   4516						this_device);
   4517			ncurrent++;
   4518			break;
   4519		case TYPE_RAID:
   4520			/* Only present the Smartarray HBA as a RAID controller.
   4521			 * If it's a RAID controller other than the HBA itself
   4522			 * (an external RAID controller, MSA500 or similar)
   4523			 * don't present it.
   4524			 */
   4525			if (!is_hba_lunid(lunaddrbytes))
   4526				break;
   4527			ncurrent++;
   4528			break;
   4529		default:
   4530			break;
   4531		}
   4532		if (ncurrent >= HPSA_MAX_DEVICES)
   4533			break;
   4534	}
   4535
   4536	if (h->sas_host == NULL) {
   4537		int rc = 0;
   4538
   4539		rc = hpsa_add_sas_host(h);
   4540		if (rc) {
   4541			dev_warn(&h->pdev->dev,
   4542				"Could not add sas host %d\n", rc);
   4543			goto out;
   4544		}
   4545	}
   4546
   4547	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
   4548out:
   4549	kfree(tmpdevice);
   4550	for (i = 0; i < ndev_allocated; i++)
   4551		kfree(currentsd[i]);
   4552	kfree(currentsd);
   4553	kfree(physdev_list);
   4554	kfree(logdev_list);
   4555	kfree(id_ctlr);
   4556	kfree(id_phys);
   4557}
   4558
   4559static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
   4560				   struct scatterlist *sg)
   4561{
   4562	u64 addr64 = (u64) sg_dma_address(sg);
   4563	unsigned int len = sg_dma_len(sg);
   4564
   4565	desc->Addr = cpu_to_le64(addr64);
   4566	desc->Len = cpu_to_le32(len);
   4567	desc->Ext = 0;
   4568}
   4569
   4570/*
   4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
   4572 * dma mapping  and fills in the scatter gather entries of the
   4573 * hpsa command, cp.
   4574 */
   4575static int hpsa_scatter_gather(struct ctlr_info *h,
   4576		struct CommandList *cp,
   4577		struct scsi_cmnd *cmd)
   4578{
   4579	struct scatterlist *sg;
   4580	int use_sg, i, sg_limit, chained;
   4581	struct SGDescriptor *curr_sg;
   4582
   4583	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
   4584
   4585	use_sg = scsi_dma_map(cmd);
   4586	if (use_sg < 0)
   4587		return use_sg;
   4588
   4589	if (!use_sg)
   4590		goto sglist_finished;
   4591
   4592	/*
   4593	 * If the number of entries is greater than the max for a single list,
   4594	 * then we have a chained list; we will set up all but one entry in the
   4595	 * first list (the last entry is saved for link information);
   4596	 * otherwise, we don't have a chained list and we'll set up at each of
   4597	 * the entries in the one list.
   4598	 */
   4599	curr_sg = cp->SG;
   4600	chained = use_sg > h->max_cmd_sg_entries;
   4601	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
   4602	scsi_for_each_sg(cmd, sg, sg_limit, i) {
   4603		hpsa_set_sg_descriptor(curr_sg, sg);
   4604		curr_sg++;
   4605	}
   4606
   4607	if (chained) {
   4608		/*
   4609		 * Continue with the chained list.  Set curr_sg to the chained
   4610		 * list.  Modify the limit to the total count less the entries
   4611		 * we've already set up.  Resume the scan at the list entry
   4612		 * where the previous loop left off.
   4613		 */
   4614		curr_sg = h->cmd_sg_list[cp->cmdindex];
   4615		sg_limit = use_sg - sg_limit;
   4616		for_each_sg(sg, sg, sg_limit, i) {
   4617			hpsa_set_sg_descriptor(curr_sg, sg);
   4618			curr_sg++;
   4619		}
   4620	}
   4621
   4622	/* Back the pointer up to the last entry and mark it as "last". */
   4623	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
   4624
   4625	if (use_sg + chained > h->maxSG)
   4626		h->maxSG = use_sg + chained;
   4627
   4628	if (chained) {
   4629		cp->Header.SGList = h->max_cmd_sg_entries;
   4630		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
   4631		if (hpsa_map_sg_chain_block(h, cp)) {
   4632			scsi_dma_unmap(cmd);
   4633			return -1;
   4634		}
   4635		return 0;
   4636	}
   4637
   4638sglist_finished:
   4639
   4640	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
   4641	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
   4642	return 0;
   4643}
   4644
   4645static inline void warn_zero_length_transfer(struct ctlr_info *h,
   4646						u8 *cdb, int cdb_len,
   4647						const char *func)
   4648{
   4649	dev_warn(&h->pdev->dev,
   4650		 "%s: Blocking zero-length request: CDB:%*phN\n",
   4651		 func, cdb_len, cdb);
   4652}
   4653
   4654#define IO_ACCEL_INELIGIBLE 1
   4655/* zero-length transfers trigger hardware errors. */
   4656static bool is_zero_length_transfer(u8 *cdb)
   4657{
   4658	u32 block_cnt;
   4659
   4660	/* Block zero-length transfer sizes on certain commands. */
   4661	switch (cdb[0]) {
   4662	case READ_10:
   4663	case WRITE_10:
   4664	case VERIFY:		/* 0x2F */
   4665	case WRITE_VERIFY:	/* 0x2E */
   4666		block_cnt = get_unaligned_be16(&cdb[7]);
   4667		break;
   4668	case READ_12:
   4669	case WRITE_12:
   4670	case VERIFY_12: /* 0xAF */
   4671	case WRITE_VERIFY_12:	/* 0xAE */
   4672		block_cnt = get_unaligned_be32(&cdb[6]);
   4673		break;
   4674	case READ_16:
   4675	case WRITE_16:
   4676	case VERIFY_16:		/* 0x8F */
   4677		block_cnt = get_unaligned_be32(&cdb[10]);
   4678		break;
   4679	default:
   4680		return false;
   4681	}
   4682
   4683	return block_cnt == 0;
   4684}
   4685
   4686static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
   4687{
   4688	int is_write = 0;
   4689	u32 block;
   4690	u32 block_cnt;
   4691
   4692	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
   4693	switch (cdb[0]) {
   4694	case WRITE_6:
   4695	case WRITE_12:
   4696		is_write = 1;
   4697		fallthrough;
   4698	case READ_6:
   4699	case READ_12:
   4700		if (*cdb_len == 6) {
   4701			block = (((cdb[1] & 0x1F) << 16) |
   4702				(cdb[2] << 8) |
   4703				cdb[3]);
   4704			block_cnt = cdb[4];
   4705			if (block_cnt == 0)
   4706				block_cnt = 256;
   4707		} else {
   4708			BUG_ON(*cdb_len != 12);
   4709			block = get_unaligned_be32(&cdb[2]);
   4710			block_cnt = get_unaligned_be32(&cdb[6]);
   4711		}
   4712		if (block_cnt > 0xffff)
   4713			return IO_ACCEL_INELIGIBLE;
   4714
   4715		cdb[0] = is_write ? WRITE_10 : READ_10;
   4716		cdb[1] = 0;
   4717		cdb[2] = (u8) (block >> 24);
   4718		cdb[3] = (u8) (block >> 16);
   4719		cdb[4] = (u8) (block >> 8);
   4720		cdb[5] = (u8) (block);
   4721		cdb[6] = 0;
   4722		cdb[7] = (u8) (block_cnt >> 8);
   4723		cdb[8] = (u8) (block_cnt);
   4724		cdb[9] = 0;
   4725		*cdb_len = 10;
   4726		break;
   4727	}
   4728	return 0;
   4729}
   4730
   4731static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
   4732	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
   4733	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
   4734{
   4735	struct scsi_cmnd *cmd = c->scsi_cmd;
   4736	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
   4737	unsigned int len;
   4738	unsigned int total_len = 0;
   4739	struct scatterlist *sg;
   4740	u64 addr64;
   4741	int use_sg, i;
   4742	struct SGDescriptor *curr_sg;
   4743	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
   4744
   4745	/* TODO: implement chaining support */
   4746	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
   4747		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4748		return IO_ACCEL_INELIGIBLE;
   4749	}
   4750
   4751	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
   4752
   4753	if (is_zero_length_transfer(cdb)) {
   4754		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
   4755		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4756		return IO_ACCEL_INELIGIBLE;
   4757	}
   4758
   4759	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
   4760		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4761		return IO_ACCEL_INELIGIBLE;
   4762	}
   4763
   4764	c->cmd_type = CMD_IOACCEL1;
   4765
   4766	/* Adjust the DMA address to point to the accelerated command buffer */
   4767	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
   4768				(c->cmdindex * sizeof(*cp));
   4769	BUG_ON(c->busaddr & 0x0000007F);
   4770
   4771	use_sg = scsi_dma_map(cmd);
   4772	if (use_sg < 0) {
   4773		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4774		return use_sg;
   4775	}
   4776
   4777	if (use_sg) {
   4778		curr_sg = cp->SG;
   4779		scsi_for_each_sg(cmd, sg, use_sg, i) {
   4780			addr64 = (u64) sg_dma_address(sg);
   4781			len  = sg_dma_len(sg);
   4782			total_len += len;
   4783			curr_sg->Addr = cpu_to_le64(addr64);
   4784			curr_sg->Len = cpu_to_le32(len);
   4785			curr_sg->Ext = cpu_to_le32(0);
   4786			curr_sg++;
   4787		}
   4788		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
   4789
   4790		switch (cmd->sc_data_direction) {
   4791		case DMA_TO_DEVICE:
   4792			control |= IOACCEL1_CONTROL_DATA_OUT;
   4793			break;
   4794		case DMA_FROM_DEVICE:
   4795			control |= IOACCEL1_CONTROL_DATA_IN;
   4796			break;
   4797		case DMA_NONE:
   4798			control |= IOACCEL1_CONTROL_NODATAXFER;
   4799			break;
   4800		default:
   4801			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
   4802			cmd->sc_data_direction);
   4803			BUG();
   4804			break;
   4805		}
   4806	} else {
   4807		control |= IOACCEL1_CONTROL_NODATAXFER;
   4808	}
   4809
   4810	c->Header.SGList = use_sg;
   4811	/* Fill out the command structure to submit */
   4812	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
   4813	cp->transfer_len = cpu_to_le32(total_len);
   4814	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
   4815			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
   4816	cp->control = cpu_to_le32(control);
   4817	memcpy(cp->CDB, cdb, cdb_len);
   4818	memcpy(cp->CISS_LUN, scsi3addr, 8);
   4819	/* Tag was already set at init time. */
   4820	enqueue_cmd_and_start_io(h, c);
   4821	return 0;
   4822}
   4823
   4824/*
   4825 * Queue a command directly to a device behind the controller using the
   4826 * I/O accelerator path.
   4827 */
   4828static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
   4829	struct CommandList *c)
   4830{
   4831	struct scsi_cmnd *cmd = c->scsi_cmd;
   4832	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
   4833
   4834	if (!dev)
   4835		return -1;
   4836
   4837	c->phys_disk = dev;
   4838
   4839	if (dev->in_reset)
   4840		return -1;
   4841
   4842	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
   4843		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
   4844}
   4845
   4846/*
   4847 * Set encryption parameters for the ioaccel2 request
   4848 */
   4849static void set_encrypt_ioaccel2(struct ctlr_info *h,
   4850	struct CommandList *c, struct io_accel2_cmd *cp)
   4851{
   4852	struct scsi_cmnd *cmd = c->scsi_cmd;
   4853	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
   4854	struct raid_map_data *map = &dev->raid_map;
   4855	u64 first_block;
   4856
   4857	/* Are we doing encryption on this device */
   4858	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
   4859		return;
   4860	/* Set the data encryption key index. */
   4861	cp->dekindex = map->dekindex;
   4862
   4863	/* Set the encryption enable flag, encoded into direction field. */
   4864	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
   4865
   4866	/* Set encryption tweak values based on logical block address
   4867	 * If block size is 512, tweak value is LBA.
   4868	 * For other block sizes, tweak is (LBA * block size)/ 512)
   4869	 */
   4870	switch (cmd->cmnd[0]) {
   4871	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
   4872	case READ_6:
   4873	case WRITE_6:
   4874		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
   4875				(cmd->cmnd[2] << 8) |
   4876				cmd->cmnd[3]);
   4877		break;
   4878	case WRITE_10:
   4879	case READ_10:
   4880	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
   4881	case WRITE_12:
   4882	case READ_12:
   4883		first_block = get_unaligned_be32(&cmd->cmnd[2]);
   4884		break;
   4885	case WRITE_16:
   4886	case READ_16:
   4887		first_block = get_unaligned_be64(&cmd->cmnd[2]);
   4888		break;
   4889	default:
   4890		dev_err(&h->pdev->dev,
   4891			"ERROR: %s: size (0x%x) not supported for encryption\n",
   4892			__func__, cmd->cmnd[0]);
   4893		BUG();
   4894		break;
   4895	}
   4896
   4897	if (le32_to_cpu(map->volume_blk_size) != 512)
   4898		first_block = first_block *
   4899				le32_to_cpu(map->volume_blk_size)/512;
   4900
   4901	cp->tweak_lower = cpu_to_le32(first_block);
   4902	cp->tweak_upper = cpu_to_le32(first_block >> 32);
   4903}
   4904
   4905static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
   4906	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
   4907	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
   4908{
   4909	struct scsi_cmnd *cmd = c->scsi_cmd;
   4910	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
   4911	struct ioaccel2_sg_element *curr_sg;
   4912	int use_sg, i;
   4913	struct scatterlist *sg;
   4914	u64 addr64;
   4915	u32 len;
   4916	u32 total_len = 0;
   4917
   4918	if (!cmd->device)
   4919		return -1;
   4920
   4921	if (!cmd->device->hostdata)
   4922		return -1;
   4923
   4924	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
   4925
   4926	if (is_zero_length_transfer(cdb)) {
   4927		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
   4928		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4929		return IO_ACCEL_INELIGIBLE;
   4930	}
   4931
   4932	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
   4933		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4934		return IO_ACCEL_INELIGIBLE;
   4935	}
   4936
   4937	c->cmd_type = CMD_IOACCEL2;
   4938	/* Adjust the DMA address to point to the accelerated command buffer */
   4939	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
   4940				(c->cmdindex * sizeof(*cp));
   4941	BUG_ON(c->busaddr & 0x0000007F);
   4942
   4943	memset(cp, 0, sizeof(*cp));
   4944	cp->IU_type = IOACCEL2_IU_TYPE;
   4945
   4946	use_sg = scsi_dma_map(cmd);
   4947	if (use_sg < 0) {
   4948		atomic_dec(&phys_disk->ioaccel_cmds_out);
   4949		return use_sg;
   4950	}
   4951
   4952	if (use_sg) {
   4953		curr_sg = cp->sg;
   4954		if (use_sg > h->ioaccel_maxsg) {
   4955			addr64 = le64_to_cpu(
   4956				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
   4957			curr_sg->address = cpu_to_le64(addr64);
   4958			curr_sg->length = 0;
   4959			curr_sg->reserved[0] = 0;
   4960			curr_sg->reserved[1] = 0;
   4961			curr_sg->reserved[2] = 0;
   4962			curr_sg->chain_indicator = IOACCEL2_CHAIN;
   4963
   4964			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
   4965		}
   4966		scsi_for_each_sg(cmd, sg, use_sg, i) {
   4967			addr64 = (u64) sg_dma_address(sg);
   4968			len  = sg_dma_len(sg);
   4969			total_len += len;
   4970			curr_sg->address = cpu_to_le64(addr64);
   4971			curr_sg->length = cpu_to_le32(len);
   4972			curr_sg->reserved[0] = 0;
   4973			curr_sg->reserved[1] = 0;
   4974			curr_sg->reserved[2] = 0;
   4975			curr_sg->chain_indicator = 0;
   4976			curr_sg++;
   4977		}
   4978
   4979		/*
   4980		 * Set the last s/g element bit
   4981		 */
   4982		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
   4983
   4984		switch (cmd->sc_data_direction) {
   4985		case DMA_TO_DEVICE:
   4986			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
   4987			cp->direction |= IOACCEL2_DIR_DATA_OUT;
   4988			break;
   4989		case DMA_FROM_DEVICE:
   4990			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
   4991			cp->direction |= IOACCEL2_DIR_DATA_IN;
   4992			break;
   4993		case DMA_NONE:
   4994			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
   4995			cp->direction |= IOACCEL2_DIR_NO_DATA;
   4996			break;
   4997		default:
   4998			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
   4999				cmd->sc_data_direction);
   5000			BUG();
   5001			break;
   5002		}
   5003	} else {
   5004		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
   5005		cp->direction |= IOACCEL2_DIR_NO_DATA;
   5006	}
   5007
   5008	/* Set encryption parameters, if necessary */
   5009	set_encrypt_ioaccel2(h, c, cp);
   5010
   5011	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
   5012	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
   5013	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
   5014
   5015	cp->data_len = cpu_to_le32(total_len);
   5016	cp->err_ptr = cpu_to_le64(c->busaddr +
   5017			offsetof(struct io_accel2_cmd, error_data));
   5018	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
   5019
   5020	/* fill in sg elements */
   5021	if (use_sg > h->ioaccel_maxsg) {
   5022		cp->sg_count = 1;
   5023		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
   5024		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
   5025			atomic_dec(&phys_disk->ioaccel_cmds_out);
   5026			scsi_dma_unmap(cmd);
   5027			return -1;
   5028		}
   5029	} else
   5030		cp->sg_count = (u8) use_sg;
   5031
   5032	if (phys_disk->in_reset) {
   5033		cmd->result = DID_RESET << 16;
   5034		return -1;
   5035	}
   5036
   5037	enqueue_cmd_and_start_io(h, c);
   5038	return 0;
   5039}
   5040
   5041/*
   5042 * Queue a command to the correct I/O accelerator path.
   5043 */
   5044static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
   5045	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
   5046	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
   5047{
   5048	if (!c->scsi_cmd->device)
   5049		return -1;
   5050
   5051	if (!c->scsi_cmd->device->hostdata)
   5052		return -1;
   5053
   5054	if (phys_disk->in_reset)
   5055		return -1;
   5056
   5057	/* Try to honor the device's queue depth */
   5058	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
   5059					phys_disk->queue_depth) {
   5060		atomic_dec(&phys_disk->ioaccel_cmds_out);
   5061		return IO_ACCEL_INELIGIBLE;
   5062	}
   5063	if (h->transMethod & CFGTBL_Trans_io_accel1)
   5064		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
   5065						cdb, cdb_len, scsi3addr,
   5066						phys_disk);
   5067	else
   5068		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
   5069						cdb, cdb_len, scsi3addr,
   5070						phys_disk);
   5071}
   5072
   5073static void raid_map_helper(struct raid_map_data *map,
   5074		int offload_to_mirror, u32 *map_index, u32 *current_group)
   5075{
   5076	if (offload_to_mirror == 0)  {
   5077		/* use physical disk in the first mirrored group. */
   5078		*map_index %= le16_to_cpu(map->data_disks_per_row);
   5079		return;
   5080	}
   5081	do {
   5082		/* determine mirror group that *map_index indicates */
   5083		*current_group = *map_index /
   5084			le16_to_cpu(map->data_disks_per_row);
   5085		if (offload_to_mirror == *current_group)
   5086			continue;
   5087		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
   5088			/* select map index from next group */
   5089			*map_index += le16_to_cpu(map->data_disks_per_row);
   5090			(*current_group)++;
   5091		} else {
   5092			/* select map index from first group */
   5093			*map_index %= le16_to_cpu(map->data_disks_per_row);
   5094			*current_group = 0;
   5095		}
   5096	} while (offload_to_mirror != *current_group);
   5097}
   5098
   5099/*
   5100 * Attempt to perform offload RAID mapping for a logical volume I/O.
   5101 */
   5102static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
   5103	struct CommandList *c)
   5104{
   5105	struct scsi_cmnd *cmd = c->scsi_cmd;
   5106	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
   5107	struct raid_map_data *map = &dev->raid_map;
   5108	struct raid_map_disk_data *dd = &map->data[0];
   5109	int is_write = 0;
   5110	u32 map_index;
   5111	u64 first_block, last_block;
   5112	u32 block_cnt;
   5113	u32 blocks_per_row;
   5114	u64 first_row, last_row;
   5115	u32 first_row_offset, last_row_offset;
   5116	u32 first_column, last_column;
   5117	u64 r0_first_row, r0_last_row;
   5118	u32 r5or6_blocks_per_row;
   5119	u64 r5or6_first_row, r5or6_last_row;
   5120	u32 r5or6_first_row_offset, r5or6_last_row_offset;
   5121	u32 r5or6_first_column, r5or6_last_column;
   5122	u32 total_disks_per_row;
   5123	u32 stripesize;
   5124	u32 first_group, last_group, current_group;
   5125	u32 map_row;
   5126	u32 disk_handle;
   5127	u64 disk_block;
   5128	u32 disk_block_cnt;
   5129	u8 cdb[16];
   5130	u8 cdb_len;
   5131	u16 strip_size;
   5132#if BITS_PER_LONG == 32
   5133	u64 tmpdiv;
   5134#endif
   5135	int offload_to_mirror;
   5136
   5137	if (!dev)
   5138		return -1;
   5139
   5140	if (dev->in_reset)
   5141		return -1;
   5142
   5143	/* check for valid opcode, get LBA and block count */
   5144	switch (cmd->cmnd[0]) {
   5145	case WRITE_6:
   5146		is_write = 1;
   5147		fallthrough;
   5148	case READ_6:
   5149		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
   5150				(cmd->cmnd[2] << 8) |
   5151				cmd->cmnd[3]);
   5152		block_cnt = cmd->cmnd[4];
   5153		if (block_cnt == 0)
   5154			block_cnt = 256;
   5155		break;
   5156	case WRITE_10:
   5157		is_write = 1;
   5158		fallthrough;
   5159	case READ_10:
   5160		first_block =
   5161			(((u64) cmd->cmnd[2]) << 24) |
   5162			(((u64) cmd->cmnd[3]) << 16) |
   5163			(((u64) cmd->cmnd[4]) << 8) |
   5164			cmd->cmnd[5];
   5165		block_cnt =
   5166			(((u32) cmd->cmnd[7]) << 8) |
   5167			cmd->cmnd[8];
   5168		break;
   5169	case WRITE_12:
   5170		is_write = 1;
   5171		fallthrough;
   5172	case READ_12:
   5173		first_block =
   5174			(((u64) cmd->cmnd[2]) << 24) |
   5175			(((u64) cmd->cmnd[3]) << 16) |
   5176			(((u64) cmd->cmnd[4]) << 8) |
   5177			cmd->cmnd[5];
   5178		block_cnt =
   5179			(((u32) cmd->cmnd[6]) << 24) |
   5180			(((u32) cmd->cmnd[7]) << 16) |
   5181			(((u32) cmd->cmnd[8]) << 8) |
   5182		cmd->cmnd[9];
   5183		break;
   5184	case WRITE_16:
   5185		is_write = 1;
   5186		fallthrough;
   5187	case READ_16:
   5188		first_block =
   5189			(((u64) cmd->cmnd[2]) << 56) |
   5190			(((u64) cmd->cmnd[3]) << 48) |
   5191			(((u64) cmd->cmnd[4]) << 40) |
   5192			(((u64) cmd->cmnd[5]) << 32) |
   5193			(((u64) cmd->cmnd[6]) << 24) |
   5194			(((u64) cmd->cmnd[7]) << 16) |
   5195			(((u64) cmd->cmnd[8]) << 8) |
   5196			cmd->cmnd[9];
   5197		block_cnt =
   5198			(((u32) cmd->cmnd[10]) << 24) |
   5199			(((u32) cmd->cmnd[11]) << 16) |
   5200			(((u32) cmd->cmnd[12]) << 8) |
   5201			cmd->cmnd[13];
   5202		break;
   5203	default:
   5204		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
   5205	}
   5206	last_block = first_block + block_cnt - 1;
   5207
   5208	/* check for write to non-RAID-0 */
   5209	if (is_write && dev->raid_level != 0)
   5210		return IO_ACCEL_INELIGIBLE;
   5211
   5212	/* check for invalid block or wraparound */
   5213	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
   5214		last_block < first_block)
   5215		return IO_ACCEL_INELIGIBLE;
   5216
   5217	/* calculate stripe information for the request */
   5218	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
   5219				le16_to_cpu(map->strip_size);
   5220	strip_size = le16_to_cpu(map->strip_size);
   5221#if BITS_PER_LONG == 32
   5222	tmpdiv = first_block;
   5223	(void) do_div(tmpdiv, blocks_per_row);
   5224	first_row = tmpdiv;
   5225	tmpdiv = last_block;
   5226	(void) do_div(tmpdiv, blocks_per_row);
   5227	last_row = tmpdiv;
   5228	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
   5229	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
   5230	tmpdiv = first_row_offset;
   5231	(void) do_div(tmpdiv, strip_size);
   5232	first_column = tmpdiv;
   5233	tmpdiv = last_row_offset;
   5234	(void) do_div(tmpdiv, strip_size);
   5235	last_column = tmpdiv;
   5236#else
   5237	first_row = first_block / blocks_per_row;
   5238	last_row = last_block / blocks_per_row;
   5239	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
   5240	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
   5241	first_column = first_row_offset / strip_size;
   5242	last_column = last_row_offset / strip_size;
   5243#endif
   5244
   5245	/* if this isn't a single row/column then give to the controller */
   5246	if ((first_row != last_row) || (first_column != last_column))
   5247		return IO_ACCEL_INELIGIBLE;
   5248
   5249	/* proceeding with driver mapping */
   5250	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
   5251				le16_to_cpu(map->metadata_disks_per_row);
   5252	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
   5253				le16_to_cpu(map->row_cnt);
   5254	map_index = (map_row * total_disks_per_row) + first_column;
   5255
   5256	switch (dev->raid_level) {
   5257	case HPSA_RAID_0:
   5258		break; /* nothing special to do */
   5259	case HPSA_RAID_1:
   5260		/* Handles load balance across RAID 1 members.
   5261		 * (2-drive R1 and R10 with even # of drives.)
   5262		 * Appropriate for SSDs, not optimal for HDDs
   5263		 * Ensure we have the correct raid_map.
   5264		 */
   5265		if (le16_to_cpu(map->layout_map_count) != 2) {
   5266			hpsa_turn_off_ioaccel_for_device(dev);
   5267			return IO_ACCEL_INELIGIBLE;
   5268		}
   5269		if (dev->offload_to_mirror)
   5270			map_index += le16_to_cpu(map->data_disks_per_row);
   5271		dev->offload_to_mirror = !dev->offload_to_mirror;
   5272		break;
   5273	case HPSA_RAID_ADM:
   5274		/* Handles N-way mirrors  (R1-ADM)
   5275		 * and R10 with # of drives divisible by 3.)
   5276		 * Ensure we have the correct raid_map.
   5277		 */
   5278		if (le16_to_cpu(map->layout_map_count) != 3) {
   5279			hpsa_turn_off_ioaccel_for_device(dev);
   5280			return IO_ACCEL_INELIGIBLE;
   5281		}
   5282
   5283		offload_to_mirror = dev->offload_to_mirror;
   5284		raid_map_helper(map, offload_to_mirror,
   5285				&map_index, &current_group);
   5286		/* set mirror group to use next time */
   5287		offload_to_mirror =
   5288			(offload_to_mirror >=
   5289			le16_to_cpu(map->layout_map_count) - 1)
   5290			? 0 : offload_to_mirror + 1;
   5291		dev->offload_to_mirror = offload_to_mirror;
   5292		/* Avoid direct use of dev->offload_to_mirror within this
   5293		 * function since multiple threads might simultaneously
   5294		 * increment it beyond the range of dev->layout_map_count -1.
   5295		 */
   5296		break;
   5297	case HPSA_RAID_5:
   5298	case HPSA_RAID_6:
   5299		if (le16_to_cpu(map->layout_map_count) <= 1)
   5300			break;
   5301
   5302		/* Verify first and last block are in same RAID group */
   5303		r5or6_blocks_per_row =
   5304			le16_to_cpu(map->strip_size) *
   5305			le16_to_cpu(map->data_disks_per_row);
   5306		if (r5or6_blocks_per_row == 0) {
   5307			hpsa_turn_off_ioaccel_for_device(dev);
   5308			return IO_ACCEL_INELIGIBLE;
   5309		}
   5310		stripesize = r5or6_blocks_per_row *
   5311			le16_to_cpu(map->layout_map_count);
   5312#if BITS_PER_LONG == 32
   5313		tmpdiv = first_block;
   5314		first_group = do_div(tmpdiv, stripesize);
   5315		tmpdiv = first_group;
   5316		(void) do_div(tmpdiv, r5or6_blocks_per_row);
   5317		first_group = tmpdiv;
   5318		tmpdiv = last_block;
   5319		last_group = do_div(tmpdiv, stripesize);
   5320		tmpdiv = last_group;
   5321		(void) do_div(tmpdiv, r5or6_blocks_per_row);
   5322		last_group = tmpdiv;
   5323#else
   5324		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
   5325		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
   5326#endif
   5327		if (first_group != last_group)
   5328			return IO_ACCEL_INELIGIBLE;
   5329
   5330		/* Verify request is in a single row of RAID 5/6 */
   5331#if BITS_PER_LONG == 32
   5332		tmpdiv = first_block;
   5333		(void) do_div(tmpdiv, stripesize);
   5334		first_row = r5or6_first_row = r0_first_row = tmpdiv;
   5335		tmpdiv = last_block;
   5336		(void) do_div(tmpdiv, stripesize);
   5337		r5or6_last_row = r0_last_row = tmpdiv;
   5338#else
   5339		first_row = r5or6_first_row = r0_first_row =
   5340						first_block / stripesize;
   5341		r5or6_last_row = r0_last_row = last_block / stripesize;
   5342#endif
   5343		if (r5or6_first_row != r5or6_last_row)
   5344			return IO_ACCEL_INELIGIBLE;
   5345
   5346
   5347		/* Verify request is in a single column */
   5348#if BITS_PER_LONG == 32
   5349		tmpdiv = first_block;
   5350		first_row_offset = do_div(tmpdiv, stripesize);
   5351		tmpdiv = first_row_offset;
   5352		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
   5353		r5or6_first_row_offset = first_row_offset;
   5354		tmpdiv = last_block;
   5355		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
   5356		tmpdiv = r5or6_last_row_offset;
   5357		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
   5358		tmpdiv = r5or6_first_row_offset;
   5359		(void) do_div(tmpdiv, map->strip_size);
   5360		first_column = r5or6_first_column = tmpdiv;
   5361		tmpdiv = r5or6_last_row_offset;
   5362		(void) do_div(tmpdiv, map->strip_size);
   5363		r5or6_last_column = tmpdiv;
   5364#else
   5365		first_row_offset = r5or6_first_row_offset =
   5366			(u32)((first_block % stripesize) %
   5367						r5or6_blocks_per_row);
   5368
   5369		r5or6_last_row_offset =
   5370			(u32)((last_block % stripesize) %
   5371						r5or6_blocks_per_row);
   5372
   5373		first_column = r5or6_first_column =
   5374			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
   5375		r5or6_last_column =
   5376			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
   5377#endif
   5378		if (r5or6_first_column != r5or6_last_column)
   5379			return IO_ACCEL_INELIGIBLE;
   5380
   5381		/* Request is eligible */
   5382		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
   5383			le16_to_cpu(map->row_cnt);
   5384
   5385		map_index = (first_group *
   5386			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
   5387			(map_row * total_disks_per_row) + first_column;
   5388		break;
   5389	default:
   5390		return IO_ACCEL_INELIGIBLE;
   5391	}
   5392
   5393	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
   5394		return IO_ACCEL_INELIGIBLE;
   5395
   5396	c->phys_disk = dev->phys_disk[map_index];
   5397	if (!c->phys_disk)
   5398		return IO_ACCEL_INELIGIBLE;
   5399
   5400	disk_handle = dd[map_index].ioaccel_handle;
   5401	disk_block = le64_to_cpu(map->disk_starting_blk) +
   5402			first_row * le16_to_cpu(map->strip_size) +
   5403			(first_row_offset - first_column *
   5404			le16_to_cpu(map->strip_size));
   5405	disk_block_cnt = block_cnt;
   5406
   5407	/* handle differing logical/physical block sizes */
   5408	if (map->phys_blk_shift) {
   5409		disk_block <<= map->phys_blk_shift;
   5410		disk_block_cnt <<= map->phys_blk_shift;
   5411	}
   5412	BUG_ON(disk_block_cnt > 0xffff);
   5413
   5414	/* build the new CDB for the physical disk I/O */
   5415	if (disk_block > 0xffffffff) {
   5416		cdb[0] = is_write ? WRITE_16 : READ_16;
   5417		cdb[1] = 0;
   5418		cdb[2] = (u8) (disk_block >> 56);
   5419		cdb[3] = (u8) (disk_block >> 48);
   5420		cdb[4] = (u8) (disk_block >> 40);
   5421		cdb[5] = (u8) (disk_block >> 32);
   5422		cdb[6] = (u8) (disk_block >> 24);
   5423		cdb[7] = (u8) (disk_block >> 16);
   5424		cdb[8] = (u8) (disk_block >> 8);
   5425		cdb[9] = (u8) (disk_block);
   5426		cdb[10] = (u8) (disk_block_cnt >> 24);
   5427		cdb[11] = (u8) (disk_block_cnt >> 16);
   5428		cdb[12] = (u8) (disk_block_cnt >> 8);
   5429		cdb[13] = (u8) (disk_block_cnt);
   5430		cdb[14] = 0;
   5431		cdb[15] = 0;
   5432		cdb_len = 16;
   5433	} else {
   5434		cdb[0] = is_write ? WRITE_10 : READ_10;
   5435		cdb[1] = 0;
   5436		cdb[2] = (u8) (disk_block >> 24);
   5437		cdb[3] = (u8) (disk_block >> 16);
   5438		cdb[4] = (u8) (disk_block >> 8);
   5439		cdb[5] = (u8) (disk_block);
   5440		cdb[6] = 0;
   5441		cdb[7] = (u8) (disk_block_cnt >> 8);
   5442		cdb[8] = (u8) (disk_block_cnt);
   5443		cdb[9] = 0;
   5444		cdb_len = 10;
   5445	}
   5446	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
   5447						dev->scsi3addr,
   5448						dev->phys_disk[map_index]);
   5449}
   5450
   5451/*
   5452 * Submit commands down the "normal" RAID stack path
   5453 * All callers to hpsa_ciss_submit must check lockup_detected
   5454 * beforehand, before (opt.) and after calling cmd_alloc
   5455 */
   5456static int hpsa_ciss_submit(struct ctlr_info *h,
   5457	struct CommandList *c, struct scsi_cmnd *cmd,
   5458	struct hpsa_scsi_dev_t *dev)
   5459{
   5460	cmd->host_scribble = (unsigned char *) c;
   5461	c->cmd_type = CMD_SCSI;
   5462	c->scsi_cmd = cmd;
   5463	c->Header.ReplyQueue = 0;  /* unused in simple mode */
   5464	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
   5465	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
   5466
   5467	/* Fill in the request block... */
   5468
   5469	c->Request.Timeout = 0;
   5470	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
   5471	c->Request.CDBLen = cmd->cmd_len;
   5472	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
   5473	switch (cmd->sc_data_direction) {
   5474	case DMA_TO_DEVICE:
   5475		c->Request.type_attr_dir =
   5476			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
   5477		break;
   5478	case DMA_FROM_DEVICE:
   5479		c->Request.type_attr_dir =
   5480			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
   5481		break;
   5482	case DMA_NONE:
   5483		c->Request.type_attr_dir =
   5484			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
   5485		break;
   5486	case DMA_BIDIRECTIONAL:
   5487		/* This can happen if a buggy application does a scsi passthru
   5488		 * and sets both inlen and outlen to non-zero. ( see
   5489		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
   5490		 */
   5491
   5492		c->Request.type_attr_dir =
   5493			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
   5494		/* This is technically wrong, and hpsa controllers should
   5495		 * reject it with CMD_INVALID, which is the most correct
   5496		 * response, but non-fibre backends appear to let it
   5497		 * slide by, and give the same results as if this field
   5498		 * were set correctly.  Either way is acceptable for
   5499		 * our purposes here.
   5500		 */
   5501
   5502		break;
   5503
   5504	default:
   5505		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
   5506			cmd->sc_data_direction);
   5507		BUG();
   5508		break;
   5509	}
   5510
   5511	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
   5512		hpsa_cmd_resolve_and_free(h, c);
   5513		return SCSI_MLQUEUE_HOST_BUSY;
   5514	}
   5515
   5516	if (dev->in_reset) {
   5517		hpsa_cmd_resolve_and_free(h, c);
   5518		return SCSI_MLQUEUE_HOST_BUSY;
   5519	}
   5520
   5521	c->device = dev;
   5522
   5523	enqueue_cmd_and_start_io(h, c);
   5524	/* the cmd'll come back via intr handler in complete_scsi_command()  */
   5525	return 0;
   5526}
   5527
   5528static void hpsa_cmd_init(struct ctlr_info *h, int index,
   5529				struct CommandList *c)
   5530{
   5531	dma_addr_t cmd_dma_handle, err_dma_handle;
   5532
   5533	/* Zero out all of commandlist except the last field, refcount */
   5534	memset(c, 0, offsetof(struct CommandList, refcount));
   5535	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
   5536	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
   5537	c->err_info = h->errinfo_pool + index;
   5538	memset(c->err_info, 0, sizeof(*c->err_info));
   5539	err_dma_handle = h->errinfo_pool_dhandle
   5540	    + index * sizeof(*c->err_info);
   5541	c->cmdindex = index;
   5542	c->busaddr = (u32) cmd_dma_handle;
   5543	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
   5544	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
   5545	c->h = h;
   5546	c->scsi_cmd = SCSI_CMD_IDLE;
   5547}
   5548
   5549static void hpsa_preinitialize_commands(struct ctlr_info *h)
   5550{
   5551	int i;
   5552
   5553	for (i = 0; i < h->nr_cmds; i++) {
   5554		struct CommandList *c = h->cmd_pool + i;
   5555
   5556		hpsa_cmd_init(h, i, c);
   5557		atomic_set(&c->refcount, 0);
   5558	}
   5559}
   5560
   5561static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
   5562				struct CommandList *c)
   5563{
   5564	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
   5565
   5566	BUG_ON(c->cmdindex != index);
   5567
   5568	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
   5569	memset(c->err_info, 0, sizeof(*c->err_info));
   5570	c->busaddr = (u32) cmd_dma_handle;
   5571}
   5572
   5573static int hpsa_ioaccel_submit(struct ctlr_info *h,
   5574		struct CommandList *c, struct scsi_cmnd *cmd,
   5575		bool retry)
   5576{
   5577	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
   5578	int rc = IO_ACCEL_INELIGIBLE;
   5579
   5580	if (!dev)
   5581		return SCSI_MLQUEUE_HOST_BUSY;
   5582
   5583	if (dev->in_reset)
   5584		return SCSI_MLQUEUE_HOST_BUSY;
   5585
   5586	if (hpsa_simple_mode)
   5587		return IO_ACCEL_INELIGIBLE;
   5588
   5589	cmd->host_scribble = (unsigned char *) c;
   5590
   5591	if (dev->offload_enabled) {
   5592		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
   5593		c->cmd_type = CMD_SCSI;
   5594		c->scsi_cmd = cmd;
   5595		c->device = dev;
   5596		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
   5597			c->retry_pending = true;
   5598		rc = hpsa_scsi_ioaccel_raid_map(h, c);
   5599		if (rc < 0)     /* scsi_dma_map failed. */
   5600			rc = SCSI_MLQUEUE_HOST_BUSY;
   5601	} else if (dev->hba_ioaccel_enabled) {
   5602		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
   5603		c->cmd_type = CMD_SCSI;
   5604		c->scsi_cmd = cmd;
   5605		c->device = dev;
   5606		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
   5607			c->retry_pending = true;
   5608		rc = hpsa_scsi_ioaccel_direct_map(h, c);
   5609		if (rc < 0)     /* scsi_dma_map failed. */
   5610			rc = SCSI_MLQUEUE_HOST_BUSY;
   5611	}
   5612	return rc;
   5613}
   5614
   5615static void hpsa_command_resubmit_worker(struct work_struct *work)
   5616{
   5617	struct scsi_cmnd *cmd;
   5618	struct hpsa_scsi_dev_t *dev;
   5619	struct CommandList *c = container_of(work, struct CommandList, work);
   5620
   5621	cmd = c->scsi_cmd;
   5622	dev = cmd->device->hostdata;
   5623	if (!dev) {
   5624		cmd->result = DID_NO_CONNECT << 16;
   5625		return hpsa_cmd_free_and_done(c->h, c, cmd);
   5626	}
   5627
   5628	if (dev->in_reset) {
   5629		cmd->result = DID_RESET << 16;
   5630		return hpsa_cmd_free_and_done(c->h, c, cmd);
   5631	}
   5632
   5633	if (c->cmd_type == CMD_IOACCEL2) {
   5634		struct ctlr_info *h = c->h;
   5635		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
   5636		int rc;
   5637
   5638		if (c2->error_data.serv_response ==
   5639				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
   5640			/* Resubmit with the retry_pending flag set. */
   5641			rc = hpsa_ioaccel_submit(h, c, cmd, true);
   5642			if (rc == 0)
   5643				return;
   5644			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
   5645				/*
   5646				 * If we get here, it means dma mapping failed.
   5647				 * Try again via scsi mid layer, which will
   5648				 * then get SCSI_MLQUEUE_HOST_BUSY.
   5649				 */
   5650				cmd->result = DID_IMM_RETRY << 16;
   5651				return hpsa_cmd_free_and_done(h, c, cmd);
   5652			}
   5653			/* else, fall thru and resubmit down CISS path */
   5654		}
   5655	}
   5656	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
   5657	/*
   5658	 * Here we have not come in though queue_command, so we
   5659	 * can set the retry_pending flag to true for a driver initiated
   5660	 * retry attempt (I.E. not a SML retry).
   5661	 * I.E. We are submitting a driver initiated retry.
   5662	 * Note: hpsa_ciss_submit does not zero out the command fields like
   5663	 *       ioaccel submit does.
   5664	 */
   5665	c->retry_pending = true;
   5666	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
   5667		/*
   5668		 * If we get here, it means dma mapping failed. Try
   5669		 * again via scsi mid layer, which will then get
   5670		 * SCSI_MLQUEUE_HOST_BUSY.
   5671		 *
   5672		 * hpsa_ciss_submit will have already freed c
   5673		 * if it encountered a dma mapping failure.
   5674		 */
   5675		cmd->result = DID_IMM_RETRY << 16;
   5676		scsi_done(cmd);
   5677	}
   5678}
   5679
   5680/* Running in struct Scsi_Host->host_lock less mode */
   5681static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
   5682{
   5683	struct ctlr_info *h;
   5684	struct hpsa_scsi_dev_t *dev;
   5685	struct CommandList *c;
   5686	int rc = 0;
   5687
   5688	/* Get the ptr to our adapter structure out of cmd->host. */
   5689	h = sdev_to_hba(cmd->device);
   5690
   5691	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
   5692
   5693	dev = cmd->device->hostdata;
   5694	if (!dev) {
   5695		cmd->result = DID_NO_CONNECT << 16;
   5696		scsi_done(cmd);
   5697		return 0;
   5698	}
   5699
   5700	if (dev->removed) {
   5701		cmd->result = DID_NO_CONNECT << 16;
   5702		scsi_done(cmd);
   5703		return 0;
   5704	}
   5705
   5706	if (unlikely(lockup_detected(h))) {
   5707		cmd->result = DID_NO_CONNECT << 16;
   5708		scsi_done(cmd);
   5709		return 0;
   5710	}
   5711
   5712	if (dev->in_reset)
   5713		return SCSI_MLQUEUE_DEVICE_BUSY;
   5714
   5715	c = cmd_tagged_alloc(h, cmd);
   5716	if (c == NULL)
   5717		return SCSI_MLQUEUE_DEVICE_BUSY;
   5718
   5719	/*
   5720	 * This is necessary because the SML doesn't zero out this field during
   5721	 * error recovery.
   5722	 */
   5723	cmd->result = 0;
   5724
   5725	/*
   5726	 * Call alternate submit routine for I/O accelerated commands.
   5727	 * Retries always go down the normal I/O path.
   5728	 * Note: If cmd->retries is non-zero, then this is a SML
   5729	 *       initiated retry and not a driver initiated retry.
   5730	 *       This command has been obtained from cmd_tagged_alloc
   5731	 *       and is therefore a brand-new command.
   5732	 */
   5733	if (likely(cmd->retries == 0 &&
   5734			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
   5735			h->acciopath_status)) {
   5736		/* Submit with the retry_pending flag unset. */
   5737		rc = hpsa_ioaccel_submit(h, c, cmd, false);
   5738		if (rc == 0)
   5739			return 0;
   5740		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
   5741			hpsa_cmd_resolve_and_free(h, c);
   5742			return SCSI_MLQUEUE_HOST_BUSY;
   5743		}
   5744	}
   5745	return hpsa_ciss_submit(h, c, cmd, dev);
   5746}
   5747
   5748static void hpsa_scan_complete(struct ctlr_info *h)
   5749{
   5750	unsigned long flags;
   5751
   5752	spin_lock_irqsave(&h->scan_lock, flags);
   5753	h->scan_finished = 1;
   5754	wake_up(&h->scan_wait_queue);
   5755	spin_unlock_irqrestore(&h->scan_lock, flags);
   5756}
   5757
   5758static void hpsa_scan_start(struct Scsi_Host *sh)
   5759{
   5760	struct ctlr_info *h = shost_to_hba(sh);
   5761	unsigned long flags;
   5762
   5763	/*
   5764	 * Don't let rescans be initiated on a controller known to be locked
   5765	 * up.  If the controller locks up *during* a rescan, that thread is
   5766	 * probably hosed, but at least we can prevent new rescan threads from
   5767	 * piling up on a locked up controller.
   5768	 */
   5769	if (unlikely(lockup_detected(h)))
   5770		return hpsa_scan_complete(h);
   5771
   5772	/*
   5773	 * If a scan is already waiting to run, no need to add another
   5774	 */
   5775	spin_lock_irqsave(&h->scan_lock, flags);
   5776	if (h->scan_waiting) {
   5777		spin_unlock_irqrestore(&h->scan_lock, flags);
   5778		return;
   5779	}
   5780
   5781	spin_unlock_irqrestore(&h->scan_lock, flags);
   5782
   5783	/* wait until any scan already in progress is finished. */
   5784	while (1) {
   5785		spin_lock_irqsave(&h->scan_lock, flags);
   5786		if (h->scan_finished)
   5787			break;
   5788		h->scan_waiting = 1;
   5789		spin_unlock_irqrestore(&h->scan_lock, flags);
   5790		wait_event(h->scan_wait_queue, h->scan_finished);
   5791		/* Note: We don't need to worry about a race between this
   5792		 * thread and driver unload because the midlayer will
   5793		 * have incremented the reference count, so unload won't
   5794		 * happen if we're in here.
   5795		 */
   5796	}
   5797	h->scan_finished = 0; /* mark scan as in progress */
   5798	h->scan_waiting = 0;
   5799	spin_unlock_irqrestore(&h->scan_lock, flags);
   5800
   5801	if (unlikely(lockup_detected(h)))
   5802		return hpsa_scan_complete(h);
   5803
   5804	/*
   5805	 * Do the scan after a reset completion
   5806	 */
   5807	spin_lock_irqsave(&h->reset_lock, flags);
   5808	if (h->reset_in_progress) {
   5809		h->drv_req_rescan = 1;
   5810		spin_unlock_irqrestore(&h->reset_lock, flags);
   5811		hpsa_scan_complete(h);
   5812		return;
   5813	}
   5814	spin_unlock_irqrestore(&h->reset_lock, flags);
   5815
   5816	hpsa_update_scsi_devices(h);
   5817
   5818	hpsa_scan_complete(h);
   5819}
   5820
   5821static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
   5822{
   5823	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
   5824
   5825	if (!logical_drive)
   5826		return -ENODEV;
   5827
   5828	if (qdepth < 1)
   5829		qdepth = 1;
   5830	else if (qdepth > logical_drive->queue_depth)
   5831		qdepth = logical_drive->queue_depth;
   5832
   5833	return scsi_change_queue_depth(sdev, qdepth);
   5834}
   5835
   5836static int hpsa_scan_finished(struct Scsi_Host *sh,
   5837	unsigned long elapsed_time)
   5838{
   5839	struct ctlr_info *h = shost_to_hba(sh);
   5840	unsigned long flags;
   5841	int finished;
   5842
   5843	spin_lock_irqsave(&h->scan_lock, flags);
   5844	finished = h->scan_finished;
   5845	spin_unlock_irqrestore(&h->scan_lock, flags);
   5846	return finished;
   5847}
   5848
   5849static int hpsa_scsi_host_alloc(struct ctlr_info *h)
   5850{
   5851	struct Scsi_Host *sh;
   5852
   5853	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
   5854	if (sh == NULL) {
   5855		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
   5856		return -ENOMEM;
   5857	}
   5858
   5859	sh->io_port = 0;
   5860	sh->n_io_port = 0;
   5861	sh->this_id = -1;
   5862	sh->max_channel = 3;
   5863	sh->max_cmd_len = MAX_COMMAND_SIZE;
   5864	sh->max_lun = HPSA_MAX_LUN;
   5865	sh->max_id = HPSA_MAX_LUN;
   5866	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
   5867	sh->cmd_per_lun = sh->can_queue;
   5868	sh->sg_tablesize = h->maxsgentries;
   5869	sh->transportt = hpsa_sas_transport_template;
   5870	sh->hostdata[0] = (unsigned long) h;
   5871	sh->irq = pci_irq_vector(h->pdev, 0);
   5872	sh->unique_id = sh->irq;
   5873
   5874	h->scsi_host = sh;
   5875	return 0;
   5876}
   5877
   5878static int hpsa_scsi_add_host(struct ctlr_info *h)
   5879{
   5880	int rv;
   5881
   5882	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
   5883	if (rv) {
   5884		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
   5885		return rv;
   5886	}
   5887	scsi_scan_host(h->scsi_host);
   5888	return 0;
   5889}
   5890
   5891/*
   5892 * The block layer has already gone to the trouble of picking out a unique,
   5893 * small-integer tag for this request.  We use an offset from that value as
   5894 * an index to select our command block.  (The offset allows us to reserve the
   5895 * low-numbered entries for our own uses.)
   5896 */
   5897static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
   5898{
   5899	int idx = scsi_cmd_to_rq(scmd)->tag;
   5900
   5901	if (idx < 0)
   5902		return idx;
   5903
   5904	/* Offset to leave space for internal cmds. */
   5905	return idx += HPSA_NRESERVED_CMDS;
   5906}
   5907
   5908/*
   5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified
   5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
   5911 */
   5912static int hpsa_send_test_unit_ready(struct ctlr_info *h,
   5913				struct CommandList *c, unsigned char lunaddr[],
   5914				int reply_queue)
   5915{
   5916	int rc;
   5917
   5918	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
   5919	(void) fill_cmd(c, TEST_UNIT_READY, h,
   5920			NULL, 0, 0, lunaddr, TYPE_CMD);
   5921	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
   5922	if (rc)
   5923		return rc;
   5924	/* no unmap needed here because no data xfer. */
   5925
   5926	/* Check if the unit is already ready. */
   5927	if (c->err_info->CommandStatus == CMD_SUCCESS)
   5928		return 0;
   5929
   5930	/*
   5931	 * The first command sent after reset will receive "unit attention" to
   5932	 * indicate that the LUN has been reset...this is actually what we're
   5933	 * looking for (but, success is good too).
   5934	 */
   5935	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
   5936		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
   5937			(c->err_info->SenseInfo[2] == NO_SENSE ||
   5938			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
   5939		return 0;
   5940
   5941	return 1;
   5942}
   5943
   5944/*
   5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
   5946 * returns zero when the unit is ready, and non-zero when giving up.
   5947 */
   5948static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
   5949				struct CommandList *c,
   5950				unsigned char lunaddr[], int reply_queue)
   5951{
   5952	int rc;
   5953	int count = 0;
   5954	int waittime = 1; /* seconds */
   5955
   5956	/* Send test unit ready until device ready, or give up. */
   5957	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
   5958
   5959		/*
   5960		 * Wait for a bit.  do this first, because if we send
   5961		 * the TUR right away, the reset will just abort it.
   5962		 */
   5963		msleep(1000 * waittime);
   5964
   5965		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
   5966		if (!rc)
   5967			break;
   5968
   5969		/* Increase wait time with each try, up to a point. */
   5970		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
   5971			waittime *= 2;
   5972
   5973		dev_warn(&h->pdev->dev,
   5974			 "waiting %d secs for device to become ready.\n",
   5975			 waittime);
   5976	}
   5977
   5978	return rc;
   5979}
   5980
   5981static int wait_for_device_to_become_ready(struct ctlr_info *h,
   5982					   unsigned char lunaddr[],
   5983					   int reply_queue)
   5984{
   5985	int first_queue;
   5986	int last_queue;
   5987	int rq;
   5988	int rc = 0;
   5989	struct CommandList *c;
   5990
   5991	c = cmd_alloc(h);
   5992
   5993	/*
   5994	 * If no specific reply queue was requested, then send the TUR
   5995	 * repeatedly, requesting a reply on each reply queue; otherwise execute
   5996	 * the loop exactly once using only the specified queue.
   5997	 */
   5998	if (reply_queue == DEFAULT_REPLY_QUEUE) {
   5999		first_queue = 0;
   6000		last_queue = h->nreply_queues - 1;
   6001	} else {
   6002		first_queue = reply_queue;
   6003		last_queue = reply_queue;
   6004	}
   6005
   6006	for (rq = first_queue; rq <= last_queue; rq++) {
   6007		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
   6008		if (rc)
   6009			break;
   6010	}
   6011
   6012	if (rc)
   6013		dev_warn(&h->pdev->dev, "giving up on device.\n");
   6014	else
   6015		dev_warn(&h->pdev->dev, "device is ready.\n");
   6016
   6017	cmd_free(h, c);
   6018	return rc;
   6019}
   6020
   6021/* Need at least one of these error handlers to keep ../scsi/hosts.c from
   6022 * complaining.  Doing a host- or bus-reset can't do anything good here.
   6023 */
   6024static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
   6025{
   6026	int rc = SUCCESS;
   6027	int i;
   6028	struct ctlr_info *h;
   6029	struct hpsa_scsi_dev_t *dev = NULL;
   6030	u8 reset_type;
   6031	char msg[48];
   6032	unsigned long flags;
   6033
   6034	/* find the controller to which the command to be aborted was sent */
   6035	h = sdev_to_hba(scsicmd->device);
   6036	if (h == NULL) /* paranoia */
   6037		return FAILED;
   6038
   6039	spin_lock_irqsave(&h->reset_lock, flags);
   6040	h->reset_in_progress = 1;
   6041	spin_unlock_irqrestore(&h->reset_lock, flags);
   6042
   6043	if (lockup_detected(h)) {
   6044		rc = FAILED;
   6045		goto return_reset_status;
   6046	}
   6047
   6048	dev = scsicmd->device->hostdata;
   6049	if (!dev) {
   6050		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
   6051		rc = FAILED;
   6052		goto return_reset_status;
   6053	}
   6054
   6055	if (dev->devtype == TYPE_ENCLOSURE) {
   6056		rc = SUCCESS;
   6057		goto return_reset_status;
   6058	}
   6059
   6060	/* if controller locked up, we can guarantee command won't complete */
   6061	if (lockup_detected(h)) {
   6062		snprintf(msg, sizeof(msg),
   6063			 "cmd %d RESET FAILED, lockup detected",
   6064			 hpsa_get_cmd_index(scsicmd));
   6065		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
   6066		rc = FAILED;
   6067		goto return_reset_status;
   6068	}
   6069
   6070	/* this reset request might be the result of a lockup; check */
   6071	if (detect_controller_lockup(h)) {
   6072		snprintf(msg, sizeof(msg),
   6073			 "cmd %d RESET FAILED, new lockup detected",
   6074			 hpsa_get_cmd_index(scsicmd));
   6075		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
   6076		rc = FAILED;
   6077		goto return_reset_status;
   6078	}
   6079
   6080	/* Do not attempt on controller */
   6081	if (is_hba_lunid(dev->scsi3addr)) {
   6082		rc = SUCCESS;
   6083		goto return_reset_status;
   6084	}
   6085
   6086	if (is_logical_dev_addr_mode(dev->scsi3addr))
   6087		reset_type = HPSA_DEVICE_RESET_MSG;
   6088	else
   6089		reset_type = HPSA_PHYS_TARGET_RESET;
   6090
   6091	sprintf(msg, "resetting %s",
   6092		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
   6093	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
   6094
   6095	/*
   6096	 * wait to see if any commands will complete before sending reset
   6097	 */
   6098	dev->in_reset = true; /* block any new cmds from OS for this device */
   6099	for (i = 0; i < 10; i++) {
   6100		if (atomic_read(&dev->commands_outstanding) > 0)
   6101			msleep(1000);
   6102		else
   6103			break;
   6104	}
   6105
   6106	/* send a reset to the SCSI LUN which the command was sent to */
   6107	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
   6108	if (rc == 0)
   6109		rc = SUCCESS;
   6110	else
   6111		rc = FAILED;
   6112
   6113	sprintf(msg, "reset %s %s",
   6114		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
   6115		rc == SUCCESS ? "completed successfully" : "failed");
   6116	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
   6117
   6118return_reset_status:
   6119	spin_lock_irqsave(&h->reset_lock, flags);
   6120	h->reset_in_progress = 0;
   6121	if (dev)
   6122		dev->in_reset = false;
   6123	spin_unlock_irqrestore(&h->reset_lock, flags);
   6124	return rc;
   6125}
   6126
   6127/*
   6128 * For operations with an associated SCSI command, a command block is allocated
   6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
   6130 * block request tag as an index into a table of entries.  cmd_tagged_free() is
   6131 * the complement, although cmd_free() may be called instead.
   6132 * This function is only called for new requests from queue_command.
   6133 */
   6134static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
   6135					    struct scsi_cmnd *scmd)
   6136{
   6137	int idx = hpsa_get_cmd_index(scmd);
   6138	struct CommandList *c = h->cmd_pool + idx;
   6139
   6140	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
   6141		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
   6142			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
   6143		/* The index value comes from the block layer, so if it's out of
   6144		 * bounds, it's probably not our bug.
   6145		 */
   6146		BUG();
   6147	}
   6148
   6149	if (unlikely(!hpsa_is_cmd_idle(c))) {
   6150		/*
   6151		 * We expect that the SCSI layer will hand us a unique tag
   6152		 * value.  Thus, there should never be a collision here between
   6153		 * two requests...because if the selected command isn't idle
   6154		 * then someone is going to be very disappointed.
   6155		 */
   6156		if (idx != h->last_collision_tag) { /* Print once per tag */
   6157			dev_warn(&h->pdev->dev,
   6158				"%s: tag collision (tag=%d)\n", __func__, idx);
   6159			if (scmd)
   6160				scsi_print_command(scmd);
   6161			h->last_collision_tag = idx;
   6162		}
   6163		return NULL;
   6164	}
   6165
   6166	atomic_inc(&c->refcount);
   6167	hpsa_cmd_partial_init(h, idx, c);
   6168
   6169	/*
   6170	 * This is a new command obtained from queue_command so
   6171	 * there have not been any driver initiated retry attempts.
   6172	 */
   6173	c->retry_pending = false;
   6174
   6175	return c;
   6176}
   6177
   6178static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
   6179{
   6180	/*
   6181	 * Release our reference to the block.  We don't need to do anything
   6182	 * else to free it, because it is accessed by index.
   6183	 */
   6184	(void)atomic_dec(&c->refcount);
   6185}
   6186
   6187/*
   6188 * For operations that cannot sleep, a command block is allocated at init,
   6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
   6190 * which ones are free or in use.  Lock must be held when calling this.
   6191 * cmd_free() is the complement.
   6192 * This function never gives up and returns NULL.  If it hangs,
   6193 * another thread must call cmd_free() to free some tags.
   6194 */
   6195
   6196static struct CommandList *cmd_alloc(struct ctlr_info *h)
   6197{
   6198	struct CommandList *c;
   6199	int refcount, i;
   6200	int offset = 0;
   6201
   6202	/*
   6203	 * There is some *extremely* small but non-zero chance that that
   6204	 * multiple threads could get in here, and one thread could
   6205	 * be scanning through the list of bits looking for a free
   6206	 * one, but the free ones are always behind him, and other
   6207	 * threads sneak in behind him and eat them before he can
   6208	 * get to them, so that while there is always a free one, a
   6209	 * very unlucky thread might be starved anyway, never able to
   6210	 * beat the other threads.  In reality, this happens so
   6211	 * infrequently as to be indistinguishable from never.
   6212	 *
   6213	 * Note that we start allocating commands before the SCSI host structure
   6214	 * is initialized.  Since the search starts at bit zero, this
   6215	 * all works, since we have at least one command structure available;
   6216	 * however, it means that the structures with the low indexes have to be
   6217	 * reserved for driver-initiated requests, while requests from the block
   6218	 * layer will use the higher indexes.
   6219	 */
   6220
   6221	for (;;) {
   6222		i = find_next_zero_bit(h->cmd_pool_bits,
   6223					HPSA_NRESERVED_CMDS,
   6224					offset);
   6225		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
   6226			offset = 0;
   6227			continue;
   6228		}
   6229		c = h->cmd_pool + i;
   6230		refcount = atomic_inc_return(&c->refcount);
   6231		if (unlikely(refcount > 1)) {
   6232			cmd_free(h, c); /* already in use */
   6233			offset = (i + 1) % HPSA_NRESERVED_CMDS;
   6234			continue;
   6235		}
   6236		set_bit(i & (BITS_PER_LONG - 1),
   6237			h->cmd_pool_bits + (i / BITS_PER_LONG));
   6238		break; /* it's ours now. */
   6239	}
   6240	hpsa_cmd_partial_init(h, i, c);
   6241	c->device = NULL;
   6242
   6243	/*
   6244	 * cmd_alloc is for "internal" commands and they are never
   6245	 * retried.
   6246	 */
   6247	c->retry_pending = false;
   6248
   6249	return c;
   6250}
   6251
   6252/*
   6253 * This is the complementary operation to cmd_alloc().  Note, however, in some
   6254 * corner cases it may also be used to free blocks allocated by
   6255 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
   6256 * the clear-bit is harmless.
   6257 */
   6258static void cmd_free(struct ctlr_info *h, struct CommandList *c)
   6259{
   6260	if (atomic_dec_and_test(&c->refcount)) {
   6261		int i;
   6262
   6263		i = c - h->cmd_pool;
   6264		clear_bit(i & (BITS_PER_LONG - 1),
   6265			  h->cmd_pool_bits + (i / BITS_PER_LONG));
   6266	}
   6267}
   6268
   6269#ifdef CONFIG_COMPAT
   6270
   6271static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
   6272	void __user *arg)
   6273{
   6274	struct ctlr_info *h = sdev_to_hba(dev);
   6275	IOCTL32_Command_struct __user *arg32 = arg;
   6276	IOCTL_Command_struct arg64;
   6277	int err;
   6278	u32 cp;
   6279
   6280	if (!arg)
   6281		return -EINVAL;
   6282
   6283	memset(&arg64, 0, sizeof(arg64));
   6284	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
   6285		return -EFAULT;
   6286	if (get_user(cp, &arg32->buf))
   6287		return -EFAULT;
   6288	arg64.buf = compat_ptr(cp);
   6289
   6290	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
   6291		return -EAGAIN;
   6292	err = hpsa_passthru_ioctl(h, &arg64);
   6293	atomic_inc(&h->passthru_cmds_avail);
   6294	if (err)
   6295		return err;
   6296	if (copy_to_user(&arg32->error_info, &arg64.error_info,
   6297			 sizeof(arg32->error_info)))
   6298		return -EFAULT;
   6299	return 0;
   6300}
   6301
   6302static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
   6303	unsigned int cmd, void __user *arg)
   6304{
   6305	struct ctlr_info *h = sdev_to_hba(dev);
   6306	BIG_IOCTL32_Command_struct __user *arg32 = arg;
   6307	BIG_IOCTL_Command_struct arg64;
   6308	int err;
   6309	u32 cp;
   6310
   6311	if (!arg)
   6312		return -EINVAL;
   6313	memset(&arg64, 0, sizeof(arg64));
   6314	if (copy_from_user(&arg64, arg32,
   6315			   offsetof(BIG_IOCTL32_Command_struct, buf)))
   6316		return -EFAULT;
   6317	if (get_user(cp, &arg32->buf))
   6318		return -EFAULT;
   6319	arg64.buf = compat_ptr(cp);
   6320
   6321	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
   6322		return -EAGAIN;
   6323	err = hpsa_big_passthru_ioctl(h, &arg64);
   6324	atomic_inc(&h->passthru_cmds_avail);
   6325	if (err)
   6326		return err;
   6327	if (copy_to_user(&arg32->error_info, &arg64.error_info,
   6328			 sizeof(arg32->error_info)))
   6329		return -EFAULT;
   6330	return 0;
   6331}
   6332
   6333static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
   6334			     void __user *arg)
   6335{
   6336	switch (cmd) {
   6337	case CCISS_GETPCIINFO:
   6338	case CCISS_GETINTINFO:
   6339	case CCISS_SETINTINFO:
   6340	case CCISS_GETNODENAME:
   6341	case CCISS_SETNODENAME:
   6342	case CCISS_GETHEARTBEAT:
   6343	case CCISS_GETBUSTYPES:
   6344	case CCISS_GETFIRMVER:
   6345	case CCISS_GETDRIVVER:
   6346	case CCISS_REVALIDVOLS:
   6347	case CCISS_DEREGDISK:
   6348	case CCISS_REGNEWDISK:
   6349	case CCISS_REGNEWD:
   6350	case CCISS_RESCANDISK:
   6351	case CCISS_GETLUNINFO:
   6352		return hpsa_ioctl(dev, cmd, arg);
   6353
   6354	case CCISS_PASSTHRU32:
   6355		return hpsa_ioctl32_passthru(dev, cmd, arg);
   6356	case CCISS_BIG_PASSTHRU32:
   6357		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
   6358
   6359	default:
   6360		return -ENOIOCTLCMD;
   6361	}
   6362}
   6363#endif
   6364
   6365static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
   6366{
   6367	struct hpsa_pci_info pciinfo;
   6368
   6369	if (!argp)
   6370		return -EINVAL;
   6371	pciinfo.domain = pci_domain_nr(h->pdev->bus);
   6372	pciinfo.bus = h->pdev->bus->number;
   6373	pciinfo.dev_fn = h->pdev->devfn;
   6374	pciinfo.board_id = h->board_id;
   6375	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
   6376		return -EFAULT;
   6377	return 0;
   6378}
   6379
   6380static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
   6381{
   6382	DriverVer_type DriverVer;
   6383	unsigned char vmaj, vmin, vsubmin;
   6384	int rc;
   6385
   6386	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
   6387		&vmaj, &vmin, &vsubmin);
   6388	if (rc != 3) {
   6389		dev_info(&h->pdev->dev, "driver version string '%s' "
   6390			"unrecognized.", HPSA_DRIVER_VERSION);
   6391		vmaj = 0;
   6392		vmin = 0;
   6393		vsubmin = 0;
   6394	}
   6395	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
   6396	if (!argp)
   6397		return -EINVAL;
   6398	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
   6399		return -EFAULT;
   6400	return 0;
   6401}
   6402
   6403static int hpsa_passthru_ioctl(struct ctlr_info *h,
   6404			       IOCTL_Command_struct *iocommand)
   6405{
   6406	struct CommandList *c;
   6407	char *buff = NULL;
   6408	u64 temp64;
   6409	int rc = 0;
   6410
   6411	if (!capable(CAP_SYS_RAWIO))
   6412		return -EPERM;
   6413	if ((iocommand->buf_size < 1) &&
   6414	    (iocommand->Request.Type.Direction != XFER_NONE)) {
   6415		return -EINVAL;
   6416	}
   6417	if (iocommand->buf_size > 0) {
   6418		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
   6419		if (buff == NULL)
   6420			return -ENOMEM;
   6421		if (iocommand->Request.Type.Direction & XFER_WRITE) {
   6422			/* Copy the data into the buffer we created */
   6423			if (copy_from_user(buff, iocommand->buf,
   6424				iocommand->buf_size)) {
   6425				rc = -EFAULT;
   6426				goto out_kfree;
   6427			}
   6428		} else {
   6429			memset(buff, 0, iocommand->buf_size);
   6430		}
   6431	}
   6432	c = cmd_alloc(h);
   6433
   6434	/* Fill in the command type */
   6435	c->cmd_type = CMD_IOCTL_PEND;
   6436	c->scsi_cmd = SCSI_CMD_BUSY;
   6437	/* Fill in Command Header */
   6438	c->Header.ReplyQueue = 0; /* unused in simple mode */
   6439	if (iocommand->buf_size > 0) {	/* buffer to fill */
   6440		c->Header.SGList = 1;
   6441		c->Header.SGTotal = cpu_to_le16(1);
   6442	} else	{ /* no buffers to fill */
   6443		c->Header.SGList = 0;
   6444		c->Header.SGTotal = cpu_to_le16(0);
   6445	}
   6446	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
   6447
   6448	/* Fill in Request block */
   6449	memcpy(&c->Request, &iocommand->Request,
   6450		sizeof(c->Request));
   6451
   6452	/* Fill in the scatter gather information */
   6453	if (iocommand->buf_size > 0) {
   6454		temp64 = dma_map_single(&h->pdev->dev, buff,
   6455			iocommand->buf_size, DMA_BIDIRECTIONAL);
   6456		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
   6457			c->SG[0].Addr = cpu_to_le64(0);
   6458			c->SG[0].Len = cpu_to_le32(0);
   6459			rc = -ENOMEM;
   6460			goto out;
   6461		}
   6462		c->SG[0].Addr = cpu_to_le64(temp64);
   6463		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
   6464		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
   6465	}
   6466	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
   6467					NO_TIMEOUT);
   6468	if (iocommand->buf_size > 0)
   6469		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
   6470	check_ioctl_unit_attention(h, c);
   6471	if (rc) {
   6472		rc = -EIO;
   6473		goto out;
   6474	}
   6475
   6476	/* Copy the error information out */
   6477	memcpy(&iocommand->error_info, c->err_info,
   6478		sizeof(iocommand->error_info));
   6479	if ((iocommand->Request.Type.Direction & XFER_READ) &&
   6480		iocommand->buf_size > 0) {
   6481		/* Copy the data out of the buffer we created */
   6482		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
   6483			rc = -EFAULT;
   6484			goto out;
   6485		}
   6486	}
   6487out:
   6488	cmd_free(h, c);
   6489out_kfree:
   6490	kfree(buff);
   6491	return rc;
   6492}
   6493
   6494static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
   6495				   BIG_IOCTL_Command_struct *ioc)
   6496{
   6497	struct CommandList *c;
   6498	unsigned char **buff = NULL;
   6499	int *buff_size = NULL;
   6500	u64 temp64;
   6501	BYTE sg_used = 0;
   6502	int status = 0;
   6503	u32 left;
   6504	u32 sz;
   6505	BYTE __user *data_ptr;
   6506
   6507	if (!capable(CAP_SYS_RAWIO))
   6508		return -EPERM;
   6509
   6510	if ((ioc->buf_size < 1) &&
   6511	    (ioc->Request.Type.Direction != XFER_NONE))
   6512		return -EINVAL;
   6513	/* Check kmalloc limits  using all SGs */
   6514	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
   6515		return -EINVAL;
   6516	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
   6517		return -EINVAL;
   6518	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
   6519	if (!buff) {
   6520		status = -ENOMEM;
   6521		goto cleanup1;
   6522	}
   6523	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
   6524	if (!buff_size) {
   6525		status = -ENOMEM;
   6526		goto cleanup1;
   6527	}
   6528	left = ioc->buf_size;
   6529	data_ptr = ioc->buf;
   6530	while (left) {
   6531		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
   6532		buff_size[sg_used] = sz;
   6533		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
   6534		if (buff[sg_used] == NULL) {
   6535			status = -ENOMEM;
   6536			goto cleanup1;
   6537		}
   6538		if (ioc->Request.Type.Direction & XFER_WRITE) {
   6539			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
   6540				status = -EFAULT;
   6541				goto cleanup1;
   6542			}
   6543		} else
   6544			memset(buff[sg_used], 0, sz);
   6545		left -= sz;
   6546		data_ptr += sz;
   6547		sg_used++;
   6548	}
   6549	c = cmd_alloc(h);
   6550
   6551	c->cmd_type = CMD_IOCTL_PEND;
   6552	c->scsi_cmd = SCSI_CMD_BUSY;
   6553	c->Header.ReplyQueue = 0;
   6554	c->Header.SGList = (u8) sg_used;
   6555	c->Header.SGTotal = cpu_to_le16(sg_used);
   6556	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
   6557	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
   6558	if (ioc->buf_size > 0) {
   6559		int i;
   6560		for (i = 0; i < sg_used; i++) {
   6561			temp64 = dma_map_single(&h->pdev->dev, buff[i],
   6562				    buff_size[i], DMA_BIDIRECTIONAL);
   6563			if (dma_mapping_error(&h->pdev->dev,
   6564							(dma_addr_t) temp64)) {
   6565				c->SG[i].Addr = cpu_to_le64(0);
   6566				c->SG[i].Len = cpu_to_le32(0);
   6567				hpsa_pci_unmap(h->pdev, c, i,
   6568					DMA_BIDIRECTIONAL);
   6569				status = -ENOMEM;
   6570				goto cleanup0;
   6571			}
   6572			c->SG[i].Addr = cpu_to_le64(temp64);
   6573			c->SG[i].Len = cpu_to_le32(buff_size[i]);
   6574			c->SG[i].Ext = cpu_to_le32(0);
   6575		}
   6576		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
   6577	}
   6578	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
   6579						NO_TIMEOUT);
   6580	if (sg_used)
   6581		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
   6582	check_ioctl_unit_attention(h, c);
   6583	if (status) {
   6584		status = -EIO;
   6585		goto cleanup0;
   6586	}
   6587
   6588	/* Copy the error information out */
   6589	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
   6590	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
   6591		int i;
   6592
   6593		/* Copy the data out of the buffer we created */
   6594		BYTE __user *ptr = ioc->buf;
   6595		for (i = 0; i < sg_used; i++) {
   6596			if (copy_to_user(ptr, buff[i], buff_size[i])) {
   6597				status = -EFAULT;
   6598				goto cleanup0;
   6599			}
   6600			ptr += buff_size[i];
   6601		}
   6602	}
   6603	status = 0;
   6604cleanup0:
   6605	cmd_free(h, c);
   6606cleanup1:
   6607	if (buff) {
   6608		int i;
   6609
   6610		for (i = 0; i < sg_used; i++)
   6611			kfree(buff[i]);
   6612		kfree(buff);
   6613	}
   6614	kfree(buff_size);
   6615	return status;
   6616}
   6617
   6618static void check_ioctl_unit_attention(struct ctlr_info *h,
   6619	struct CommandList *c)
   6620{
   6621	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
   6622			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
   6623		(void) check_for_unit_attention(h, c);
   6624}
   6625
   6626/*
   6627 * ioctl
   6628 */
   6629static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
   6630		      void __user *argp)
   6631{
   6632	struct ctlr_info *h = sdev_to_hba(dev);
   6633	int rc;
   6634
   6635	switch (cmd) {
   6636	case CCISS_DEREGDISK:
   6637	case CCISS_REGNEWDISK:
   6638	case CCISS_REGNEWD:
   6639		hpsa_scan_start(h->scsi_host);
   6640		return 0;
   6641	case CCISS_GETPCIINFO:
   6642		return hpsa_getpciinfo_ioctl(h, argp);
   6643	case CCISS_GETDRIVVER:
   6644		return hpsa_getdrivver_ioctl(h, argp);
   6645	case CCISS_PASSTHRU: {
   6646		IOCTL_Command_struct iocommand;
   6647
   6648		if (!argp)
   6649			return -EINVAL;
   6650		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
   6651			return -EFAULT;
   6652		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
   6653			return -EAGAIN;
   6654		rc = hpsa_passthru_ioctl(h, &iocommand);
   6655		atomic_inc(&h->passthru_cmds_avail);
   6656		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
   6657			rc = -EFAULT;
   6658		return rc;
   6659	}
   6660	case CCISS_BIG_PASSTHRU: {
   6661		BIG_IOCTL_Command_struct ioc;
   6662		if (!argp)
   6663			return -EINVAL;
   6664		if (copy_from_user(&ioc, argp, sizeof(ioc)))
   6665			return -EFAULT;
   6666		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
   6667			return -EAGAIN;
   6668		rc = hpsa_big_passthru_ioctl(h, &ioc);
   6669		atomic_inc(&h->passthru_cmds_avail);
   6670		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
   6671			rc = -EFAULT;
   6672		return rc;
   6673	}
   6674	default:
   6675		return -ENOTTY;
   6676	}
   6677}
   6678
   6679static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
   6680{
   6681	struct CommandList *c;
   6682
   6683	c = cmd_alloc(h);
   6684
   6685	/* fill_cmd can't fail here, no data buffer to map */
   6686	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
   6687		RAID_CTLR_LUNID, TYPE_MSG);
   6688	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
   6689	c->waiting = NULL;
   6690	enqueue_cmd_and_start_io(h, c);
   6691	/* Don't wait for completion, the reset won't complete.  Don't free
   6692	 * the command either.  This is the last command we will send before
   6693	 * re-initializing everything, so it doesn't matter and won't leak.
   6694	 */
   6695	return;
   6696}
   6697
   6698static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
   6699	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
   6700	int cmd_type)
   6701{
   6702	enum dma_data_direction dir = DMA_NONE;
   6703
   6704	c->cmd_type = CMD_IOCTL_PEND;
   6705	c->scsi_cmd = SCSI_CMD_BUSY;
   6706	c->Header.ReplyQueue = 0;
   6707	if (buff != NULL && size > 0) {
   6708		c->Header.SGList = 1;
   6709		c->Header.SGTotal = cpu_to_le16(1);
   6710	} else {
   6711		c->Header.SGList = 0;
   6712		c->Header.SGTotal = cpu_to_le16(0);
   6713	}
   6714	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
   6715
   6716	if (cmd_type == TYPE_CMD) {
   6717		switch (cmd) {
   6718		case HPSA_INQUIRY:
   6719			/* are we trying to read a vital product page */
   6720			if (page_code & VPD_PAGE) {
   6721				c->Request.CDB[1] = 0x01;
   6722				c->Request.CDB[2] = (page_code & 0xff);
   6723			}
   6724			c->Request.CDBLen = 6;
   6725			c->Request.type_attr_dir =
   6726				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6727			c->Request.Timeout = 0;
   6728			c->Request.CDB[0] = HPSA_INQUIRY;
   6729			c->Request.CDB[4] = size & 0xFF;
   6730			break;
   6731		case RECEIVE_DIAGNOSTIC:
   6732			c->Request.CDBLen = 6;
   6733			c->Request.type_attr_dir =
   6734				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6735			c->Request.Timeout = 0;
   6736			c->Request.CDB[0] = cmd;
   6737			c->Request.CDB[1] = 1;
   6738			c->Request.CDB[2] = 1;
   6739			c->Request.CDB[3] = (size >> 8) & 0xFF;
   6740			c->Request.CDB[4] = size & 0xFF;
   6741			break;
   6742		case HPSA_REPORT_LOG:
   6743		case HPSA_REPORT_PHYS:
   6744			/* Talking to controller so It's a physical command
   6745			   mode = 00 target = 0.  Nothing to write.
   6746			 */
   6747			c->Request.CDBLen = 12;
   6748			c->Request.type_attr_dir =
   6749				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6750			c->Request.Timeout = 0;
   6751			c->Request.CDB[0] = cmd;
   6752			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
   6753			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6754			c->Request.CDB[8] = (size >> 8) & 0xFF;
   6755			c->Request.CDB[9] = size & 0xFF;
   6756			break;
   6757		case BMIC_SENSE_DIAG_OPTIONS:
   6758			c->Request.CDBLen = 16;
   6759			c->Request.type_attr_dir =
   6760				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6761			c->Request.Timeout = 0;
   6762			/* Spec says this should be BMIC_WRITE */
   6763			c->Request.CDB[0] = BMIC_READ;
   6764			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
   6765			break;
   6766		case BMIC_SET_DIAG_OPTIONS:
   6767			c->Request.CDBLen = 16;
   6768			c->Request.type_attr_dir =
   6769					TYPE_ATTR_DIR(cmd_type,
   6770						ATTR_SIMPLE, XFER_WRITE);
   6771			c->Request.Timeout = 0;
   6772			c->Request.CDB[0] = BMIC_WRITE;
   6773			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
   6774			break;
   6775		case HPSA_CACHE_FLUSH:
   6776			c->Request.CDBLen = 12;
   6777			c->Request.type_attr_dir =
   6778					TYPE_ATTR_DIR(cmd_type,
   6779						ATTR_SIMPLE, XFER_WRITE);
   6780			c->Request.Timeout = 0;
   6781			c->Request.CDB[0] = BMIC_WRITE;
   6782			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
   6783			c->Request.CDB[7] = (size >> 8) & 0xFF;
   6784			c->Request.CDB[8] = size & 0xFF;
   6785			break;
   6786		case TEST_UNIT_READY:
   6787			c->Request.CDBLen = 6;
   6788			c->Request.type_attr_dir =
   6789				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
   6790			c->Request.Timeout = 0;
   6791			break;
   6792		case HPSA_GET_RAID_MAP:
   6793			c->Request.CDBLen = 12;
   6794			c->Request.type_attr_dir =
   6795				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6796			c->Request.Timeout = 0;
   6797			c->Request.CDB[0] = HPSA_CISS_READ;
   6798			c->Request.CDB[1] = cmd;
   6799			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
   6800			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6801			c->Request.CDB[8] = (size >> 8) & 0xFF;
   6802			c->Request.CDB[9] = size & 0xFF;
   6803			break;
   6804		case BMIC_SENSE_CONTROLLER_PARAMETERS:
   6805			c->Request.CDBLen = 10;
   6806			c->Request.type_attr_dir =
   6807				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6808			c->Request.Timeout = 0;
   6809			c->Request.CDB[0] = BMIC_READ;
   6810			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
   6811			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6812			c->Request.CDB[8] = (size >> 8) & 0xFF;
   6813			break;
   6814		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
   6815			c->Request.CDBLen = 10;
   6816			c->Request.type_attr_dir =
   6817				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6818			c->Request.Timeout = 0;
   6819			c->Request.CDB[0] = BMIC_READ;
   6820			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
   6821			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6822			c->Request.CDB[8] = (size >> 8) & 0XFF;
   6823			break;
   6824		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
   6825			c->Request.CDBLen = 10;
   6826			c->Request.type_attr_dir =
   6827				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6828			c->Request.Timeout = 0;
   6829			c->Request.CDB[0] = BMIC_READ;
   6830			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
   6831			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6832			c->Request.CDB[8] = (size >> 8) & 0XFF;
   6833			break;
   6834		case BMIC_SENSE_STORAGE_BOX_PARAMS:
   6835			c->Request.CDBLen = 10;
   6836			c->Request.type_attr_dir =
   6837				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6838			c->Request.Timeout = 0;
   6839			c->Request.CDB[0] = BMIC_READ;
   6840			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
   6841			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6842			c->Request.CDB[8] = (size >> 8) & 0XFF;
   6843			break;
   6844		case BMIC_IDENTIFY_CONTROLLER:
   6845			c->Request.CDBLen = 10;
   6846			c->Request.type_attr_dir =
   6847				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
   6848			c->Request.Timeout = 0;
   6849			c->Request.CDB[0] = BMIC_READ;
   6850			c->Request.CDB[1] = 0;
   6851			c->Request.CDB[2] = 0;
   6852			c->Request.CDB[3] = 0;
   6853			c->Request.CDB[4] = 0;
   6854			c->Request.CDB[5] = 0;
   6855			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
   6856			c->Request.CDB[7] = (size >> 16) & 0xFF;
   6857			c->Request.CDB[8] = (size >> 8) & 0XFF;
   6858			c->Request.CDB[9] = 0;
   6859			break;
   6860		default:
   6861			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
   6862			BUG();
   6863		}
   6864	} else if (cmd_type == TYPE_MSG) {
   6865		switch (cmd) {
   6866
   6867		case  HPSA_PHYS_TARGET_RESET:
   6868			c->Request.CDBLen = 16;
   6869			c->Request.type_attr_dir =
   6870				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
   6871			c->Request.Timeout = 0; /* Don't time out */
   6872			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
   6873			c->Request.CDB[0] = HPSA_RESET;
   6874			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
   6875			/* Physical target reset needs no control bytes 4-7*/
   6876			c->Request.CDB[4] = 0x00;
   6877			c->Request.CDB[5] = 0x00;
   6878			c->Request.CDB[6] = 0x00;
   6879			c->Request.CDB[7] = 0x00;
   6880			break;
   6881		case  HPSA_DEVICE_RESET_MSG:
   6882			c->Request.CDBLen = 16;
   6883			c->Request.type_attr_dir =
   6884				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
   6885			c->Request.Timeout = 0; /* Don't time out */
   6886			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
   6887			c->Request.CDB[0] =  cmd;
   6888			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
   6889			/* If bytes 4-7 are zero, it means reset the */
   6890			/* LunID device */
   6891			c->Request.CDB[4] = 0x00;
   6892			c->Request.CDB[5] = 0x00;
   6893			c->Request.CDB[6] = 0x00;
   6894			c->Request.CDB[7] = 0x00;
   6895			break;
   6896		default:
   6897			dev_warn(&h->pdev->dev, "unknown message type %d\n",
   6898				cmd);
   6899			BUG();
   6900		}
   6901	} else {
   6902		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
   6903		BUG();
   6904	}
   6905
   6906	switch (GET_DIR(c->Request.type_attr_dir)) {
   6907	case XFER_READ:
   6908		dir = DMA_FROM_DEVICE;
   6909		break;
   6910	case XFER_WRITE:
   6911		dir = DMA_TO_DEVICE;
   6912		break;
   6913	case XFER_NONE:
   6914		dir = DMA_NONE;
   6915		break;
   6916	default:
   6917		dir = DMA_BIDIRECTIONAL;
   6918	}
   6919	if (hpsa_map_one(h->pdev, c, buff, size, dir))
   6920		return -1;
   6921	return 0;
   6922}
   6923
   6924/*
   6925 * Map (physical) PCI mem into (virtual) kernel space
   6926 */
   6927static void __iomem *remap_pci_mem(ulong base, ulong size)
   6928{
   6929	ulong page_base = ((ulong) base) & PAGE_MASK;
   6930	ulong page_offs = ((ulong) base) - page_base;
   6931	void __iomem *page_remapped = ioremap(page_base,
   6932		page_offs + size);
   6933
   6934	return page_remapped ? (page_remapped + page_offs) : NULL;
   6935}
   6936
   6937static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
   6938{
   6939	return h->access.command_completed(h, q);
   6940}
   6941
   6942static inline bool interrupt_pending(struct ctlr_info *h)
   6943{
   6944	return h->access.intr_pending(h);
   6945}
   6946
   6947static inline long interrupt_not_for_us(struct ctlr_info *h)
   6948{
   6949	return (h->access.intr_pending(h) == 0) ||
   6950		(h->interrupts_enabled == 0);
   6951}
   6952
   6953static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
   6954	u32 raw_tag)
   6955{
   6956	if (unlikely(tag_index >= h->nr_cmds)) {
   6957		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
   6958		return 1;
   6959	}
   6960	return 0;
   6961}
   6962
   6963static inline void finish_cmd(struct CommandList *c)
   6964{
   6965	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
   6966	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
   6967			|| c->cmd_type == CMD_IOACCEL2))
   6968		complete_scsi_command(c);
   6969	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
   6970		complete(c->waiting);
   6971}
   6972
   6973/* process completion of an indexed ("direct lookup") command */
   6974static inline void process_indexed_cmd(struct ctlr_info *h,
   6975	u32 raw_tag)
   6976{
   6977	u32 tag_index;
   6978	struct CommandList *c;
   6979
   6980	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
   6981	if (!bad_tag(h, tag_index, raw_tag)) {
   6982		c = h->cmd_pool + tag_index;
   6983		finish_cmd(c);
   6984	}
   6985}
   6986
   6987/* Some controllers, like p400, will give us one interrupt
   6988 * after a soft reset, even if we turned interrupts off.
   6989 * Only need to check for this in the hpsa_xxx_discard_completions
   6990 * functions.
   6991 */
   6992static int ignore_bogus_interrupt(struct ctlr_info *h)
   6993{
   6994	if (likely(!reset_devices))
   6995		return 0;
   6996
   6997	if (likely(h->interrupts_enabled))
   6998		return 0;
   6999
   7000	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
   7001		"(known firmware bug.)  Ignoring.\n");
   7002
   7003	return 1;
   7004}
   7005
   7006/*
   7007 * Convert &h->q[x] (passed to interrupt handlers) back to h.
   7008 * Relies on (h-q[x] == x) being true for x such that
   7009 * 0 <= x < MAX_REPLY_QUEUES.
   7010 */
   7011static struct ctlr_info *queue_to_hba(u8 *queue)
   7012{
   7013	return container_of((queue - *queue), struct ctlr_info, q[0]);
   7014}
   7015
   7016static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
   7017{
   7018	struct ctlr_info *h = queue_to_hba(queue);
   7019	u8 q = *(u8 *) queue;
   7020	u32 raw_tag;
   7021
   7022	if (ignore_bogus_interrupt(h))
   7023		return IRQ_NONE;
   7024
   7025	if (interrupt_not_for_us(h))
   7026		return IRQ_NONE;
   7027	h->last_intr_timestamp = get_jiffies_64();
   7028	while (interrupt_pending(h)) {
   7029		raw_tag = get_next_completion(h, q);
   7030		while (raw_tag != FIFO_EMPTY)
   7031			raw_tag = next_command(h, q);
   7032	}
   7033	return IRQ_HANDLED;
   7034}
   7035
   7036static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
   7037{
   7038	struct ctlr_info *h = queue_to_hba(queue);
   7039	u32 raw_tag;
   7040	u8 q = *(u8 *) queue;
   7041
   7042	if (ignore_bogus_interrupt(h))
   7043		return IRQ_NONE;
   7044
   7045	h->last_intr_timestamp = get_jiffies_64();
   7046	raw_tag = get_next_completion(h, q);
   7047	while (raw_tag != FIFO_EMPTY)
   7048		raw_tag = next_command(h, q);
   7049	return IRQ_HANDLED;
   7050}
   7051
   7052static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
   7053{
   7054	struct ctlr_info *h = queue_to_hba((u8 *) queue);
   7055	u32 raw_tag;
   7056	u8 q = *(u8 *) queue;
   7057
   7058	if (interrupt_not_for_us(h))
   7059		return IRQ_NONE;
   7060	h->last_intr_timestamp = get_jiffies_64();
   7061	while (interrupt_pending(h)) {
   7062		raw_tag = get_next_completion(h, q);
   7063		while (raw_tag != FIFO_EMPTY) {
   7064			process_indexed_cmd(h, raw_tag);
   7065			raw_tag = next_command(h, q);
   7066		}
   7067	}
   7068	return IRQ_HANDLED;
   7069}
   7070
   7071static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
   7072{
   7073	struct ctlr_info *h = queue_to_hba(queue);
   7074	u32 raw_tag;
   7075	u8 q = *(u8 *) queue;
   7076
   7077	h->last_intr_timestamp = get_jiffies_64();
   7078	raw_tag = get_next_completion(h, q);
   7079	while (raw_tag != FIFO_EMPTY) {
   7080		process_indexed_cmd(h, raw_tag);
   7081		raw_tag = next_command(h, q);
   7082	}
   7083	return IRQ_HANDLED;
   7084}
   7085
   7086/* Send a message CDB to the firmware. Careful, this only works
   7087 * in simple mode, not performant mode due to the tag lookup.
   7088 * We only ever use this immediately after a controller reset.
   7089 */
   7090static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
   7091			unsigned char type)
   7092{
   7093	struct Command {
   7094		struct CommandListHeader CommandHeader;
   7095		struct RequestBlock Request;
   7096		struct ErrDescriptor ErrorDescriptor;
   7097	};
   7098	struct Command *cmd;
   7099	static const size_t cmd_sz = sizeof(*cmd) +
   7100					sizeof(cmd->ErrorDescriptor);
   7101	dma_addr_t paddr64;
   7102	__le32 paddr32;
   7103	u32 tag;
   7104	void __iomem *vaddr;
   7105	int i, err;
   7106
   7107	vaddr = pci_ioremap_bar(pdev, 0);
   7108	if (vaddr == NULL)
   7109		return -ENOMEM;
   7110
   7111	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
   7112	 * CCISS commands, so they must be allocated from the lower 4GiB of
   7113	 * memory.
   7114	 */
   7115	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
   7116	if (err) {
   7117		iounmap(vaddr);
   7118		return err;
   7119	}
   7120
   7121	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
   7122	if (cmd == NULL) {
   7123		iounmap(vaddr);
   7124		return -ENOMEM;
   7125	}
   7126
   7127	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
   7128	 * although there's no guarantee, we assume that the address is at
   7129	 * least 4-byte aligned (most likely, it's page-aligned).
   7130	 */
   7131	paddr32 = cpu_to_le32(paddr64);
   7132
   7133	cmd->CommandHeader.ReplyQueue = 0;
   7134	cmd->CommandHeader.SGList = 0;
   7135	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
   7136	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
   7137	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
   7138
   7139	cmd->Request.CDBLen = 16;
   7140	cmd->Request.type_attr_dir =
   7141			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
   7142	cmd->Request.Timeout = 0; /* Don't time out */
   7143	cmd->Request.CDB[0] = opcode;
   7144	cmd->Request.CDB[1] = type;
   7145	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
   7146	cmd->ErrorDescriptor.Addr =
   7147			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
   7148	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
   7149
   7150	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
   7151
   7152	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
   7153		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
   7154		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
   7155			break;
   7156		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
   7157	}
   7158
   7159	iounmap(vaddr);
   7160
   7161	/* we leak the DMA buffer here ... no choice since the controller could
   7162	 *  still complete the command.
   7163	 */
   7164	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
   7165		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
   7166			opcode, type);
   7167		return -ETIMEDOUT;
   7168	}
   7169
   7170	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
   7171
   7172	if (tag & HPSA_ERROR_BIT) {
   7173		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
   7174			opcode, type);
   7175		return -EIO;
   7176	}
   7177
   7178	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
   7179		opcode, type);
   7180	return 0;
   7181}
   7182
   7183#define hpsa_noop(p) hpsa_message(p, 3, 0)
   7184
   7185static int hpsa_controller_hard_reset(struct pci_dev *pdev,
   7186	void __iomem *vaddr, u32 use_doorbell)
   7187{
   7188
   7189	if (use_doorbell) {
   7190		/* For everything after the P600, the PCI power state method
   7191		 * of resetting the controller doesn't work, so we have this
   7192		 * other way using the doorbell register.
   7193		 */
   7194		dev_info(&pdev->dev, "using doorbell to reset controller\n");
   7195		writel(use_doorbell, vaddr + SA5_DOORBELL);
   7196
   7197		/* PMC hardware guys tell us we need a 10 second delay after
   7198		 * doorbell reset and before any attempt to talk to the board
   7199		 * at all to ensure that this actually works and doesn't fall
   7200		 * over in some weird corner cases.
   7201		 */
   7202		msleep(10000);
   7203	} else { /* Try to do it the PCI power state way */
   7204
   7205		/* Quoting from the Open CISS Specification: "The Power
   7206		 * Management Control/Status Register (CSR) controls the power
   7207		 * state of the device.  The normal operating state is D0,
   7208		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
   7209		 * the controller, place the interface device in D3 then to D0,
   7210		 * this causes a secondary PCI reset which will reset the
   7211		 * controller." */
   7212
   7213		int rc = 0;
   7214
   7215		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
   7216
   7217		/* enter the D3hot power management state */
   7218		rc = pci_set_power_state(pdev, PCI_D3hot);
   7219		if (rc)
   7220			return rc;
   7221
   7222		msleep(500);
   7223
   7224		/* enter the D0 power management state */
   7225		rc = pci_set_power_state(pdev, PCI_D0);
   7226		if (rc)
   7227			return rc;
   7228
   7229		/*
   7230		 * The P600 requires a small delay when changing states.
   7231		 * Otherwise we may think the board did not reset and we bail.
   7232		 * This for kdump only and is particular to the P600.
   7233		 */
   7234		msleep(500);
   7235	}
   7236	return 0;
   7237}
   7238
   7239static void init_driver_version(char *driver_version, int len)
   7240{
   7241	memset(driver_version, 0, len);
   7242	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
   7243}
   7244
   7245static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
   7246{
   7247	char *driver_version;
   7248	int i, size = sizeof(cfgtable->driver_version);
   7249
   7250	driver_version = kmalloc(size, GFP_KERNEL);
   7251	if (!driver_version)
   7252		return -ENOMEM;
   7253
   7254	init_driver_version(driver_version, size);
   7255	for (i = 0; i < size; i++)
   7256		writeb(driver_version[i], &cfgtable->driver_version[i]);
   7257	kfree(driver_version);
   7258	return 0;
   7259}
   7260
   7261static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
   7262					  unsigned char *driver_ver)
   7263{
   7264	int i;
   7265
   7266	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
   7267		driver_ver[i] = readb(&cfgtable->driver_version[i]);
   7268}
   7269
   7270static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
   7271{
   7272
   7273	char *driver_ver, *old_driver_ver;
   7274	int rc, size = sizeof(cfgtable->driver_version);
   7275
   7276	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
   7277	if (!old_driver_ver)
   7278		return -ENOMEM;
   7279	driver_ver = old_driver_ver + size;
   7280
   7281	/* After a reset, the 32 bytes of "driver version" in the cfgtable
   7282	 * should have been changed, otherwise we know the reset failed.
   7283	 */
   7284	init_driver_version(old_driver_ver, size);
   7285	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
   7286	rc = !memcmp(driver_ver, old_driver_ver, size);
   7287	kfree(old_driver_ver);
   7288	return rc;
   7289}
   7290/* This does a hard reset of the controller using PCI power management
   7291 * states or the using the doorbell register.
   7292 */
   7293static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
   7294{
   7295	u64 cfg_offset;
   7296	u32 cfg_base_addr;
   7297	u64 cfg_base_addr_index;
   7298	void __iomem *vaddr;
   7299	unsigned long paddr;
   7300	u32 misc_fw_support;
   7301	int rc;
   7302	struct CfgTable __iomem *cfgtable;
   7303	u32 use_doorbell;
   7304	u16 command_register;
   7305
   7306	/* For controllers as old as the P600, this is very nearly
   7307	 * the same thing as
   7308	 *
   7309	 * pci_save_state(pci_dev);
   7310	 * pci_set_power_state(pci_dev, PCI_D3hot);
   7311	 * pci_set_power_state(pci_dev, PCI_D0);
   7312	 * pci_restore_state(pci_dev);
   7313	 *
   7314	 * For controllers newer than the P600, the pci power state
   7315	 * method of resetting doesn't work so we have another way
   7316	 * using the doorbell register.
   7317	 */
   7318
   7319	if (!ctlr_is_resettable(board_id)) {
   7320		dev_warn(&pdev->dev, "Controller not resettable\n");
   7321		return -ENODEV;
   7322	}
   7323
   7324	/* if controller is soft- but not hard resettable... */
   7325	if (!ctlr_is_hard_resettable(board_id))
   7326		return -ENOTSUPP; /* try soft reset later. */
   7327
   7328	/* Save the PCI command register */
   7329	pci_read_config_word(pdev, 4, &command_register);
   7330	pci_save_state(pdev);
   7331
   7332	/* find the first memory BAR, so we can find the cfg table */
   7333	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
   7334	if (rc)
   7335		return rc;
   7336	vaddr = remap_pci_mem(paddr, 0x250);
   7337	if (!vaddr)
   7338		return -ENOMEM;
   7339
   7340	/* find cfgtable in order to check if reset via doorbell is supported */
   7341	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
   7342					&cfg_base_addr_index, &cfg_offset);
   7343	if (rc)
   7344		goto unmap_vaddr;
   7345	cfgtable = remap_pci_mem(pci_resource_start(pdev,
   7346		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
   7347	if (!cfgtable) {
   7348		rc = -ENOMEM;
   7349		goto unmap_vaddr;
   7350	}
   7351	rc = write_driver_ver_to_cfgtable(cfgtable);
   7352	if (rc)
   7353		goto unmap_cfgtable;
   7354
   7355	/* If reset via doorbell register is supported, use that.
   7356	 * There are two such methods.  Favor the newest method.
   7357	 */
   7358	misc_fw_support = readl(&cfgtable->misc_fw_support);
   7359	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
   7360	if (use_doorbell) {
   7361		use_doorbell = DOORBELL_CTLR_RESET2;
   7362	} else {
   7363		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
   7364		if (use_doorbell) {
   7365			dev_warn(&pdev->dev,
   7366				"Soft reset not supported. Firmware update is required.\n");
   7367			rc = -ENOTSUPP; /* try soft reset */
   7368			goto unmap_cfgtable;
   7369		}
   7370	}
   7371
   7372	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
   7373	if (rc)
   7374		goto unmap_cfgtable;
   7375
   7376	pci_restore_state(pdev);
   7377	pci_write_config_word(pdev, 4, command_register);
   7378
   7379	/* Some devices (notably the HP Smart Array 5i Controller)
   7380	   need a little pause here */
   7381	msleep(HPSA_POST_RESET_PAUSE_MSECS);
   7382
   7383	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
   7384	if (rc) {
   7385		dev_warn(&pdev->dev,
   7386			"Failed waiting for board to become ready after hard reset\n");
   7387		goto unmap_cfgtable;
   7388	}
   7389
   7390	rc = controller_reset_failed(vaddr);
   7391	if (rc < 0)
   7392		goto unmap_cfgtable;
   7393	if (rc) {
   7394		dev_warn(&pdev->dev, "Unable to successfully reset "
   7395			"controller. Will try soft reset.\n");
   7396		rc = -ENOTSUPP;
   7397	} else {
   7398		dev_info(&pdev->dev, "board ready after hard reset.\n");
   7399	}
   7400
   7401unmap_cfgtable:
   7402	iounmap(cfgtable);
   7403
   7404unmap_vaddr:
   7405	iounmap(vaddr);
   7406	return rc;
   7407}
   7408
   7409/*
   7410 *  We cannot read the structure directly, for portability we must use
   7411 *   the io functions.
   7412 *   This is for debug only.
   7413 */
   7414static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
   7415{
   7416#ifdef HPSA_DEBUG
   7417	int i;
   7418	char temp_name[17];
   7419
   7420	dev_info(dev, "Controller Configuration information\n");
   7421	dev_info(dev, "------------------------------------\n");
   7422	for (i = 0; i < 4; i++)
   7423		temp_name[i] = readb(&(tb->Signature[i]));
   7424	temp_name[4] = '\0';
   7425	dev_info(dev, "   Signature = %s\n", temp_name);
   7426	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
   7427	dev_info(dev, "   Transport methods supported = 0x%x\n",
   7428	       readl(&(tb->TransportSupport)));
   7429	dev_info(dev, "   Transport methods active = 0x%x\n",
   7430	       readl(&(tb->TransportActive)));
   7431	dev_info(dev, "   Requested transport Method = 0x%x\n",
   7432	       readl(&(tb->HostWrite.TransportRequest)));
   7433	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
   7434	       readl(&(tb->HostWrite.CoalIntDelay)));
   7435	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
   7436	       readl(&(tb->HostWrite.CoalIntCount)));
   7437	dev_info(dev, "   Max outstanding commands = %d\n",
   7438	       readl(&(tb->CmdsOutMax)));
   7439	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
   7440	for (i = 0; i < 16; i++)
   7441		temp_name[i] = readb(&(tb->ServerName[i]));
   7442	temp_name[16] = '\0';
   7443	dev_info(dev, "   Server Name = %s\n", temp_name);
   7444	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
   7445		readl(&(tb->HeartBeat)));
   7446#endif				/* HPSA_DEBUG */
   7447}
   7448
   7449static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
   7450{
   7451	int i, offset, mem_type, bar_type;
   7452
   7453	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
   7454		return 0;
   7455	offset = 0;
   7456	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
   7457		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
   7458		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
   7459			offset += 4;
   7460		else {
   7461			mem_type = pci_resource_flags(pdev, i) &
   7462			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
   7463			switch (mem_type) {
   7464			case PCI_BASE_ADDRESS_MEM_TYPE_32:
   7465			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
   7466				offset += 4;	/* 32 bit */
   7467				break;
   7468			case PCI_BASE_ADDRESS_MEM_TYPE_64:
   7469				offset += 8;
   7470				break;
   7471			default:	/* reserved in PCI 2.2 */
   7472				dev_warn(&pdev->dev,
   7473				       "base address is invalid\n");
   7474				return -1;
   7475			}
   7476		}
   7477		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
   7478			return i + 1;
   7479	}
   7480	return -1;
   7481}
   7482
   7483static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
   7484{
   7485	pci_free_irq_vectors(h->pdev);
   7486	h->msix_vectors = 0;
   7487}
   7488
   7489static void hpsa_setup_reply_map(struct ctlr_info *h)
   7490{
   7491	const struct cpumask *mask;
   7492	unsigned int queue, cpu;
   7493
   7494	for (queue = 0; queue < h->msix_vectors; queue++) {
   7495		mask = pci_irq_get_affinity(h->pdev, queue);
   7496		if (!mask)
   7497			goto fallback;
   7498
   7499		for_each_cpu(cpu, mask)
   7500			h->reply_map[cpu] = queue;
   7501	}
   7502	return;
   7503
   7504fallback:
   7505	for_each_possible_cpu(cpu)
   7506		h->reply_map[cpu] = 0;
   7507}
   7508
   7509/* If MSI/MSI-X is supported by the kernel we will try to enable it on
   7510 * controllers that are capable. If not, we use legacy INTx mode.
   7511 */
   7512static int hpsa_interrupt_mode(struct ctlr_info *h)
   7513{
   7514	unsigned int flags = PCI_IRQ_LEGACY;
   7515	int ret;
   7516
   7517	/* Some boards advertise MSI but don't really support it */
   7518	switch (h->board_id) {
   7519	case 0x40700E11:
   7520	case 0x40800E11:
   7521	case 0x40820E11:
   7522	case 0x40830E11:
   7523		break;
   7524	default:
   7525		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
   7526				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
   7527		if (ret > 0) {
   7528			h->msix_vectors = ret;
   7529			return 0;
   7530		}
   7531
   7532		flags |= PCI_IRQ_MSI;
   7533		break;
   7534	}
   7535
   7536	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
   7537	if (ret < 0)
   7538		return ret;
   7539	return 0;
   7540}
   7541
   7542static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
   7543				bool *legacy_board)
   7544{
   7545	int i;
   7546	u32 subsystem_vendor_id, subsystem_device_id;
   7547
   7548	subsystem_vendor_id = pdev->subsystem_vendor;
   7549	subsystem_device_id = pdev->subsystem_device;
   7550	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
   7551		    subsystem_vendor_id;
   7552
   7553	if (legacy_board)
   7554		*legacy_board = false;
   7555	for (i = 0; i < ARRAY_SIZE(products); i++)
   7556		if (*board_id == products[i].board_id) {
   7557			if (products[i].access != &SA5A_access &&
   7558			    products[i].access != &SA5B_access)
   7559				return i;
   7560			dev_warn(&pdev->dev,
   7561				 "legacy board ID: 0x%08x\n",
   7562				 *board_id);
   7563			if (legacy_board)
   7564			    *legacy_board = true;
   7565			return i;
   7566		}
   7567
   7568	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
   7569	if (legacy_board)
   7570		*legacy_board = true;
   7571	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
   7572}
   7573
   7574static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
   7575				    unsigned long *memory_bar)
   7576{
   7577	int i;
   7578
   7579	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
   7580		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
   7581			/* addressing mode bits already removed */
   7582			*memory_bar = pci_resource_start(pdev, i);
   7583			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
   7584				*memory_bar);
   7585			return 0;
   7586		}
   7587	dev_warn(&pdev->dev, "no memory BAR found\n");
   7588	return -ENODEV;
   7589}
   7590
   7591static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
   7592				     int wait_for_ready)
   7593{
   7594	int i, iterations;
   7595	u32 scratchpad;
   7596	if (wait_for_ready)
   7597		iterations = HPSA_BOARD_READY_ITERATIONS;
   7598	else
   7599		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
   7600
   7601	for (i = 0; i < iterations; i++) {
   7602		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
   7603		if (wait_for_ready) {
   7604			if (scratchpad == HPSA_FIRMWARE_READY)
   7605				return 0;
   7606		} else {
   7607			if (scratchpad != HPSA_FIRMWARE_READY)
   7608				return 0;
   7609		}
   7610		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
   7611	}
   7612	dev_warn(&pdev->dev, "board not ready, timed out.\n");
   7613	return -ENODEV;
   7614}
   7615
   7616static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
   7617			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
   7618			       u64 *cfg_offset)
   7619{
   7620	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
   7621	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
   7622	*cfg_base_addr &= (u32) 0x0000ffff;
   7623	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
   7624	if (*cfg_base_addr_index == -1) {
   7625		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
   7626		return -ENODEV;
   7627	}
   7628	return 0;
   7629}
   7630
   7631static void hpsa_free_cfgtables(struct ctlr_info *h)
   7632{
   7633	if (h->transtable) {
   7634		iounmap(h->transtable);
   7635		h->transtable = NULL;
   7636	}
   7637	if (h->cfgtable) {
   7638		iounmap(h->cfgtable);
   7639		h->cfgtable = NULL;
   7640	}
   7641}
   7642
   7643/* Find and map CISS config table and transfer table
   7644+ * several items must be unmapped (freed) later
   7645+ * */
   7646static int hpsa_find_cfgtables(struct ctlr_info *h)
   7647{
   7648	u64 cfg_offset;
   7649	u32 cfg_base_addr;
   7650	u64 cfg_base_addr_index;
   7651	u32 trans_offset;
   7652	int rc;
   7653
   7654	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
   7655		&cfg_base_addr_index, &cfg_offset);
   7656	if (rc)
   7657		return rc;
   7658	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
   7659		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
   7660	if (!h->cfgtable) {
   7661		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
   7662		return -ENOMEM;
   7663	}
   7664	rc = write_driver_ver_to_cfgtable(h->cfgtable);
   7665	if (rc)
   7666		return rc;
   7667	/* Find performant mode table. */
   7668	trans_offset = readl(&h->cfgtable->TransMethodOffset);
   7669	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
   7670				cfg_base_addr_index)+cfg_offset+trans_offset,
   7671				sizeof(*h->transtable));
   7672	if (!h->transtable) {
   7673		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
   7674		hpsa_free_cfgtables(h);
   7675		return -ENOMEM;
   7676	}
   7677	return 0;
   7678}
   7679
   7680static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
   7681{
   7682#define MIN_MAX_COMMANDS 16
   7683	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
   7684
   7685	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
   7686
   7687	/* Limit commands in memory limited kdump scenario. */
   7688	if (reset_devices && h->max_commands > 32)
   7689		h->max_commands = 32;
   7690
   7691	if (h->max_commands < MIN_MAX_COMMANDS) {
   7692		dev_warn(&h->pdev->dev,
   7693			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
   7694			h->max_commands,
   7695			MIN_MAX_COMMANDS);
   7696		h->max_commands = MIN_MAX_COMMANDS;
   7697	}
   7698}
   7699
   7700/* If the controller reports that the total max sg entries is greater than 512,
   7701 * then we know that chained SG blocks work.  (Original smart arrays did not
   7702 * support chained SG blocks and would return zero for max sg entries.)
   7703 */
   7704static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
   7705{
   7706	return h->maxsgentries > 512;
   7707}
   7708
   7709/* Interrogate the hardware for some limits:
   7710 * max commands, max SG elements without chaining, and with chaining,
   7711 * SG chain block size, etc.
   7712 */
   7713static void hpsa_find_board_params(struct ctlr_info *h)
   7714{
   7715	hpsa_get_max_perf_mode_cmds(h);
   7716	h->nr_cmds = h->max_commands;
   7717	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
   7718	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
   7719	if (hpsa_supports_chained_sg_blocks(h)) {
   7720		/* Limit in-command s/g elements to 32 save dma'able memory. */
   7721		h->max_cmd_sg_entries = 32;
   7722		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
   7723		h->maxsgentries--; /* save one for chain pointer */
   7724	} else {
   7725		/*
   7726		 * Original smart arrays supported at most 31 s/g entries
   7727		 * embedded inline in the command (trying to use more
   7728		 * would lock up the controller)
   7729		 */
   7730		h->max_cmd_sg_entries = 31;
   7731		h->maxsgentries = 31; /* default to traditional values */
   7732		h->chainsize = 0;
   7733	}
   7734
   7735	/* Find out what task management functions are supported and cache */
   7736	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
   7737	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
   7738		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
   7739	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
   7740		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
   7741	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
   7742		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
   7743}
   7744
   7745static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
   7746{
   7747	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
   7748		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
   7749		return false;
   7750	}
   7751	return true;
   7752}
   7753
   7754static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
   7755{
   7756	u32 driver_support;
   7757
   7758	driver_support = readl(&(h->cfgtable->driver_support));
   7759	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
   7760#ifdef CONFIG_X86
   7761	driver_support |= ENABLE_SCSI_PREFETCH;
   7762#endif
   7763	driver_support |= ENABLE_UNIT_ATTN;
   7764	writel(driver_support, &(h->cfgtable->driver_support));
   7765}
   7766
   7767/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
   7768 * in a prefetch beyond physical memory.
   7769 */
   7770static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
   7771{
   7772	u32 dma_prefetch;
   7773
   7774	if (h->board_id != 0x3225103C)
   7775		return;
   7776	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
   7777	dma_prefetch |= 0x8000;
   7778	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
   7779}
   7780
   7781static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
   7782{
   7783	int i;
   7784	u32 doorbell_value;
   7785	unsigned long flags;
   7786	/* wait until the clear_event_notify bit 6 is cleared by controller. */
   7787	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
   7788		spin_lock_irqsave(&h->lock, flags);
   7789		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
   7790		spin_unlock_irqrestore(&h->lock, flags);
   7791		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
   7792			goto done;
   7793		/* delay and try again */
   7794		msleep(CLEAR_EVENT_WAIT_INTERVAL);
   7795	}
   7796	return -ENODEV;
   7797done:
   7798	return 0;
   7799}
   7800
   7801static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
   7802{
   7803	int i;
   7804	u32 doorbell_value;
   7805	unsigned long flags;
   7806
   7807	/* under certain very rare conditions, this can take awhile.
   7808	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
   7809	 * as we enter this code.)
   7810	 */
   7811	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
   7812		if (h->remove_in_progress)
   7813			goto done;
   7814		spin_lock_irqsave(&h->lock, flags);
   7815		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
   7816		spin_unlock_irqrestore(&h->lock, flags);
   7817		if (!(doorbell_value & CFGTBL_ChangeReq))
   7818			goto done;
   7819		/* delay and try again */
   7820		msleep(MODE_CHANGE_WAIT_INTERVAL);
   7821	}
   7822	return -ENODEV;
   7823done:
   7824	return 0;
   7825}
   7826
   7827/* return -ENODEV or other reason on error, 0 on success */
   7828static int hpsa_enter_simple_mode(struct ctlr_info *h)
   7829{
   7830	u32 trans_support;
   7831
   7832	trans_support = readl(&(h->cfgtable->TransportSupport));
   7833	if (!(trans_support & SIMPLE_MODE))
   7834		return -ENOTSUPP;
   7835
   7836	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
   7837
   7838	/* Update the field, and then ring the doorbell */
   7839	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
   7840	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
   7841	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
   7842	if (hpsa_wait_for_mode_change_ack(h))
   7843		goto error;
   7844	print_cfg_table(&h->pdev->dev, h->cfgtable);
   7845	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
   7846		goto error;
   7847	h->transMethod = CFGTBL_Trans_Simple;
   7848	return 0;
   7849error:
   7850	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
   7851	return -ENODEV;
   7852}
   7853
   7854/* free items allocated or mapped by hpsa_pci_init */
   7855static void hpsa_free_pci_init(struct ctlr_info *h)
   7856{
   7857	hpsa_free_cfgtables(h);			/* pci_init 4 */
   7858	iounmap(h->vaddr);			/* pci_init 3 */
   7859	h->vaddr = NULL;
   7860	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
   7861	/*
   7862	 * call pci_disable_device before pci_release_regions per
   7863	 * Documentation/driver-api/pci/pci.rst
   7864	 */
   7865	pci_disable_device(h->pdev);		/* pci_init 1 */
   7866	pci_release_regions(h->pdev);		/* pci_init 2 */
   7867}
   7868
   7869/* several items must be freed later */
   7870static int hpsa_pci_init(struct ctlr_info *h)
   7871{
   7872	int prod_index, err;
   7873	bool legacy_board;
   7874
   7875	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
   7876	if (prod_index < 0)
   7877		return prod_index;
   7878	h->product_name = products[prod_index].product_name;
   7879	h->access = *(products[prod_index].access);
   7880	h->legacy_board = legacy_board;
   7881	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
   7882			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
   7883
   7884	err = pci_enable_device(h->pdev);
   7885	if (err) {
   7886		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
   7887		pci_disable_device(h->pdev);
   7888		return err;
   7889	}
   7890
   7891	err = pci_request_regions(h->pdev, HPSA);
   7892	if (err) {
   7893		dev_err(&h->pdev->dev,
   7894			"failed to obtain PCI resources\n");
   7895		pci_disable_device(h->pdev);
   7896		return err;
   7897	}
   7898
   7899	pci_set_master(h->pdev);
   7900
   7901	err = hpsa_interrupt_mode(h);
   7902	if (err)
   7903		goto clean1;
   7904
   7905	/* setup mapping between CPU and reply queue */
   7906	hpsa_setup_reply_map(h);
   7907
   7908	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
   7909	if (err)
   7910		goto clean2;	/* intmode+region, pci */
   7911	h->vaddr = remap_pci_mem(h->paddr, 0x250);
   7912	if (!h->vaddr) {
   7913		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
   7914		err = -ENOMEM;
   7915		goto clean2;	/* intmode+region, pci */
   7916	}
   7917	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
   7918	if (err)
   7919		goto clean3;	/* vaddr, intmode+region, pci */
   7920	err = hpsa_find_cfgtables(h);
   7921	if (err)
   7922		goto clean3;	/* vaddr, intmode+region, pci */
   7923	hpsa_find_board_params(h);
   7924
   7925	if (!hpsa_CISS_signature_present(h)) {
   7926		err = -ENODEV;
   7927		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
   7928	}
   7929	hpsa_set_driver_support_bits(h);
   7930	hpsa_p600_dma_prefetch_quirk(h);
   7931	err = hpsa_enter_simple_mode(h);
   7932	if (err)
   7933		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
   7934	return 0;
   7935
   7936clean4:	/* cfgtables, vaddr, intmode+region, pci */
   7937	hpsa_free_cfgtables(h);
   7938clean3:	/* vaddr, intmode+region, pci */
   7939	iounmap(h->vaddr);
   7940	h->vaddr = NULL;
   7941clean2:	/* intmode+region, pci */
   7942	hpsa_disable_interrupt_mode(h);
   7943clean1:
   7944	/*
   7945	 * call pci_disable_device before pci_release_regions per
   7946	 * Documentation/driver-api/pci/pci.rst
   7947	 */
   7948	pci_disable_device(h->pdev);
   7949	pci_release_regions(h->pdev);
   7950	return err;
   7951}
   7952
   7953static void hpsa_hba_inquiry(struct ctlr_info *h)
   7954{
   7955	int rc;
   7956
   7957#define HBA_INQUIRY_BYTE_COUNT 64
   7958	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
   7959	if (!h->hba_inquiry_data)
   7960		return;
   7961	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
   7962		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
   7963	if (rc != 0) {
   7964		kfree(h->hba_inquiry_data);
   7965		h->hba_inquiry_data = NULL;
   7966	}
   7967}
   7968
   7969static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
   7970{
   7971	int rc, i;
   7972	void __iomem *vaddr;
   7973
   7974	if (!reset_devices)
   7975		return 0;
   7976
   7977	/* kdump kernel is loading, we don't know in which state is
   7978	 * the pci interface. The dev->enable_cnt is equal zero
   7979	 * so we call enable+disable, wait a while and switch it on.
   7980	 */
   7981	rc = pci_enable_device(pdev);
   7982	if (rc) {
   7983		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
   7984		return -ENODEV;
   7985	}
   7986	pci_disable_device(pdev);
   7987	msleep(260);			/* a randomly chosen number */
   7988	rc = pci_enable_device(pdev);
   7989	if (rc) {
   7990		dev_warn(&pdev->dev, "failed to enable device.\n");
   7991		return -ENODEV;
   7992	}
   7993
   7994	pci_set_master(pdev);
   7995
   7996	vaddr = pci_ioremap_bar(pdev, 0);
   7997	if (vaddr == NULL) {
   7998		rc = -ENOMEM;
   7999		goto out_disable;
   8000	}
   8001	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
   8002	iounmap(vaddr);
   8003
   8004	/* Reset the controller with a PCI power-cycle or via doorbell */
   8005	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
   8006
   8007	/* -ENOTSUPP here means we cannot reset the controller
   8008	 * but it's already (and still) up and running in
   8009	 * "performant mode".  Or, it might be 640x, which can't reset
   8010	 * due to concerns about shared bbwc between 6402/6404 pair.
   8011	 */
   8012	if (rc)
   8013		goto out_disable;
   8014
   8015	/* Now try to get the controller to respond to a no-op */
   8016	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
   8017	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
   8018		if (hpsa_noop(pdev) == 0)
   8019			break;
   8020		else
   8021			dev_warn(&pdev->dev, "no-op failed%s\n",
   8022					(i < 11 ? "; re-trying" : ""));
   8023	}
   8024
   8025out_disable:
   8026
   8027	pci_disable_device(pdev);
   8028	return rc;
   8029}
   8030
   8031static void hpsa_free_cmd_pool(struct ctlr_info *h)
   8032{
   8033	kfree(h->cmd_pool_bits);
   8034	h->cmd_pool_bits = NULL;
   8035	if (h->cmd_pool) {
   8036		dma_free_coherent(&h->pdev->dev,
   8037				h->nr_cmds * sizeof(struct CommandList),
   8038				h->cmd_pool,
   8039				h->cmd_pool_dhandle);
   8040		h->cmd_pool = NULL;
   8041		h->cmd_pool_dhandle = 0;
   8042	}
   8043	if (h->errinfo_pool) {
   8044		dma_free_coherent(&h->pdev->dev,
   8045				h->nr_cmds * sizeof(struct ErrorInfo),
   8046				h->errinfo_pool,
   8047				h->errinfo_pool_dhandle);
   8048		h->errinfo_pool = NULL;
   8049		h->errinfo_pool_dhandle = 0;
   8050	}
   8051}
   8052
   8053static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
   8054{
   8055	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
   8056				   sizeof(unsigned long),
   8057				   GFP_KERNEL);
   8058	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
   8059		    h->nr_cmds * sizeof(*h->cmd_pool),
   8060		    &h->cmd_pool_dhandle, GFP_KERNEL);
   8061	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
   8062		    h->nr_cmds * sizeof(*h->errinfo_pool),
   8063		    &h->errinfo_pool_dhandle, GFP_KERNEL);
   8064	if ((h->cmd_pool_bits == NULL)
   8065	    || (h->cmd_pool == NULL)
   8066	    || (h->errinfo_pool == NULL)) {
   8067		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
   8068		goto clean_up;
   8069	}
   8070	hpsa_preinitialize_commands(h);
   8071	return 0;
   8072clean_up:
   8073	hpsa_free_cmd_pool(h);
   8074	return -ENOMEM;
   8075}
   8076
   8077/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
   8078static void hpsa_free_irqs(struct ctlr_info *h)
   8079{
   8080	int i;
   8081	int irq_vector = 0;
   8082
   8083	if (hpsa_simple_mode)
   8084		irq_vector = h->intr_mode;
   8085
   8086	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
   8087		/* Single reply queue, only one irq to free */
   8088		free_irq(pci_irq_vector(h->pdev, irq_vector),
   8089				&h->q[h->intr_mode]);
   8090		h->q[h->intr_mode] = 0;
   8091		return;
   8092	}
   8093
   8094	for (i = 0; i < h->msix_vectors; i++) {
   8095		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
   8096		h->q[i] = 0;
   8097	}
   8098	for (; i < MAX_REPLY_QUEUES; i++)
   8099		h->q[i] = 0;
   8100}
   8101
   8102/* returns 0 on success; cleans up and returns -Enn on error */
   8103static int hpsa_request_irqs(struct ctlr_info *h,
   8104	irqreturn_t (*msixhandler)(int, void *),
   8105	irqreturn_t (*intxhandler)(int, void *))
   8106{
   8107	int rc, i;
   8108	int irq_vector = 0;
   8109
   8110	if (hpsa_simple_mode)
   8111		irq_vector = h->intr_mode;
   8112
   8113	/*
   8114	 * initialize h->q[x] = x so that interrupt handlers know which
   8115	 * queue to process.
   8116	 */
   8117	for (i = 0; i < MAX_REPLY_QUEUES; i++)
   8118		h->q[i] = (u8) i;
   8119
   8120	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
   8121		/* If performant mode and MSI-X, use multiple reply queues */
   8122		for (i = 0; i < h->msix_vectors; i++) {
   8123			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
   8124			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
   8125					0, h->intrname[i],
   8126					&h->q[i]);
   8127			if (rc) {
   8128				int j;
   8129
   8130				dev_err(&h->pdev->dev,
   8131					"failed to get irq %d for %s\n",
   8132				       pci_irq_vector(h->pdev, i), h->devname);
   8133				for (j = 0; j < i; j++) {
   8134					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
   8135					h->q[j] = 0;
   8136				}
   8137				for (; j < MAX_REPLY_QUEUES; j++)
   8138					h->q[j] = 0;
   8139				return rc;
   8140			}
   8141		}
   8142	} else {
   8143		/* Use single reply pool */
   8144		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
   8145			sprintf(h->intrname[0], "%s-msi%s", h->devname,
   8146				h->msix_vectors ? "x" : "");
   8147			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
   8148				msixhandler, 0,
   8149				h->intrname[0],
   8150				&h->q[h->intr_mode]);
   8151		} else {
   8152			sprintf(h->intrname[h->intr_mode],
   8153				"%s-intx", h->devname);
   8154			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
   8155				intxhandler, IRQF_SHARED,
   8156				h->intrname[0],
   8157				&h->q[h->intr_mode]);
   8158		}
   8159	}
   8160	if (rc) {
   8161		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
   8162		       pci_irq_vector(h->pdev, irq_vector), h->devname);
   8163		hpsa_free_irqs(h);
   8164		return -ENODEV;
   8165	}
   8166	return 0;
   8167}
   8168
   8169static int hpsa_kdump_soft_reset(struct ctlr_info *h)
   8170{
   8171	int rc;
   8172	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
   8173
   8174	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
   8175	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
   8176	if (rc) {
   8177		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
   8178		return rc;
   8179	}
   8180
   8181	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
   8182	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
   8183	if (rc) {
   8184		dev_warn(&h->pdev->dev, "Board failed to become ready "
   8185			"after soft reset.\n");
   8186		return rc;
   8187	}
   8188
   8189	return 0;
   8190}
   8191
   8192static void hpsa_free_reply_queues(struct ctlr_info *h)
   8193{
   8194	int i;
   8195
   8196	for (i = 0; i < h->nreply_queues; i++) {
   8197		if (!h->reply_queue[i].head)
   8198			continue;
   8199		dma_free_coherent(&h->pdev->dev,
   8200					h->reply_queue_size,
   8201					h->reply_queue[i].head,
   8202					h->reply_queue[i].busaddr);
   8203		h->reply_queue[i].head = NULL;
   8204		h->reply_queue[i].busaddr = 0;
   8205	}
   8206	h->reply_queue_size = 0;
   8207}
   8208
   8209static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
   8210{
   8211	hpsa_free_performant_mode(h);		/* init_one 7 */
   8212	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
   8213	hpsa_free_cmd_pool(h);			/* init_one 5 */
   8214	hpsa_free_irqs(h);			/* init_one 4 */
   8215	scsi_host_put(h->scsi_host);		/* init_one 3 */
   8216	h->scsi_host = NULL;			/* init_one 3 */
   8217	hpsa_free_pci_init(h);			/* init_one 2_5 */
   8218	free_percpu(h->lockup_detected);	/* init_one 2 */
   8219	h->lockup_detected = NULL;		/* init_one 2 */
   8220	if (h->resubmit_wq) {
   8221		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
   8222		h->resubmit_wq = NULL;
   8223	}
   8224	if (h->rescan_ctlr_wq) {
   8225		destroy_workqueue(h->rescan_ctlr_wq);
   8226		h->rescan_ctlr_wq = NULL;
   8227	}
   8228	if (h->monitor_ctlr_wq) {
   8229		destroy_workqueue(h->monitor_ctlr_wq);
   8230		h->monitor_ctlr_wq = NULL;
   8231	}
   8232
   8233	kfree(h);				/* init_one 1 */
   8234}
   8235
   8236/* Called when controller lockup detected. */
   8237static void fail_all_outstanding_cmds(struct ctlr_info *h)
   8238{
   8239	int i, refcount;
   8240	struct CommandList *c;
   8241	int failcount = 0;
   8242
   8243	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
   8244	for (i = 0; i < h->nr_cmds; i++) {
   8245		c = h->cmd_pool + i;
   8246		refcount = atomic_inc_return(&c->refcount);
   8247		if (refcount > 1) {
   8248			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
   8249			finish_cmd(c);
   8250			atomic_dec(&h->commands_outstanding);
   8251			failcount++;
   8252		}
   8253		cmd_free(h, c);
   8254	}
   8255	dev_warn(&h->pdev->dev,
   8256		"failed %d commands in fail_all\n", failcount);
   8257}
   8258
   8259static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
   8260{
   8261	int cpu;
   8262
   8263	for_each_online_cpu(cpu) {
   8264		u32 *lockup_detected;
   8265		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
   8266		*lockup_detected = value;
   8267	}
   8268	wmb(); /* be sure the per-cpu variables are out to memory */
   8269}
   8270
   8271static void controller_lockup_detected(struct ctlr_info *h)
   8272{
   8273	unsigned long flags;
   8274	u32 lockup_detected;
   8275
   8276	h->access.set_intr_mask(h, HPSA_INTR_OFF);
   8277	spin_lock_irqsave(&h->lock, flags);
   8278	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
   8279	if (!lockup_detected) {
   8280		/* no heartbeat, but controller gave us a zero. */
   8281		dev_warn(&h->pdev->dev,
   8282			"lockup detected after %d but scratchpad register is zero\n",
   8283			h->heartbeat_sample_interval / HZ);
   8284		lockup_detected = 0xffffffff;
   8285	}
   8286	set_lockup_detected_for_all_cpus(h, lockup_detected);
   8287	spin_unlock_irqrestore(&h->lock, flags);
   8288	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
   8289			lockup_detected, h->heartbeat_sample_interval / HZ);
   8290	if (lockup_detected == 0xffff0000) {
   8291		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
   8292		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
   8293	}
   8294	pci_disable_device(h->pdev);
   8295	fail_all_outstanding_cmds(h);
   8296}
   8297
   8298static int detect_controller_lockup(struct ctlr_info *h)
   8299{
   8300	u64 now;
   8301	u32 heartbeat;
   8302	unsigned long flags;
   8303
   8304	now = get_jiffies_64();
   8305	/* If we've received an interrupt recently, we're ok. */
   8306	if (time_after64(h->last_intr_timestamp +
   8307				(h->heartbeat_sample_interval), now))
   8308		return false;
   8309
   8310	/*
   8311	 * If we've already checked the heartbeat recently, we're ok.
   8312	 * This could happen if someone sends us a signal. We
   8313	 * otherwise don't care about signals in this thread.
   8314	 */
   8315	if (time_after64(h->last_heartbeat_timestamp +
   8316				(h->heartbeat_sample_interval), now))
   8317		return false;
   8318
   8319	/* If heartbeat has not changed since we last looked, we're not ok. */
   8320	spin_lock_irqsave(&h->lock, flags);
   8321	heartbeat = readl(&h->cfgtable->HeartBeat);
   8322	spin_unlock_irqrestore(&h->lock, flags);
   8323	if (h->last_heartbeat == heartbeat) {
   8324		controller_lockup_detected(h);
   8325		return true;
   8326	}
   8327
   8328	/* We're ok. */
   8329	h->last_heartbeat = heartbeat;
   8330	h->last_heartbeat_timestamp = now;
   8331	return false;
   8332}
   8333
   8334/*
   8335 * Set ioaccel status for all ioaccel volumes.
   8336 *
   8337 * Called from monitor controller worker (hpsa_event_monitor_worker)
   8338 *
   8339 * A Volume (or Volumes that comprise an Array set) may be undergoing a
   8340 * transformation, so we will be turning off ioaccel for all volumes that
   8341 * make up the Array.
   8342 */
   8343static void hpsa_set_ioaccel_status(struct ctlr_info *h)
   8344{
   8345	int rc;
   8346	int i;
   8347	u8 ioaccel_status;
   8348	unsigned char *buf;
   8349	struct hpsa_scsi_dev_t *device;
   8350
   8351	if (!h)
   8352		return;
   8353
   8354	buf = kmalloc(64, GFP_KERNEL);
   8355	if (!buf)
   8356		return;
   8357
   8358	/*
   8359	 * Run through current device list used during I/O requests.
   8360	 */
   8361	for (i = 0; i < h->ndevices; i++) {
   8362		int offload_to_be_enabled = 0;
   8363		int offload_config = 0;
   8364
   8365		device = h->dev[i];
   8366
   8367		if (!device)
   8368			continue;
   8369		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
   8370						HPSA_VPD_LV_IOACCEL_STATUS))
   8371			continue;
   8372
   8373		memset(buf, 0, 64);
   8374
   8375		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
   8376					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
   8377					buf, 64);
   8378		if (rc != 0)
   8379			continue;
   8380
   8381		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
   8382
   8383		/*
   8384		 * Check if offload is still configured on
   8385		 */
   8386		offload_config =
   8387				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
   8388		/*
   8389		 * If offload is configured on, check to see if ioaccel
   8390		 * needs to be enabled.
   8391		 */
   8392		if (offload_config)
   8393			offload_to_be_enabled =
   8394				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
   8395
   8396		/*
   8397		 * If ioaccel is to be re-enabled, re-enable later during the
   8398		 * scan operation so the driver can get a fresh raidmap
   8399		 * before turning ioaccel back on.
   8400		 */
   8401		if (offload_to_be_enabled)
   8402			continue;
   8403
   8404		/*
   8405		 * Immediately turn off ioaccel for any volume the
   8406		 * controller tells us to. Some of the reasons could be:
   8407		 *    transformation - change to the LVs of an Array.
   8408		 *    degraded volume - component failure
   8409		 */
   8410		hpsa_turn_off_ioaccel_for_device(device);
   8411	}
   8412
   8413	kfree(buf);
   8414}
   8415
   8416static void hpsa_ack_ctlr_events(struct ctlr_info *h)
   8417{
   8418	char *event_type;
   8419
   8420	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
   8421		return;
   8422
   8423	/* Ask the controller to clear the events we're handling. */
   8424	if ((h->transMethod & (CFGTBL_Trans_io_accel1
   8425			| CFGTBL_Trans_io_accel2)) &&
   8426		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
   8427		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
   8428
   8429		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
   8430			event_type = "state change";
   8431		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
   8432			event_type = "configuration change";
   8433		/* Stop sending new RAID offload reqs via the IO accelerator */
   8434		scsi_block_requests(h->scsi_host);
   8435		hpsa_set_ioaccel_status(h);
   8436		hpsa_drain_accel_commands(h);
   8437		/* Set 'accelerator path config change' bit */
   8438		dev_warn(&h->pdev->dev,
   8439			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
   8440			h->events, event_type);
   8441		writel(h->events, &(h->cfgtable->clear_event_notify));
   8442		/* Set the "clear event notify field update" bit 6 */
   8443		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
   8444		/* Wait until ctlr clears 'clear event notify field', bit 6 */
   8445		hpsa_wait_for_clear_event_notify_ack(h);
   8446		scsi_unblock_requests(h->scsi_host);
   8447	} else {
   8448		/* Acknowledge controller notification events. */
   8449		writel(h->events, &(h->cfgtable->clear_event_notify));
   8450		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
   8451		hpsa_wait_for_clear_event_notify_ack(h);
   8452	}
   8453	return;
   8454}
   8455
   8456/* Check a register on the controller to see if there are configuration
   8457 * changes (added/changed/removed logical drives, etc.) which mean that
   8458 * we should rescan the controller for devices.
   8459 * Also check flag for driver-initiated rescan.
   8460 */
   8461static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
   8462{
   8463	if (h->drv_req_rescan) {
   8464		h->drv_req_rescan = 0;
   8465		return 1;
   8466	}
   8467
   8468	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
   8469		return 0;
   8470
   8471	h->events = readl(&(h->cfgtable->event_notify));
   8472	return h->events & RESCAN_REQUIRED_EVENT_BITS;
   8473}
   8474
   8475/*
   8476 * Check if any of the offline devices have become ready
   8477 */
   8478static int hpsa_offline_devices_ready(struct ctlr_info *h)
   8479{
   8480	unsigned long flags;
   8481	struct offline_device_entry *d;
   8482	struct list_head *this, *tmp;
   8483
   8484	spin_lock_irqsave(&h->offline_device_lock, flags);
   8485	list_for_each_safe(this, tmp, &h->offline_device_list) {
   8486		d = list_entry(this, struct offline_device_entry,
   8487				offline_list);
   8488		spin_unlock_irqrestore(&h->offline_device_lock, flags);
   8489		if (!hpsa_volume_offline(h, d->scsi3addr)) {
   8490			spin_lock_irqsave(&h->offline_device_lock, flags);
   8491			list_del(&d->offline_list);
   8492			spin_unlock_irqrestore(&h->offline_device_lock, flags);
   8493			return 1;
   8494		}
   8495		spin_lock_irqsave(&h->offline_device_lock, flags);
   8496	}
   8497	spin_unlock_irqrestore(&h->offline_device_lock, flags);
   8498	return 0;
   8499}
   8500
   8501static int hpsa_luns_changed(struct ctlr_info *h)
   8502{
   8503	int rc = 1; /* assume there are changes */
   8504	struct ReportLUNdata *logdev = NULL;
   8505
   8506	/* if we can't find out if lun data has changed,
   8507	 * assume that it has.
   8508	 */
   8509
   8510	if (!h->lastlogicals)
   8511		return rc;
   8512
   8513	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
   8514	if (!logdev)
   8515		return rc;
   8516
   8517	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
   8518		dev_warn(&h->pdev->dev,
   8519			"report luns failed, can't track lun changes.\n");
   8520		goto out;
   8521	}
   8522	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
   8523		dev_info(&h->pdev->dev,
   8524			"Lun changes detected.\n");
   8525		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
   8526		goto out;
   8527	} else
   8528		rc = 0; /* no changes detected. */
   8529out:
   8530	kfree(logdev);
   8531	return rc;
   8532}
   8533
   8534static void hpsa_perform_rescan(struct ctlr_info *h)
   8535{
   8536	struct Scsi_Host *sh = NULL;
   8537	unsigned long flags;
   8538
   8539	/*
   8540	 * Do the scan after the reset
   8541	 */
   8542	spin_lock_irqsave(&h->reset_lock, flags);
   8543	if (h->reset_in_progress) {
   8544		h->drv_req_rescan = 1;
   8545		spin_unlock_irqrestore(&h->reset_lock, flags);
   8546		return;
   8547	}
   8548	spin_unlock_irqrestore(&h->reset_lock, flags);
   8549
   8550	sh = scsi_host_get(h->scsi_host);
   8551	if (sh != NULL) {
   8552		hpsa_scan_start(sh);
   8553		scsi_host_put(sh);
   8554		h->drv_req_rescan = 0;
   8555	}
   8556}
   8557
   8558/*
   8559 * watch for controller events
   8560 */
   8561static void hpsa_event_monitor_worker(struct work_struct *work)
   8562{
   8563	struct ctlr_info *h = container_of(to_delayed_work(work),
   8564					struct ctlr_info, event_monitor_work);
   8565	unsigned long flags;
   8566
   8567	spin_lock_irqsave(&h->lock, flags);
   8568	if (h->remove_in_progress) {
   8569		spin_unlock_irqrestore(&h->lock, flags);
   8570		return;
   8571	}
   8572	spin_unlock_irqrestore(&h->lock, flags);
   8573
   8574	if (hpsa_ctlr_needs_rescan(h)) {
   8575		hpsa_ack_ctlr_events(h);
   8576		hpsa_perform_rescan(h);
   8577	}
   8578
   8579	spin_lock_irqsave(&h->lock, flags);
   8580	if (!h->remove_in_progress)
   8581		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
   8582				HPSA_EVENT_MONITOR_INTERVAL);
   8583	spin_unlock_irqrestore(&h->lock, flags);
   8584}
   8585
   8586static void hpsa_rescan_ctlr_worker(struct work_struct *work)
   8587{
   8588	unsigned long flags;
   8589	struct ctlr_info *h = container_of(to_delayed_work(work),
   8590					struct ctlr_info, rescan_ctlr_work);
   8591
   8592	spin_lock_irqsave(&h->lock, flags);
   8593	if (h->remove_in_progress) {
   8594		spin_unlock_irqrestore(&h->lock, flags);
   8595		return;
   8596	}
   8597	spin_unlock_irqrestore(&h->lock, flags);
   8598
   8599	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
   8600		hpsa_perform_rescan(h);
   8601	} else if (h->discovery_polling) {
   8602		if (hpsa_luns_changed(h)) {
   8603			dev_info(&h->pdev->dev,
   8604				"driver discovery polling rescan.\n");
   8605			hpsa_perform_rescan(h);
   8606		}
   8607	}
   8608	spin_lock_irqsave(&h->lock, flags);
   8609	if (!h->remove_in_progress)
   8610		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
   8611				h->heartbeat_sample_interval);
   8612	spin_unlock_irqrestore(&h->lock, flags);
   8613}
   8614
   8615static void hpsa_monitor_ctlr_worker(struct work_struct *work)
   8616{
   8617	unsigned long flags;
   8618	struct ctlr_info *h = container_of(to_delayed_work(work),
   8619					struct ctlr_info, monitor_ctlr_work);
   8620
   8621	detect_controller_lockup(h);
   8622	if (lockup_detected(h))
   8623		return;
   8624
   8625	spin_lock_irqsave(&h->lock, flags);
   8626	if (!h->remove_in_progress)
   8627		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
   8628				h->heartbeat_sample_interval);
   8629	spin_unlock_irqrestore(&h->lock, flags);
   8630}
   8631
   8632static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
   8633						char *name)
   8634{
   8635	struct workqueue_struct *wq = NULL;
   8636
   8637	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
   8638	if (!wq)
   8639		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
   8640
   8641	return wq;
   8642}
   8643
   8644static void hpda_free_ctlr_info(struct ctlr_info *h)
   8645{
   8646	kfree(h->reply_map);
   8647	kfree(h);
   8648}
   8649
   8650static struct ctlr_info *hpda_alloc_ctlr_info(void)
   8651{
   8652	struct ctlr_info *h;
   8653
   8654	h = kzalloc(sizeof(*h), GFP_KERNEL);
   8655	if (!h)
   8656		return NULL;
   8657
   8658	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
   8659	if (!h->reply_map) {
   8660		kfree(h);
   8661		return NULL;
   8662	}
   8663	return h;
   8664}
   8665
   8666static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
   8667{
   8668	int rc;
   8669	struct ctlr_info *h;
   8670	int try_soft_reset = 0;
   8671	unsigned long flags;
   8672	u32 board_id;
   8673
   8674	if (number_of_controllers == 0)
   8675		printk(KERN_INFO DRIVER_NAME "\n");
   8676
   8677	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
   8678	if (rc < 0) {
   8679		dev_warn(&pdev->dev, "Board ID not found\n");
   8680		return rc;
   8681	}
   8682
   8683	rc = hpsa_init_reset_devices(pdev, board_id);
   8684	if (rc) {
   8685		if (rc != -ENOTSUPP)
   8686			return rc;
   8687		/* If the reset fails in a particular way (it has no way to do
   8688		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
   8689		 * a soft reset once we get the controller configured up to the
   8690		 * point that it can accept a command.
   8691		 */
   8692		try_soft_reset = 1;
   8693		rc = 0;
   8694	}
   8695
   8696reinit_after_soft_reset:
   8697
   8698	/* Command structures must be aligned on a 32-byte boundary because
   8699	 * the 5 lower bits of the address are used by the hardware. and by
   8700	 * the driver.  See comments in hpsa.h for more info.
   8701	 */
   8702	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
   8703	h = hpda_alloc_ctlr_info();
   8704	if (!h) {
   8705		dev_err(&pdev->dev, "Failed to allocate controller head\n");
   8706		return -ENOMEM;
   8707	}
   8708
   8709	h->pdev = pdev;
   8710
   8711	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
   8712	INIT_LIST_HEAD(&h->offline_device_list);
   8713	spin_lock_init(&h->lock);
   8714	spin_lock_init(&h->offline_device_lock);
   8715	spin_lock_init(&h->scan_lock);
   8716	spin_lock_init(&h->reset_lock);
   8717	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
   8718
   8719	/* Allocate and clear per-cpu variable lockup_detected */
   8720	h->lockup_detected = alloc_percpu(u32);
   8721	if (!h->lockup_detected) {
   8722		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
   8723		rc = -ENOMEM;
   8724		goto clean1;	/* aer/h */
   8725	}
   8726	set_lockup_detected_for_all_cpus(h, 0);
   8727
   8728	rc = hpsa_pci_init(h);
   8729	if (rc)
   8730		goto clean2;	/* lu, aer/h */
   8731
   8732	/* relies on h-> settings made by hpsa_pci_init, including
   8733	 * interrupt_mode h->intr */
   8734	rc = hpsa_scsi_host_alloc(h);
   8735	if (rc)
   8736		goto clean2_5;	/* pci, lu, aer/h */
   8737
   8738	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
   8739	h->ctlr = number_of_controllers;
   8740	number_of_controllers++;
   8741
   8742	/* configure PCI DMA stuff */
   8743	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
   8744	if (rc != 0) {
   8745		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
   8746		if (rc != 0) {
   8747			dev_err(&pdev->dev, "no suitable DMA available\n");
   8748			goto clean3;	/* shost, pci, lu, aer/h */
   8749		}
   8750	}
   8751
   8752	/* make sure the board interrupts are off */
   8753	h->access.set_intr_mask(h, HPSA_INTR_OFF);
   8754
   8755	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
   8756	if (rc)
   8757		goto clean3;	/* shost, pci, lu, aer/h */
   8758	rc = hpsa_alloc_cmd_pool(h);
   8759	if (rc)
   8760		goto clean4;	/* irq, shost, pci, lu, aer/h */
   8761	rc = hpsa_alloc_sg_chain_blocks(h);
   8762	if (rc)
   8763		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
   8764	init_waitqueue_head(&h->scan_wait_queue);
   8765	init_waitqueue_head(&h->event_sync_wait_queue);
   8766	mutex_init(&h->reset_mutex);
   8767	h->scan_finished = 1; /* no scan currently in progress */
   8768	h->scan_waiting = 0;
   8769
   8770	pci_set_drvdata(pdev, h);
   8771	h->ndevices = 0;
   8772
   8773	spin_lock_init(&h->devlock);
   8774	rc = hpsa_put_ctlr_into_performant_mode(h);
   8775	if (rc)
   8776		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
   8777
   8778	/* create the resubmit workqueue */
   8779	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
   8780	if (!h->rescan_ctlr_wq) {
   8781		rc = -ENOMEM;
   8782		goto clean7;
   8783	}
   8784
   8785	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
   8786	if (!h->resubmit_wq) {
   8787		rc = -ENOMEM;
   8788		goto clean7;	/* aer/h */
   8789	}
   8790
   8791	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
   8792	if (!h->monitor_ctlr_wq) {
   8793		rc = -ENOMEM;
   8794		goto clean7;
   8795	}
   8796
   8797	/*
   8798	 * At this point, the controller is ready to take commands.
   8799	 * Now, if reset_devices and the hard reset didn't work, try
   8800	 * the soft reset and see if that works.
   8801	 */
   8802	if (try_soft_reset) {
   8803
   8804		/* This is kind of gross.  We may or may not get a completion
   8805		 * from the soft reset command, and if we do, then the value
   8806		 * from the fifo may or may not be valid.  So, we wait 10 secs
   8807		 * after the reset throwing away any completions we get during
   8808		 * that time.  Unregister the interrupt handler and register
   8809		 * fake ones to scoop up any residual completions.
   8810		 */
   8811		spin_lock_irqsave(&h->lock, flags);
   8812		h->access.set_intr_mask(h, HPSA_INTR_OFF);
   8813		spin_unlock_irqrestore(&h->lock, flags);
   8814		hpsa_free_irqs(h);
   8815		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
   8816					hpsa_intx_discard_completions);
   8817		if (rc) {
   8818			dev_warn(&h->pdev->dev,
   8819				"Failed to request_irq after soft reset.\n");
   8820			/*
   8821			 * cannot goto clean7 or free_irqs will be called
   8822			 * again. Instead, do its work
   8823			 */
   8824			hpsa_free_performant_mode(h);	/* clean7 */
   8825			hpsa_free_sg_chain_blocks(h);	/* clean6 */
   8826			hpsa_free_cmd_pool(h);		/* clean5 */
   8827			/*
   8828			 * skip hpsa_free_irqs(h) clean4 since that
   8829			 * was just called before request_irqs failed
   8830			 */
   8831			goto clean3;
   8832		}
   8833
   8834		rc = hpsa_kdump_soft_reset(h);
   8835		if (rc)
   8836			/* Neither hard nor soft reset worked, we're hosed. */
   8837			goto clean7;
   8838
   8839		dev_info(&h->pdev->dev, "Board READY.\n");
   8840		dev_info(&h->pdev->dev,
   8841			"Waiting for stale completions to drain.\n");
   8842		h->access.set_intr_mask(h, HPSA_INTR_ON);
   8843		msleep(10000);
   8844		h->access.set_intr_mask(h, HPSA_INTR_OFF);
   8845
   8846		rc = controller_reset_failed(h->cfgtable);
   8847		if (rc)
   8848			dev_info(&h->pdev->dev,
   8849				"Soft reset appears to have failed.\n");
   8850
   8851		/* since the controller's reset, we have to go back and re-init
   8852		 * everything.  Easiest to just forget what we've done and do it
   8853		 * all over again.
   8854		 */
   8855		hpsa_undo_allocations_after_kdump_soft_reset(h);
   8856		try_soft_reset = 0;
   8857		if (rc)
   8858			/* don't goto clean, we already unallocated */
   8859			return -ENODEV;
   8860
   8861		goto reinit_after_soft_reset;
   8862	}
   8863
   8864	/* Enable Accelerated IO path at driver layer */
   8865	h->acciopath_status = 1;
   8866	/* Disable discovery polling.*/
   8867	h->discovery_polling = 0;
   8868
   8869
   8870	/* Turn the interrupts on so we can service requests */
   8871	h->access.set_intr_mask(h, HPSA_INTR_ON);
   8872
   8873	hpsa_hba_inquiry(h);
   8874
   8875	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
   8876	if (!h->lastlogicals)
   8877		dev_info(&h->pdev->dev,
   8878			"Can't track change to report lun data\n");
   8879
   8880	/* hook into SCSI subsystem */
   8881	rc = hpsa_scsi_add_host(h);
   8882	if (rc)
   8883		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
   8884
   8885	/* Monitor the controller for firmware lockups */
   8886	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
   8887	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
   8888	schedule_delayed_work(&h->monitor_ctlr_work,
   8889				h->heartbeat_sample_interval);
   8890	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
   8891	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
   8892				h->heartbeat_sample_interval);
   8893	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
   8894	schedule_delayed_work(&h->event_monitor_work,
   8895				HPSA_EVENT_MONITOR_INTERVAL);
   8896	return 0;
   8897
   8898clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
   8899	kfree(h->lastlogicals);
   8900clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
   8901	hpsa_free_performant_mode(h);
   8902	h->access.set_intr_mask(h, HPSA_INTR_OFF);
   8903clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
   8904	hpsa_free_sg_chain_blocks(h);
   8905clean5: /* cmd, irq, shost, pci, lu, aer/h */
   8906	hpsa_free_cmd_pool(h);
   8907clean4: /* irq, shost, pci, lu, aer/h */
   8908	hpsa_free_irqs(h);
   8909clean3: /* shost, pci, lu, aer/h */
   8910	scsi_host_put(h->scsi_host);
   8911	h->scsi_host = NULL;
   8912clean2_5: /* pci, lu, aer/h */
   8913	hpsa_free_pci_init(h);
   8914clean2: /* lu, aer/h */
   8915	if (h->lockup_detected) {
   8916		free_percpu(h->lockup_detected);
   8917		h->lockup_detected = NULL;
   8918	}
   8919clean1:	/* wq/aer/h */
   8920	if (h->resubmit_wq) {
   8921		destroy_workqueue(h->resubmit_wq);
   8922		h->resubmit_wq = NULL;
   8923	}
   8924	if (h->rescan_ctlr_wq) {
   8925		destroy_workqueue(h->rescan_ctlr_wq);
   8926		h->rescan_ctlr_wq = NULL;
   8927	}
   8928	if (h->monitor_ctlr_wq) {
   8929		destroy_workqueue(h->monitor_ctlr_wq);
   8930		h->monitor_ctlr_wq = NULL;
   8931	}
   8932	kfree(h);
   8933	return rc;
   8934}
   8935
   8936static void hpsa_flush_cache(struct ctlr_info *h)
   8937{
   8938	char *flush_buf;
   8939	struct CommandList *c;
   8940	int rc;
   8941
   8942	if (unlikely(lockup_detected(h)))
   8943		return;
   8944	flush_buf = kzalloc(4, GFP_KERNEL);
   8945	if (!flush_buf)
   8946		return;
   8947
   8948	c = cmd_alloc(h);
   8949
   8950	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
   8951		RAID_CTLR_LUNID, TYPE_CMD)) {
   8952		goto out;
   8953	}
   8954	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
   8955			DEFAULT_TIMEOUT);
   8956	if (rc)
   8957		goto out;
   8958	if (c->err_info->CommandStatus != 0)
   8959out:
   8960		dev_warn(&h->pdev->dev,
   8961			"error flushing cache on controller\n");
   8962	cmd_free(h, c);
   8963	kfree(flush_buf);
   8964}
   8965
   8966/* Make controller gather fresh report lun data each time we
   8967 * send down a report luns request
   8968 */
   8969static void hpsa_disable_rld_caching(struct ctlr_info *h)
   8970{
   8971	u32 *options;
   8972	struct CommandList *c;
   8973	int rc;
   8974
   8975	/* Don't bother trying to set diag options if locked up */
   8976	if (unlikely(h->lockup_detected))
   8977		return;
   8978
   8979	options = kzalloc(sizeof(*options), GFP_KERNEL);
   8980	if (!options)
   8981		return;
   8982
   8983	c = cmd_alloc(h);
   8984
   8985	/* first, get the current diag options settings */
   8986	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
   8987		RAID_CTLR_LUNID, TYPE_CMD))
   8988		goto errout;
   8989
   8990	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   8991			NO_TIMEOUT);
   8992	if ((rc != 0) || (c->err_info->CommandStatus != 0))
   8993		goto errout;
   8994
   8995	/* Now, set the bit for disabling the RLD caching */
   8996	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
   8997
   8998	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
   8999		RAID_CTLR_LUNID, TYPE_CMD))
   9000		goto errout;
   9001
   9002	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
   9003			NO_TIMEOUT);
   9004	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
   9005		goto errout;
   9006
   9007	/* Now verify that it got set: */
   9008	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
   9009		RAID_CTLR_LUNID, TYPE_CMD))
   9010		goto errout;
   9011
   9012	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
   9013			NO_TIMEOUT);
   9014	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
   9015		goto errout;
   9016
   9017	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
   9018		goto out;
   9019
   9020errout:
   9021	dev_err(&h->pdev->dev,
   9022			"Error: failed to disable report lun data caching.\n");
   9023out:
   9024	cmd_free(h, c);
   9025	kfree(options);
   9026}
   9027
   9028static void __hpsa_shutdown(struct pci_dev *pdev)
   9029{
   9030	struct ctlr_info *h;
   9031
   9032	h = pci_get_drvdata(pdev);
   9033	/* Turn board interrupts off  and send the flush cache command
   9034	 * sendcmd will turn off interrupt, and send the flush...
   9035	 * To write all data in the battery backed cache to disks
   9036	 */
   9037	hpsa_flush_cache(h);
   9038	h->access.set_intr_mask(h, HPSA_INTR_OFF);
   9039	hpsa_free_irqs(h);			/* init_one 4 */
   9040	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
   9041}
   9042
   9043static void hpsa_shutdown(struct pci_dev *pdev)
   9044{
   9045	__hpsa_shutdown(pdev);
   9046	pci_disable_device(pdev);
   9047}
   9048
   9049static void hpsa_free_device_info(struct ctlr_info *h)
   9050{
   9051	int i;
   9052
   9053	for (i = 0; i < h->ndevices; i++) {
   9054		kfree(h->dev[i]);
   9055		h->dev[i] = NULL;
   9056	}
   9057}
   9058
   9059static void hpsa_remove_one(struct pci_dev *pdev)
   9060{
   9061	struct ctlr_info *h;
   9062	unsigned long flags;
   9063
   9064	if (pci_get_drvdata(pdev) == NULL) {
   9065		dev_err(&pdev->dev, "unable to remove device\n");
   9066		return;
   9067	}
   9068	h = pci_get_drvdata(pdev);
   9069
   9070	/* Get rid of any controller monitoring work items */
   9071	spin_lock_irqsave(&h->lock, flags);
   9072	h->remove_in_progress = 1;
   9073	spin_unlock_irqrestore(&h->lock, flags);
   9074	cancel_delayed_work_sync(&h->monitor_ctlr_work);
   9075	cancel_delayed_work_sync(&h->rescan_ctlr_work);
   9076	cancel_delayed_work_sync(&h->event_monitor_work);
   9077	destroy_workqueue(h->rescan_ctlr_wq);
   9078	destroy_workqueue(h->resubmit_wq);
   9079	destroy_workqueue(h->monitor_ctlr_wq);
   9080
   9081	hpsa_delete_sas_host(h);
   9082
   9083	/*
   9084	 * Call before disabling interrupts.
   9085	 * scsi_remove_host can trigger I/O operations especially
   9086	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
   9087	 * operations which cannot complete and will hang the system.
   9088	 */
   9089	if (h->scsi_host)
   9090		scsi_remove_host(h->scsi_host);		/* init_one 8 */
   9091	/* includes hpsa_free_irqs - init_one 4 */
   9092	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
   9093	__hpsa_shutdown(pdev);
   9094
   9095	hpsa_free_device_info(h);		/* scan */
   9096
   9097	kfree(h->hba_inquiry_data);			/* init_one 10 */
   9098	h->hba_inquiry_data = NULL;			/* init_one 10 */
   9099	hpsa_free_ioaccel2_sg_chain_blocks(h);
   9100	hpsa_free_performant_mode(h);			/* init_one 7 */
   9101	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
   9102	hpsa_free_cmd_pool(h);				/* init_one 5 */
   9103	kfree(h->lastlogicals);
   9104
   9105	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
   9106
   9107	scsi_host_put(h->scsi_host);			/* init_one 3 */
   9108	h->scsi_host = NULL;				/* init_one 3 */
   9109
   9110	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
   9111	hpsa_free_pci_init(h);				/* init_one 2.5 */
   9112
   9113	free_percpu(h->lockup_detected);		/* init_one 2 */
   9114	h->lockup_detected = NULL;			/* init_one 2 */
   9115	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
   9116
   9117	hpda_free_ctlr_info(h);				/* init_one 1 */
   9118}
   9119
   9120static int __maybe_unused hpsa_suspend(
   9121	__attribute__((unused)) struct device *dev)
   9122{
   9123	return -ENOSYS;
   9124}
   9125
   9126static int __maybe_unused hpsa_resume
   9127	(__attribute__((unused)) struct device *dev)
   9128{
   9129	return -ENOSYS;
   9130}
   9131
   9132static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
   9133
   9134static struct pci_driver hpsa_pci_driver = {
   9135	.name = HPSA,
   9136	.probe = hpsa_init_one,
   9137	.remove = hpsa_remove_one,
   9138	.id_table = hpsa_pci_device_id,	/* id_table */
   9139	.shutdown = hpsa_shutdown,
   9140	.driver.pm = &hpsa_pm_ops,
   9141};
   9142
   9143/* Fill in bucket_map[], given nsgs (the max number of
   9144 * scatter gather elements supported) and bucket[],
   9145 * which is an array of 8 integers.  The bucket[] array
   9146 * contains 8 different DMA transfer sizes (in 16
   9147 * byte increments) which the controller uses to fetch
   9148 * commands.  This function fills in bucket_map[], which
   9149 * maps a given number of scatter gather elements to one of
   9150 * the 8 DMA transfer sizes.  The point of it is to allow the
   9151 * controller to only do as much DMA as needed to fetch the
   9152 * command, with the DMA transfer size encoded in the lower
   9153 * bits of the command address.
   9154 */
   9155static void  calc_bucket_map(int bucket[], int num_buckets,
   9156	int nsgs, int min_blocks, u32 *bucket_map)
   9157{
   9158	int i, j, b, size;
   9159
   9160	/* Note, bucket_map must have nsgs+1 entries. */
   9161	for (i = 0; i <= nsgs; i++) {
   9162		/* Compute size of a command with i SG entries */
   9163		size = i + min_blocks;
   9164		b = num_buckets; /* Assume the biggest bucket */
   9165		/* Find the bucket that is just big enough */
   9166		for (j = 0; j < num_buckets; j++) {
   9167			if (bucket[j] >= size) {
   9168				b = j;
   9169				break;
   9170			}
   9171		}
   9172		/* for a command with i SG entries, use bucket b. */
   9173		bucket_map[i] = b;
   9174	}
   9175}
   9176
   9177/*
   9178 * return -ENODEV on err, 0 on success (or no action)
   9179 * allocates numerous items that must be freed later
   9180 */
   9181static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
   9182{
   9183	int i;
   9184	unsigned long register_value;
   9185	unsigned long transMethod = CFGTBL_Trans_Performant |
   9186			(trans_support & CFGTBL_Trans_use_short_tags) |
   9187				CFGTBL_Trans_enable_directed_msix |
   9188			(trans_support & (CFGTBL_Trans_io_accel1 |
   9189				CFGTBL_Trans_io_accel2));
   9190	struct access_method access = SA5_performant_access;
   9191
   9192	/* This is a bit complicated.  There are 8 registers on
   9193	 * the controller which we write to to tell it 8 different
   9194	 * sizes of commands which there may be.  It's a way of
   9195	 * reducing the DMA done to fetch each command.  Encoded into
   9196	 * each command's tag are 3 bits which communicate to the controller
   9197	 * which of the eight sizes that command fits within.  The size of
   9198	 * each command depends on how many scatter gather entries there are.
   9199	 * Each SG entry requires 16 bytes.  The eight registers are programmed
   9200	 * with the number of 16-byte blocks a command of that size requires.
   9201	 * The smallest command possible requires 5 such 16 byte blocks.
   9202	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
   9203	 * blocks.  Note, this only extends to the SG entries contained
   9204	 * within the command block, and does not extend to chained blocks
   9205	 * of SG elements.   bft[] contains the eight values we write to
   9206	 * the registers.  They are not evenly distributed, but have more
   9207	 * sizes for small commands, and fewer sizes for larger commands.
   9208	 */
   9209	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
   9210#define MIN_IOACCEL2_BFT_ENTRY 5
   9211#define HPSA_IOACCEL2_HEADER_SZ 4
   9212	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
   9213			13, 14, 15, 16, 17, 18, 19,
   9214			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
   9215	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
   9216	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
   9217	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
   9218				 16 * MIN_IOACCEL2_BFT_ENTRY);
   9219	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
   9220	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
   9221	/*  5 = 1 s/g entry or 4k
   9222	 *  6 = 2 s/g entry or 8k
   9223	 *  8 = 4 s/g entry or 16k
   9224	 * 10 = 6 s/g entry or 24k
   9225	 */
   9226
   9227	/* If the controller supports either ioaccel method then
   9228	 * we can also use the RAID stack submit path that does not
   9229	 * perform the superfluous readl() after each command submission.
   9230	 */
   9231	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
   9232		access = SA5_performant_access_no_read;
   9233
   9234	/* Controller spec: zero out this buffer. */
   9235	for (i = 0; i < h->nreply_queues; i++)
   9236		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
   9237
   9238	bft[7] = SG_ENTRIES_IN_CMD + 4;
   9239	calc_bucket_map(bft, ARRAY_SIZE(bft),
   9240				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
   9241	for (i = 0; i < 8; i++)
   9242		writel(bft[i], &h->transtable->BlockFetch[i]);
   9243
   9244	/* size of controller ring buffer */
   9245	writel(h->max_commands, &h->transtable->RepQSize);
   9246	writel(h->nreply_queues, &h->transtable->RepQCount);
   9247	writel(0, &h->transtable->RepQCtrAddrLow32);
   9248	writel(0, &h->transtable->RepQCtrAddrHigh32);
   9249
   9250	for (i = 0; i < h->nreply_queues; i++) {
   9251		writel(0, &h->transtable->RepQAddr[i].upper);
   9252		writel(h->reply_queue[i].busaddr,
   9253			&h->transtable->RepQAddr[i].lower);
   9254	}
   9255
   9256	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
   9257	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
   9258	/*
   9259	 * enable outbound interrupt coalescing in accelerator mode;
   9260	 */
   9261	if (trans_support & CFGTBL_Trans_io_accel1) {
   9262		access = SA5_ioaccel_mode1_access;
   9263		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
   9264		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
   9265	} else
   9266		if (trans_support & CFGTBL_Trans_io_accel2)
   9267			access = SA5_ioaccel_mode2_access;
   9268	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
   9269	if (hpsa_wait_for_mode_change_ack(h)) {
   9270		dev_err(&h->pdev->dev,
   9271			"performant mode problem - doorbell timeout\n");
   9272		return -ENODEV;
   9273	}
   9274	register_value = readl(&(h->cfgtable->TransportActive));
   9275	if (!(register_value & CFGTBL_Trans_Performant)) {
   9276		dev_err(&h->pdev->dev,
   9277			"performant mode problem - transport not active\n");
   9278		return -ENODEV;
   9279	}
   9280	/* Change the access methods to the performant access methods */
   9281	h->access = access;
   9282	h->transMethod = transMethod;
   9283
   9284	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
   9285		(trans_support & CFGTBL_Trans_io_accel2)))
   9286		return 0;
   9287
   9288	if (trans_support & CFGTBL_Trans_io_accel1) {
   9289		/* Set up I/O accelerator mode */
   9290		for (i = 0; i < h->nreply_queues; i++) {
   9291			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
   9292			h->reply_queue[i].current_entry =
   9293				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
   9294		}
   9295		bft[7] = h->ioaccel_maxsg + 8;
   9296		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
   9297				h->ioaccel1_blockFetchTable);
   9298
   9299		/* initialize all reply queue entries to unused */
   9300		for (i = 0; i < h->nreply_queues; i++)
   9301			memset(h->reply_queue[i].head,
   9302				(u8) IOACCEL_MODE1_REPLY_UNUSED,
   9303				h->reply_queue_size);
   9304
   9305		/* set all the constant fields in the accelerator command
   9306		 * frames once at init time to save CPU cycles later.
   9307		 */
   9308		for (i = 0; i < h->nr_cmds; i++) {
   9309			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
   9310
   9311			cp->function = IOACCEL1_FUNCTION_SCSIIO;
   9312			cp->err_info = (u32) (h->errinfo_pool_dhandle +
   9313					(i * sizeof(struct ErrorInfo)));
   9314			cp->err_info_len = sizeof(struct ErrorInfo);
   9315			cp->sgl_offset = IOACCEL1_SGLOFFSET;
   9316			cp->host_context_flags =
   9317				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
   9318			cp->timeout_sec = 0;
   9319			cp->ReplyQueue = 0;
   9320			cp->tag =
   9321				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
   9322			cp->host_addr =
   9323				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
   9324					(i * sizeof(struct io_accel1_cmd)));
   9325		}
   9326	} else if (trans_support & CFGTBL_Trans_io_accel2) {
   9327		u64 cfg_offset, cfg_base_addr_index;
   9328		u32 bft2_offset, cfg_base_addr;
   9329
   9330		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
   9331				    &cfg_base_addr_index, &cfg_offset);
   9332		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
   9333		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
   9334		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
   9335				4, h->ioaccel2_blockFetchTable);
   9336		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
   9337		BUILD_BUG_ON(offsetof(struct CfgTable,
   9338				io_accel_request_size_offset) != 0xb8);
   9339		h->ioaccel2_bft2_regs =
   9340			remap_pci_mem(pci_resource_start(h->pdev,
   9341					cfg_base_addr_index) +
   9342					cfg_offset + bft2_offset,
   9343					ARRAY_SIZE(bft2) *
   9344					sizeof(*h->ioaccel2_bft2_regs));
   9345		for (i = 0; i < ARRAY_SIZE(bft2); i++)
   9346			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
   9347	}
   9348	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
   9349	if (hpsa_wait_for_mode_change_ack(h)) {
   9350		dev_err(&h->pdev->dev,
   9351			"performant mode problem - enabling ioaccel mode\n");
   9352		return -ENODEV;
   9353	}
   9354	return 0;
   9355}
   9356
   9357/* Free ioaccel1 mode command blocks and block fetch table */
   9358static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
   9359{
   9360	if (h->ioaccel_cmd_pool) {
   9361		dma_free_coherent(&h->pdev->dev,
   9362				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
   9363				  h->ioaccel_cmd_pool,
   9364				  h->ioaccel_cmd_pool_dhandle);
   9365		h->ioaccel_cmd_pool = NULL;
   9366		h->ioaccel_cmd_pool_dhandle = 0;
   9367	}
   9368	kfree(h->ioaccel1_blockFetchTable);
   9369	h->ioaccel1_blockFetchTable = NULL;
   9370}
   9371
   9372/* Allocate ioaccel1 mode command blocks and block fetch table */
   9373static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
   9374{
   9375	h->ioaccel_maxsg =
   9376		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
   9377	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
   9378		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
   9379
   9380	/* Command structures must be aligned on a 128-byte boundary
   9381	 * because the 7 lower bits of the address are used by the
   9382	 * hardware.
   9383	 */
   9384	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
   9385			IOACCEL1_COMMANDLIST_ALIGNMENT);
   9386	h->ioaccel_cmd_pool =
   9387		dma_alloc_coherent(&h->pdev->dev,
   9388			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
   9389			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
   9390
   9391	h->ioaccel1_blockFetchTable =
   9392		kmalloc(((h->ioaccel_maxsg + 1) *
   9393				sizeof(u32)), GFP_KERNEL);
   9394
   9395	if ((h->ioaccel_cmd_pool == NULL) ||
   9396		(h->ioaccel1_blockFetchTable == NULL))
   9397		goto clean_up;
   9398
   9399	memset(h->ioaccel_cmd_pool, 0,
   9400		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
   9401	return 0;
   9402
   9403clean_up:
   9404	hpsa_free_ioaccel1_cmd_and_bft(h);
   9405	return -ENOMEM;
   9406}
   9407
   9408/* Free ioaccel2 mode command blocks and block fetch table */
   9409static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
   9410{
   9411	hpsa_free_ioaccel2_sg_chain_blocks(h);
   9412
   9413	if (h->ioaccel2_cmd_pool) {
   9414		dma_free_coherent(&h->pdev->dev,
   9415				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
   9416				  h->ioaccel2_cmd_pool,
   9417				  h->ioaccel2_cmd_pool_dhandle);
   9418		h->ioaccel2_cmd_pool = NULL;
   9419		h->ioaccel2_cmd_pool_dhandle = 0;
   9420	}
   9421	kfree(h->ioaccel2_blockFetchTable);
   9422	h->ioaccel2_blockFetchTable = NULL;
   9423}
   9424
   9425/* Allocate ioaccel2 mode command blocks and block fetch table */
   9426static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
   9427{
   9428	int rc;
   9429
   9430	/* Allocate ioaccel2 mode command blocks and block fetch table */
   9431
   9432	h->ioaccel_maxsg =
   9433		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
   9434	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
   9435		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
   9436
   9437	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
   9438			IOACCEL2_COMMANDLIST_ALIGNMENT);
   9439	h->ioaccel2_cmd_pool =
   9440		dma_alloc_coherent(&h->pdev->dev,
   9441			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
   9442			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
   9443
   9444	h->ioaccel2_blockFetchTable =
   9445		kmalloc(((h->ioaccel_maxsg + 1) *
   9446				sizeof(u32)), GFP_KERNEL);
   9447
   9448	if ((h->ioaccel2_cmd_pool == NULL) ||
   9449		(h->ioaccel2_blockFetchTable == NULL)) {
   9450		rc = -ENOMEM;
   9451		goto clean_up;
   9452	}
   9453
   9454	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
   9455	if (rc)
   9456		goto clean_up;
   9457
   9458	memset(h->ioaccel2_cmd_pool, 0,
   9459		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
   9460	return 0;
   9461
   9462clean_up:
   9463	hpsa_free_ioaccel2_cmd_and_bft(h);
   9464	return rc;
   9465}
   9466
   9467/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
   9468static void hpsa_free_performant_mode(struct ctlr_info *h)
   9469{
   9470	kfree(h->blockFetchTable);
   9471	h->blockFetchTable = NULL;
   9472	hpsa_free_reply_queues(h);
   9473	hpsa_free_ioaccel1_cmd_and_bft(h);
   9474	hpsa_free_ioaccel2_cmd_and_bft(h);
   9475}
   9476
   9477/* return -ENODEV on error, 0 on success (or no action)
   9478 * allocates numerous items that must be freed later
   9479 */
   9480static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
   9481{
   9482	u32 trans_support;
   9483	unsigned long transMethod = CFGTBL_Trans_Performant |
   9484					CFGTBL_Trans_use_short_tags;
   9485	int i, rc;
   9486
   9487	if (hpsa_simple_mode)
   9488		return 0;
   9489
   9490	trans_support = readl(&(h->cfgtable->TransportSupport));
   9491	if (!(trans_support & PERFORMANT_MODE))
   9492		return 0;
   9493
   9494	/* Check for I/O accelerator mode support */
   9495	if (trans_support & CFGTBL_Trans_io_accel1) {
   9496		transMethod |= CFGTBL_Trans_io_accel1 |
   9497				CFGTBL_Trans_enable_directed_msix;
   9498		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
   9499		if (rc)
   9500			return rc;
   9501	} else if (trans_support & CFGTBL_Trans_io_accel2) {
   9502		transMethod |= CFGTBL_Trans_io_accel2 |
   9503				CFGTBL_Trans_enable_directed_msix;
   9504		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
   9505		if (rc)
   9506			return rc;
   9507	}
   9508
   9509	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
   9510	hpsa_get_max_perf_mode_cmds(h);
   9511	/* Performant mode ring buffer and supporting data structures */
   9512	h->reply_queue_size = h->max_commands * sizeof(u64);
   9513
   9514	for (i = 0; i < h->nreply_queues; i++) {
   9515		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
   9516						h->reply_queue_size,
   9517						&h->reply_queue[i].busaddr,
   9518						GFP_KERNEL);
   9519		if (!h->reply_queue[i].head) {
   9520			rc = -ENOMEM;
   9521			goto clean1;	/* rq, ioaccel */
   9522		}
   9523		h->reply_queue[i].size = h->max_commands;
   9524		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
   9525		h->reply_queue[i].current_entry = 0;
   9526	}
   9527
   9528	/* Need a block fetch table for performant mode */
   9529	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
   9530				sizeof(u32)), GFP_KERNEL);
   9531	if (!h->blockFetchTable) {
   9532		rc = -ENOMEM;
   9533		goto clean1;	/* rq, ioaccel */
   9534	}
   9535
   9536	rc = hpsa_enter_performant_mode(h, trans_support);
   9537	if (rc)
   9538		goto clean2;	/* bft, rq, ioaccel */
   9539	return 0;
   9540
   9541clean2:	/* bft, rq, ioaccel */
   9542	kfree(h->blockFetchTable);
   9543	h->blockFetchTable = NULL;
   9544clean1:	/* rq, ioaccel */
   9545	hpsa_free_reply_queues(h);
   9546	hpsa_free_ioaccel1_cmd_and_bft(h);
   9547	hpsa_free_ioaccel2_cmd_and_bft(h);
   9548	return rc;
   9549}
   9550
   9551static int is_accelerated_cmd(struct CommandList *c)
   9552{
   9553	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
   9554}
   9555
   9556static void hpsa_drain_accel_commands(struct ctlr_info *h)
   9557{
   9558	struct CommandList *c = NULL;
   9559	int i, accel_cmds_out;
   9560	int refcount;
   9561
   9562	do { /* wait for all outstanding ioaccel commands to drain out */
   9563		accel_cmds_out = 0;
   9564		for (i = 0; i < h->nr_cmds; i++) {
   9565			c = h->cmd_pool + i;
   9566			refcount = atomic_inc_return(&c->refcount);
   9567			if (refcount > 1) /* Command is allocated */
   9568				accel_cmds_out += is_accelerated_cmd(c);
   9569			cmd_free(h, c);
   9570		}
   9571		if (accel_cmds_out <= 0)
   9572			break;
   9573		msleep(100);
   9574	} while (1);
   9575}
   9576
   9577static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
   9578				struct hpsa_sas_port *hpsa_sas_port)
   9579{
   9580	struct hpsa_sas_phy *hpsa_sas_phy;
   9581	struct sas_phy *phy;
   9582
   9583	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
   9584	if (!hpsa_sas_phy)
   9585		return NULL;
   9586
   9587	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
   9588		hpsa_sas_port->next_phy_index);
   9589	if (!phy) {
   9590		kfree(hpsa_sas_phy);
   9591		return NULL;
   9592	}
   9593
   9594	hpsa_sas_port->next_phy_index++;
   9595	hpsa_sas_phy->phy = phy;
   9596	hpsa_sas_phy->parent_port = hpsa_sas_port;
   9597
   9598	return hpsa_sas_phy;
   9599}
   9600
   9601static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
   9602{
   9603	struct sas_phy *phy = hpsa_sas_phy->phy;
   9604
   9605	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
   9606	if (hpsa_sas_phy->added_to_port)
   9607		list_del(&hpsa_sas_phy->phy_list_entry);
   9608	sas_phy_delete(phy);
   9609	kfree(hpsa_sas_phy);
   9610}
   9611
   9612static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
   9613{
   9614	int rc;
   9615	struct hpsa_sas_port *hpsa_sas_port;
   9616	struct sas_phy *phy;
   9617	struct sas_identify *identify;
   9618
   9619	hpsa_sas_port = hpsa_sas_phy->parent_port;
   9620	phy = hpsa_sas_phy->phy;
   9621
   9622	identify = &phy->identify;
   9623	memset(identify, 0, sizeof(*identify));
   9624	identify->sas_address = hpsa_sas_port->sas_address;
   9625	identify->device_type = SAS_END_DEVICE;
   9626	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
   9627	identify->target_port_protocols = SAS_PROTOCOL_STP;
   9628	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
   9629	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
   9630	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
   9631	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
   9632	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
   9633
   9634	rc = sas_phy_add(hpsa_sas_phy->phy);
   9635	if (rc)
   9636		return rc;
   9637
   9638	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
   9639	list_add_tail(&hpsa_sas_phy->phy_list_entry,
   9640			&hpsa_sas_port->phy_list_head);
   9641	hpsa_sas_phy->added_to_port = true;
   9642
   9643	return 0;
   9644}
   9645
   9646static int
   9647	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
   9648				struct sas_rphy *rphy)
   9649{
   9650	struct sas_identify *identify;
   9651
   9652	identify = &rphy->identify;
   9653	identify->sas_address = hpsa_sas_port->sas_address;
   9654	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
   9655	identify->target_port_protocols = SAS_PROTOCOL_STP;
   9656
   9657	return sas_rphy_add(rphy);
   9658}
   9659
   9660static struct hpsa_sas_port
   9661	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
   9662				u64 sas_address)
   9663{
   9664	int rc;
   9665	struct hpsa_sas_port *hpsa_sas_port;
   9666	struct sas_port *port;
   9667
   9668	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
   9669	if (!hpsa_sas_port)
   9670		return NULL;
   9671
   9672	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
   9673	hpsa_sas_port->parent_node = hpsa_sas_node;
   9674
   9675	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
   9676	if (!port)
   9677		goto free_hpsa_port;
   9678
   9679	rc = sas_port_add(port);
   9680	if (rc)
   9681		goto free_sas_port;
   9682
   9683	hpsa_sas_port->port = port;
   9684	hpsa_sas_port->sas_address = sas_address;
   9685	list_add_tail(&hpsa_sas_port->port_list_entry,
   9686			&hpsa_sas_node->port_list_head);
   9687
   9688	return hpsa_sas_port;
   9689
   9690free_sas_port:
   9691	sas_port_free(port);
   9692free_hpsa_port:
   9693	kfree(hpsa_sas_port);
   9694
   9695	return NULL;
   9696}
   9697
   9698static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
   9699{
   9700	struct hpsa_sas_phy *hpsa_sas_phy;
   9701	struct hpsa_sas_phy *next;
   9702
   9703	list_for_each_entry_safe(hpsa_sas_phy, next,
   9704			&hpsa_sas_port->phy_list_head, phy_list_entry)
   9705		hpsa_free_sas_phy(hpsa_sas_phy);
   9706
   9707	sas_port_delete(hpsa_sas_port->port);
   9708	list_del(&hpsa_sas_port->port_list_entry);
   9709	kfree(hpsa_sas_port);
   9710}
   9711
   9712static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
   9713{
   9714	struct hpsa_sas_node *hpsa_sas_node;
   9715
   9716	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
   9717	if (hpsa_sas_node) {
   9718		hpsa_sas_node->parent_dev = parent_dev;
   9719		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
   9720	}
   9721
   9722	return hpsa_sas_node;
   9723}
   9724
   9725static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
   9726{
   9727	struct hpsa_sas_port *hpsa_sas_port;
   9728	struct hpsa_sas_port *next;
   9729
   9730	if (!hpsa_sas_node)
   9731		return;
   9732
   9733	list_for_each_entry_safe(hpsa_sas_port, next,
   9734			&hpsa_sas_node->port_list_head, port_list_entry)
   9735		hpsa_free_sas_port(hpsa_sas_port);
   9736
   9737	kfree(hpsa_sas_node);
   9738}
   9739
   9740static struct hpsa_scsi_dev_t
   9741	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
   9742					struct sas_rphy *rphy)
   9743{
   9744	int i;
   9745	struct hpsa_scsi_dev_t *device;
   9746
   9747	for (i = 0; i < h->ndevices; i++) {
   9748		device = h->dev[i];
   9749		if (!device->sas_port)
   9750			continue;
   9751		if (device->sas_port->rphy == rphy)
   9752			return device;
   9753	}
   9754
   9755	return NULL;
   9756}
   9757
   9758static int hpsa_add_sas_host(struct ctlr_info *h)
   9759{
   9760	int rc;
   9761	struct device *parent_dev;
   9762	struct hpsa_sas_node *hpsa_sas_node;
   9763	struct hpsa_sas_port *hpsa_sas_port;
   9764	struct hpsa_sas_phy *hpsa_sas_phy;
   9765
   9766	parent_dev = &h->scsi_host->shost_dev;
   9767
   9768	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
   9769	if (!hpsa_sas_node)
   9770		return -ENOMEM;
   9771
   9772	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
   9773	if (!hpsa_sas_port) {
   9774		rc = -ENODEV;
   9775		goto free_sas_node;
   9776	}
   9777
   9778	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
   9779	if (!hpsa_sas_phy) {
   9780		rc = -ENODEV;
   9781		goto free_sas_port;
   9782	}
   9783
   9784	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
   9785	if (rc)
   9786		goto free_sas_phy;
   9787
   9788	h->sas_host = hpsa_sas_node;
   9789
   9790	return 0;
   9791
   9792free_sas_phy:
   9793	hpsa_free_sas_phy(hpsa_sas_phy);
   9794free_sas_port:
   9795	hpsa_free_sas_port(hpsa_sas_port);
   9796free_sas_node:
   9797	hpsa_free_sas_node(hpsa_sas_node);
   9798
   9799	return rc;
   9800}
   9801
   9802static void hpsa_delete_sas_host(struct ctlr_info *h)
   9803{
   9804	hpsa_free_sas_node(h->sas_host);
   9805}
   9806
   9807static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
   9808				struct hpsa_scsi_dev_t *device)
   9809{
   9810	int rc;
   9811	struct hpsa_sas_port *hpsa_sas_port;
   9812	struct sas_rphy *rphy;
   9813
   9814	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
   9815	if (!hpsa_sas_port)
   9816		return -ENOMEM;
   9817
   9818	rphy = sas_end_device_alloc(hpsa_sas_port->port);
   9819	if (!rphy) {
   9820		rc = -ENODEV;
   9821		goto free_sas_port;
   9822	}
   9823
   9824	hpsa_sas_port->rphy = rphy;
   9825	device->sas_port = hpsa_sas_port;
   9826
   9827	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
   9828	if (rc)
   9829		goto free_sas_port;
   9830
   9831	return 0;
   9832
   9833free_sas_port:
   9834	hpsa_free_sas_port(hpsa_sas_port);
   9835	device->sas_port = NULL;
   9836
   9837	return rc;
   9838}
   9839
   9840static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
   9841{
   9842	if (device->sas_port) {
   9843		hpsa_free_sas_port(device->sas_port);
   9844		device->sas_port = NULL;
   9845	}
   9846}
   9847
   9848static int
   9849hpsa_sas_get_linkerrors(struct sas_phy *phy)
   9850{
   9851	return 0;
   9852}
   9853
   9854static int
   9855hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
   9856{
   9857	struct Scsi_Host *shost = phy_to_shost(rphy);
   9858	struct ctlr_info *h;
   9859	struct hpsa_scsi_dev_t *sd;
   9860
   9861	if (!shost)
   9862		return -ENXIO;
   9863
   9864	h = shost_to_hba(shost);
   9865
   9866	if (!h)
   9867		return -ENXIO;
   9868
   9869	sd = hpsa_find_device_by_sas_rphy(h, rphy);
   9870	if (!sd)
   9871		return -ENXIO;
   9872
   9873	*identifier = sd->eli;
   9874
   9875	return 0;
   9876}
   9877
   9878static int
   9879hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
   9880{
   9881	return -ENXIO;
   9882}
   9883
   9884static int
   9885hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
   9886{
   9887	return 0;
   9888}
   9889
   9890static int
   9891hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
   9892{
   9893	return 0;
   9894}
   9895
   9896static int
   9897hpsa_sas_phy_setup(struct sas_phy *phy)
   9898{
   9899	return 0;
   9900}
   9901
   9902static void
   9903hpsa_sas_phy_release(struct sas_phy *phy)
   9904{
   9905}
   9906
   9907static int
   9908hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
   9909{
   9910	return -EINVAL;
   9911}
   9912
   9913static struct sas_function_template hpsa_sas_transport_functions = {
   9914	.get_linkerrors = hpsa_sas_get_linkerrors,
   9915	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
   9916	.get_bay_identifier = hpsa_sas_get_bay_identifier,
   9917	.phy_reset = hpsa_sas_phy_reset,
   9918	.phy_enable = hpsa_sas_phy_enable,
   9919	.phy_setup = hpsa_sas_phy_setup,
   9920	.phy_release = hpsa_sas_phy_release,
   9921	.set_phy_speed = hpsa_sas_phy_speed,
   9922};
   9923
   9924/*
   9925 *  This is it.  Register the PCI driver information for the cards we control
   9926 *  the OS will call our registered routines when it finds one of our cards.
   9927 */
   9928static int __init hpsa_init(void)
   9929{
   9930	int rc;
   9931
   9932	hpsa_sas_transport_template =
   9933		sas_attach_transport(&hpsa_sas_transport_functions);
   9934	if (!hpsa_sas_transport_template)
   9935		return -ENODEV;
   9936
   9937	rc = pci_register_driver(&hpsa_pci_driver);
   9938
   9939	if (rc)
   9940		sas_release_transport(hpsa_sas_transport_template);
   9941
   9942	return rc;
   9943}
   9944
   9945static void __exit hpsa_cleanup(void)
   9946{
   9947	pci_unregister_driver(&hpsa_pci_driver);
   9948	sas_release_transport(hpsa_sas_transport_template);
   9949}
   9950
   9951static void __attribute__((unused)) verify_offsets(void)
   9952{
   9953#define VERIFY_OFFSET(member, offset) \
   9954	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
   9955
   9956	VERIFY_OFFSET(structure_size, 0);
   9957	VERIFY_OFFSET(volume_blk_size, 4);
   9958	VERIFY_OFFSET(volume_blk_cnt, 8);
   9959	VERIFY_OFFSET(phys_blk_shift, 16);
   9960	VERIFY_OFFSET(parity_rotation_shift, 17);
   9961	VERIFY_OFFSET(strip_size, 18);
   9962	VERIFY_OFFSET(disk_starting_blk, 20);
   9963	VERIFY_OFFSET(disk_blk_cnt, 28);
   9964	VERIFY_OFFSET(data_disks_per_row, 36);
   9965	VERIFY_OFFSET(metadata_disks_per_row, 38);
   9966	VERIFY_OFFSET(row_cnt, 40);
   9967	VERIFY_OFFSET(layout_map_count, 42);
   9968	VERIFY_OFFSET(flags, 44);
   9969	VERIFY_OFFSET(dekindex, 46);
   9970	/* VERIFY_OFFSET(reserved, 48 */
   9971	VERIFY_OFFSET(data, 64);
   9972
   9973#undef VERIFY_OFFSET
   9974
   9975#define VERIFY_OFFSET(member, offset) \
   9976	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
   9977
   9978	VERIFY_OFFSET(IU_type, 0);
   9979	VERIFY_OFFSET(direction, 1);
   9980	VERIFY_OFFSET(reply_queue, 2);
   9981	/* VERIFY_OFFSET(reserved1, 3);  */
   9982	VERIFY_OFFSET(scsi_nexus, 4);
   9983	VERIFY_OFFSET(Tag, 8);
   9984	VERIFY_OFFSET(cdb, 16);
   9985	VERIFY_OFFSET(cciss_lun, 32);
   9986	VERIFY_OFFSET(data_len, 40);
   9987	VERIFY_OFFSET(cmd_priority_task_attr, 44);
   9988	VERIFY_OFFSET(sg_count, 45);
   9989	/* VERIFY_OFFSET(reserved3 */
   9990	VERIFY_OFFSET(err_ptr, 48);
   9991	VERIFY_OFFSET(err_len, 56);
   9992	/* VERIFY_OFFSET(reserved4  */
   9993	VERIFY_OFFSET(sg, 64);
   9994
   9995#undef VERIFY_OFFSET
   9996
   9997#define VERIFY_OFFSET(member, offset) \
   9998	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
   9999
  10000	VERIFY_OFFSET(dev_handle, 0x00);
  10001	VERIFY_OFFSET(reserved1, 0x02);
  10002	VERIFY_OFFSET(function, 0x03);
  10003	VERIFY_OFFSET(reserved2, 0x04);
  10004	VERIFY_OFFSET(err_info, 0x0C);
  10005	VERIFY_OFFSET(reserved3, 0x10);
  10006	VERIFY_OFFSET(err_info_len, 0x12);
  10007	VERIFY_OFFSET(reserved4, 0x13);
  10008	VERIFY_OFFSET(sgl_offset, 0x14);
  10009	VERIFY_OFFSET(reserved5, 0x15);
  10010	VERIFY_OFFSET(transfer_len, 0x1C);
  10011	VERIFY_OFFSET(reserved6, 0x20);
  10012	VERIFY_OFFSET(io_flags, 0x24);
  10013	VERIFY_OFFSET(reserved7, 0x26);
  10014	VERIFY_OFFSET(LUN, 0x34);
  10015	VERIFY_OFFSET(control, 0x3C);
  10016	VERIFY_OFFSET(CDB, 0x40);
  10017	VERIFY_OFFSET(reserved8, 0x50);
  10018	VERIFY_OFFSET(host_context_flags, 0x60);
  10019	VERIFY_OFFSET(timeout_sec, 0x62);
  10020	VERIFY_OFFSET(ReplyQueue, 0x64);
  10021	VERIFY_OFFSET(reserved9, 0x65);
  10022	VERIFY_OFFSET(tag, 0x68);
  10023	VERIFY_OFFSET(host_addr, 0x70);
  10024	VERIFY_OFFSET(CISS_LUN, 0x78);
  10025	VERIFY_OFFSET(SG, 0x78 + 8);
  10026#undef VERIFY_OFFSET
  10027}
  10028
  10029module_init(hpsa_init);
  10030module_exit(hpsa_cleanup);