cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

host.c (83027B)


      1/*
      2 * This file is provided under a dual BSD/GPLv2 license.  When using or
      3 * redistributing this file, you may do so under either license.
      4 *
      5 * GPL LICENSE SUMMARY
      6 *
      7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
      8 *
      9 * This program is free software; you can redistribute it and/or modify
     10 * it under the terms of version 2 of the GNU General Public License as
     11 * published by the Free Software Foundation.
     12 *
     13 * This program is distributed in the hope that it will be useful, but
     14 * WITHOUT ANY WARRANTY; without even the implied warranty of
     15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     16 * General Public License for more details.
     17 *
     18 * You should have received a copy of the GNU General Public License
     19 * along with this program; if not, write to the Free Software
     20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
     21 * The full GNU General Public License is included in this distribution
     22 * in the file called LICENSE.GPL.
     23 *
     24 * BSD LICENSE
     25 *
     26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
     27 * All rights reserved.
     28 *
     29 * Redistribution and use in source and binary forms, with or without
     30 * modification, are permitted provided that the following conditions
     31 * are met:
     32 *
     33 *   * Redistributions of source code must retain the above copyright
     34 *     notice, this list of conditions and the following disclaimer.
     35 *   * Redistributions in binary form must reproduce the above copyright
     36 *     notice, this list of conditions and the following disclaimer in
     37 *     the documentation and/or other materials provided with the
     38 *     distribution.
     39 *   * Neither the name of Intel Corporation nor the names of its
     40 *     contributors may be used to endorse or promote products derived
     41 *     from this software without specific prior written permission.
     42 *
     43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     54 */
     55#include <linux/circ_buf.h>
     56#include <linux/device.h>
     57#include <scsi/sas.h>
     58#include "host.h"
     59#include "isci.h"
     60#include "port.h"
     61#include "probe_roms.h"
     62#include "remote_device.h"
     63#include "request.h"
     64#include "scu_completion_codes.h"
     65#include "scu_event_codes.h"
     66#include "registers.h"
     67#include "scu_remote_node_context.h"
     68#include "scu_task_context.h"
     69
     70#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
     71
     72#define smu_max_ports(dcc_value) \
     73	(\
     74		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
     75		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
     76	)
     77
     78#define smu_max_task_contexts(dcc_value)	\
     79	(\
     80		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
     81		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
     82	)
     83
     84#define smu_max_rncs(dcc_value) \
     85	(\
     86		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
     87		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
     88	)
     89
     90#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
     91
     92/*
     93 * The number of milliseconds to wait while a given phy is consuming power
     94 * before allowing another set of phys to consume power. Ultimately, this will
     95 * be specified by OEM parameter.
     96 */
     97#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
     98
     99/*
    100 * NORMALIZE_PUT_POINTER() -
    101 *
    102 * This macro will normalize the completion queue put pointer so its value can
    103 * be used as an array inde
    104 */
    105#define NORMALIZE_PUT_POINTER(x) \
    106	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
    107
    108
    109/*
    110 * NORMALIZE_EVENT_POINTER() -
    111 *
    112 * This macro will normalize the completion queue event entry so its value can
    113 * be used as an index.
    114 */
    115#define NORMALIZE_EVENT_POINTER(x) \
    116	(\
    117		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
    118		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
    119	)
    120
    121/*
    122 * NORMALIZE_GET_POINTER() -
    123 *
    124 * This macro will normalize the completion queue get pointer so its value can
    125 * be used as an index into an array
    126 */
    127#define NORMALIZE_GET_POINTER(x) \
    128	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
    129
    130/*
    131 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
    132 *
    133 * This macro will normalize the completion queue cycle pointer so it matches
    134 * the completion queue cycle bit
    135 */
    136#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
    137	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
    138
    139/*
    140 * COMPLETION_QUEUE_CYCLE_BIT() -
    141 *
    142 * This macro will return the cycle bit of the completion queue entry
    143 */
    144#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
    145
    146/* Init the state machine and call the state entry function (if any) */
    147void sci_init_sm(struct sci_base_state_machine *sm,
    148		 const struct sci_base_state *state_table, u32 initial_state)
    149{
    150	sci_state_transition_t handler;
    151
    152	sm->initial_state_id    = initial_state;
    153	sm->previous_state_id   = initial_state;
    154	sm->current_state_id    = initial_state;
    155	sm->state_table         = state_table;
    156
    157	handler = sm->state_table[initial_state].enter_state;
    158	if (handler)
    159		handler(sm);
    160}
    161
    162/* Call the state exit fn, update the current state, call the state entry fn */
    163void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
    164{
    165	sci_state_transition_t handler;
    166
    167	handler = sm->state_table[sm->current_state_id].exit_state;
    168	if (handler)
    169		handler(sm);
    170
    171	sm->previous_state_id = sm->current_state_id;
    172	sm->current_state_id = next_state;
    173
    174	handler = sm->state_table[sm->current_state_id].enter_state;
    175	if (handler)
    176		handler(sm);
    177}
    178
    179static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
    180{
    181	u32 get_value = ihost->completion_queue_get;
    182	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
    183
    184	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
    185	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
    186		return true;
    187
    188	return false;
    189}
    190
    191static bool sci_controller_isr(struct isci_host *ihost)
    192{
    193	if (sci_controller_completion_queue_has_entries(ihost))
    194		return true;
    195
    196	/* we have a spurious interrupt it could be that we have already
    197	 * emptied the completion queue from a previous interrupt
    198	 * FIXME: really!?
    199	 */
    200	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
    201
    202	/* There is a race in the hardware that could cause us not to be
    203	 * notified of an interrupt completion if we do not take this
    204	 * step.  We will mask then unmask the interrupts so if there is
    205	 * another interrupt pending the clearing of the interrupt
    206	 * source we get the next interrupt message.
    207	 */
    208	spin_lock(&ihost->scic_lock);
    209	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
    210		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
    211		writel(0, &ihost->smu_registers->interrupt_mask);
    212	}
    213	spin_unlock(&ihost->scic_lock);
    214
    215	return false;
    216}
    217
    218irqreturn_t isci_msix_isr(int vec, void *data)
    219{
    220	struct isci_host *ihost = data;
    221
    222	if (sci_controller_isr(ihost))
    223		tasklet_schedule(&ihost->completion_tasklet);
    224
    225	return IRQ_HANDLED;
    226}
    227
    228static bool sci_controller_error_isr(struct isci_host *ihost)
    229{
    230	u32 interrupt_status;
    231
    232	interrupt_status =
    233		readl(&ihost->smu_registers->interrupt_status);
    234	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
    235
    236	if (interrupt_status != 0) {
    237		/*
    238		 * There is an error interrupt pending so let it through and handle
    239		 * in the callback */
    240		return true;
    241	}
    242
    243	/*
    244	 * There is a race in the hardware that could cause us not to be notified
    245	 * of an interrupt completion if we do not take this step.  We will mask
    246	 * then unmask the error interrupts so if there was another interrupt
    247	 * pending we will be notified.
    248	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
    249	writel(0xff, &ihost->smu_registers->interrupt_mask);
    250	writel(0, &ihost->smu_registers->interrupt_mask);
    251
    252	return false;
    253}
    254
    255static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
    256{
    257	u32 index = SCU_GET_COMPLETION_INDEX(ent);
    258	struct isci_request *ireq = ihost->reqs[index];
    259
    260	/* Make sure that we really want to process this IO request */
    261	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
    262	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
    263	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
    264		/* Yep this is a valid io request pass it along to the
    265		 * io request handler
    266		 */
    267		sci_io_request_tc_completion(ireq, ent);
    268}
    269
    270static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
    271{
    272	u32 index;
    273	struct isci_request *ireq;
    274	struct isci_remote_device *idev;
    275
    276	index = SCU_GET_COMPLETION_INDEX(ent);
    277
    278	switch (scu_get_command_request_type(ent)) {
    279	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
    280	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
    281		ireq = ihost->reqs[index];
    282		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
    283			 __func__, ent, ireq);
    284		/* @todo For a post TC operation we need to fail the IO
    285		 * request
    286		 */
    287		break;
    288	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
    289	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
    290	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
    291		idev = ihost->device_table[index];
    292		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
    293			 __func__, ent, idev);
    294		/* @todo For a port RNC operation we need to fail the
    295		 * device
    296		 */
    297		break;
    298	default:
    299		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
    300			 __func__, ent);
    301		break;
    302	}
    303}
    304
    305static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
    306{
    307	u32 index;
    308	u32 frame_index;
    309
    310	struct scu_unsolicited_frame_header *frame_header;
    311	struct isci_phy *iphy;
    312	struct isci_remote_device *idev;
    313
    314	enum sci_status result = SCI_FAILURE;
    315
    316	frame_index = SCU_GET_FRAME_INDEX(ent);
    317
    318	frame_header = ihost->uf_control.buffers.array[frame_index].header;
    319	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
    320
    321	if (SCU_GET_FRAME_ERROR(ent)) {
    322		/*
    323		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
    324		 * /       this cause a problem? We expect the phy initialization will
    325		 * /       fail if there is an error in the frame. */
    326		sci_controller_release_frame(ihost, frame_index);
    327		return;
    328	}
    329
    330	if (frame_header->is_address_frame) {
    331		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
    332		iphy = &ihost->phys[index];
    333		result = sci_phy_frame_handler(iphy, frame_index);
    334	} else {
    335
    336		index = SCU_GET_COMPLETION_INDEX(ent);
    337
    338		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
    339			/*
    340			 * This is a signature fis or a frame from a direct attached SATA
    341			 * device that has not yet been created.  In either case forwared
    342			 * the frame to the PE and let it take care of the frame data. */
    343			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
    344			iphy = &ihost->phys[index];
    345			result = sci_phy_frame_handler(iphy, frame_index);
    346		} else {
    347			if (index < ihost->remote_node_entries)
    348				idev = ihost->device_table[index];
    349			else
    350				idev = NULL;
    351
    352			if (idev != NULL)
    353				result = sci_remote_device_frame_handler(idev, frame_index);
    354			else
    355				sci_controller_release_frame(ihost, frame_index);
    356		}
    357	}
    358
    359	if (result != SCI_SUCCESS) {
    360		/*
    361		 * / @todo Is there any reason to report some additional error message
    362		 * /       when we get this failure notifiction? */
    363	}
    364}
    365
    366static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
    367{
    368	struct isci_remote_device *idev;
    369	struct isci_request *ireq;
    370	struct isci_phy *iphy;
    371	u32 index;
    372
    373	index = SCU_GET_COMPLETION_INDEX(ent);
    374
    375	switch (scu_get_event_type(ent)) {
    376	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
    377		/* / @todo The driver did something wrong and we need to fix the condtion. */
    378		dev_err(&ihost->pdev->dev,
    379			"%s: SCIC Controller 0x%p received SMU command error "
    380			"0x%x\n",
    381			__func__,
    382			ihost,
    383			ent);
    384		break;
    385
    386	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
    387	case SCU_EVENT_TYPE_SMU_ERROR:
    388	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
    389		/*
    390		 * / @todo This is a hardware failure and its likely that we want to
    391		 * /       reset the controller. */
    392		dev_err(&ihost->pdev->dev,
    393			"%s: SCIC Controller 0x%p received fatal controller "
    394			"event  0x%x\n",
    395			__func__,
    396			ihost,
    397			ent);
    398		break;
    399
    400	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
    401		ireq = ihost->reqs[index];
    402		sci_io_request_event_handler(ireq, ent);
    403		break;
    404
    405	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
    406		switch (scu_get_event_specifier(ent)) {
    407		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
    408		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
    409			ireq = ihost->reqs[index];
    410			if (ireq != NULL)
    411				sci_io_request_event_handler(ireq, ent);
    412			else
    413				dev_warn(&ihost->pdev->dev,
    414					 "%s: SCIC Controller 0x%p received "
    415					 "event 0x%x for io request object "
    416					 "that doesn't exist.\n",
    417					 __func__,
    418					 ihost,
    419					 ent);
    420
    421			break;
    422
    423		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
    424			idev = ihost->device_table[index];
    425			if (idev != NULL)
    426				sci_remote_device_event_handler(idev, ent);
    427			else
    428				dev_warn(&ihost->pdev->dev,
    429					 "%s: SCIC Controller 0x%p received "
    430					 "event 0x%x for remote device object "
    431					 "that doesn't exist.\n",
    432					 __func__,
    433					 ihost,
    434					 ent);
    435
    436			break;
    437		}
    438		break;
    439
    440	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
    441	/*
    442	 * direct the broadcast change event to the phy first and then let
    443	 * the phy redirect the broadcast change to the port object */
    444	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
    445	/*
    446	 * direct error counter event to the phy object since that is where
    447	 * we get the event notification.  This is a type 4 event. */
    448	case SCU_EVENT_TYPE_OSSP_EVENT:
    449		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
    450		iphy = &ihost->phys[index];
    451		sci_phy_event_handler(iphy, ent);
    452		break;
    453
    454	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
    455	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
    456	case SCU_EVENT_TYPE_RNC_OPS_MISC:
    457		if (index < ihost->remote_node_entries) {
    458			idev = ihost->device_table[index];
    459
    460			if (idev != NULL)
    461				sci_remote_device_event_handler(idev, ent);
    462		} else
    463			dev_err(&ihost->pdev->dev,
    464				"%s: SCIC Controller 0x%p received event 0x%x "
    465				"for remote device object 0x%0x that doesn't "
    466				"exist.\n",
    467				__func__,
    468				ihost,
    469				ent,
    470				index);
    471
    472		break;
    473
    474	default:
    475		dev_warn(&ihost->pdev->dev,
    476			 "%s: SCIC Controller received unknown event code %x\n",
    477			 __func__,
    478			 ent);
    479		break;
    480	}
    481}
    482
    483static void sci_controller_process_completions(struct isci_host *ihost)
    484{
    485	u32 completion_count = 0;
    486	u32 ent;
    487	u32 get_index;
    488	u32 get_cycle;
    489	u32 event_get;
    490	u32 event_cycle;
    491
    492	dev_dbg(&ihost->pdev->dev,
    493		"%s: completion queue beginning get:0x%08x\n",
    494		__func__,
    495		ihost->completion_queue_get);
    496
    497	/* Get the component parts of the completion queue */
    498	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
    499	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
    500
    501	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
    502	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
    503
    504	while (
    505		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
    506		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
    507		) {
    508		completion_count++;
    509
    510		ent = ihost->completion_queue[get_index];
    511
    512		/* increment the get pointer and check for rollover to toggle the cycle bit */
    513		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
    514			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
    515		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
    516
    517		dev_dbg(&ihost->pdev->dev,
    518			"%s: completion queue entry:0x%08x\n",
    519			__func__,
    520			ent);
    521
    522		switch (SCU_GET_COMPLETION_TYPE(ent)) {
    523		case SCU_COMPLETION_TYPE_TASK:
    524			sci_controller_task_completion(ihost, ent);
    525			break;
    526
    527		case SCU_COMPLETION_TYPE_SDMA:
    528			sci_controller_sdma_completion(ihost, ent);
    529			break;
    530
    531		case SCU_COMPLETION_TYPE_UFI:
    532			sci_controller_unsolicited_frame(ihost, ent);
    533			break;
    534
    535		case SCU_COMPLETION_TYPE_EVENT:
    536			sci_controller_event_completion(ihost, ent);
    537			break;
    538
    539		case SCU_COMPLETION_TYPE_NOTIFY: {
    540			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
    541				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
    542			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
    543
    544			sci_controller_event_completion(ihost, ent);
    545			break;
    546		}
    547		default:
    548			dev_warn(&ihost->pdev->dev,
    549				 "%s: SCIC Controller received unknown "
    550				 "completion type %x\n",
    551				 __func__,
    552				 ent);
    553			break;
    554		}
    555	}
    556
    557	/* Update the get register if we completed one or more entries */
    558	if (completion_count > 0) {
    559		ihost->completion_queue_get =
    560			SMU_CQGR_GEN_BIT(ENABLE) |
    561			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
    562			event_cycle |
    563			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
    564			get_cycle |
    565			SMU_CQGR_GEN_VAL(POINTER, get_index);
    566
    567		writel(ihost->completion_queue_get,
    568		       &ihost->smu_registers->completion_queue_get);
    569
    570	}
    571
    572	dev_dbg(&ihost->pdev->dev,
    573		"%s: completion queue ending get:0x%08x\n",
    574		__func__,
    575		ihost->completion_queue_get);
    576
    577}
    578
    579static void sci_controller_error_handler(struct isci_host *ihost)
    580{
    581	u32 interrupt_status;
    582
    583	interrupt_status =
    584		readl(&ihost->smu_registers->interrupt_status);
    585
    586	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
    587	    sci_controller_completion_queue_has_entries(ihost)) {
    588
    589		sci_controller_process_completions(ihost);
    590		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
    591	} else {
    592		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
    593			interrupt_status);
    594
    595		sci_change_state(&ihost->sm, SCIC_FAILED);
    596
    597		return;
    598	}
    599
    600	/* If we dont process any completions I am not sure that we want to do this.
    601	 * We are in the middle of a hardware fault and should probably be reset.
    602	 */
    603	writel(0, &ihost->smu_registers->interrupt_mask);
    604}
    605
    606irqreturn_t isci_intx_isr(int vec, void *data)
    607{
    608	irqreturn_t ret = IRQ_NONE;
    609	struct isci_host *ihost = data;
    610
    611	if (sci_controller_isr(ihost)) {
    612		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
    613		tasklet_schedule(&ihost->completion_tasklet);
    614		ret = IRQ_HANDLED;
    615	} else if (sci_controller_error_isr(ihost)) {
    616		spin_lock(&ihost->scic_lock);
    617		sci_controller_error_handler(ihost);
    618		spin_unlock(&ihost->scic_lock);
    619		ret = IRQ_HANDLED;
    620	}
    621
    622	return ret;
    623}
    624
    625irqreturn_t isci_error_isr(int vec, void *data)
    626{
    627	struct isci_host *ihost = data;
    628
    629	if (sci_controller_error_isr(ihost))
    630		sci_controller_error_handler(ihost);
    631
    632	return IRQ_HANDLED;
    633}
    634
    635/**
    636 * isci_host_start_complete() - This function is called by the core library,
    637 *    through the ISCI Module, to indicate controller start status.
    638 * @ihost: This parameter specifies the ISCI host object
    639 * @completion_status: This parameter specifies the completion status from the
    640 *    core library.
    641 *
    642 */
    643static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
    644{
    645	if (completion_status != SCI_SUCCESS)
    646		dev_info(&ihost->pdev->dev,
    647			"controller start timed out, continuing...\n");
    648	clear_bit(IHOST_START_PENDING, &ihost->flags);
    649	wake_up(&ihost->eventq);
    650}
    651
    652int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
    653{
    654	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
    655	struct isci_host *ihost = ha->lldd_ha;
    656
    657	if (test_bit(IHOST_START_PENDING, &ihost->flags))
    658		return 0;
    659
    660	sas_drain_work(ha);
    661
    662	return 1;
    663}
    664
    665/**
    666 * sci_controller_get_suggested_start_timeout() - This method returns the
    667 *    suggested sci_controller_start() timeout amount.  The user is free to
    668 *    use any timeout value, but this method provides the suggested minimum
    669 *    start timeout value.  The returned value is based upon empirical
    670 *    information determined as a result of interoperability testing.
    671 * @ihost: the handle to the controller object for which to return the
    672 *    suggested start timeout.
    673 *
    674 * This method returns the number of milliseconds for the suggested start
    675 * operation timeout.
    676 */
    677static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
    678{
    679	/* Validate the user supplied parameters. */
    680	if (!ihost)
    681		return 0;
    682
    683	/*
    684	 * The suggested minimum timeout value for a controller start operation:
    685	 *
    686	 *     Signature FIS Timeout
    687	 *   + Phy Start Timeout
    688	 *   + Number of Phy Spin Up Intervals
    689	 *   ---------------------------------
    690	 *   Number of milliseconds for the controller start operation.
    691	 *
    692	 * NOTE: The number of phy spin up intervals will be equivalent
    693	 *       to the number of phys divided by the number phys allowed
    694	 *       per interval - 1 (once OEM parameters are supported).
    695	 *       Currently we assume only 1 phy per interval. */
    696
    697	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
    698		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
    699		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
    700}
    701
    702static void sci_controller_enable_interrupts(struct isci_host *ihost)
    703{
    704	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
    705	writel(0, &ihost->smu_registers->interrupt_mask);
    706}
    707
    708void sci_controller_disable_interrupts(struct isci_host *ihost)
    709{
    710	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
    711	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
    712	readl(&ihost->smu_registers->interrupt_mask); /* flush */
    713}
    714
    715static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
    716{
    717	u32 port_task_scheduler_value;
    718
    719	port_task_scheduler_value =
    720		readl(&ihost->scu_registers->peg0.ptsg.control);
    721	port_task_scheduler_value |=
    722		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
    723		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
    724	writel(port_task_scheduler_value,
    725	       &ihost->scu_registers->peg0.ptsg.control);
    726}
    727
    728static void sci_controller_assign_task_entries(struct isci_host *ihost)
    729{
    730	u32 task_assignment;
    731
    732	/*
    733	 * Assign all the TCs to function 0
    734	 * TODO: Do we actually need to read this register to write it back?
    735	 */
    736
    737	task_assignment =
    738		readl(&ihost->smu_registers->task_context_assignment[0]);
    739
    740	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
    741		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
    742		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
    743
    744	writel(task_assignment,
    745		&ihost->smu_registers->task_context_assignment[0]);
    746
    747}
    748
    749static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
    750{
    751	u32 index;
    752	u32 completion_queue_control_value;
    753	u32 completion_queue_get_value;
    754	u32 completion_queue_put_value;
    755
    756	ihost->completion_queue_get = 0;
    757
    758	completion_queue_control_value =
    759		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
    760		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
    761
    762	writel(completion_queue_control_value,
    763	       &ihost->smu_registers->completion_queue_control);
    764
    765
    766	/* Set the completion queue get pointer and enable the queue */
    767	completion_queue_get_value = (
    768		(SMU_CQGR_GEN_VAL(POINTER, 0))
    769		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
    770		| (SMU_CQGR_GEN_BIT(ENABLE))
    771		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
    772		);
    773
    774	writel(completion_queue_get_value,
    775	       &ihost->smu_registers->completion_queue_get);
    776
    777	/* Set the completion queue put pointer */
    778	completion_queue_put_value = (
    779		(SMU_CQPR_GEN_VAL(POINTER, 0))
    780		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
    781		);
    782
    783	writel(completion_queue_put_value,
    784	       &ihost->smu_registers->completion_queue_put);
    785
    786	/* Initialize the cycle bit of the completion queue entries */
    787	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
    788		/*
    789		 * If get.cycle_bit != completion_queue.cycle_bit
    790		 * its not a valid completion queue entry
    791		 * so at system start all entries are invalid */
    792		ihost->completion_queue[index] = 0x80000000;
    793	}
    794}
    795
    796static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
    797{
    798	u32 frame_queue_control_value;
    799	u32 frame_queue_get_value;
    800	u32 frame_queue_put_value;
    801
    802	/* Write the queue size */
    803	frame_queue_control_value =
    804		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
    805
    806	writel(frame_queue_control_value,
    807	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
    808
    809	/* Setup the get pointer for the unsolicited frame queue */
    810	frame_queue_get_value = (
    811		SCU_UFQGP_GEN_VAL(POINTER, 0)
    812		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
    813		);
    814
    815	writel(frame_queue_get_value,
    816	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
    817	/* Setup the put pointer for the unsolicited frame queue */
    818	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
    819	writel(frame_queue_put_value,
    820	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
    821}
    822
    823void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
    824{
    825	if (ihost->sm.current_state_id == SCIC_STARTING) {
    826		/*
    827		 * We move into the ready state, because some of the phys/ports
    828		 * may be up and operational.
    829		 */
    830		sci_change_state(&ihost->sm, SCIC_READY);
    831
    832		isci_host_start_complete(ihost, status);
    833	}
    834}
    835
    836static bool is_phy_starting(struct isci_phy *iphy)
    837{
    838	enum sci_phy_states state;
    839
    840	state = iphy->sm.current_state_id;
    841	switch (state) {
    842	case SCI_PHY_STARTING:
    843	case SCI_PHY_SUB_INITIAL:
    844	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
    845	case SCI_PHY_SUB_AWAIT_IAF_UF:
    846	case SCI_PHY_SUB_AWAIT_SAS_POWER:
    847	case SCI_PHY_SUB_AWAIT_SATA_POWER:
    848	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
    849	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
    850	case SCI_PHY_SUB_AWAIT_OSSP_EN:
    851	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
    852	case SCI_PHY_SUB_FINAL:
    853		return true;
    854	default:
    855		return false;
    856	}
    857}
    858
    859bool is_controller_start_complete(struct isci_host *ihost)
    860{
    861	int i;
    862
    863	for (i = 0; i < SCI_MAX_PHYS; i++) {
    864		struct isci_phy *iphy = &ihost->phys[i];
    865		u32 state = iphy->sm.current_state_id;
    866
    867		/* in apc mode we need to check every phy, in
    868		 * mpc mode we only need to check phys that have
    869		 * been configured into a port
    870		 */
    871		if (is_port_config_apc(ihost))
    872			/* pass */;
    873		else if (!phy_get_non_dummy_port(iphy))
    874			continue;
    875
    876		/* The controller start operation is complete iff:
    877		 * - all links have been given an opportunity to start
    878		 * - have no indication of a connected device
    879		 * - have an indication of a connected device and it has
    880		 *   finished the link training process.
    881		 */
    882		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
    883		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
    884		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
    885		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
    886			return false;
    887	}
    888
    889	return true;
    890}
    891
    892/**
    893 * sci_controller_start_next_phy - start phy
    894 * @ihost: controller
    895 *
    896 * If all the phys have been started, then attempt to transition the
    897 * controller to the READY state and inform the user
    898 * (sci_cb_controller_start_complete()).
    899 */
    900static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
    901{
    902	struct sci_oem_params *oem = &ihost->oem_parameters;
    903	struct isci_phy *iphy;
    904	enum sci_status status;
    905
    906	status = SCI_SUCCESS;
    907
    908	if (ihost->phy_startup_timer_pending)
    909		return status;
    910
    911	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
    912		if (is_controller_start_complete(ihost)) {
    913			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
    914			sci_del_timer(&ihost->phy_timer);
    915			ihost->phy_startup_timer_pending = false;
    916		}
    917	} else {
    918		iphy = &ihost->phys[ihost->next_phy_to_start];
    919
    920		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
    921			if (phy_get_non_dummy_port(iphy) == NULL) {
    922				ihost->next_phy_to_start++;
    923
    924				/* Caution recursion ahead be forwarned
    925				 *
    926				 * The PHY was never added to a PORT in MPC mode
    927				 * so start the next phy in sequence This phy
    928				 * will never go link up and will not draw power
    929				 * the OEM parameters either configured the phy
    930				 * incorrectly for the PORT or it was never
    931				 * assigned to a PORT
    932				 */
    933				return sci_controller_start_next_phy(ihost);
    934			}
    935		}
    936
    937		status = sci_phy_start(iphy);
    938
    939		if (status == SCI_SUCCESS) {
    940			sci_mod_timer(&ihost->phy_timer,
    941				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
    942			ihost->phy_startup_timer_pending = true;
    943		} else {
    944			dev_warn(&ihost->pdev->dev,
    945				 "%s: Controller stop operation failed "
    946				 "to stop phy %d because of status "
    947				 "%d.\n",
    948				 __func__,
    949				 ihost->phys[ihost->next_phy_to_start].phy_index,
    950				 status);
    951		}
    952
    953		ihost->next_phy_to_start++;
    954	}
    955
    956	return status;
    957}
    958
    959static void phy_startup_timeout(struct timer_list *t)
    960{
    961	struct sci_timer *tmr = from_timer(tmr, t, timer);
    962	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
    963	unsigned long flags;
    964	enum sci_status status;
    965
    966	spin_lock_irqsave(&ihost->scic_lock, flags);
    967
    968	if (tmr->cancel)
    969		goto done;
    970
    971	ihost->phy_startup_timer_pending = false;
    972
    973	do {
    974		status = sci_controller_start_next_phy(ihost);
    975	} while (status != SCI_SUCCESS);
    976
    977done:
    978	spin_unlock_irqrestore(&ihost->scic_lock, flags);
    979}
    980
    981static u16 isci_tci_active(struct isci_host *ihost)
    982{
    983	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
    984}
    985
    986static enum sci_status sci_controller_start(struct isci_host *ihost,
    987					     u32 timeout)
    988{
    989	enum sci_status result;
    990	u16 index;
    991
    992	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
    993		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
    994			 __func__, ihost->sm.current_state_id);
    995		return SCI_FAILURE_INVALID_STATE;
    996	}
    997
    998	/* Build the TCi free pool */
    999	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
   1000	ihost->tci_head = 0;
   1001	ihost->tci_tail = 0;
   1002	for (index = 0; index < ihost->task_context_entries; index++)
   1003		isci_tci_free(ihost, index);
   1004
   1005	/* Build the RNi free pool */
   1006	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
   1007					 ihost->remote_node_entries);
   1008
   1009	/*
   1010	 * Before anything else lets make sure we will not be
   1011	 * interrupted by the hardware.
   1012	 */
   1013	sci_controller_disable_interrupts(ihost);
   1014
   1015	/* Enable the port task scheduler */
   1016	sci_controller_enable_port_task_scheduler(ihost);
   1017
   1018	/* Assign all the task entries to ihost physical function */
   1019	sci_controller_assign_task_entries(ihost);
   1020
   1021	/* Now initialize the completion queue */
   1022	sci_controller_initialize_completion_queue(ihost);
   1023
   1024	/* Initialize the unsolicited frame queue for use */
   1025	sci_controller_initialize_unsolicited_frame_queue(ihost);
   1026
   1027	/* Start all of the ports on this controller */
   1028	for (index = 0; index < ihost->logical_port_entries; index++) {
   1029		struct isci_port *iport = &ihost->ports[index];
   1030
   1031		result = sci_port_start(iport);
   1032		if (result)
   1033			return result;
   1034	}
   1035
   1036	sci_controller_start_next_phy(ihost);
   1037
   1038	sci_mod_timer(&ihost->timer, timeout);
   1039
   1040	sci_change_state(&ihost->sm, SCIC_STARTING);
   1041
   1042	return SCI_SUCCESS;
   1043}
   1044
   1045void isci_host_start(struct Scsi_Host *shost)
   1046{
   1047	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
   1048	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
   1049
   1050	set_bit(IHOST_START_PENDING, &ihost->flags);
   1051
   1052	spin_lock_irq(&ihost->scic_lock);
   1053	sci_controller_start(ihost, tmo);
   1054	sci_controller_enable_interrupts(ihost);
   1055	spin_unlock_irq(&ihost->scic_lock);
   1056}
   1057
   1058static void isci_host_stop_complete(struct isci_host *ihost)
   1059{
   1060	sci_controller_disable_interrupts(ihost);
   1061	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
   1062	wake_up(&ihost->eventq);
   1063}
   1064
   1065static void sci_controller_completion_handler(struct isci_host *ihost)
   1066{
   1067	/* Empty out the completion queue */
   1068	if (sci_controller_completion_queue_has_entries(ihost))
   1069		sci_controller_process_completions(ihost);
   1070
   1071	/* Clear the interrupt and enable all interrupts again */
   1072	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
   1073	/* Could we write the value of SMU_ISR_COMPLETION? */
   1074	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
   1075	writel(0, &ihost->smu_registers->interrupt_mask);
   1076}
   1077
   1078void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
   1079{
   1080	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
   1081	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
   1082		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
   1083			/* Normal notification (task_done) */
   1084			dev_dbg(&ihost->pdev->dev,
   1085				"%s: Normal - ireq/task = %p/%p\n",
   1086				__func__, ireq, task);
   1087			task->lldd_task = NULL;
   1088			task->task_done(task);
   1089		} else {
   1090			dev_dbg(&ihost->pdev->dev,
   1091				"%s: Error - ireq/task = %p/%p\n",
   1092				__func__, ireq, task);
   1093			if (sas_protocol_ata(task->task_proto))
   1094				task->lldd_task = NULL;
   1095			sas_task_abort(task);
   1096		}
   1097	} else
   1098		task->lldd_task = NULL;
   1099
   1100	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
   1101		wake_up_all(&ihost->eventq);
   1102
   1103	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
   1104		isci_free_tag(ihost, ireq->io_tag);
   1105}
   1106/**
   1107 * isci_host_completion_routine() - This function is the delayed service
   1108 *    routine that calls the sci core library's completion handler. It's
   1109 *    scheduled as a tasklet from the interrupt service routine when interrupts
   1110 *    in use, or set as the timeout function in polled mode.
   1111 * @data: This parameter specifies the ISCI host object
   1112 *
   1113 */
   1114void isci_host_completion_routine(unsigned long data)
   1115{
   1116	struct isci_host *ihost = (struct isci_host *)data;
   1117	u16 active;
   1118
   1119	spin_lock_irq(&ihost->scic_lock);
   1120	sci_controller_completion_handler(ihost);
   1121	spin_unlock_irq(&ihost->scic_lock);
   1122
   1123	/*
   1124	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
   1125	 * issued for hardware issue workaround
   1126	 */
   1127	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
   1128
   1129	/*
   1130	 * the coalesence timeout doubles at each encoding step, so
   1131	 * update it based on the ilog2 value of the outstanding requests
   1132	 */
   1133	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
   1134	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
   1135	       &ihost->smu_registers->interrupt_coalesce_control);
   1136}
   1137
   1138/**
   1139 * sci_controller_stop() - This method will stop an individual controller
   1140 *    object.This method will invoke the associated user callback upon
   1141 *    completion.  The completion callback is called when the following
   1142 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
   1143 *    controller has been quiesced. This method will ensure that all IO
   1144 *    requests are quiesced, phys are stopped, and all additional operation by
   1145 *    the hardware is halted.
   1146 * @ihost: the handle to the controller object to stop.
   1147 * @timeout: This parameter specifies the number of milliseconds in which the
   1148 *    stop operation should complete.
   1149 *
   1150 * The controller must be in the STARTED or STOPPED state. Indicate if the
   1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
   1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
   1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
   1154 * controller is not either in the STARTED or STOPPED states.
   1155 */
   1156static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
   1157{
   1158	if (ihost->sm.current_state_id != SCIC_READY) {
   1159		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   1160			 __func__, ihost->sm.current_state_id);
   1161		return SCI_FAILURE_INVALID_STATE;
   1162	}
   1163
   1164	sci_mod_timer(&ihost->timer, timeout);
   1165	sci_change_state(&ihost->sm, SCIC_STOPPING);
   1166	return SCI_SUCCESS;
   1167}
   1168
   1169/**
   1170 * sci_controller_reset() - This method will reset the supplied core
   1171 *    controller regardless of the state of said controller.  This operation is
   1172 *    considered destructive.  In other words, all current operations are wiped
   1173 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
   1174 *    requests are not aborted or completed at the actual remote device.
   1175 * @ihost: the handle to the controller object to reset.
   1176 *
   1177 * Indicate if the controller reset method succeeded or failed in some way.
   1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
   1179 * the controller reset operation is unable to complete.
   1180 */
   1181static enum sci_status sci_controller_reset(struct isci_host *ihost)
   1182{
   1183	switch (ihost->sm.current_state_id) {
   1184	case SCIC_RESET:
   1185	case SCIC_READY:
   1186	case SCIC_STOPPING:
   1187	case SCIC_FAILED:
   1188		/*
   1189		 * The reset operation is not a graceful cleanup, just
   1190		 * perform the state transition.
   1191		 */
   1192		sci_change_state(&ihost->sm, SCIC_RESETTING);
   1193		return SCI_SUCCESS;
   1194	default:
   1195		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   1196			 __func__, ihost->sm.current_state_id);
   1197		return SCI_FAILURE_INVALID_STATE;
   1198	}
   1199}
   1200
   1201static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
   1202{
   1203	u32 index;
   1204	enum sci_status status;
   1205	enum sci_status phy_status;
   1206
   1207	status = SCI_SUCCESS;
   1208
   1209	for (index = 0; index < SCI_MAX_PHYS; index++) {
   1210		phy_status = sci_phy_stop(&ihost->phys[index]);
   1211
   1212		if (phy_status != SCI_SUCCESS &&
   1213		    phy_status != SCI_FAILURE_INVALID_STATE) {
   1214			status = SCI_FAILURE;
   1215
   1216			dev_warn(&ihost->pdev->dev,
   1217				 "%s: Controller stop operation failed to stop "
   1218				 "phy %d because of status %d.\n",
   1219				 __func__,
   1220				 ihost->phys[index].phy_index, phy_status);
   1221		}
   1222	}
   1223
   1224	return status;
   1225}
   1226
   1227
   1228/**
   1229 * isci_host_deinit - shutdown frame reception and dma
   1230 * @ihost: host to take down
   1231 *
   1232 * This is called in either the driver shutdown or the suspend path.  In
   1233 * the shutdown case libsas went through port teardown and normal device
   1234 * removal (i.e. physical links stayed up to service scsi_device removal
   1235 * commands).  In the suspend case we disable the hardware without
   1236 * notifying libsas of the link down events since we want libsas to
   1237 * remember the domain across the suspend/resume cycle
   1238 */
   1239void isci_host_deinit(struct isci_host *ihost)
   1240{
   1241	int i;
   1242
   1243	/* disable output data selects */
   1244	for (i = 0; i < isci_gpio_count(ihost); i++)
   1245		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
   1246
   1247	set_bit(IHOST_STOP_PENDING, &ihost->flags);
   1248
   1249	spin_lock_irq(&ihost->scic_lock);
   1250	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
   1251	spin_unlock_irq(&ihost->scic_lock);
   1252
   1253	wait_for_stop(ihost);
   1254
   1255	/* phy stop is after controller stop to allow port and device to
   1256	 * go idle before shutting down the phys, but the expectation is
   1257	 * that i/o has been shut off well before we reach this
   1258	 * function.
   1259	 */
   1260	sci_controller_stop_phys(ihost);
   1261
   1262	/* disable sgpio: where the above wait should give time for the
   1263	 * enclosure to sample the gpios going inactive
   1264	 */
   1265	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
   1266
   1267	spin_lock_irq(&ihost->scic_lock);
   1268	sci_controller_reset(ihost);
   1269	spin_unlock_irq(&ihost->scic_lock);
   1270
   1271	/* Cancel any/all outstanding port timers */
   1272	for (i = 0; i < ihost->logical_port_entries; i++) {
   1273		struct isci_port *iport = &ihost->ports[i];
   1274		del_timer_sync(&iport->timer.timer);
   1275	}
   1276
   1277	/* Cancel any/all outstanding phy timers */
   1278	for (i = 0; i < SCI_MAX_PHYS; i++) {
   1279		struct isci_phy *iphy = &ihost->phys[i];
   1280		del_timer_sync(&iphy->sata_timer.timer);
   1281	}
   1282
   1283	del_timer_sync(&ihost->port_agent.timer.timer);
   1284
   1285	del_timer_sync(&ihost->power_control.timer.timer);
   1286
   1287	del_timer_sync(&ihost->timer.timer);
   1288
   1289	del_timer_sync(&ihost->phy_timer.timer);
   1290}
   1291
   1292static void __iomem *scu_base(struct isci_host *isci_host)
   1293{
   1294	struct pci_dev *pdev = isci_host->pdev;
   1295	int id = isci_host->id;
   1296
   1297	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
   1298}
   1299
   1300static void __iomem *smu_base(struct isci_host *isci_host)
   1301{
   1302	struct pci_dev *pdev = isci_host->pdev;
   1303	int id = isci_host->id;
   1304
   1305	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
   1306}
   1307
   1308static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
   1309{
   1310	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1311
   1312	sci_change_state(&ihost->sm, SCIC_RESET);
   1313}
   1314
   1315static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
   1316{
   1317	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1318
   1319	sci_del_timer(&ihost->timer);
   1320}
   1321
   1322#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
   1323#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
   1324#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
   1325#define INTERRUPT_COALESCE_NUMBER_MAX                        256
   1326#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
   1327#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
   1328
   1329/**
   1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to
   1331 *    configure the interrupt coalescence.
   1332 * @ihost: This parameter represents the handle to the controller object
   1333 *    for which its interrupt coalesce register is overridden.
   1334 * @coalesce_number: Used to control the number of entries in the Completion
   1335 *    Queue before an interrupt is generated. If the number of entries exceed
   1336 *    this number, an interrupt will be generated. The valid range of the input
   1337 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
   1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
   1339 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
   1340 *    interrupt coalescing timeout.
   1341 *
   1342 * Indicate if the user successfully set the interrupt coalesce parameters.
   1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
   1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
   1345 */
   1346static enum sci_status
   1347sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
   1348					 u32 coalesce_number,
   1349					 u32 coalesce_timeout)
   1350{
   1351	u8 timeout_encode = 0;
   1352	u32 min = 0;
   1353	u32 max = 0;
   1354
   1355	/* Check if the input parameters fall in the range. */
   1356	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
   1357		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
   1358
   1359	/*
   1360	 *  Defined encoding for interrupt coalescing timeout:
   1361	 *              Value   Min      Max     Units
   1362	 *              -----   ---      ---     -----
   1363	 *              0       -        -       Disabled
   1364	 *              1       13.3     20.0    ns
   1365	 *              2       26.7     40.0
   1366	 *              3       53.3     80.0
   1367	 *              4       106.7    160.0
   1368	 *              5       213.3    320.0
   1369	 *              6       426.7    640.0
   1370	 *              7       853.3    1280.0
   1371	 *              8       1.7      2.6     us
   1372	 *              9       3.4      5.1
   1373	 *              10      6.8      10.2
   1374	 *              11      13.7     20.5
   1375	 *              12      27.3     41.0
   1376	 *              13      54.6     81.9
   1377	 *              14      109.2    163.8
   1378	 *              15      218.5    327.7
   1379	 *              16      436.9    655.4
   1380	 *              17      873.8    1310.7
   1381	 *              18      1.7      2.6     ms
   1382	 *              19      3.5      5.2
   1383	 *              20      7.0      10.5
   1384	 *              21      14.0     21.0
   1385	 *              22      28.0     41.9
   1386	 *              23      55.9     83.9
   1387	 *              24      111.8    167.8
   1388	 *              25      223.7    335.5
   1389	 *              26      447.4    671.1
   1390	 *              27      894.8    1342.2
   1391	 *              28      1.8      2.7     s
   1392	 *              Others Undefined */
   1393
   1394	/*
   1395	 * Use the table above to decide the encode of interrupt coalescing timeout
   1396	 * value for register writing. */
   1397	if (coalesce_timeout == 0)
   1398		timeout_encode = 0;
   1399	else{
   1400		/* make the timeout value in unit of (10 ns). */
   1401		coalesce_timeout = coalesce_timeout * 100;
   1402		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
   1403		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
   1404
   1405		/* get the encode of timeout for register writing. */
   1406		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
   1407		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
   1408		      timeout_encode++) {
   1409			if (min <= coalesce_timeout &&  max > coalesce_timeout)
   1410				break;
   1411			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
   1412				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
   1413				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
   1414					break;
   1415				else{
   1416					timeout_encode++;
   1417					break;
   1418				}
   1419			} else {
   1420				max = max * 2;
   1421				min = min * 2;
   1422			}
   1423		}
   1424
   1425		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
   1426			/* the value is out of range. */
   1427			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
   1428	}
   1429
   1430	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
   1431	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
   1432	       &ihost->smu_registers->interrupt_coalesce_control);
   1433
   1434
   1435	ihost->interrupt_coalesce_number = (u16)coalesce_number;
   1436	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
   1437
   1438	return SCI_SUCCESS;
   1439}
   1440
   1441
   1442static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
   1443{
   1444	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1445	u32 val;
   1446
   1447	/* enable clock gating for power control of the scu unit */
   1448	val = readl(&ihost->smu_registers->clock_gating_control);
   1449	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
   1450		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
   1451		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
   1452	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
   1453	writel(val, &ihost->smu_registers->clock_gating_control);
   1454
   1455	/* set the default interrupt coalescence number and timeout value. */
   1456	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
   1457}
   1458
   1459static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
   1460{
   1461	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1462
   1463	/* disable interrupt coalescence. */
   1464	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
   1465}
   1466
   1467static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
   1468{
   1469	u32 index;
   1470	enum sci_status port_status;
   1471	enum sci_status status = SCI_SUCCESS;
   1472
   1473	for (index = 0; index < ihost->logical_port_entries; index++) {
   1474		struct isci_port *iport = &ihost->ports[index];
   1475
   1476		port_status = sci_port_stop(iport);
   1477
   1478		if ((port_status != SCI_SUCCESS) &&
   1479		    (port_status != SCI_FAILURE_INVALID_STATE)) {
   1480			status = SCI_FAILURE;
   1481
   1482			dev_warn(&ihost->pdev->dev,
   1483				 "%s: Controller stop operation failed to "
   1484				 "stop port %d because of status %d.\n",
   1485				 __func__,
   1486				 iport->logical_port_index,
   1487				 port_status);
   1488		}
   1489	}
   1490
   1491	return status;
   1492}
   1493
   1494static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
   1495{
   1496	u32 index;
   1497	enum sci_status status;
   1498	enum sci_status device_status;
   1499
   1500	status = SCI_SUCCESS;
   1501
   1502	for (index = 0; index < ihost->remote_node_entries; index++) {
   1503		if (ihost->device_table[index] != NULL) {
   1504			/* / @todo What timeout value do we want to provide to this request? */
   1505			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
   1506
   1507			if ((device_status != SCI_SUCCESS) &&
   1508			    (device_status != SCI_FAILURE_INVALID_STATE)) {
   1509				dev_warn(&ihost->pdev->dev,
   1510					 "%s: Controller stop operation failed "
   1511					 "to stop device 0x%p because of "
   1512					 "status %d.\n",
   1513					 __func__,
   1514					 ihost->device_table[index], device_status);
   1515			}
   1516		}
   1517	}
   1518
   1519	return status;
   1520}
   1521
   1522static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
   1523{
   1524	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1525
   1526	sci_controller_stop_devices(ihost);
   1527	sci_controller_stop_ports(ihost);
   1528
   1529	if (!sci_controller_has_remote_devices_stopping(ihost))
   1530		isci_host_stop_complete(ihost);
   1531}
   1532
   1533static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
   1534{
   1535	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1536
   1537	sci_del_timer(&ihost->timer);
   1538}
   1539
   1540static void sci_controller_reset_hardware(struct isci_host *ihost)
   1541{
   1542	/* Disable interrupts so we dont take any spurious interrupts */
   1543	sci_controller_disable_interrupts(ihost);
   1544
   1545	/* Reset the SCU */
   1546	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
   1547
   1548	/* Delay for 1ms to before clearing the CQP and UFQPR. */
   1549	udelay(1000);
   1550
   1551	/* The write to the CQGR clears the CQP */
   1552	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
   1553
   1554	/* The write to the UFQGP clears the UFQPR */
   1555	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
   1556
   1557	/* clear all interrupts */
   1558	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
   1559}
   1560
   1561static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
   1562{
   1563	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
   1564
   1565	sci_controller_reset_hardware(ihost);
   1566	sci_change_state(&ihost->sm, SCIC_RESET);
   1567}
   1568
   1569static const struct sci_base_state sci_controller_state_table[] = {
   1570	[SCIC_INITIAL] = {
   1571		.enter_state = sci_controller_initial_state_enter,
   1572	},
   1573	[SCIC_RESET] = {},
   1574	[SCIC_INITIALIZING] = {},
   1575	[SCIC_INITIALIZED] = {},
   1576	[SCIC_STARTING] = {
   1577		.exit_state  = sci_controller_starting_state_exit,
   1578	},
   1579	[SCIC_READY] = {
   1580		.enter_state = sci_controller_ready_state_enter,
   1581		.exit_state  = sci_controller_ready_state_exit,
   1582	},
   1583	[SCIC_RESETTING] = {
   1584		.enter_state = sci_controller_resetting_state_enter,
   1585	},
   1586	[SCIC_STOPPING] = {
   1587		.enter_state = sci_controller_stopping_state_enter,
   1588		.exit_state = sci_controller_stopping_state_exit,
   1589	},
   1590	[SCIC_FAILED] = {}
   1591};
   1592
   1593static void controller_timeout(struct timer_list *t)
   1594{
   1595	struct sci_timer *tmr = from_timer(tmr, t, timer);
   1596	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
   1597	struct sci_base_state_machine *sm = &ihost->sm;
   1598	unsigned long flags;
   1599
   1600	spin_lock_irqsave(&ihost->scic_lock, flags);
   1601
   1602	if (tmr->cancel)
   1603		goto done;
   1604
   1605	if (sm->current_state_id == SCIC_STARTING)
   1606		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
   1607	else if (sm->current_state_id == SCIC_STOPPING) {
   1608		sci_change_state(sm, SCIC_FAILED);
   1609		isci_host_stop_complete(ihost);
   1610	} else	/* / @todo Now what do we want to do in this case? */
   1611		dev_err(&ihost->pdev->dev,
   1612			"%s: Controller timer fired when controller was not "
   1613			"in a state being timed.\n",
   1614			__func__);
   1615
   1616done:
   1617	spin_unlock_irqrestore(&ihost->scic_lock, flags);
   1618}
   1619
   1620static enum sci_status sci_controller_construct(struct isci_host *ihost,
   1621						void __iomem *scu_base,
   1622						void __iomem *smu_base)
   1623{
   1624	u8 i;
   1625
   1626	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
   1627
   1628	ihost->scu_registers = scu_base;
   1629	ihost->smu_registers = smu_base;
   1630
   1631	sci_port_configuration_agent_construct(&ihost->port_agent);
   1632
   1633	/* Construct the ports for this controller */
   1634	for (i = 0; i < SCI_MAX_PORTS; i++)
   1635		sci_port_construct(&ihost->ports[i], i, ihost);
   1636	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
   1637
   1638	/* Construct the phys for this controller */
   1639	for (i = 0; i < SCI_MAX_PHYS; i++) {
   1640		/* Add all the PHYs to the dummy port */
   1641		sci_phy_construct(&ihost->phys[i],
   1642				  &ihost->ports[SCI_MAX_PORTS], i);
   1643	}
   1644
   1645	ihost->invalid_phy_mask = 0;
   1646
   1647	sci_init_timer(&ihost->timer, controller_timeout);
   1648
   1649	return sci_controller_reset(ihost);
   1650}
   1651
   1652int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
   1653{
   1654	int i;
   1655
   1656	for (i = 0; i < SCI_MAX_PORTS; i++)
   1657		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
   1658			return -EINVAL;
   1659
   1660	for (i = 0; i < SCI_MAX_PHYS; i++)
   1661		if (oem->phys[i].sas_address.high == 0 &&
   1662		    oem->phys[i].sas_address.low == 0)
   1663			return -EINVAL;
   1664
   1665	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
   1666		for (i = 0; i < SCI_MAX_PHYS; i++)
   1667			if (oem->ports[i].phy_mask != 0)
   1668				return -EINVAL;
   1669	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
   1670		u8 phy_mask = 0;
   1671
   1672		for (i = 0; i < SCI_MAX_PHYS; i++)
   1673			phy_mask |= oem->ports[i].phy_mask;
   1674
   1675		if (phy_mask == 0)
   1676			return -EINVAL;
   1677	} else
   1678		return -EINVAL;
   1679
   1680	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
   1681	    oem->controller.max_concurr_spin_up < 1)
   1682		return -EINVAL;
   1683
   1684	if (oem->controller.do_enable_ssc) {
   1685		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
   1686			return -EINVAL;
   1687
   1688		if (version >= ISCI_ROM_VER_1_1) {
   1689			u8 test = oem->controller.ssc_sata_tx_spread_level;
   1690
   1691			switch (test) {
   1692			case 0:
   1693			case 2:
   1694			case 3:
   1695			case 6:
   1696			case 7:
   1697				break;
   1698			default:
   1699				return -EINVAL;
   1700			}
   1701
   1702			test = oem->controller.ssc_sas_tx_spread_level;
   1703			if (oem->controller.ssc_sas_tx_type == 0) {
   1704				switch (test) {
   1705				case 0:
   1706				case 2:
   1707				case 3:
   1708					break;
   1709				default:
   1710					return -EINVAL;
   1711				}
   1712			} else if (oem->controller.ssc_sas_tx_type == 1) {
   1713				switch (test) {
   1714				case 0:
   1715				case 3:
   1716				case 6:
   1717					break;
   1718				default:
   1719					return -EINVAL;
   1720				}
   1721			}
   1722		}
   1723	}
   1724
   1725	return 0;
   1726}
   1727
   1728static u8 max_spin_up(struct isci_host *ihost)
   1729{
   1730	if (ihost->user_parameters.max_concurr_spinup)
   1731		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
   1732			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
   1733	else
   1734		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
   1735			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
   1736}
   1737
   1738static void power_control_timeout(struct timer_list *t)
   1739{
   1740	struct sci_timer *tmr = from_timer(tmr, t, timer);
   1741	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
   1742	struct isci_phy *iphy;
   1743	unsigned long flags;
   1744	u8 i;
   1745
   1746	spin_lock_irqsave(&ihost->scic_lock, flags);
   1747
   1748	if (tmr->cancel)
   1749		goto done;
   1750
   1751	ihost->power_control.phys_granted_power = 0;
   1752
   1753	if (ihost->power_control.phys_waiting == 0) {
   1754		ihost->power_control.timer_started = false;
   1755		goto done;
   1756	}
   1757
   1758	for (i = 0; i < SCI_MAX_PHYS; i++) {
   1759
   1760		if (ihost->power_control.phys_waiting == 0)
   1761			break;
   1762
   1763		iphy = ihost->power_control.requesters[i];
   1764		if (iphy == NULL)
   1765			continue;
   1766
   1767		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
   1768			break;
   1769
   1770		ihost->power_control.requesters[i] = NULL;
   1771		ihost->power_control.phys_waiting--;
   1772		ihost->power_control.phys_granted_power++;
   1773		sci_phy_consume_power_handler(iphy);
   1774
   1775		if (iphy->protocol == SAS_PROTOCOL_SSP) {
   1776			u8 j;
   1777
   1778			for (j = 0; j < SCI_MAX_PHYS; j++) {
   1779				struct isci_phy *requester = ihost->power_control.requesters[j];
   1780
   1781				/*
   1782				 * Search the power_control queue to see if there are other phys
   1783				 * attached to the same remote device. If found, take all of
   1784				 * them out of await_sas_power state.
   1785				 */
   1786				if (requester != NULL && requester != iphy) {
   1787					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
   1788							  iphy->frame_rcvd.iaf.sas_addr,
   1789							  sizeof(requester->frame_rcvd.iaf.sas_addr));
   1790
   1791					if (other == 0) {
   1792						ihost->power_control.requesters[j] = NULL;
   1793						ihost->power_control.phys_waiting--;
   1794						sci_phy_consume_power_handler(requester);
   1795					}
   1796				}
   1797			}
   1798		}
   1799	}
   1800
   1801	/*
   1802	 * It doesn't matter if the power list is empty, we need to start the
   1803	 * timer in case another phy becomes ready.
   1804	 */
   1805	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
   1806	ihost->power_control.timer_started = true;
   1807
   1808done:
   1809	spin_unlock_irqrestore(&ihost->scic_lock, flags);
   1810}
   1811
   1812void sci_controller_power_control_queue_insert(struct isci_host *ihost,
   1813					       struct isci_phy *iphy)
   1814{
   1815	BUG_ON(iphy == NULL);
   1816
   1817	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
   1818		ihost->power_control.phys_granted_power++;
   1819		sci_phy_consume_power_handler(iphy);
   1820
   1821		/*
   1822		 * stop and start the power_control timer. When the timer fires, the
   1823		 * no_of_phys_granted_power will be set to 0
   1824		 */
   1825		if (ihost->power_control.timer_started)
   1826			sci_del_timer(&ihost->power_control.timer);
   1827
   1828		sci_mod_timer(&ihost->power_control.timer,
   1829				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
   1830		ihost->power_control.timer_started = true;
   1831
   1832	} else {
   1833		/*
   1834		 * There are phys, attached to the same sas address as this phy, are
   1835		 * already in READY state, this phy don't need wait.
   1836		 */
   1837		u8 i;
   1838		struct isci_phy *current_phy;
   1839
   1840		for (i = 0; i < SCI_MAX_PHYS; i++) {
   1841			u8 other;
   1842			current_phy = &ihost->phys[i];
   1843
   1844			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
   1845				       iphy->frame_rcvd.iaf.sas_addr,
   1846				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
   1847
   1848			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
   1849			    current_phy->protocol == SAS_PROTOCOL_SSP &&
   1850			    other == 0) {
   1851				sci_phy_consume_power_handler(iphy);
   1852				break;
   1853			}
   1854		}
   1855
   1856		if (i == SCI_MAX_PHYS) {
   1857			/* Add the phy in the waiting list */
   1858			ihost->power_control.requesters[iphy->phy_index] = iphy;
   1859			ihost->power_control.phys_waiting++;
   1860		}
   1861	}
   1862}
   1863
   1864void sci_controller_power_control_queue_remove(struct isci_host *ihost,
   1865					       struct isci_phy *iphy)
   1866{
   1867	BUG_ON(iphy == NULL);
   1868
   1869	if (ihost->power_control.requesters[iphy->phy_index])
   1870		ihost->power_control.phys_waiting--;
   1871
   1872	ihost->power_control.requesters[iphy->phy_index] = NULL;
   1873}
   1874
   1875static int is_long_cable(int phy, unsigned char selection_byte)
   1876{
   1877	return !!(selection_byte & (1 << phy));
   1878}
   1879
   1880static int is_medium_cable(int phy, unsigned char selection_byte)
   1881{
   1882	return !!(selection_byte & (1 << (phy + 4)));
   1883}
   1884
   1885static enum cable_selections decode_selection_byte(
   1886	int phy,
   1887	unsigned char selection_byte)
   1888{
   1889	return ((selection_byte & (1 << phy)) ? 1 : 0)
   1890		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
   1891}
   1892
   1893static unsigned char *to_cable_select(struct isci_host *ihost)
   1894{
   1895	if (is_cable_select_overridden())
   1896		return ((unsigned char *)&cable_selection_override)
   1897			+ ihost->id;
   1898	else
   1899		return &ihost->oem_parameters.controller.cable_selection_mask;
   1900}
   1901
   1902enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
   1903{
   1904	return decode_selection_byte(phy, *to_cable_select(ihost));
   1905}
   1906
   1907char *lookup_cable_names(enum cable_selections selection)
   1908{
   1909	static char *cable_names[] = {
   1910		[short_cable]     = "short",
   1911		[long_cable]      = "long",
   1912		[medium_cable]    = "medium",
   1913		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
   1914	};
   1915	return (selection <= undefined_cable) ? cable_names[selection]
   1916					      : cable_names[undefined_cable];
   1917}
   1918
   1919#define AFE_REGISTER_WRITE_DELAY 10
   1920
   1921static void sci_controller_afe_initialization(struct isci_host *ihost)
   1922{
   1923	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
   1924	const struct sci_oem_params *oem = &ihost->oem_parameters;
   1925	struct pci_dev *pdev = ihost->pdev;
   1926	u32 afe_status;
   1927	u32 phy_id;
   1928	unsigned char cable_selection_mask = *to_cable_select(ihost);
   1929
   1930	/* Clear DFX Status registers */
   1931	writel(0x0081000f, &afe->afe_dfx_master_control0);
   1932	udelay(AFE_REGISTER_WRITE_DELAY);
   1933
   1934	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
   1935		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
   1936		 * Timer, PM Stagger Timer
   1937		 */
   1938		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
   1939		udelay(AFE_REGISTER_WRITE_DELAY);
   1940	}
   1941
   1942	/* Configure bias currents to normal */
   1943	if (is_a2(pdev))
   1944		writel(0x00005A00, &afe->afe_bias_control);
   1945	else if (is_b0(pdev) || is_c0(pdev))
   1946		writel(0x00005F00, &afe->afe_bias_control);
   1947	else if (is_c1(pdev))
   1948		writel(0x00005500, &afe->afe_bias_control);
   1949
   1950	udelay(AFE_REGISTER_WRITE_DELAY);
   1951
   1952	/* Enable PLL */
   1953	if (is_a2(pdev))
   1954		writel(0x80040908, &afe->afe_pll_control0);
   1955	else if (is_b0(pdev) || is_c0(pdev))
   1956		writel(0x80040A08, &afe->afe_pll_control0);
   1957	else if (is_c1(pdev)) {
   1958		writel(0x80000B08, &afe->afe_pll_control0);
   1959		udelay(AFE_REGISTER_WRITE_DELAY);
   1960		writel(0x00000B08, &afe->afe_pll_control0);
   1961		udelay(AFE_REGISTER_WRITE_DELAY);
   1962		writel(0x80000B08, &afe->afe_pll_control0);
   1963	}
   1964
   1965	udelay(AFE_REGISTER_WRITE_DELAY);
   1966
   1967	/* Wait for the PLL to lock */
   1968	do {
   1969		afe_status = readl(&afe->afe_common_block_status);
   1970		udelay(AFE_REGISTER_WRITE_DELAY);
   1971	} while ((afe_status & 0x00001000) == 0);
   1972
   1973	if (is_a2(pdev)) {
   1974		/* Shorten SAS SNW lock time (RxLock timer value from 76
   1975		 * us to 50 us)
   1976		 */
   1977		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
   1978		udelay(AFE_REGISTER_WRITE_DELAY);
   1979	}
   1980
   1981	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
   1982		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
   1983		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
   1984		int cable_length_long =
   1985			is_long_cable(phy_id, cable_selection_mask);
   1986		int cable_length_medium =
   1987			is_medium_cable(phy_id, cable_selection_mask);
   1988
   1989		if (is_a2(pdev)) {
   1990			/* All defaults, except the Receive Word
   1991			 * Alignament/Comma Detect Enable....(0xe800)
   1992			 */
   1993			writel(0x00004512, &xcvr->afe_xcvr_control0);
   1994			udelay(AFE_REGISTER_WRITE_DELAY);
   1995
   1996			writel(0x0050100F, &xcvr->afe_xcvr_control1);
   1997			udelay(AFE_REGISTER_WRITE_DELAY);
   1998		} else if (is_b0(pdev)) {
   1999			/* Configure transmitter SSC parameters */
   2000			writel(0x00030000, &xcvr->afe_tx_ssc_control);
   2001			udelay(AFE_REGISTER_WRITE_DELAY);
   2002		} else if (is_c0(pdev)) {
   2003			/* Configure transmitter SSC parameters */
   2004			writel(0x00010202, &xcvr->afe_tx_ssc_control);
   2005			udelay(AFE_REGISTER_WRITE_DELAY);
   2006
   2007			/* All defaults, except the Receive Word
   2008			 * Alignament/Comma Detect Enable....(0xe800)
   2009			 */
   2010			writel(0x00014500, &xcvr->afe_xcvr_control0);
   2011			udelay(AFE_REGISTER_WRITE_DELAY);
   2012		} else if (is_c1(pdev)) {
   2013			/* Configure transmitter SSC parameters */
   2014			writel(0x00010202, &xcvr->afe_tx_ssc_control);
   2015			udelay(AFE_REGISTER_WRITE_DELAY);
   2016
   2017			/* All defaults, except the Receive Word
   2018			 * Alignament/Comma Detect Enable....(0xe800)
   2019			 */
   2020			writel(0x0001C500, &xcvr->afe_xcvr_control0);
   2021			udelay(AFE_REGISTER_WRITE_DELAY);
   2022		}
   2023
   2024		/* Power up TX and RX out from power down (PWRDNTX and
   2025		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
   2026		 */
   2027		if (is_a2(pdev))
   2028			writel(0x000003F0, &xcvr->afe_channel_control);
   2029		else if (is_b0(pdev)) {
   2030			writel(0x000003D7, &xcvr->afe_channel_control);
   2031			udelay(AFE_REGISTER_WRITE_DELAY);
   2032
   2033			writel(0x000003D4, &xcvr->afe_channel_control);
   2034		} else if (is_c0(pdev)) {
   2035			writel(0x000001E7, &xcvr->afe_channel_control);
   2036			udelay(AFE_REGISTER_WRITE_DELAY);
   2037
   2038			writel(0x000001E4, &xcvr->afe_channel_control);
   2039		} else if (is_c1(pdev)) {
   2040			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
   2041			       &xcvr->afe_channel_control);
   2042			udelay(AFE_REGISTER_WRITE_DELAY);
   2043
   2044			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
   2045			       &xcvr->afe_channel_control);
   2046		}
   2047		udelay(AFE_REGISTER_WRITE_DELAY);
   2048
   2049		if (is_a2(pdev)) {
   2050			/* Enable TX equalization (0xe824) */
   2051			writel(0x00040000, &xcvr->afe_tx_control);
   2052			udelay(AFE_REGISTER_WRITE_DELAY);
   2053		}
   2054
   2055		if (is_a2(pdev) || is_b0(pdev))
   2056			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
   2057			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
   2058			 * Enabled) ....(0xe800)
   2059			 */
   2060			writel(0x00004100, &xcvr->afe_xcvr_control0);
   2061		else if (is_c0(pdev))
   2062			writel(0x00014100, &xcvr->afe_xcvr_control0);
   2063		else if (is_c1(pdev))
   2064			writel(0x0001C100, &xcvr->afe_xcvr_control0);
   2065		udelay(AFE_REGISTER_WRITE_DELAY);
   2066
   2067		/* Leave DFE/FFE on */
   2068		if (is_a2(pdev))
   2069			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
   2070		else if (is_b0(pdev)) {
   2071			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
   2072			udelay(AFE_REGISTER_WRITE_DELAY);
   2073			/* Enable TX equalization (0xe824) */
   2074			writel(0x00040000, &xcvr->afe_tx_control);
   2075		} else if (is_c0(pdev)) {
   2076			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
   2077			udelay(AFE_REGISTER_WRITE_DELAY);
   2078
   2079			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
   2080			udelay(AFE_REGISTER_WRITE_DELAY);
   2081
   2082			/* Enable TX equalization (0xe824) */
   2083			writel(0x00040000, &xcvr->afe_tx_control);
   2084		} else if (is_c1(pdev)) {
   2085			writel(cable_length_long ? 0x01500C0C :
   2086			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
   2087			       &xcvr->afe_xcvr_control1);
   2088			udelay(AFE_REGISTER_WRITE_DELAY);
   2089
   2090			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
   2091			udelay(AFE_REGISTER_WRITE_DELAY);
   2092
   2093			writel(cable_length_long ? 0x33091C1F :
   2094			       cable_length_medium ? 0x3315181F : 0x2B17161F,
   2095			       &xcvr->afe_rx_ssc_control0);
   2096			udelay(AFE_REGISTER_WRITE_DELAY);
   2097
   2098			/* Enable TX equalization (0xe824) */
   2099			writel(0x00040000, &xcvr->afe_tx_control);
   2100		}
   2101
   2102		udelay(AFE_REGISTER_WRITE_DELAY);
   2103
   2104		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
   2105		udelay(AFE_REGISTER_WRITE_DELAY);
   2106
   2107		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
   2108		udelay(AFE_REGISTER_WRITE_DELAY);
   2109
   2110		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
   2111		udelay(AFE_REGISTER_WRITE_DELAY);
   2112
   2113		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
   2114		udelay(AFE_REGISTER_WRITE_DELAY);
   2115	}
   2116
   2117	/* Transfer control to the PEs */
   2118	writel(0x00010f00, &afe->afe_dfx_master_control0);
   2119	udelay(AFE_REGISTER_WRITE_DELAY);
   2120}
   2121
   2122static void sci_controller_initialize_power_control(struct isci_host *ihost)
   2123{
   2124	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
   2125
   2126	memset(ihost->power_control.requesters, 0,
   2127	       sizeof(ihost->power_control.requesters));
   2128
   2129	ihost->power_control.phys_waiting = 0;
   2130	ihost->power_control.phys_granted_power = 0;
   2131}
   2132
   2133static enum sci_status sci_controller_initialize(struct isci_host *ihost)
   2134{
   2135	struct sci_base_state_machine *sm = &ihost->sm;
   2136	enum sci_status result = SCI_FAILURE;
   2137	unsigned long i, state, val;
   2138
   2139	if (ihost->sm.current_state_id != SCIC_RESET) {
   2140		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   2141			 __func__, ihost->sm.current_state_id);
   2142		return SCI_FAILURE_INVALID_STATE;
   2143	}
   2144
   2145	sci_change_state(sm, SCIC_INITIALIZING);
   2146
   2147	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
   2148
   2149	ihost->next_phy_to_start = 0;
   2150	ihost->phy_startup_timer_pending = false;
   2151
   2152	sci_controller_initialize_power_control(ihost);
   2153
   2154	/*
   2155	 * There is nothing to do here for B0 since we do not have to
   2156	 * program the AFE registers.
   2157	 * / @todo The AFE settings are supposed to be correct for the B0 but
   2158	 * /       presently they seem to be wrong. */
   2159	sci_controller_afe_initialization(ihost);
   2160
   2161
   2162	/* Take the hardware out of reset */
   2163	writel(0, &ihost->smu_registers->soft_reset_control);
   2164
   2165	/*
   2166	 * / @todo Provide meaningfull error code for hardware failure
   2167	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
   2168	for (i = 100; i >= 1; i--) {
   2169		u32 status;
   2170
   2171		/* Loop until the hardware reports success */
   2172		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
   2173		status = readl(&ihost->smu_registers->control_status);
   2174
   2175		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
   2176			break;
   2177	}
   2178	if (i == 0)
   2179		goto out;
   2180
   2181	/*
   2182	 * Determine what are the actaul device capacities that the
   2183	 * hardware will support */
   2184	val = readl(&ihost->smu_registers->device_context_capacity);
   2185
   2186	/* Record the smaller of the two capacity values */
   2187	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
   2188	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
   2189	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
   2190
   2191	/*
   2192	 * Make all PEs that are unassigned match up with the
   2193	 * logical ports
   2194	 */
   2195	for (i = 0; i < ihost->logical_port_entries; i++) {
   2196		struct scu_port_task_scheduler_group_registers __iomem
   2197			*ptsg = &ihost->scu_registers->peg0.ptsg;
   2198
   2199		writel(i, &ptsg->protocol_engine[i]);
   2200	}
   2201
   2202	/* Initialize hardware PCI Relaxed ordering in DMA engines */
   2203	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
   2204	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
   2205	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
   2206
   2207	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
   2208	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
   2209	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
   2210
   2211	/*
   2212	 * Initialize the PHYs before the PORTs because the PHY registers
   2213	 * are accessed during the port initialization.
   2214	 */
   2215	for (i = 0; i < SCI_MAX_PHYS; i++) {
   2216		result = sci_phy_initialize(&ihost->phys[i],
   2217					    &ihost->scu_registers->peg0.pe[i].tl,
   2218					    &ihost->scu_registers->peg0.pe[i].ll);
   2219		if (result != SCI_SUCCESS)
   2220			goto out;
   2221	}
   2222
   2223	for (i = 0; i < ihost->logical_port_entries; i++) {
   2224		struct isci_port *iport = &ihost->ports[i];
   2225
   2226		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
   2227		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
   2228		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
   2229	}
   2230
   2231	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
   2232
   2233 out:
   2234	/* Advance the controller state machine */
   2235	if (result == SCI_SUCCESS)
   2236		state = SCIC_INITIALIZED;
   2237	else
   2238		state = SCIC_FAILED;
   2239	sci_change_state(sm, state);
   2240
   2241	return result;
   2242}
   2243
   2244static int sci_controller_dma_alloc(struct isci_host *ihost)
   2245{
   2246	struct device *dev = &ihost->pdev->dev;
   2247	size_t size;
   2248	int i;
   2249
   2250	/* detect re-initialization */
   2251	if (ihost->completion_queue)
   2252		return 0;
   2253
   2254	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
   2255	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
   2256						      GFP_KERNEL);
   2257	if (!ihost->completion_queue)
   2258		return -ENOMEM;
   2259
   2260	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
   2261	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
   2262							       GFP_KERNEL);
   2263
   2264	if (!ihost->remote_node_context_table)
   2265		return -ENOMEM;
   2266
   2267	size = ihost->task_context_entries * sizeof(struct scu_task_context),
   2268	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
   2269							GFP_KERNEL);
   2270	if (!ihost->task_context_table)
   2271		return -ENOMEM;
   2272
   2273	size = SCI_UFI_TOTAL_SIZE;
   2274	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
   2275	if (!ihost->ufi_buf)
   2276		return -ENOMEM;
   2277
   2278	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
   2279		struct isci_request *ireq;
   2280		dma_addr_t dma;
   2281
   2282		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
   2283		if (!ireq)
   2284			return -ENOMEM;
   2285
   2286		ireq->tc = &ihost->task_context_table[i];
   2287		ireq->owning_controller = ihost;
   2288		ireq->request_daddr = dma;
   2289		ireq->isci_host = ihost;
   2290		ihost->reqs[i] = ireq;
   2291	}
   2292
   2293	return 0;
   2294}
   2295
   2296static int sci_controller_mem_init(struct isci_host *ihost)
   2297{
   2298	int err = sci_controller_dma_alloc(ihost);
   2299
   2300	if (err)
   2301		return err;
   2302
   2303	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
   2304	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
   2305
   2306	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
   2307	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
   2308
   2309	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
   2310	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
   2311
   2312	sci_unsolicited_frame_control_construct(ihost);
   2313
   2314	/*
   2315	 * Inform the silicon as to the location of the UF headers and
   2316	 * address table.
   2317	 */
   2318	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
   2319		&ihost->scu_registers->sdma.uf_header_base_address_lower);
   2320	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
   2321		&ihost->scu_registers->sdma.uf_header_base_address_upper);
   2322
   2323	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
   2324		&ihost->scu_registers->sdma.uf_address_table_lower);
   2325	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
   2326		&ihost->scu_registers->sdma.uf_address_table_upper);
   2327
   2328	return 0;
   2329}
   2330
   2331/**
   2332 * isci_host_init - (re-)initialize hardware and internal (private) state
   2333 * @ihost: host to init
   2334 *
   2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
   2336 * one-time initialization objects like locks and waitqueues, are
   2337 * not touched (they are initialized in isci_host_alloc)
   2338 */
   2339int isci_host_init(struct isci_host *ihost)
   2340{
   2341	int i, err;
   2342	enum sci_status status;
   2343
   2344	spin_lock_irq(&ihost->scic_lock);
   2345	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
   2346	spin_unlock_irq(&ihost->scic_lock);
   2347	if (status != SCI_SUCCESS) {
   2348		dev_err(&ihost->pdev->dev,
   2349			"%s: sci_controller_construct failed - status = %x\n",
   2350			__func__,
   2351			status);
   2352		return -ENODEV;
   2353	}
   2354
   2355	spin_lock_irq(&ihost->scic_lock);
   2356	status = sci_controller_initialize(ihost);
   2357	spin_unlock_irq(&ihost->scic_lock);
   2358	if (status != SCI_SUCCESS) {
   2359		dev_warn(&ihost->pdev->dev,
   2360			 "%s: sci_controller_initialize failed -"
   2361			 " status = 0x%x\n",
   2362			 __func__, status);
   2363		return -ENODEV;
   2364	}
   2365
   2366	err = sci_controller_mem_init(ihost);
   2367	if (err)
   2368		return err;
   2369
   2370	/* enable sgpio */
   2371	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
   2372	for (i = 0; i < isci_gpio_count(ihost); i++)
   2373		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
   2374	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
   2375
   2376	return 0;
   2377}
   2378
   2379void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
   2380			    struct isci_phy *iphy)
   2381{
   2382	switch (ihost->sm.current_state_id) {
   2383	case SCIC_STARTING:
   2384		sci_del_timer(&ihost->phy_timer);
   2385		ihost->phy_startup_timer_pending = false;
   2386		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
   2387						  iport, iphy);
   2388		sci_controller_start_next_phy(ihost);
   2389		break;
   2390	case SCIC_READY:
   2391		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
   2392						  iport, iphy);
   2393		break;
   2394	default:
   2395		dev_dbg(&ihost->pdev->dev,
   2396			"%s: SCIC Controller linkup event from phy %d in "
   2397			"unexpected state %d\n", __func__, iphy->phy_index,
   2398			ihost->sm.current_state_id);
   2399	}
   2400}
   2401
   2402void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
   2403			      struct isci_phy *iphy)
   2404{
   2405	switch (ihost->sm.current_state_id) {
   2406	case SCIC_STARTING:
   2407	case SCIC_READY:
   2408		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
   2409						   iport, iphy);
   2410		break;
   2411	default:
   2412		dev_dbg(&ihost->pdev->dev,
   2413			"%s: SCIC Controller linkdown event from phy %d in "
   2414			"unexpected state %d\n",
   2415			__func__,
   2416			iphy->phy_index,
   2417			ihost->sm.current_state_id);
   2418	}
   2419}
   2420
   2421bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
   2422{
   2423	u32 index;
   2424
   2425	for (index = 0; index < ihost->remote_node_entries; index++) {
   2426		if ((ihost->device_table[index] != NULL) &&
   2427		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
   2428			return true;
   2429	}
   2430
   2431	return false;
   2432}
   2433
   2434void sci_controller_remote_device_stopped(struct isci_host *ihost,
   2435					  struct isci_remote_device *idev)
   2436{
   2437	if (ihost->sm.current_state_id != SCIC_STOPPING) {
   2438		dev_dbg(&ihost->pdev->dev,
   2439			"SCIC Controller 0x%p remote device stopped event "
   2440			"from device 0x%p in unexpected state %d\n",
   2441			ihost, idev,
   2442			ihost->sm.current_state_id);
   2443		return;
   2444	}
   2445
   2446	if (!sci_controller_has_remote_devices_stopping(ihost))
   2447		isci_host_stop_complete(ihost);
   2448}
   2449
   2450void sci_controller_post_request(struct isci_host *ihost, u32 request)
   2451{
   2452	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
   2453		__func__, ihost->id, request);
   2454
   2455	writel(request, &ihost->smu_registers->post_context_port);
   2456}
   2457
   2458struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
   2459{
   2460	u16 task_index;
   2461	u16 task_sequence;
   2462
   2463	task_index = ISCI_TAG_TCI(io_tag);
   2464
   2465	if (task_index < ihost->task_context_entries) {
   2466		struct isci_request *ireq = ihost->reqs[task_index];
   2467
   2468		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
   2469			task_sequence = ISCI_TAG_SEQ(io_tag);
   2470
   2471			if (task_sequence == ihost->io_request_sequence[task_index])
   2472				return ireq;
   2473		}
   2474	}
   2475
   2476	return NULL;
   2477}
   2478
   2479/**
   2480 * sci_controller_allocate_remote_node_context()
   2481 * This method allocates remote node index and the reserves the remote node
   2482 *    context space for use. This method can fail if there are no more remote
   2483 *    node index available.
   2484 * @ihost: This is the controller object which contains the set of
   2485 *    free remote node ids
   2486 * @idev: This is the device object which is requesting the a remote node
   2487 *    id
   2488 * @node_id: This is the remote node id that is assinged to the device if one
   2489 *    is available
   2490 *
   2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
   2492 * node index available.
   2493 */
   2494enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
   2495							    struct isci_remote_device *idev,
   2496							    u16 *node_id)
   2497{
   2498	u16 node_index;
   2499	u32 remote_node_count = sci_remote_device_node_count(idev);
   2500
   2501	node_index = sci_remote_node_table_allocate_remote_node(
   2502		&ihost->available_remote_nodes, remote_node_count
   2503		);
   2504
   2505	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
   2506		ihost->device_table[node_index] = idev;
   2507
   2508		*node_id = node_index;
   2509
   2510		return SCI_SUCCESS;
   2511	}
   2512
   2513	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
   2514}
   2515
   2516void sci_controller_free_remote_node_context(struct isci_host *ihost,
   2517					     struct isci_remote_device *idev,
   2518					     u16 node_id)
   2519{
   2520	u32 remote_node_count = sci_remote_device_node_count(idev);
   2521
   2522	if (ihost->device_table[node_id] == idev) {
   2523		ihost->device_table[node_id] = NULL;
   2524
   2525		sci_remote_node_table_release_remote_node_index(
   2526			&ihost->available_remote_nodes, remote_node_count, node_id
   2527			);
   2528	}
   2529}
   2530
   2531void sci_controller_copy_sata_response(void *response_buffer,
   2532				       void *frame_header,
   2533				       void *frame_buffer)
   2534{
   2535	/* XXX type safety? */
   2536	memcpy(response_buffer, frame_header, sizeof(u32));
   2537
   2538	memcpy(response_buffer + sizeof(u32),
   2539	       frame_buffer,
   2540	       sizeof(struct dev_to_host_fis) - sizeof(u32));
   2541}
   2542
   2543void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
   2544{
   2545	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
   2546		writel(ihost->uf_control.get,
   2547			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
   2548}
   2549
   2550void isci_tci_free(struct isci_host *ihost, u16 tci)
   2551{
   2552	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
   2553
   2554	ihost->tci_pool[tail] = tci;
   2555	ihost->tci_tail = tail + 1;
   2556}
   2557
   2558static u16 isci_tci_alloc(struct isci_host *ihost)
   2559{
   2560	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
   2561	u16 tci = ihost->tci_pool[head];
   2562
   2563	ihost->tci_head = head + 1;
   2564	return tci;
   2565}
   2566
   2567static u16 isci_tci_space(struct isci_host *ihost)
   2568{
   2569	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
   2570}
   2571
   2572u16 isci_alloc_tag(struct isci_host *ihost)
   2573{
   2574	if (isci_tci_space(ihost)) {
   2575		u16 tci = isci_tci_alloc(ihost);
   2576		u8 seq = ihost->io_request_sequence[tci];
   2577
   2578		return ISCI_TAG(seq, tci);
   2579	}
   2580
   2581	return SCI_CONTROLLER_INVALID_IO_TAG;
   2582}
   2583
   2584enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
   2585{
   2586	u16 tci = ISCI_TAG_TCI(io_tag);
   2587	u16 seq = ISCI_TAG_SEQ(io_tag);
   2588
   2589	/* prevent tail from passing head */
   2590	if (isci_tci_active(ihost) == 0)
   2591		return SCI_FAILURE_INVALID_IO_TAG;
   2592
   2593	if (seq == ihost->io_request_sequence[tci]) {
   2594		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
   2595
   2596		isci_tci_free(ihost, tci);
   2597
   2598		return SCI_SUCCESS;
   2599	}
   2600	return SCI_FAILURE_INVALID_IO_TAG;
   2601}
   2602
   2603enum sci_status sci_controller_start_io(struct isci_host *ihost,
   2604					struct isci_remote_device *idev,
   2605					struct isci_request *ireq)
   2606{
   2607	enum sci_status status;
   2608
   2609	if (ihost->sm.current_state_id != SCIC_READY) {
   2610		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   2611			 __func__, ihost->sm.current_state_id);
   2612		return SCI_FAILURE_INVALID_STATE;
   2613	}
   2614
   2615	status = sci_remote_device_start_io(ihost, idev, ireq);
   2616	if (status != SCI_SUCCESS)
   2617		return status;
   2618
   2619	set_bit(IREQ_ACTIVE, &ireq->flags);
   2620	sci_controller_post_request(ihost, ireq->post_context);
   2621	return SCI_SUCCESS;
   2622}
   2623
   2624enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
   2625						 struct isci_remote_device *idev,
   2626						 struct isci_request *ireq)
   2627{
   2628	/* terminate an ongoing (i.e. started) core IO request.  This does not
   2629	 * abort the IO request at the target, but rather removes the IO
   2630	 * request from the host controller.
   2631	 */
   2632	enum sci_status status;
   2633
   2634	if (ihost->sm.current_state_id != SCIC_READY) {
   2635		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   2636			 __func__, ihost->sm.current_state_id);
   2637		return SCI_FAILURE_INVALID_STATE;
   2638	}
   2639	status = sci_io_request_terminate(ireq);
   2640
   2641	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
   2642		__func__, status, ireq, ireq->flags);
   2643
   2644	if ((status == SCI_SUCCESS) &&
   2645	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
   2646	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
   2647		/* Utilize the original post context command and or in the
   2648		 * POST_TC_ABORT request sub-type.
   2649		 */
   2650		sci_controller_post_request(
   2651			ihost, ireq->post_context |
   2652				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
   2653	}
   2654	return status;
   2655}
   2656
   2657/**
   2658 * sci_controller_complete_io() - This method will perform core specific
   2659 *    completion operations for an IO request.  After this method is invoked,
   2660 *    the user should consider the IO request as invalid until it is properly
   2661 *    reused (i.e. re-constructed).
   2662 * @ihost: The handle to the controller object for which to complete the
   2663 *    IO request.
   2664 * @idev: The handle to the remote device object for which to complete
   2665 *    the IO request.
   2666 * @ireq: the handle to the io request object to complete.
   2667 */
   2668enum sci_status sci_controller_complete_io(struct isci_host *ihost,
   2669					   struct isci_remote_device *idev,
   2670					   struct isci_request *ireq)
   2671{
   2672	enum sci_status status;
   2673
   2674	switch (ihost->sm.current_state_id) {
   2675	case SCIC_STOPPING:
   2676		/* XXX: Implement this function */
   2677		return SCI_FAILURE;
   2678	case SCIC_READY:
   2679		status = sci_remote_device_complete_io(ihost, idev, ireq);
   2680		if (status != SCI_SUCCESS)
   2681			return status;
   2682
   2683		clear_bit(IREQ_ACTIVE, &ireq->flags);
   2684		return SCI_SUCCESS;
   2685	default:
   2686		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   2687			 __func__, ihost->sm.current_state_id);
   2688		return SCI_FAILURE_INVALID_STATE;
   2689	}
   2690
   2691}
   2692
   2693enum sci_status sci_controller_continue_io(struct isci_request *ireq)
   2694{
   2695	struct isci_host *ihost = ireq->owning_controller;
   2696
   2697	if (ihost->sm.current_state_id != SCIC_READY) {
   2698		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
   2699			 __func__, ihost->sm.current_state_id);
   2700		return SCI_FAILURE_INVALID_STATE;
   2701	}
   2702
   2703	set_bit(IREQ_ACTIVE, &ireq->flags);
   2704	sci_controller_post_request(ihost, ireq->post_context);
   2705	return SCI_SUCCESS;
   2706}
   2707
   2708/**
   2709 * sci_controller_start_task() - This method is called by the SCIC user to
   2710 *    send/start a framework task management request.
   2711 * @ihost: the handle to the controller object for which to start the task
   2712 *    management request.
   2713 * @idev: the handle to the remote device object for which to start
   2714 *    the task management request.
   2715 * @ireq: the handle to the task request object to start.
   2716 */
   2717enum sci_status sci_controller_start_task(struct isci_host *ihost,
   2718					  struct isci_remote_device *idev,
   2719					  struct isci_request *ireq)
   2720{
   2721	enum sci_status status;
   2722
   2723	if (ihost->sm.current_state_id != SCIC_READY) {
   2724		dev_warn(&ihost->pdev->dev,
   2725			 "%s: SCIC Controller starting task from invalid "
   2726			 "state\n",
   2727			 __func__);
   2728		return SCI_FAILURE_INVALID_STATE;
   2729	}
   2730
   2731	status = sci_remote_device_start_task(ihost, idev, ireq);
   2732	switch (status) {
   2733	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
   2734		set_bit(IREQ_ACTIVE, &ireq->flags);
   2735
   2736		/*
   2737		 * We will let framework know this task request started successfully,
   2738		 * although core is still woring on starting the request (to post tc when
   2739		 * RNC is resumed.)
   2740		 */
   2741		return SCI_SUCCESS;
   2742	case SCI_SUCCESS:
   2743		set_bit(IREQ_ACTIVE, &ireq->flags);
   2744		sci_controller_post_request(ihost, ireq->post_context);
   2745		break;
   2746	default:
   2747		break;
   2748	}
   2749
   2750	return status;
   2751}
   2752
   2753static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
   2754{
   2755	int d;
   2756
   2757	/* no support for TX_GP_CFG */
   2758	if (reg_index == 0)
   2759		return -EINVAL;
   2760
   2761	for (d = 0; d < isci_gpio_count(ihost); d++) {
   2762		u32 val = 0x444; /* all ODx.n clear */
   2763		int i;
   2764
   2765		for (i = 0; i < 3; i++) {
   2766			int bit;
   2767
   2768			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
   2769						       write_data, reg_index,
   2770						       reg_count);
   2771			if (bit < 0)
   2772				break;
   2773
   2774			/* if od is set, clear the 'invert' bit */
   2775			val &= ~(bit << ((i << 2) + 2));
   2776		}
   2777
   2778		if (i < 3)
   2779			break;
   2780		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
   2781	}
   2782
   2783	/* unless reg_index is > 1, we should always be able to write at
   2784	 * least one register
   2785	 */
   2786	return d > 0;
   2787}
   2788
   2789int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
   2790		    u8 reg_count, u8 *write_data)
   2791{
   2792	struct isci_host *ihost = sas_ha->lldd_ha;
   2793	int written;
   2794
   2795	switch (reg_type) {
   2796	case SAS_GPIO_REG_TX_GP:
   2797		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
   2798		break;
   2799	default:
   2800		written = -EINVAL;
   2801	}
   2802
   2803	return written;
   2804}