cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fc_exch.c (72607B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
      4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
      5 * Copyright(c) 2008 Mike Christie
      6 *
      7 * Maintained at www.Open-FCoE.org
      8 */
      9
     10/*
     11 * Fibre Channel exchange and sequence handling.
     12 */
     13
     14#include <linux/timer.h>
     15#include <linux/slab.h>
     16#include <linux/err.h>
     17#include <linux/export.h>
     18#include <linux/log2.h>
     19
     20#include <scsi/fc/fc_fc2.h>
     21
     22#include <scsi/libfc.h>
     23
     24#include "fc_libfc.h"
     25
     26u16	fc_cpu_mask;		/* cpu mask for possible cpus */
     27EXPORT_SYMBOL(fc_cpu_mask);
     28static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
     29static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
     30static struct workqueue_struct *fc_exch_workqueue;
     31
     32/*
     33 * Structure and function definitions for managing Fibre Channel Exchanges
     34 * and Sequences.
     35 *
     36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
     37 *
     38 * fc_exch_mgr holds the exchange state for an N port
     39 *
     40 * fc_exch holds state for one exchange and links to its active sequence.
     41 *
     42 * fc_seq holds the state for an individual sequence.
     43 */
     44
     45/**
     46 * struct fc_exch_pool - Per cpu exchange pool
     47 * @next_index:	  Next possible free exchange index
     48 * @total_exches: Total allocated exchanges
     49 * @lock:	  Exch pool lock
     50 * @ex_list:	  List of exchanges
     51 * @left:	  Cache of free slot in exch array
     52 * @right:	  Cache of free slot in exch array
     53 *
     54 * This structure manages per cpu exchanges in array of exchange pointers.
     55 * This array is allocated followed by struct fc_exch_pool memory for
     56 * assigned range of exchanges to per cpu pool.
     57 */
     58struct fc_exch_pool {
     59	spinlock_t	 lock;
     60	struct list_head ex_list;
     61	u16		 next_index;
     62	u16		 total_exches;
     63
     64	u16		 left;
     65	u16		 right;
     66} ____cacheline_aligned_in_smp;
     67
     68/**
     69 * struct fc_exch_mgr - The Exchange Manager (EM).
     70 * @class:	    Default class for new sequences
     71 * @kref:	    Reference counter
     72 * @min_xid:	    Minimum exchange ID
     73 * @max_xid:	    Maximum exchange ID
     74 * @ep_pool:	    Reserved exchange pointers
     75 * @pool_max_index: Max exch array index in exch pool
     76 * @pool:	    Per cpu exch pool
     77 * @lport:	    Local exchange port
     78 * @stats:	    Statistics structure
     79 *
     80 * This structure is the center for creating exchanges and sequences.
     81 * It manages the allocation of exchange IDs.
     82 */
     83struct fc_exch_mgr {
     84	struct fc_exch_pool __percpu *pool;
     85	mempool_t	*ep_pool;
     86	struct fc_lport	*lport;
     87	enum fc_class	class;
     88	struct kref	kref;
     89	u16		min_xid;
     90	u16		max_xid;
     91	u16		pool_max_index;
     92
     93	struct {
     94		atomic_t no_free_exch;
     95		atomic_t no_free_exch_xid;
     96		atomic_t xid_not_found;
     97		atomic_t xid_busy;
     98		atomic_t seq_not_found;
     99		atomic_t non_bls_resp;
    100	} stats;
    101};
    102
    103/**
    104 * struct fc_exch_mgr_anchor - primary structure for list of EMs
    105 * @ema_list: Exchange Manager Anchor list
    106 * @mp:	      Exchange Manager associated with this anchor
    107 * @match:    Routine to determine if this anchor's EM should be used
    108 *
    109 * When walking the list of anchors the match routine will be called
    110 * for each anchor to determine if that EM should be used. The last
    111 * anchor in the list will always match to handle any exchanges not
    112 * handled by other EMs. The non-default EMs would be added to the
    113 * anchor list by HW that provides offloads.
    114 */
    115struct fc_exch_mgr_anchor {
    116	struct list_head ema_list;
    117	struct fc_exch_mgr *mp;
    118	bool (*match)(struct fc_frame *);
    119};
    120
    121static void fc_exch_rrq(struct fc_exch *);
    122static void fc_seq_ls_acc(struct fc_frame *);
    123static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
    124			  enum fc_els_rjt_explan);
    125static void fc_exch_els_rec(struct fc_frame *);
    126static void fc_exch_els_rrq(struct fc_frame *);
    127
    128/*
    129 * Internal implementation notes.
    130 *
    131 * The exchange manager is one by default in libfc but LLD may choose
    132 * to have one per CPU. The sequence manager is one per exchange manager
    133 * and currently never separated.
    134 *
    135 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
    136 * assigned by the Sequence Initiator that shall be unique for a specific
    137 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
    138 * qualified by exchange ID, which one might think it would be.
    139 * In practice this limits the number of open sequences and exchanges to 256
    140 * per session.	 For most targets we could treat this limit as per exchange.
    141 *
    142 * The exchange and its sequence are freed when the last sequence is received.
    143 * It's possible for the remote port to leave an exchange open without
    144 * sending any sequences.
    145 *
    146 * Notes on reference counts:
    147 *
    148 * Exchanges are reference counted and exchange gets freed when the reference
    149 * count becomes zero.
    150 *
    151 * Timeouts:
    152 * Sequences are timed out for E_D_TOV and R_A_TOV.
    153 *
    154 * Sequence event handling:
    155 *
    156 * The following events may occur on initiator sequences:
    157 *
    158 *	Send.
    159 *	    For now, the whole thing is sent.
    160 *	Receive ACK
    161 *	    This applies only to class F.
    162 *	    The sequence is marked complete.
    163 *	ULP completion.
    164 *	    The upper layer calls fc_exch_done() when done
    165 *	    with exchange and sequence tuple.
    166 *	RX-inferred completion.
    167 *	    When we receive the next sequence on the same exchange, we can
    168 *	    retire the previous sequence ID.  (XXX not implemented).
    169 *	Timeout.
    170 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
    171 *	    E_D_TOV causes abort and calls upper layer response handler
    172 *	    with FC_EX_TIMEOUT error.
    173 *	Receive RJT
    174 *	    XXX defer.
    175 *	Send ABTS
    176 *	    On timeout.
    177 *
    178 * The following events may occur on recipient sequences:
    179 *
    180 *	Receive
    181 *	    Allocate sequence for first frame received.
    182 *	    Hold during receive handler.
    183 *	    Release when final frame received.
    184 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
    185 *	Receive ABTS
    186 *	    Deallocate sequence
    187 *	Send RJT
    188 *	    Deallocate
    189 *
    190 * For now, we neglect conditions where only part of a sequence was
    191 * received or transmitted, or where out-of-order receipt is detected.
    192 */
    193
    194/*
    195 * Locking notes:
    196 *
    197 * The EM code run in a per-CPU worker thread.
    198 *
    199 * To protect against concurrency between a worker thread code and timers,
    200 * sequence allocation and deallocation must be locked.
    201 *  - exchange refcnt can be done atomicly without locks.
    202 *  - sequence allocation must be locked by exch lock.
    203 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
    204 *    EM pool lock must be taken before the ex_lock.
    205 */
    206
    207/*
    208 * opcode names for debugging.
    209 */
    210static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
    211
    212/**
    213 * fc_exch_name_lookup() - Lookup name by opcode
    214 * @op:	       Opcode to be looked up
    215 * @table:     Opcode/name table
    216 * @max_index: Index not to be exceeded
    217 *
    218 * This routine is used to determine a human-readable string identifying
    219 * a R_CTL opcode.
    220 */
    221static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
    222					      unsigned int max_index)
    223{
    224	const char *name = NULL;
    225
    226	if (op < max_index)
    227		name = table[op];
    228	if (!name)
    229		name = "unknown";
    230	return name;
    231}
    232
    233/**
    234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
    235 * @op: The opcode to be looked up
    236 */
    237static const char *fc_exch_rctl_name(unsigned int op)
    238{
    239	return fc_exch_name_lookup(op, fc_exch_rctl_names,
    240				   ARRAY_SIZE(fc_exch_rctl_names));
    241}
    242
    243/**
    244 * fc_exch_hold() - Increment an exchange's reference count
    245 * @ep: Echange to be held
    246 */
    247static inline void fc_exch_hold(struct fc_exch *ep)
    248{
    249	atomic_inc(&ep->ex_refcnt);
    250}
    251
    252/**
    253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
    254 *			 and determine SOF and EOF.
    255 * @ep:	   The exchange to that will use the header
    256 * @fp:	   The frame whose header is to be modified
    257 * @f_ctl: F_CTL bits that will be used for the frame header
    258 *
    259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
    260 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
    261 */
    262static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
    263			      u32 f_ctl)
    264{
    265	struct fc_frame_header *fh = fc_frame_header_get(fp);
    266	u16 fill;
    267
    268	fr_sof(fp) = ep->class;
    269	if (ep->seq.cnt)
    270		fr_sof(fp) = fc_sof_normal(ep->class);
    271
    272	if (f_ctl & FC_FC_END_SEQ) {
    273		fr_eof(fp) = FC_EOF_T;
    274		if (fc_sof_needs_ack((enum fc_sof)ep->class))
    275			fr_eof(fp) = FC_EOF_N;
    276		/*
    277		 * From F_CTL.
    278		 * The number of fill bytes to make the length a 4-byte
    279		 * multiple is the low order 2-bits of the f_ctl.
    280		 * The fill itself will have been cleared by the frame
    281		 * allocation.
    282		 * After this, the length will be even, as expected by
    283		 * the transport.
    284		 */
    285		fill = fr_len(fp) & 3;
    286		if (fill) {
    287			fill = 4 - fill;
    288			/* TODO, this may be a problem with fragmented skb */
    289			skb_put(fp_skb(fp), fill);
    290			hton24(fh->fh_f_ctl, f_ctl | fill);
    291		}
    292	} else {
    293		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
    294		fr_eof(fp) = FC_EOF_N;
    295	}
    296
    297	/* Initialize remaining fh fields from fc_fill_fc_hdr */
    298	fh->fh_ox_id = htons(ep->oxid);
    299	fh->fh_rx_id = htons(ep->rxid);
    300	fh->fh_seq_id = ep->seq.id;
    301	fh->fh_seq_cnt = htons(ep->seq.cnt);
    302}
    303
    304/**
    305 * fc_exch_release() - Decrement an exchange's reference count
    306 * @ep: Exchange to be released
    307 *
    308 * If the reference count reaches zero and the exchange is complete,
    309 * it is freed.
    310 */
    311static void fc_exch_release(struct fc_exch *ep)
    312{
    313	struct fc_exch_mgr *mp;
    314
    315	if (atomic_dec_and_test(&ep->ex_refcnt)) {
    316		mp = ep->em;
    317		if (ep->destructor)
    318			ep->destructor(&ep->seq, ep->arg);
    319		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
    320		mempool_free(ep, mp->ep_pool);
    321	}
    322}
    323
    324/**
    325 * fc_exch_timer_cancel() - cancel exch timer
    326 * @ep:		The exchange whose timer to be canceled
    327 */
    328static inline void fc_exch_timer_cancel(struct fc_exch *ep)
    329{
    330	if (cancel_delayed_work(&ep->timeout_work)) {
    331		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
    332		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
    333	}
    334}
    335
    336/**
    337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
    338 *				the exchange lock held
    339 * @ep:		The exchange whose timer will start
    340 * @timer_msec: The timeout period
    341 *
    342 * Used for upper level protocols to time out the exchange.
    343 * The timer is cancelled when it fires or when the exchange completes.
    344 */
    345static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
    346					    unsigned int timer_msec)
    347{
    348	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
    349		return;
    350
    351	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
    352
    353	fc_exch_hold(ep);		/* hold for timer */
    354	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
    355				msecs_to_jiffies(timer_msec))) {
    356		FC_EXCH_DBG(ep, "Exchange already queued\n");
    357		fc_exch_release(ep);
    358	}
    359}
    360
    361/**
    362 * fc_exch_timer_set() - Lock the exchange and set the timer
    363 * @ep:		The exchange whose timer will start
    364 * @timer_msec: The timeout period
    365 */
    366static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
    367{
    368	spin_lock_bh(&ep->ex_lock);
    369	fc_exch_timer_set_locked(ep, timer_msec);
    370	spin_unlock_bh(&ep->ex_lock);
    371}
    372
    373/**
    374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
    375 * @ep: The exchange that is complete
    376 *
    377 * Note: May sleep if invoked from outside a response handler.
    378 */
    379static int fc_exch_done_locked(struct fc_exch *ep)
    380{
    381	int rc = 1;
    382
    383	/*
    384	 * We must check for completion in case there are two threads
    385	 * tyring to complete this. But the rrq code will reuse the
    386	 * ep, and in that case we only clear the resp and set it as
    387	 * complete, so it can be reused by the timer to send the rrq.
    388	 */
    389	if (ep->state & FC_EX_DONE)
    390		return rc;
    391	ep->esb_stat |= ESB_ST_COMPLETE;
    392
    393	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
    394		ep->state |= FC_EX_DONE;
    395		fc_exch_timer_cancel(ep);
    396		rc = 0;
    397	}
    398	return rc;
    399}
    400
    401static struct fc_exch fc_quarantine_exch;
    402
    403/**
    404 * fc_exch_ptr_get() - Return an exchange from an exchange pool
    405 * @pool:  Exchange Pool to get an exchange from
    406 * @index: Index of the exchange within the pool
    407 *
    408 * Use the index to get an exchange from within an exchange pool. exches
    409 * will point to an array of exchange pointers. The index will select
    410 * the exchange within the array.
    411 */
    412static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
    413					      u16 index)
    414{
    415	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
    416	return exches[index];
    417}
    418
    419/**
    420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
    421 * @pool:  The pool to assign the exchange to
    422 * @index: The index in the pool where the exchange will be assigned
    423 * @ep:	   The exchange to assign to the pool
    424 */
    425static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
    426				   struct fc_exch *ep)
    427{
    428	((struct fc_exch **)(pool + 1))[index] = ep;
    429}
    430
    431/**
    432 * fc_exch_delete() - Delete an exchange
    433 * @ep: The exchange to be deleted
    434 */
    435static void fc_exch_delete(struct fc_exch *ep)
    436{
    437	struct fc_exch_pool *pool;
    438	u16 index;
    439
    440	pool = ep->pool;
    441	spin_lock_bh(&pool->lock);
    442	WARN_ON(pool->total_exches <= 0);
    443	pool->total_exches--;
    444
    445	/* update cache of free slot */
    446	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
    447	if (!(ep->state & FC_EX_QUARANTINE)) {
    448		if (pool->left == FC_XID_UNKNOWN)
    449			pool->left = index;
    450		else if (pool->right == FC_XID_UNKNOWN)
    451			pool->right = index;
    452		else
    453			pool->next_index = index;
    454		fc_exch_ptr_set(pool, index, NULL);
    455	} else {
    456		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
    457	}
    458	list_del(&ep->ex_list);
    459	spin_unlock_bh(&pool->lock);
    460	fc_exch_release(ep);	/* drop hold for exch in mp */
    461}
    462
    463static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
    464			      struct fc_frame *fp)
    465{
    466	struct fc_exch *ep;
    467	struct fc_frame_header *fh = fc_frame_header_get(fp);
    468	int error = -ENXIO;
    469	u32 f_ctl;
    470	u8 fh_type = fh->fh_type;
    471
    472	ep = fc_seq_exch(sp);
    473
    474	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
    475		fc_frame_free(fp);
    476		goto out;
    477	}
    478
    479	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
    480
    481	f_ctl = ntoh24(fh->fh_f_ctl);
    482	fc_exch_setup_hdr(ep, fp, f_ctl);
    483	fr_encaps(fp) = ep->encaps;
    484
    485	/*
    486	 * update sequence count if this frame is carrying
    487	 * multiple FC frames when sequence offload is enabled
    488	 * by LLD.
    489	 */
    490	if (fr_max_payload(fp))
    491		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
    492					fr_max_payload(fp));
    493	else
    494		sp->cnt++;
    495
    496	/*
    497	 * Send the frame.
    498	 */
    499	error = lport->tt.frame_send(lport, fp);
    500
    501	if (fh_type == FC_TYPE_BLS)
    502		goto out;
    503
    504	/*
    505	 * Update the exchange and sequence flags,
    506	 * assuming all frames for the sequence have been sent.
    507	 * We can only be called to send once for each sequence.
    508	 */
    509	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
    510	if (f_ctl & FC_FC_SEQ_INIT)
    511		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
    512out:
    513	return error;
    514}
    515
    516/**
    517 * fc_seq_send() - Send a frame using existing sequence/exchange pair
    518 * @lport: The local port that the exchange will be sent on
    519 * @sp:	   The sequence to be sent
    520 * @fp:	   The frame to be sent on the exchange
    521 *
    522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
    523 * or indirectly by calling libfc_function_template.frame_send().
    524 */
    525int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
    526{
    527	struct fc_exch *ep;
    528	int error;
    529	ep = fc_seq_exch(sp);
    530	spin_lock_bh(&ep->ex_lock);
    531	error = fc_seq_send_locked(lport, sp, fp);
    532	spin_unlock_bh(&ep->ex_lock);
    533	return error;
    534}
    535EXPORT_SYMBOL(fc_seq_send);
    536
    537/**
    538 * fc_seq_alloc() - Allocate a sequence for a given exchange
    539 * @ep:	    The exchange to allocate a new sequence for
    540 * @seq_id: The sequence ID to be used
    541 *
    542 * We don't support multiple originated sequences on the same exchange.
    543 * By implication, any previously originated sequence on this exchange
    544 * is complete, and we reallocate the same sequence.
    545 */
    546static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
    547{
    548	struct fc_seq *sp;
    549
    550	sp = &ep->seq;
    551	sp->ssb_stat = 0;
    552	sp->cnt = 0;
    553	sp->id = seq_id;
    554	return sp;
    555}
    556
    557/**
    558 * fc_seq_start_next_locked() - Allocate a new sequence on the same
    559 *				exchange as the supplied sequence
    560 * @sp: The sequence/exchange to get a new sequence for
    561 */
    562static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
    563{
    564	struct fc_exch *ep = fc_seq_exch(sp);
    565
    566	sp = fc_seq_alloc(ep, ep->seq_id++);
    567	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
    568		    ep->f_ctl, sp->id);
    569	return sp;
    570}
    571
    572/**
    573 * fc_seq_start_next() - Lock the exchange and get a new sequence
    574 *			 for a given sequence/exchange pair
    575 * @sp: The sequence/exchange to get a new exchange for
    576 */
    577struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
    578{
    579	struct fc_exch *ep = fc_seq_exch(sp);
    580
    581	spin_lock_bh(&ep->ex_lock);
    582	sp = fc_seq_start_next_locked(sp);
    583	spin_unlock_bh(&ep->ex_lock);
    584
    585	return sp;
    586}
    587EXPORT_SYMBOL(fc_seq_start_next);
    588
    589/*
    590 * Set the response handler for the exchange associated with a sequence.
    591 *
    592 * Note: May sleep if invoked from outside a response handler.
    593 */
    594void fc_seq_set_resp(struct fc_seq *sp,
    595		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
    596		     void *arg)
    597{
    598	struct fc_exch *ep = fc_seq_exch(sp);
    599	DEFINE_WAIT(wait);
    600
    601	spin_lock_bh(&ep->ex_lock);
    602	while (ep->resp_active && ep->resp_task != current) {
    603		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
    604		spin_unlock_bh(&ep->ex_lock);
    605
    606		schedule();
    607
    608		spin_lock_bh(&ep->ex_lock);
    609	}
    610	finish_wait(&ep->resp_wq, &wait);
    611	ep->resp = resp;
    612	ep->arg = arg;
    613	spin_unlock_bh(&ep->ex_lock);
    614}
    615EXPORT_SYMBOL(fc_seq_set_resp);
    616
    617/**
    618 * fc_exch_abort_locked() - Abort an exchange
    619 * @ep:	The exchange to be aborted
    620 * @timer_msec: The period of time to wait before aborting
    621 *
    622 * Abort an exchange and sequence. Generally called because of a
    623 * exchange timeout or an abort from the upper layer.
    624 *
    625 * A timer_msec can be specified for abort timeout, if non-zero
    626 * timer_msec value is specified then exchange resp handler
    627 * will be called with timeout error if no response to abort.
    628 *
    629 * Locking notes:  Called with exch lock held
    630 *
    631 * Return value: 0 on success else error code
    632 */
    633static int fc_exch_abort_locked(struct fc_exch *ep,
    634				unsigned int timer_msec)
    635{
    636	struct fc_seq *sp;
    637	struct fc_frame *fp;
    638	int error;
    639
    640	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
    641	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
    642	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
    643		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
    644			    ep->esb_stat, ep->state);
    645		return -ENXIO;
    646	}
    647
    648	/*
    649	 * Send the abort on a new sequence if possible.
    650	 */
    651	sp = fc_seq_start_next_locked(&ep->seq);
    652	if (!sp)
    653		return -ENOMEM;
    654
    655	if (timer_msec)
    656		fc_exch_timer_set_locked(ep, timer_msec);
    657
    658	if (ep->sid) {
    659		/*
    660		 * Send an abort for the sequence that timed out.
    661		 */
    662		fp = fc_frame_alloc(ep->lp, 0);
    663		if (fp) {
    664			ep->esb_stat |= ESB_ST_SEQ_INIT;
    665			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
    666				       FC_TYPE_BLS, FC_FC_END_SEQ |
    667				       FC_FC_SEQ_INIT, 0);
    668			error = fc_seq_send_locked(ep->lp, sp, fp);
    669		} else {
    670			error = -ENOBUFS;
    671		}
    672	} else {
    673		/*
    674		 * If not logged into the fabric, don't send ABTS but leave
    675		 * sequence active until next timeout.
    676		 */
    677		error = 0;
    678	}
    679	ep->esb_stat |= ESB_ST_ABNORMAL;
    680	return error;
    681}
    682
    683/**
    684 * fc_seq_exch_abort() - Abort an exchange and sequence
    685 * @req_sp:	The sequence to be aborted
    686 * @timer_msec: The period of time to wait before aborting
    687 *
    688 * Generally called because of a timeout or an abort from the upper layer.
    689 *
    690 * Return value: 0 on success else error code
    691 */
    692int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
    693{
    694	struct fc_exch *ep;
    695	int error;
    696
    697	ep = fc_seq_exch(req_sp);
    698	spin_lock_bh(&ep->ex_lock);
    699	error = fc_exch_abort_locked(ep, timer_msec);
    700	spin_unlock_bh(&ep->ex_lock);
    701	return error;
    702}
    703
    704/**
    705 * fc_invoke_resp() - invoke ep->resp()
    706 * @ep:	   The exchange to be operated on
    707 * @fp:	   The frame pointer to pass through to ->resp()
    708 * @sp:	   The sequence pointer to pass through to ->resp()
    709 *
    710 * Notes:
    711 * It is assumed that after initialization finished (this means the
    712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
    713 * modified only via fc_seq_set_resp(). This guarantees that none of these
    714 * two variables changes if ep->resp_active > 0.
    715 *
    716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
    717 * this function is invoked, the first spin_lock_bh() call in this function
    718 * will wait until fc_seq_set_resp() has finished modifying these variables.
    719 *
    720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
    721 * ep->resp() won't be invoked after fc_exch_done() has returned.
    722 *
    723 * The response handler itself may invoke fc_exch_done(), which will clear the
    724 * ep->resp pointer.
    725 *
    726 * Return value:
    727 * Returns true if and only if ep->resp has been invoked.
    728 */
    729static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
    730			   struct fc_frame *fp)
    731{
    732	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
    733	void *arg;
    734	bool res = false;
    735
    736	spin_lock_bh(&ep->ex_lock);
    737	ep->resp_active++;
    738	if (ep->resp_task != current)
    739		ep->resp_task = !ep->resp_task ? current : NULL;
    740	resp = ep->resp;
    741	arg = ep->arg;
    742	spin_unlock_bh(&ep->ex_lock);
    743
    744	if (resp) {
    745		resp(sp, fp, arg);
    746		res = true;
    747	}
    748
    749	spin_lock_bh(&ep->ex_lock);
    750	if (--ep->resp_active == 0)
    751		ep->resp_task = NULL;
    752	spin_unlock_bh(&ep->ex_lock);
    753
    754	if (ep->resp_active == 0)
    755		wake_up(&ep->resp_wq);
    756
    757	return res;
    758}
    759
    760/**
    761 * fc_exch_timeout() - Handle exchange timer expiration
    762 * @work: The work_struct identifying the exchange that timed out
    763 */
    764static void fc_exch_timeout(struct work_struct *work)
    765{
    766	struct fc_exch *ep = container_of(work, struct fc_exch,
    767					  timeout_work.work);
    768	struct fc_seq *sp = &ep->seq;
    769	u32 e_stat;
    770	int rc = 1;
    771
    772	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
    773
    774	spin_lock_bh(&ep->ex_lock);
    775	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
    776		goto unlock;
    777
    778	e_stat = ep->esb_stat;
    779	if (e_stat & ESB_ST_COMPLETE) {
    780		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
    781		spin_unlock_bh(&ep->ex_lock);
    782		if (e_stat & ESB_ST_REC_QUAL)
    783			fc_exch_rrq(ep);
    784		goto done;
    785	} else {
    786		if (e_stat & ESB_ST_ABNORMAL)
    787			rc = fc_exch_done_locked(ep);
    788		spin_unlock_bh(&ep->ex_lock);
    789		if (!rc)
    790			fc_exch_delete(ep);
    791		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
    792		fc_seq_set_resp(sp, NULL, ep->arg);
    793		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
    794		goto done;
    795	}
    796unlock:
    797	spin_unlock_bh(&ep->ex_lock);
    798done:
    799	/*
    800	 * This release matches the hold taken when the timer was set.
    801	 */
    802	fc_exch_release(ep);
    803}
    804
    805/**
    806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
    807 * @lport: The local port that the exchange is for
    808 * @mp:	   The exchange manager that will allocate the exchange
    809 *
    810 * Returns pointer to allocated fc_exch with exch lock held.
    811 */
    812static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
    813					struct fc_exch_mgr *mp)
    814{
    815	struct fc_exch *ep;
    816	unsigned int cpu;
    817	u16 index;
    818	struct fc_exch_pool *pool;
    819
    820	/* allocate memory for exchange */
    821	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
    822	if (!ep) {
    823		atomic_inc(&mp->stats.no_free_exch);
    824		goto out;
    825	}
    826	memset(ep, 0, sizeof(*ep));
    827
    828	cpu = raw_smp_processor_id();
    829	pool = per_cpu_ptr(mp->pool, cpu);
    830	spin_lock_bh(&pool->lock);
    831
    832	/* peek cache of free slot */
    833	if (pool->left != FC_XID_UNKNOWN) {
    834		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
    835			index = pool->left;
    836			pool->left = FC_XID_UNKNOWN;
    837			goto hit;
    838		}
    839	}
    840	if (pool->right != FC_XID_UNKNOWN) {
    841		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
    842			index = pool->right;
    843			pool->right = FC_XID_UNKNOWN;
    844			goto hit;
    845		}
    846	}
    847
    848	index = pool->next_index;
    849	/* allocate new exch from pool */
    850	while (fc_exch_ptr_get(pool, index)) {
    851		index = index == mp->pool_max_index ? 0 : index + 1;
    852		if (index == pool->next_index)
    853			goto err;
    854	}
    855	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
    856hit:
    857	fc_exch_hold(ep);	/* hold for exch in mp */
    858	spin_lock_init(&ep->ex_lock);
    859	/*
    860	 * Hold exch lock for caller to prevent fc_exch_reset()
    861	 * from releasing exch	while fc_exch_alloc() caller is
    862	 * still working on exch.
    863	 */
    864	spin_lock_bh(&ep->ex_lock);
    865
    866	fc_exch_ptr_set(pool, index, ep);
    867	list_add_tail(&ep->ex_list, &pool->ex_list);
    868	fc_seq_alloc(ep, ep->seq_id++);
    869	pool->total_exches++;
    870	spin_unlock_bh(&pool->lock);
    871
    872	/*
    873	 *  update exchange
    874	 */
    875	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
    876	ep->em = mp;
    877	ep->pool = pool;
    878	ep->lp = lport;
    879	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
    880	ep->rxid = FC_XID_UNKNOWN;
    881	ep->class = mp->class;
    882	ep->resp_active = 0;
    883	init_waitqueue_head(&ep->resp_wq);
    884	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
    885out:
    886	return ep;
    887err:
    888	spin_unlock_bh(&pool->lock);
    889	atomic_inc(&mp->stats.no_free_exch_xid);
    890	mempool_free(ep, mp->ep_pool);
    891	return NULL;
    892}
    893
    894/**
    895 * fc_exch_alloc() - Allocate an exchange from an EM on a
    896 *		     local port's list of EMs.
    897 * @lport: The local port that will own the exchange
    898 * @fp:	   The FC frame that the exchange will be for
    899 *
    900 * This function walks the list of exchange manager(EM)
    901 * anchors to select an EM for a new exchange allocation. The
    902 * EM is selected when a NULL match function pointer is encountered
    903 * or when a call to a match function returns true.
    904 */
    905static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
    906				     struct fc_frame *fp)
    907{
    908	struct fc_exch_mgr_anchor *ema;
    909	struct fc_exch *ep;
    910
    911	list_for_each_entry(ema, &lport->ema_list, ema_list) {
    912		if (!ema->match || ema->match(fp)) {
    913			ep = fc_exch_em_alloc(lport, ema->mp);
    914			if (ep)
    915				return ep;
    916		}
    917	}
    918	return NULL;
    919}
    920
    921/**
    922 * fc_exch_find() - Lookup and hold an exchange
    923 * @mp:	 The exchange manager to lookup the exchange from
    924 * @xid: The XID of the exchange to look up
    925 */
    926static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
    927{
    928	struct fc_lport *lport = mp->lport;
    929	struct fc_exch_pool *pool;
    930	struct fc_exch *ep = NULL;
    931	u16 cpu = xid & fc_cpu_mask;
    932
    933	if (xid == FC_XID_UNKNOWN)
    934		return NULL;
    935
    936	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
    937		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
    938		       lport->host->host_no, lport->port_id, xid, cpu);
    939		return NULL;
    940	}
    941
    942	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
    943		pool = per_cpu_ptr(mp->pool, cpu);
    944		spin_lock_bh(&pool->lock);
    945		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
    946		if (ep == &fc_quarantine_exch) {
    947			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
    948			ep = NULL;
    949		}
    950		if (ep) {
    951			WARN_ON(ep->xid != xid);
    952			fc_exch_hold(ep);
    953		}
    954		spin_unlock_bh(&pool->lock);
    955	}
    956	return ep;
    957}
    958
    959
    960/**
    961 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
    962 *		    the memory allocated for the related objects may be freed.
    963 * @sp: The sequence that has completed
    964 *
    965 * Note: May sleep if invoked from outside a response handler.
    966 */
    967void fc_exch_done(struct fc_seq *sp)
    968{
    969	struct fc_exch *ep = fc_seq_exch(sp);
    970	int rc;
    971
    972	spin_lock_bh(&ep->ex_lock);
    973	rc = fc_exch_done_locked(ep);
    974	spin_unlock_bh(&ep->ex_lock);
    975
    976	fc_seq_set_resp(sp, NULL, ep->arg);
    977	if (!rc)
    978		fc_exch_delete(ep);
    979}
    980EXPORT_SYMBOL(fc_exch_done);
    981
    982/**
    983 * fc_exch_resp() - Allocate a new exchange for a response frame
    984 * @lport: The local port that the exchange was for
    985 * @mp:	   The exchange manager to allocate the exchange from
    986 * @fp:	   The response frame
    987 *
    988 * Sets the responder ID in the frame header.
    989 */
    990static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
    991				    struct fc_exch_mgr *mp,
    992				    struct fc_frame *fp)
    993{
    994	struct fc_exch *ep;
    995	struct fc_frame_header *fh;
    996
    997	ep = fc_exch_alloc(lport, fp);
    998	if (ep) {
    999		ep->class = fc_frame_class(fp);
   1000
   1001		/*
   1002		 * Set EX_CTX indicating we're responding on this exchange.
   1003		 */
   1004		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
   1005		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
   1006		fh = fc_frame_header_get(fp);
   1007		ep->sid = ntoh24(fh->fh_d_id);
   1008		ep->did = ntoh24(fh->fh_s_id);
   1009		ep->oid = ep->did;
   1010
   1011		/*
   1012		 * Allocated exchange has placed the XID in the
   1013		 * originator field. Move it to the responder field,
   1014		 * and set the originator XID from the frame.
   1015		 */
   1016		ep->rxid = ep->xid;
   1017		ep->oxid = ntohs(fh->fh_ox_id);
   1018		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
   1019		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
   1020			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
   1021
   1022		fc_exch_hold(ep);	/* hold for caller */
   1023		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
   1024	}
   1025	return ep;
   1026}
   1027
   1028/**
   1029 * fc_seq_lookup_recip() - Find a sequence where the other end
   1030 *			   originated the sequence
   1031 * @lport: The local port that the frame was sent to
   1032 * @mp:	   The Exchange Manager to lookup the exchange from
   1033 * @fp:	   The frame associated with the sequence we're looking for
   1034 *
   1035 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
   1036 * on the ep that should be released by the caller.
   1037 */
   1038static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
   1039						 struct fc_exch_mgr *mp,
   1040						 struct fc_frame *fp)
   1041{
   1042	struct fc_frame_header *fh = fc_frame_header_get(fp);
   1043	struct fc_exch *ep = NULL;
   1044	struct fc_seq *sp = NULL;
   1045	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
   1046	u32 f_ctl;
   1047	u16 xid;
   1048
   1049	f_ctl = ntoh24(fh->fh_f_ctl);
   1050	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
   1051
   1052	/*
   1053	 * Lookup or create the exchange if we will be creating the sequence.
   1054	 */
   1055	if (f_ctl & FC_FC_EX_CTX) {
   1056		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
   1057		ep = fc_exch_find(mp, xid);
   1058		if (!ep) {
   1059			atomic_inc(&mp->stats.xid_not_found);
   1060			reject = FC_RJT_OX_ID;
   1061			goto out;
   1062		}
   1063		if (ep->rxid == FC_XID_UNKNOWN)
   1064			ep->rxid = ntohs(fh->fh_rx_id);
   1065		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
   1066			reject = FC_RJT_OX_ID;
   1067			goto rel;
   1068		}
   1069	} else {
   1070		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
   1071
   1072		/*
   1073		 * Special case for MDS issuing an ELS TEST with a
   1074		 * bad rxid of 0.
   1075		 * XXX take this out once we do the proper reject.
   1076		 */
   1077		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
   1078		    fc_frame_payload_op(fp) == ELS_TEST) {
   1079			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
   1080			xid = FC_XID_UNKNOWN;
   1081		}
   1082
   1083		/*
   1084		 * new sequence - find the exchange
   1085		 */
   1086		ep = fc_exch_find(mp, xid);
   1087		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
   1088			if (ep) {
   1089				atomic_inc(&mp->stats.xid_busy);
   1090				reject = FC_RJT_RX_ID;
   1091				goto rel;
   1092			}
   1093			ep = fc_exch_resp(lport, mp, fp);
   1094			if (!ep) {
   1095				reject = FC_RJT_EXCH_EST;	/* XXX */
   1096				goto out;
   1097			}
   1098			xid = ep->xid;	/* get our XID */
   1099		} else if (!ep) {
   1100			atomic_inc(&mp->stats.xid_not_found);
   1101			reject = FC_RJT_RX_ID;	/* XID not found */
   1102			goto out;
   1103		}
   1104	}
   1105
   1106	spin_lock_bh(&ep->ex_lock);
   1107	/*
   1108	 * At this point, we have the exchange held.
   1109	 * Find or create the sequence.
   1110	 */
   1111	if (fc_sof_is_init(fr_sof(fp))) {
   1112		sp = &ep->seq;
   1113		sp->ssb_stat |= SSB_ST_RESP;
   1114		sp->id = fh->fh_seq_id;
   1115	} else {
   1116		sp = &ep->seq;
   1117		if (sp->id != fh->fh_seq_id) {
   1118			atomic_inc(&mp->stats.seq_not_found);
   1119			if (f_ctl & FC_FC_END_SEQ) {
   1120				/*
   1121				 * Update sequence_id based on incoming last
   1122				 * frame of sequence exchange. This is needed
   1123				 * for FC target where DDP has been used
   1124				 * on target where, stack is indicated only
   1125				 * about last frame's (payload _header) header.
   1126				 * Whereas "seq_id" which is part of
   1127				 * frame_header is allocated by initiator
   1128				 * which is totally different from "seq_id"
   1129				 * allocated when XFER_RDY was sent by target.
   1130				 * To avoid false -ve which results into not
   1131				 * sending RSP, hence write request on other
   1132				 * end never finishes.
   1133				 */
   1134				sp->ssb_stat |= SSB_ST_RESP;
   1135				sp->id = fh->fh_seq_id;
   1136			} else {
   1137				spin_unlock_bh(&ep->ex_lock);
   1138
   1139				/* sequence/exch should exist */
   1140				reject = FC_RJT_SEQ_ID;
   1141				goto rel;
   1142			}
   1143		}
   1144	}
   1145	WARN_ON(ep != fc_seq_exch(sp));
   1146
   1147	if (f_ctl & FC_FC_SEQ_INIT)
   1148		ep->esb_stat |= ESB_ST_SEQ_INIT;
   1149	spin_unlock_bh(&ep->ex_lock);
   1150
   1151	fr_seq(fp) = sp;
   1152out:
   1153	return reject;
   1154rel:
   1155	fc_exch_done(&ep->seq);
   1156	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
   1157	return reject;
   1158}
   1159
   1160/**
   1161 * fc_seq_lookup_orig() - Find a sequence where this end
   1162 *			  originated the sequence
   1163 * @mp:	   The Exchange Manager to lookup the exchange from
   1164 * @fp:	   The frame associated with the sequence we're looking for
   1165 *
   1166 * Does not hold the sequence for the caller.
   1167 */
   1168static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
   1169					 struct fc_frame *fp)
   1170{
   1171	struct fc_frame_header *fh = fc_frame_header_get(fp);
   1172	struct fc_exch *ep;
   1173	struct fc_seq *sp = NULL;
   1174	u32 f_ctl;
   1175	u16 xid;
   1176
   1177	f_ctl = ntoh24(fh->fh_f_ctl);
   1178	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
   1179	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
   1180	ep = fc_exch_find(mp, xid);
   1181	if (!ep)
   1182		return NULL;
   1183	if (ep->seq.id == fh->fh_seq_id) {
   1184		/*
   1185		 * Save the RX_ID if we didn't previously know it.
   1186		 */
   1187		sp = &ep->seq;
   1188		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
   1189		    ep->rxid == FC_XID_UNKNOWN) {
   1190			ep->rxid = ntohs(fh->fh_rx_id);
   1191		}
   1192	}
   1193	fc_exch_release(ep);
   1194	return sp;
   1195}
   1196
   1197/**
   1198 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
   1199 * @ep:	     The exchange to set the addresses for
   1200 * @orig_id: The originator's ID
   1201 * @resp_id: The responder's ID
   1202 *
   1203 * Note this must be done before the first sequence of the exchange is sent.
   1204 */
   1205static void fc_exch_set_addr(struct fc_exch *ep,
   1206			     u32 orig_id, u32 resp_id)
   1207{
   1208	ep->oid = orig_id;
   1209	if (ep->esb_stat & ESB_ST_RESP) {
   1210		ep->sid = resp_id;
   1211		ep->did = orig_id;
   1212	} else {
   1213		ep->sid = orig_id;
   1214		ep->did = resp_id;
   1215	}
   1216}
   1217
   1218/**
   1219 * fc_seq_els_rsp_send() - Send an ELS response using information from
   1220 *			   the existing sequence/exchange.
   1221 * @fp:	      The received frame
   1222 * @els_cmd:  The ELS command to be sent
   1223 * @els_data: The ELS data to be sent
   1224 *
   1225 * The received frame is not freed.
   1226 */
   1227void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
   1228			 struct fc_seq_els_data *els_data)
   1229{
   1230	switch (els_cmd) {
   1231	case ELS_LS_RJT:
   1232		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
   1233		break;
   1234	case ELS_LS_ACC:
   1235		fc_seq_ls_acc(fp);
   1236		break;
   1237	case ELS_RRQ:
   1238		fc_exch_els_rrq(fp);
   1239		break;
   1240	case ELS_REC:
   1241		fc_exch_els_rec(fp);
   1242		break;
   1243	default:
   1244		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
   1245	}
   1246}
   1247EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
   1248
   1249/**
   1250 * fc_seq_send_last() - Send a sequence that is the last in the exchange
   1251 * @sp:	     The sequence that is to be sent
   1252 * @fp:	     The frame that will be sent on the sequence
   1253 * @rctl:    The R_CTL information to be sent
   1254 * @fh_type: The frame header type
   1255 */
   1256static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
   1257			     enum fc_rctl rctl, enum fc_fh_type fh_type)
   1258{
   1259	u32 f_ctl;
   1260	struct fc_exch *ep = fc_seq_exch(sp);
   1261
   1262	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
   1263	f_ctl |= ep->f_ctl;
   1264	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
   1265	fc_seq_send_locked(ep->lp, sp, fp);
   1266}
   1267
   1268/**
   1269 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
   1270 * @sp:	   The sequence to send the ACK on
   1271 * @rx_fp: The received frame that is being acknoledged
   1272 *
   1273 * Send ACK_1 (or equiv.) indicating we received something.
   1274 */
   1275static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
   1276{
   1277	struct fc_frame *fp;
   1278	struct fc_frame_header *rx_fh;
   1279	struct fc_frame_header *fh;
   1280	struct fc_exch *ep = fc_seq_exch(sp);
   1281	struct fc_lport *lport = ep->lp;
   1282	unsigned int f_ctl;
   1283
   1284	/*
   1285	 * Don't send ACKs for class 3.
   1286	 */
   1287	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
   1288		fp = fc_frame_alloc(lport, 0);
   1289		if (!fp) {
   1290			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
   1291			return;
   1292		}
   1293
   1294		fh = fc_frame_header_get(fp);
   1295		fh->fh_r_ctl = FC_RCTL_ACK_1;
   1296		fh->fh_type = FC_TYPE_BLS;
   1297
   1298		/*
   1299		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
   1300		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
   1301		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
   1302		 * Last ACK uses bits 7-6 (continue sequence),
   1303		 * bits 5-4 are meaningful (what kind of ACK to use).
   1304		 */
   1305		rx_fh = fc_frame_header_get(rx_fp);
   1306		f_ctl = ntoh24(rx_fh->fh_f_ctl);
   1307		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
   1308			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
   1309			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
   1310			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
   1311		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
   1312		hton24(fh->fh_f_ctl, f_ctl);
   1313
   1314		fc_exch_setup_hdr(ep, fp, f_ctl);
   1315		fh->fh_seq_id = rx_fh->fh_seq_id;
   1316		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
   1317		fh->fh_parm_offset = htonl(1);	/* ack single frame */
   1318
   1319		fr_sof(fp) = fr_sof(rx_fp);
   1320		if (f_ctl & FC_FC_END_SEQ)
   1321			fr_eof(fp) = FC_EOF_T;
   1322		else
   1323			fr_eof(fp) = FC_EOF_N;
   1324
   1325		lport->tt.frame_send(lport, fp);
   1326	}
   1327}
   1328
   1329/**
   1330 * fc_exch_send_ba_rjt() - Send BLS Reject
   1331 * @rx_fp:  The frame being rejected
   1332 * @reason: The reason the frame is being rejected
   1333 * @explan: The explanation for the rejection
   1334 *
   1335 * This is for rejecting BA_ABTS only.
   1336 */
   1337static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
   1338				enum fc_ba_rjt_reason reason,
   1339				enum fc_ba_rjt_explan explan)
   1340{
   1341	struct fc_frame *fp;
   1342	struct fc_frame_header *rx_fh;
   1343	struct fc_frame_header *fh;
   1344	struct fc_ba_rjt *rp;
   1345	struct fc_seq *sp;
   1346	struct fc_lport *lport;
   1347	unsigned int f_ctl;
   1348
   1349	lport = fr_dev(rx_fp);
   1350	sp = fr_seq(rx_fp);
   1351	fp = fc_frame_alloc(lport, sizeof(*rp));
   1352	if (!fp) {
   1353		FC_EXCH_DBG(fc_seq_exch(sp),
   1354			     "Drop BA_RJT request, out of memory\n");
   1355		return;
   1356	}
   1357	fh = fc_frame_header_get(fp);
   1358	rx_fh = fc_frame_header_get(rx_fp);
   1359
   1360	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
   1361
   1362	rp = fc_frame_payload_get(fp, sizeof(*rp));
   1363	rp->br_reason = reason;
   1364	rp->br_explan = explan;
   1365
   1366	/*
   1367	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
   1368	 */
   1369	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
   1370	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
   1371	fh->fh_ox_id = rx_fh->fh_ox_id;
   1372	fh->fh_rx_id = rx_fh->fh_rx_id;
   1373	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
   1374	fh->fh_r_ctl = FC_RCTL_BA_RJT;
   1375	fh->fh_type = FC_TYPE_BLS;
   1376
   1377	/*
   1378	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
   1379	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
   1380	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
   1381	 * Last ACK uses bits 7-6 (continue sequence),
   1382	 * bits 5-4 are meaningful (what kind of ACK to use).
   1383	 * Always set LAST_SEQ, END_SEQ.
   1384	 */
   1385	f_ctl = ntoh24(rx_fh->fh_f_ctl);
   1386	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
   1387		FC_FC_END_CONN | FC_FC_SEQ_INIT |
   1388		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
   1389	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
   1390	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
   1391	f_ctl &= ~FC_FC_FIRST_SEQ;
   1392	hton24(fh->fh_f_ctl, f_ctl);
   1393
   1394	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
   1395	fr_eof(fp) = FC_EOF_T;
   1396	if (fc_sof_needs_ack(fr_sof(fp)))
   1397		fr_eof(fp) = FC_EOF_N;
   1398
   1399	lport->tt.frame_send(lport, fp);
   1400}
   1401
   1402/**
   1403 * fc_exch_recv_abts() - Handle an incoming ABTS
   1404 * @ep:	   The exchange the abort was on
   1405 * @rx_fp: The ABTS frame
   1406 *
   1407 * This would be for target mode usually, but could be due to lost
   1408 * FCP transfer ready, confirm or RRQ. We always handle this as an
   1409 * exchange abort, ignoring the parameter.
   1410 */
   1411static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
   1412{
   1413	struct fc_frame *fp;
   1414	struct fc_ba_acc *ap;
   1415	struct fc_frame_header *fh;
   1416	struct fc_seq *sp;
   1417
   1418	if (!ep)
   1419		goto reject;
   1420
   1421	FC_EXCH_DBG(ep, "exch: ABTS received\n");
   1422	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
   1423	if (!fp) {
   1424		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
   1425		goto free;
   1426	}
   1427
   1428	spin_lock_bh(&ep->ex_lock);
   1429	if (ep->esb_stat & ESB_ST_COMPLETE) {
   1430		spin_unlock_bh(&ep->ex_lock);
   1431		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
   1432		fc_frame_free(fp);
   1433		goto reject;
   1434	}
   1435	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
   1436		ep->esb_stat |= ESB_ST_REC_QUAL;
   1437		fc_exch_hold(ep);		/* hold for REC_QUAL */
   1438	}
   1439	fc_exch_timer_set_locked(ep, ep->r_a_tov);
   1440	fh = fc_frame_header_get(fp);
   1441	ap = fc_frame_payload_get(fp, sizeof(*ap));
   1442	memset(ap, 0, sizeof(*ap));
   1443	sp = &ep->seq;
   1444	ap->ba_high_seq_cnt = htons(0xffff);
   1445	if (sp->ssb_stat & SSB_ST_RESP) {
   1446		ap->ba_seq_id = sp->id;
   1447		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
   1448		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
   1449		ap->ba_low_seq_cnt = htons(sp->cnt);
   1450	}
   1451	sp = fc_seq_start_next_locked(sp);
   1452	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
   1453	ep->esb_stat |= ESB_ST_ABNORMAL;
   1454	spin_unlock_bh(&ep->ex_lock);
   1455
   1456free:
   1457	fc_frame_free(rx_fp);
   1458	return;
   1459
   1460reject:
   1461	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
   1462	goto free;
   1463}
   1464
   1465/**
   1466 * fc_seq_assign() - Assign exchange and sequence for incoming request
   1467 * @lport: The local port that received the request
   1468 * @fp:    The request frame
   1469 *
   1470 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
   1471 * A reference will be held on the exchange/sequence for the caller, which
   1472 * must call fc_seq_release().
   1473 */
   1474struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
   1475{
   1476	struct fc_exch_mgr_anchor *ema;
   1477
   1478	WARN_ON(lport != fr_dev(fp));
   1479	WARN_ON(fr_seq(fp));
   1480	fr_seq(fp) = NULL;
   1481
   1482	list_for_each_entry(ema, &lport->ema_list, ema_list)
   1483		if ((!ema->match || ema->match(fp)) &&
   1484		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
   1485			break;
   1486	return fr_seq(fp);
   1487}
   1488EXPORT_SYMBOL(fc_seq_assign);
   1489
   1490/**
   1491 * fc_seq_release() - Release the hold
   1492 * @sp:    The sequence.
   1493 */
   1494void fc_seq_release(struct fc_seq *sp)
   1495{
   1496	fc_exch_release(fc_seq_exch(sp));
   1497}
   1498EXPORT_SYMBOL(fc_seq_release);
   1499
   1500/**
   1501 * fc_exch_recv_req() - Handler for an incoming request
   1502 * @lport: The local port that received the request
   1503 * @mp:	   The EM that the exchange is on
   1504 * @fp:	   The request frame
   1505 *
   1506 * This is used when the other end is originating the exchange
   1507 * and the sequence.
   1508 */
   1509static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
   1510			     struct fc_frame *fp)
   1511{
   1512	struct fc_frame_header *fh = fc_frame_header_get(fp);
   1513	struct fc_seq *sp = NULL;
   1514	struct fc_exch *ep = NULL;
   1515	enum fc_pf_rjt_reason reject;
   1516
   1517	/* We can have the wrong fc_lport at this point with NPIV, which is a
   1518	 * problem now that we know a new exchange needs to be allocated
   1519	 */
   1520	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
   1521	if (!lport) {
   1522		fc_frame_free(fp);
   1523		return;
   1524	}
   1525	fr_dev(fp) = lport;
   1526
   1527	BUG_ON(fr_seq(fp));		/* XXX remove later */
   1528
   1529	/*
   1530	 * If the RX_ID is 0xffff, don't allocate an exchange.
   1531	 * The upper-level protocol may request one later, if needed.
   1532	 */
   1533	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
   1534		return fc_lport_recv(lport, fp);
   1535
   1536	reject = fc_seq_lookup_recip(lport, mp, fp);
   1537	if (reject == FC_RJT_NONE) {
   1538		sp = fr_seq(fp);	/* sequence will be held */
   1539		ep = fc_seq_exch(sp);
   1540		fc_seq_send_ack(sp, fp);
   1541		ep->encaps = fr_encaps(fp);
   1542
   1543		/*
   1544		 * Call the receive function.
   1545		 *
   1546		 * The receive function may allocate a new sequence
   1547		 * over the old one, so we shouldn't change the
   1548		 * sequence after this.
   1549		 *
   1550		 * The frame will be freed by the receive function.
   1551		 * If new exch resp handler is valid then call that
   1552		 * first.
   1553		 */
   1554		if (!fc_invoke_resp(ep, sp, fp))
   1555			fc_lport_recv(lport, fp);
   1556		fc_exch_release(ep);	/* release from lookup */
   1557	} else {
   1558		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
   1559			     reject);
   1560		fc_frame_free(fp);
   1561	}
   1562}
   1563
   1564/**
   1565 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
   1566 *			     end is the originator of the sequence that is a
   1567 *			     response to our initial exchange
   1568 * @mp: The EM that the exchange is on
   1569 * @fp: The response frame
   1570 */
   1571static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
   1572{
   1573	struct fc_frame_header *fh = fc_frame_header_get(fp);
   1574	struct fc_seq *sp;
   1575	struct fc_exch *ep;
   1576	enum fc_sof sof;
   1577	u32 f_ctl;
   1578	int rc;
   1579
   1580	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
   1581	if (!ep) {
   1582		atomic_inc(&mp->stats.xid_not_found);
   1583		goto out;
   1584	}
   1585	if (ep->esb_stat & ESB_ST_COMPLETE) {
   1586		atomic_inc(&mp->stats.xid_not_found);
   1587		goto rel;
   1588	}
   1589	if (ep->rxid == FC_XID_UNKNOWN)
   1590		ep->rxid = ntohs(fh->fh_rx_id);
   1591	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
   1592		atomic_inc(&mp->stats.xid_not_found);
   1593		goto rel;
   1594	}
   1595	if (ep->did != ntoh24(fh->fh_s_id) &&
   1596	    ep->did != FC_FID_FLOGI) {
   1597		atomic_inc(&mp->stats.xid_not_found);
   1598		goto rel;
   1599	}
   1600	sof = fr_sof(fp);
   1601	sp = &ep->seq;
   1602	if (fc_sof_is_init(sof)) {
   1603		sp->ssb_stat |= SSB_ST_RESP;
   1604		sp->id = fh->fh_seq_id;
   1605	}
   1606
   1607	f_ctl = ntoh24(fh->fh_f_ctl);
   1608	fr_seq(fp) = sp;
   1609
   1610	spin_lock_bh(&ep->ex_lock);
   1611	if (f_ctl & FC_FC_SEQ_INIT)
   1612		ep->esb_stat |= ESB_ST_SEQ_INIT;
   1613	spin_unlock_bh(&ep->ex_lock);
   1614
   1615	if (fc_sof_needs_ack(sof))
   1616		fc_seq_send_ack(sp, fp);
   1617
   1618	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
   1619	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
   1620	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
   1621		spin_lock_bh(&ep->ex_lock);
   1622		rc = fc_exch_done_locked(ep);
   1623		WARN_ON(fc_seq_exch(sp) != ep);
   1624		spin_unlock_bh(&ep->ex_lock);
   1625		if (!rc) {
   1626			fc_exch_delete(ep);
   1627		} else {
   1628			FC_EXCH_DBG(ep, "ep is completed already,"
   1629					"hence skip calling the resp\n");
   1630			goto skip_resp;
   1631		}
   1632	}
   1633
   1634	/*
   1635	 * Call the receive function.
   1636	 * The sequence is held (has a refcnt) for us,
   1637	 * but not for the receive function.
   1638	 *
   1639	 * The receive function may allocate a new sequence
   1640	 * over the old one, so we shouldn't change the
   1641	 * sequence after this.
   1642	 *
   1643	 * The frame will be freed by the receive function.
   1644	 * If new exch resp handler is valid then call that
   1645	 * first.
   1646	 */
   1647	if (!fc_invoke_resp(ep, sp, fp))
   1648		fc_frame_free(fp);
   1649
   1650skip_resp:
   1651	fc_exch_release(ep);
   1652	return;
   1653rel:
   1654	fc_exch_release(ep);
   1655out:
   1656	fc_frame_free(fp);
   1657}
   1658
   1659/**
   1660 * fc_exch_recv_resp() - Handler for a sequence where other end is
   1661 *			 responding to our sequence
   1662 * @mp: The EM that the exchange is on
   1663 * @fp: The response frame
   1664 */
   1665static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
   1666{
   1667	struct fc_seq *sp;
   1668
   1669	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
   1670
   1671	if (!sp)
   1672		atomic_inc(&mp->stats.xid_not_found);
   1673	else
   1674		atomic_inc(&mp->stats.non_bls_resp);
   1675
   1676	fc_frame_free(fp);
   1677}
   1678
   1679/**
   1680 * fc_exch_abts_resp() - Handler for a response to an ABT
   1681 * @ep: The exchange that the frame is on
   1682 * @fp: The response frame
   1683 *
   1684 * This response would be to an ABTS cancelling an exchange or sequence.
   1685 * The response can be either BA_ACC or BA_RJT
   1686 */
   1687static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
   1688{
   1689	struct fc_frame_header *fh;
   1690	struct fc_ba_acc *ap;
   1691	struct fc_seq *sp;
   1692	u16 low;
   1693	u16 high;
   1694	int rc = 1, has_rec = 0;
   1695
   1696	fh = fc_frame_header_get(fp);
   1697	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
   1698		    fc_exch_rctl_name(fh->fh_r_ctl));
   1699
   1700	if (cancel_delayed_work_sync(&ep->timeout_work)) {
   1701		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
   1702		fc_exch_release(ep);	/* release from pending timer hold */
   1703		return;
   1704	}
   1705
   1706	spin_lock_bh(&ep->ex_lock);
   1707	switch (fh->fh_r_ctl) {
   1708	case FC_RCTL_BA_ACC:
   1709		ap = fc_frame_payload_get(fp, sizeof(*ap));
   1710		if (!ap)
   1711			break;
   1712
   1713		/*
   1714		 * Decide whether to establish a Recovery Qualifier.
   1715		 * We do this if there is a non-empty SEQ_CNT range and
   1716		 * SEQ_ID is the same as the one we aborted.
   1717		 */
   1718		low = ntohs(ap->ba_low_seq_cnt);
   1719		high = ntohs(ap->ba_high_seq_cnt);
   1720		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
   1721		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
   1722		     ap->ba_seq_id == ep->seq_id) && low != high) {
   1723			ep->esb_stat |= ESB_ST_REC_QUAL;
   1724			fc_exch_hold(ep);  /* hold for recovery qualifier */
   1725			has_rec = 1;
   1726		}
   1727		break;
   1728	case FC_RCTL_BA_RJT:
   1729		break;
   1730	default:
   1731		break;
   1732	}
   1733
   1734	/* do we need to do some other checks here. Can we reuse more of
   1735	 * fc_exch_recv_seq_resp
   1736	 */
   1737	sp = &ep->seq;
   1738	/*
   1739	 * do we want to check END_SEQ as well as LAST_SEQ here?
   1740	 */
   1741	if (ep->fh_type != FC_TYPE_FCP &&
   1742	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
   1743		rc = fc_exch_done_locked(ep);
   1744	spin_unlock_bh(&ep->ex_lock);
   1745
   1746	fc_exch_hold(ep);
   1747	if (!rc)
   1748		fc_exch_delete(ep);
   1749	if (!fc_invoke_resp(ep, sp, fp))
   1750		fc_frame_free(fp);
   1751	if (has_rec)
   1752		fc_exch_timer_set(ep, ep->r_a_tov);
   1753	fc_exch_release(ep);
   1754}
   1755
   1756/**
   1757 * fc_exch_recv_bls() - Handler for a BLS sequence
   1758 * @mp: The EM that the exchange is on
   1759 * @fp: The request frame
   1760 *
   1761 * The BLS frame is always a sequence initiated by the remote side.
   1762 * We may be either the originator or recipient of the exchange.
   1763 */
   1764static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
   1765{
   1766	struct fc_frame_header *fh;
   1767	struct fc_exch *ep;
   1768	u32 f_ctl;
   1769
   1770	fh = fc_frame_header_get(fp);
   1771	f_ctl = ntoh24(fh->fh_f_ctl);
   1772	fr_seq(fp) = NULL;
   1773
   1774	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
   1775			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
   1776	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
   1777		spin_lock_bh(&ep->ex_lock);
   1778		ep->esb_stat |= ESB_ST_SEQ_INIT;
   1779		spin_unlock_bh(&ep->ex_lock);
   1780	}
   1781	if (f_ctl & FC_FC_SEQ_CTX) {
   1782		/*
   1783		 * A response to a sequence we initiated.
   1784		 * This should only be ACKs for class 2 or F.
   1785		 */
   1786		switch (fh->fh_r_ctl) {
   1787		case FC_RCTL_ACK_1:
   1788		case FC_RCTL_ACK_0:
   1789			break;
   1790		default:
   1791			if (ep)
   1792				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
   1793					    fh->fh_r_ctl,
   1794					    fc_exch_rctl_name(fh->fh_r_ctl));
   1795			break;
   1796		}
   1797		fc_frame_free(fp);
   1798	} else {
   1799		switch (fh->fh_r_ctl) {
   1800		case FC_RCTL_BA_RJT:
   1801		case FC_RCTL_BA_ACC:
   1802			if (ep)
   1803				fc_exch_abts_resp(ep, fp);
   1804			else
   1805				fc_frame_free(fp);
   1806			break;
   1807		case FC_RCTL_BA_ABTS:
   1808			if (ep)
   1809				fc_exch_recv_abts(ep, fp);
   1810			else
   1811				fc_frame_free(fp);
   1812			break;
   1813		default:			/* ignore junk */
   1814			fc_frame_free(fp);
   1815			break;
   1816		}
   1817	}
   1818	if (ep)
   1819		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
   1820}
   1821
   1822/**
   1823 * fc_seq_ls_acc() - Accept sequence with LS_ACC
   1824 * @rx_fp: The received frame, not freed here.
   1825 *
   1826 * If this fails due to allocation or transmit congestion, assume the
   1827 * originator will repeat the sequence.
   1828 */
   1829static void fc_seq_ls_acc(struct fc_frame *rx_fp)
   1830{
   1831	struct fc_lport *lport;
   1832	struct fc_els_ls_acc *acc;
   1833	struct fc_frame *fp;
   1834	struct fc_seq *sp;
   1835
   1836	lport = fr_dev(rx_fp);
   1837	sp = fr_seq(rx_fp);
   1838	fp = fc_frame_alloc(lport, sizeof(*acc));
   1839	if (!fp) {
   1840		FC_EXCH_DBG(fc_seq_exch(sp),
   1841			    "exch: drop LS_ACC, out of memory\n");
   1842		return;
   1843	}
   1844	acc = fc_frame_payload_get(fp, sizeof(*acc));
   1845	memset(acc, 0, sizeof(*acc));
   1846	acc->la_cmd = ELS_LS_ACC;
   1847	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
   1848	lport->tt.frame_send(lport, fp);
   1849}
   1850
   1851/**
   1852 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
   1853 * @rx_fp: The received frame, not freed here.
   1854 * @reason: The reason the sequence is being rejected
   1855 * @explan: The explanation for the rejection
   1856 *
   1857 * If this fails due to allocation or transmit congestion, assume the
   1858 * originator will repeat the sequence.
   1859 */
   1860static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
   1861			  enum fc_els_rjt_explan explan)
   1862{
   1863	struct fc_lport *lport;
   1864	struct fc_els_ls_rjt *rjt;
   1865	struct fc_frame *fp;
   1866	struct fc_seq *sp;
   1867
   1868	lport = fr_dev(rx_fp);
   1869	sp = fr_seq(rx_fp);
   1870	fp = fc_frame_alloc(lport, sizeof(*rjt));
   1871	if (!fp) {
   1872		FC_EXCH_DBG(fc_seq_exch(sp),
   1873			    "exch: drop LS_ACC, out of memory\n");
   1874		return;
   1875	}
   1876	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
   1877	memset(rjt, 0, sizeof(*rjt));
   1878	rjt->er_cmd = ELS_LS_RJT;
   1879	rjt->er_reason = reason;
   1880	rjt->er_explan = explan;
   1881	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
   1882	lport->tt.frame_send(lport, fp);
   1883}
   1884
   1885/**
   1886 * fc_exch_reset() - Reset an exchange
   1887 * @ep: The exchange to be reset
   1888 *
   1889 * Note: May sleep if invoked from outside a response handler.
   1890 */
   1891static void fc_exch_reset(struct fc_exch *ep)
   1892{
   1893	struct fc_seq *sp;
   1894	int rc = 1;
   1895
   1896	spin_lock_bh(&ep->ex_lock);
   1897	ep->state |= FC_EX_RST_CLEANUP;
   1898	fc_exch_timer_cancel(ep);
   1899	if (ep->esb_stat & ESB_ST_REC_QUAL)
   1900		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
   1901	ep->esb_stat &= ~ESB_ST_REC_QUAL;
   1902	sp = &ep->seq;
   1903	rc = fc_exch_done_locked(ep);
   1904	spin_unlock_bh(&ep->ex_lock);
   1905
   1906	fc_exch_hold(ep);
   1907
   1908	if (!rc) {
   1909		fc_exch_delete(ep);
   1910	} else {
   1911		FC_EXCH_DBG(ep, "ep is completed already,"
   1912				"hence skip calling the resp\n");
   1913		goto skip_resp;
   1914	}
   1915
   1916	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
   1917skip_resp:
   1918	fc_seq_set_resp(sp, NULL, ep->arg);
   1919	fc_exch_release(ep);
   1920}
   1921
   1922/**
   1923 * fc_exch_pool_reset() - Reset a per cpu exchange pool
   1924 * @lport: The local port that the exchange pool is on
   1925 * @pool:  The exchange pool to be reset
   1926 * @sid:   The source ID
   1927 * @did:   The destination ID
   1928 *
   1929 * Resets a per cpu exches pool, releasing all of its sequences
   1930 * and exchanges. If sid is non-zero then reset only exchanges
   1931 * we sourced from the local port's FID. If did is non-zero then
   1932 * only reset exchanges destined for the local port's FID.
   1933 */
   1934static void fc_exch_pool_reset(struct fc_lport *lport,
   1935			       struct fc_exch_pool *pool,
   1936			       u32 sid, u32 did)
   1937{
   1938	struct fc_exch *ep;
   1939	struct fc_exch *next;
   1940
   1941	spin_lock_bh(&pool->lock);
   1942restart:
   1943	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
   1944		if ((lport == ep->lp) &&
   1945		    (sid == 0 || sid == ep->sid) &&
   1946		    (did == 0 || did == ep->did)) {
   1947			fc_exch_hold(ep);
   1948			spin_unlock_bh(&pool->lock);
   1949
   1950			fc_exch_reset(ep);
   1951
   1952			fc_exch_release(ep);
   1953			spin_lock_bh(&pool->lock);
   1954
   1955			/*
   1956			 * must restart loop incase while lock
   1957			 * was down multiple eps were released.
   1958			 */
   1959			goto restart;
   1960		}
   1961	}
   1962	pool->next_index = 0;
   1963	pool->left = FC_XID_UNKNOWN;
   1964	pool->right = FC_XID_UNKNOWN;
   1965	spin_unlock_bh(&pool->lock);
   1966}
   1967
   1968/**
   1969 * fc_exch_mgr_reset() - Reset all EMs of a local port
   1970 * @lport: The local port whose EMs are to be reset
   1971 * @sid:   The source ID
   1972 * @did:   The destination ID
   1973 *
   1974 * Reset all EMs associated with a given local port. Release all
   1975 * sequences and exchanges. If sid is non-zero then reset only the
   1976 * exchanges sent from the local port's FID. If did is non-zero then
   1977 * reset only exchanges destined for the local port's FID.
   1978 */
   1979void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
   1980{
   1981	struct fc_exch_mgr_anchor *ema;
   1982	unsigned int cpu;
   1983
   1984	list_for_each_entry(ema, &lport->ema_list, ema_list) {
   1985		for_each_possible_cpu(cpu)
   1986			fc_exch_pool_reset(lport,
   1987					   per_cpu_ptr(ema->mp->pool, cpu),
   1988					   sid, did);
   1989	}
   1990}
   1991EXPORT_SYMBOL(fc_exch_mgr_reset);
   1992
   1993/**
   1994 * fc_exch_lookup() - find an exchange
   1995 * @lport: The local port
   1996 * @xid: The exchange ID
   1997 *
   1998 * Returns exchange pointer with hold for caller, or NULL if not found.
   1999 */
   2000static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
   2001{
   2002	struct fc_exch_mgr_anchor *ema;
   2003
   2004	list_for_each_entry(ema, &lport->ema_list, ema_list)
   2005		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
   2006			return fc_exch_find(ema->mp, xid);
   2007	return NULL;
   2008}
   2009
   2010/**
   2011 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
   2012 * @rfp: The REC frame, not freed here.
   2013 *
   2014 * Note that the requesting port may be different than the S_ID in the request.
   2015 */
   2016static void fc_exch_els_rec(struct fc_frame *rfp)
   2017{
   2018	struct fc_lport *lport;
   2019	struct fc_frame *fp;
   2020	struct fc_exch *ep;
   2021	struct fc_els_rec *rp;
   2022	struct fc_els_rec_acc *acc;
   2023	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
   2024	enum fc_els_rjt_explan explan;
   2025	u32 sid;
   2026	u16 xid, rxid, oxid;
   2027
   2028	lport = fr_dev(rfp);
   2029	rp = fc_frame_payload_get(rfp, sizeof(*rp));
   2030	explan = ELS_EXPL_INV_LEN;
   2031	if (!rp)
   2032		goto reject;
   2033	sid = ntoh24(rp->rec_s_id);
   2034	rxid = ntohs(rp->rec_rx_id);
   2035	oxid = ntohs(rp->rec_ox_id);
   2036
   2037	explan = ELS_EXPL_OXID_RXID;
   2038	if (sid == fc_host_port_id(lport->host))
   2039		xid = oxid;
   2040	else
   2041		xid = rxid;
   2042	if (xid == FC_XID_UNKNOWN) {
   2043		FC_LPORT_DBG(lport,
   2044			     "REC request from %x: invalid rxid %x oxid %x\n",
   2045			     sid, rxid, oxid);
   2046		goto reject;
   2047	}
   2048	ep = fc_exch_lookup(lport, xid);
   2049	if (!ep) {
   2050		FC_LPORT_DBG(lport,
   2051			     "REC request from %x: rxid %x oxid %x not found\n",
   2052			     sid, rxid, oxid);
   2053		goto reject;
   2054	}
   2055	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
   2056		    sid, rxid, oxid);
   2057	if (ep->oid != sid || oxid != ep->oxid)
   2058		goto rel;
   2059	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
   2060		goto rel;
   2061	fp = fc_frame_alloc(lport, sizeof(*acc));
   2062	if (!fp) {
   2063		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
   2064		goto out;
   2065	}
   2066
   2067	acc = fc_frame_payload_get(fp, sizeof(*acc));
   2068	memset(acc, 0, sizeof(*acc));
   2069	acc->reca_cmd = ELS_LS_ACC;
   2070	acc->reca_ox_id = rp->rec_ox_id;
   2071	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
   2072	acc->reca_rx_id = htons(ep->rxid);
   2073	if (ep->sid == ep->oid)
   2074		hton24(acc->reca_rfid, ep->did);
   2075	else
   2076		hton24(acc->reca_rfid, ep->sid);
   2077	acc->reca_fc4value = htonl(ep->seq.rec_data);
   2078	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
   2079						 ESB_ST_SEQ_INIT |
   2080						 ESB_ST_COMPLETE));
   2081	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
   2082	lport->tt.frame_send(lport, fp);
   2083out:
   2084	fc_exch_release(ep);
   2085	return;
   2086
   2087rel:
   2088	fc_exch_release(ep);
   2089reject:
   2090	fc_seq_ls_rjt(rfp, reason, explan);
   2091}
   2092
   2093/**
   2094 * fc_exch_rrq_resp() - Handler for RRQ responses
   2095 * @sp:	 The sequence that the RRQ is on
   2096 * @fp:	 The RRQ frame
   2097 * @arg: The exchange that the RRQ is on
   2098 *
   2099 * TODO: fix error handler.
   2100 */
   2101static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
   2102{
   2103	struct fc_exch *aborted_ep = arg;
   2104	unsigned int op;
   2105
   2106	if (IS_ERR(fp)) {
   2107		int err = PTR_ERR(fp);
   2108
   2109		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
   2110			goto cleanup;
   2111		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
   2112			    "frame error %d\n", err);
   2113		return;
   2114	}
   2115
   2116	op = fc_frame_payload_op(fp);
   2117	fc_frame_free(fp);
   2118
   2119	switch (op) {
   2120	case ELS_LS_RJT:
   2121		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
   2122		fallthrough;
   2123	case ELS_LS_ACC:
   2124		goto cleanup;
   2125	default:
   2126		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
   2127			    op);
   2128		return;
   2129	}
   2130
   2131cleanup:
   2132	fc_exch_done(&aborted_ep->seq);
   2133	/* drop hold for rec qual */
   2134	fc_exch_release(aborted_ep);
   2135}
   2136
   2137
   2138/**
   2139 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
   2140 * @lport:	The local port to send the frame on
   2141 * @fp:		The frame to be sent
   2142 * @resp:	The response handler for this request
   2143 * @destructor: The destructor for the exchange
   2144 * @arg:	The argument to be passed to the response handler
   2145 * @timer_msec: The timeout period for the exchange
   2146 *
   2147 * The exchange response handler is set in this routine to resp()
   2148 * function pointer. It can be called in two scenarios: if a timeout
   2149 * occurs or if a response frame is received for the exchange. The
   2150 * fc_frame pointer in response handler will also indicate timeout
   2151 * as error using IS_ERR related macros.
   2152 *
   2153 * The exchange destructor handler is also set in this routine.
   2154 * The destructor handler is invoked by EM layer when exchange
   2155 * is about to free, this can be used by caller to free its
   2156 * resources along with exchange free.
   2157 *
   2158 * The arg is passed back to resp and destructor handler.
   2159 *
   2160 * The timeout value (in msec) for an exchange is set if non zero
   2161 * timer_msec argument is specified. The timer is canceled when
   2162 * it fires or when the exchange is done. The exchange timeout handler
   2163 * is registered by EM layer.
   2164 *
   2165 * The frame pointer with some of the header's fields must be
   2166 * filled before calling this routine, those fields are:
   2167 *
   2168 * - routing control
   2169 * - FC port did
   2170 * - FC port sid
   2171 * - FC header type
   2172 * - frame control
   2173 * - parameter or relative offset
   2174 */
   2175struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
   2176				struct fc_frame *fp,
   2177				void (*resp)(struct fc_seq *,
   2178					     struct fc_frame *fp,
   2179					     void *arg),
   2180				void (*destructor)(struct fc_seq *, void *),
   2181				void *arg, u32 timer_msec)
   2182{
   2183	struct fc_exch *ep;
   2184	struct fc_seq *sp = NULL;
   2185	struct fc_frame_header *fh;
   2186	struct fc_fcp_pkt *fsp = NULL;
   2187	int rc = 1;
   2188
   2189	ep = fc_exch_alloc(lport, fp);
   2190	if (!ep) {
   2191		fc_frame_free(fp);
   2192		return NULL;
   2193	}
   2194	ep->esb_stat |= ESB_ST_SEQ_INIT;
   2195	fh = fc_frame_header_get(fp);
   2196	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
   2197	ep->resp = resp;
   2198	ep->destructor = destructor;
   2199	ep->arg = arg;
   2200	ep->r_a_tov = lport->r_a_tov;
   2201	ep->lp = lport;
   2202	sp = &ep->seq;
   2203
   2204	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
   2205	ep->f_ctl = ntoh24(fh->fh_f_ctl);
   2206	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
   2207	sp->cnt++;
   2208
   2209	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
   2210		fsp = fr_fsp(fp);
   2211		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
   2212	}
   2213
   2214	if (unlikely(lport->tt.frame_send(lport, fp)))
   2215		goto err;
   2216
   2217	if (timer_msec)
   2218		fc_exch_timer_set_locked(ep, timer_msec);
   2219	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
   2220
   2221	if (ep->f_ctl & FC_FC_SEQ_INIT)
   2222		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
   2223	spin_unlock_bh(&ep->ex_lock);
   2224	return sp;
   2225err:
   2226	if (fsp)
   2227		fc_fcp_ddp_done(fsp);
   2228	rc = fc_exch_done_locked(ep);
   2229	spin_unlock_bh(&ep->ex_lock);
   2230	if (!rc)
   2231		fc_exch_delete(ep);
   2232	return NULL;
   2233}
   2234EXPORT_SYMBOL(fc_exch_seq_send);
   2235
   2236/**
   2237 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
   2238 * @ep: The exchange to send the RRQ on
   2239 *
   2240 * This tells the remote port to stop blocking the use of
   2241 * the exchange and the seq_cnt range.
   2242 */
   2243static void fc_exch_rrq(struct fc_exch *ep)
   2244{
   2245	struct fc_lport *lport;
   2246	struct fc_els_rrq *rrq;
   2247	struct fc_frame *fp;
   2248	u32 did;
   2249
   2250	lport = ep->lp;
   2251
   2252	fp = fc_frame_alloc(lport, sizeof(*rrq));
   2253	if (!fp)
   2254		goto retry;
   2255
   2256	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
   2257	memset(rrq, 0, sizeof(*rrq));
   2258	rrq->rrq_cmd = ELS_RRQ;
   2259	hton24(rrq->rrq_s_id, ep->sid);
   2260	rrq->rrq_ox_id = htons(ep->oxid);
   2261	rrq->rrq_rx_id = htons(ep->rxid);
   2262
   2263	did = ep->did;
   2264	if (ep->esb_stat & ESB_ST_RESP)
   2265		did = ep->sid;
   2266
   2267	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
   2268		       lport->port_id, FC_TYPE_ELS,
   2269		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
   2270
   2271	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
   2272			     lport->e_d_tov))
   2273		return;
   2274
   2275retry:
   2276	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
   2277	spin_lock_bh(&ep->ex_lock);
   2278	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
   2279		spin_unlock_bh(&ep->ex_lock);
   2280		/* drop hold for rec qual */
   2281		fc_exch_release(ep);
   2282		return;
   2283	}
   2284	ep->esb_stat |= ESB_ST_REC_QUAL;
   2285	fc_exch_timer_set_locked(ep, ep->r_a_tov);
   2286	spin_unlock_bh(&ep->ex_lock);
   2287}
   2288
   2289/**
   2290 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
   2291 * @fp: The RRQ frame, not freed here.
   2292 */
   2293static void fc_exch_els_rrq(struct fc_frame *fp)
   2294{
   2295	struct fc_lport *lport;
   2296	struct fc_exch *ep = NULL;	/* request or subject exchange */
   2297	struct fc_els_rrq *rp;
   2298	u32 sid;
   2299	u16 xid;
   2300	enum fc_els_rjt_explan explan;
   2301
   2302	lport = fr_dev(fp);
   2303	rp = fc_frame_payload_get(fp, sizeof(*rp));
   2304	explan = ELS_EXPL_INV_LEN;
   2305	if (!rp)
   2306		goto reject;
   2307
   2308	/*
   2309	 * lookup subject exchange.
   2310	 */
   2311	sid = ntoh24(rp->rrq_s_id);		/* subject source */
   2312	xid = fc_host_port_id(lport->host) == sid ?
   2313			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
   2314	ep = fc_exch_lookup(lport, xid);
   2315	explan = ELS_EXPL_OXID_RXID;
   2316	if (!ep)
   2317		goto reject;
   2318	spin_lock_bh(&ep->ex_lock);
   2319	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
   2320		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
   2321	if (ep->oxid != ntohs(rp->rrq_ox_id))
   2322		goto unlock_reject;
   2323	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
   2324	    ep->rxid != FC_XID_UNKNOWN)
   2325		goto unlock_reject;
   2326	explan = ELS_EXPL_SID;
   2327	if (ep->sid != sid)
   2328		goto unlock_reject;
   2329
   2330	/*
   2331	 * Clear Recovery Qualifier state, and cancel timer if complete.
   2332	 */
   2333	if (ep->esb_stat & ESB_ST_REC_QUAL) {
   2334		ep->esb_stat &= ~ESB_ST_REC_QUAL;
   2335		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
   2336	}
   2337	if (ep->esb_stat & ESB_ST_COMPLETE)
   2338		fc_exch_timer_cancel(ep);
   2339
   2340	spin_unlock_bh(&ep->ex_lock);
   2341
   2342	/*
   2343	 * Send LS_ACC.
   2344	 */
   2345	fc_seq_ls_acc(fp);
   2346	goto out;
   2347
   2348unlock_reject:
   2349	spin_unlock_bh(&ep->ex_lock);
   2350reject:
   2351	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
   2352out:
   2353	if (ep)
   2354		fc_exch_release(ep);	/* drop hold from fc_exch_find */
   2355}
   2356
   2357/**
   2358 * fc_exch_update_stats() - update exches stats to lport
   2359 * @lport: The local port to update exchange manager stats
   2360 */
   2361void fc_exch_update_stats(struct fc_lport *lport)
   2362{
   2363	struct fc_host_statistics *st;
   2364	struct fc_exch_mgr_anchor *ema;
   2365	struct fc_exch_mgr *mp;
   2366
   2367	st = &lport->host_stats;
   2368
   2369	list_for_each_entry(ema, &lport->ema_list, ema_list) {
   2370		mp = ema->mp;
   2371		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
   2372		st->fc_no_free_exch_xid +=
   2373				atomic_read(&mp->stats.no_free_exch_xid);
   2374		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
   2375		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
   2376		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
   2377		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
   2378	}
   2379}
   2380EXPORT_SYMBOL(fc_exch_update_stats);
   2381
   2382/**
   2383 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
   2384 * @lport: The local port to add the exchange manager to
   2385 * @mp:	   The exchange manager to be added to the local port
   2386 * @match: The match routine that indicates when this EM should be used
   2387 */
   2388struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
   2389					   struct fc_exch_mgr *mp,
   2390					   bool (*match)(struct fc_frame *))
   2391{
   2392	struct fc_exch_mgr_anchor *ema;
   2393
   2394	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
   2395	if (!ema)
   2396		return ema;
   2397
   2398	ema->mp = mp;
   2399	ema->match = match;
   2400	/* add EM anchor to EM anchors list */
   2401	list_add_tail(&ema->ema_list, &lport->ema_list);
   2402	kref_get(&mp->kref);
   2403	return ema;
   2404}
   2405EXPORT_SYMBOL(fc_exch_mgr_add);
   2406
   2407/**
   2408 * fc_exch_mgr_destroy() - Destroy an exchange manager
   2409 * @kref: The reference to the EM to be destroyed
   2410 */
   2411static void fc_exch_mgr_destroy(struct kref *kref)
   2412{
   2413	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
   2414
   2415	mempool_destroy(mp->ep_pool);
   2416	free_percpu(mp->pool);
   2417	kfree(mp);
   2418}
   2419
   2420/**
   2421 * fc_exch_mgr_del() - Delete an EM from a local port's list
   2422 * @ema: The exchange manager anchor identifying the EM to be deleted
   2423 */
   2424void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
   2425{
   2426	/* remove EM anchor from EM anchors list */
   2427	list_del(&ema->ema_list);
   2428	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
   2429	kfree(ema);
   2430}
   2431EXPORT_SYMBOL(fc_exch_mgr_del);
   2432
   2433/**
   2434 * fc_exch_mgr_list_clone() - Share all exchange manager objects
   2435 * @src: Source lport to clone exchange managers from
   2436 * @dst: New lport that takes references to all the exchange managers
   2437 */
   2438int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
   2439{
   2440	struct fc_exch_mgr_anchor *ema, *tmp;
   2441
   2442	list_for_each_entry(ema, &src->ema_list, ema_list) {
   2443		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
   2444			goto err;
   2445	}
   2446	return 0;
   2447err:
   2448	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
   2449		fc_exch_mgr_del(ema);
   2450	return -ENOMEM;
   2451}
   2452EXPORT_SYMBOL(fc_exch_mgr_list_clone);
   2453
   2454/**
   2455 * fc_exch_mgr_alloc() - Allocate an exchange manager
   2456 * @lport:   The local port that the new EM will be associated with
   2457 * @class:   The default FC class for new exchanges
   2458 * @min_xid: The minimum XID for exchanges from the new EM
   2459 * @max_xid: The maximum XID for exchanges from the new EM
   2460 * @match:   The match routine for the new EM
   2461 */
   2462struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
   2463				      enum fc_class class,
   2464				      u16 min_xid, u16 max_xid,
   2465				      bool (*match)(struct fc_frame *))
   2466{
   2467	struct fc_exch_mgr *mp;
   2468	u16 pool_exch_range;
   2469	size_t pool_size;
   2470	unsigned int cpu;
   2471	struct fc_exch_pool *pool;
   2472
   2473	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
   2474	    (min_xid & fc_cpu_mask) != 0) {
   2475		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
   2476			     min_xid, max_xid);
   2477		return NULL;
   2478	}
   2479
   2480	/*
   2481	 * allocate memory for EM
   2482	 */
   2483	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
   2484	if (!mp)
   2485		return NULL;
   2486
   2487	mp->class = class;
   2488	mp->lport = lport;
   2489	/* adjust em exch xid range for offload */
   2490	mp->min_xid = min_xid;
   2491
   2492       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
   2493	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
   2494		sizeof(struct fc_exch *);
   2495	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
   2496		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
   2497			min_xid - 1;
   2498	} else {
   2499		mp->max_xid = max_xid;
   2500		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
   2501			(fc_cpu_mask + 1);
   2502	}
   2503
   2504	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
   2505	if (!mp->ep_pool)
   2506		goto free_mp;
   2507
   2508	/*
   2509	 * Setup per cpu exch pool with entire exchange id range equally
   2510	 * divided across all cpus. The exch pointers array memory is
   2511	 * allocated for exch range per pool.
   2512	 */
   2513	mp->pool_max_index = pool_exch_range - 1;
   2514
   2515	/*
   2516	 * Allocate and initialize per cpu exch pool
   2517	 */
   2518	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
   2519	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
   2520	if (!mp->pool)
   2521		goto free_mempool;
   2522	for_each_possible_cpu(cpu) {
   2523		pool = per_cpu_ptr(mp->pool, cpu);
   2524		pool->next_index = 0;
   2525		pool->left = FC_XID_UNKNOWN;
   2526		pool->right = FC_XID_UNKNOWN;
   2527		spin_lock_init(&pool->lock);
   2528		INIT_LIST_HEAD(&pool->ex_list);
   2529	}
   2530
   2531	kref_init(&mp->kref);
   2532	if (!fc_exch_mgr_add(lport, mp, match)) {
   2533		free_percpu(mp->pool);
   2534		goto free_mempool;
   2535	}
   2536
   2537	/*
   2538	 * Above kref_init() sets mp->kref to 1 and then
   2539	 * call to fc_exch_mgr_add incremented mp->kref again,
   2540	 * so adjust that extra increment.
   2541	 */
   2542	kref_put(&mp->kref, fc_exch_mgr_destroy);
   2543	return mp;
   2544
   2545free_mempool:
   2546	mempool_destroy(mp->ep_pool);
   2547free_mp:
   2548	kfree(mp);
   2549	return NULL;
   2550}
   2551EXPORT_SYMBOL(fc_exch_mgr_alloc);
   2552
   2553/**
   2554 * fc_exch_mgr_free() - Free all exchange managers on a local port
   2555 * @lport: The local port whose EMs are to be freed
   2556 */
   2557void fc_exch_mgr_free(struct fc_lport *lport)
   2558{
   2559	struct fc_exch_mgr_anchor *ema, *next;
   2560
   2561	flush_workqueue(fc_exch_workqueue);
   2562	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
   2563		fc_exch_mgr_del(ema);
   2564}
   2565EXPORT_SYMBOL(fc_exch_mgr_free);
   2566
   2567/**
   2568 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
   2569 * upon 'xid'.
   2570 * @f_ctl: f_ctl
   2571 * @lport: The local port the frame was received on
   2572 * @fh: The received frame header
   2573 */
   2574static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
   2575					      struct fc_lport *lport,
   2576					      struct fc_frame_header *fh)
   2577{
   2578	struct fc_exch_mgr_anchor *ema;
   2579	u16 xid;
   2580
   2581	if (f_ctl & FC_FC_EX_CTX)
   2582		xid = ntohs(fh->fh_ox_id);
   2583	else {
   2584		xid = ntohs(fh->fh_rx_id);
   2585		if (xid == FC_XID_UNKNOWN)
   2586			return list_entry(lport->ema_list.prev,
   2587					  typeof(*ema), ema_list);
   2588	}
   2589
   2590	list_for_each_entry(ema, &lport->ema_list, ema_list) {
   2591		if ((xid >= ema->mp->min_xid) &&
   2592		    (xid <= ema->mp->max_xid))
   2593			return ema;
   2594	}
   2595	return NULL;
   2596}
   2597/**
   2598 * fc_exch_recv() - Handler for received frames
   2599 * @lport: The local port the frame was received on
   2600 * @fp:	The received frame
   2601 */
   2602void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
   2603{
   2604	struct fc_frame_header *fh = fc_frame_header_get(fp);
   2605	struct fc_exch_mgr_anchor *ema;
   2606	u32 f_ctl;
   2607
   2608	/* lport lock ? */
   2609	if (!lport || lport->state == LPORT_ST_DISABLED) {
   2610		FC_LIBFC_DBG("Receiving frames for an lport that "
   2611			     "has not been initialized correctly\n");
   2612		fc_frame_free(fp);
   2613		return;
   2614	}
   2615
   2616	f_ctl = ntoh24(fh->fh_f_ctl);
   2617	ema = fc_find_ema(f_ctl, lport, fh);
   2618	if (!ema) {
   2619		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
   2620				    "fc_ctl <0x%x>, xid <0x%x>\n",
   2621				     f_ctl,
   2622				     (f_ctl & FC_FC_EX_CTX) ?
   2623				     ntohs(fh->fh_ox_id) :
   2624				     ntohs(fh->fh_rx_id));
   2625		fc_frame_free(fp);
   2626		return;
   2627	}
   2628
   2629	/*
   2630	 * If frame is marked invalid, just drop it.
   2631	 */
   2632	switch (fr_eof(fp)) {
   2633	case FC_EOF_T:
   2634		if (f_ctl & FC_FC_END_SEQ)
   2635			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
   2636		fallthrough;
   2637	case FC_EOF_N:
   2638		if (fh->fh_type == FC_TYPE_BLS)
   2639			fc_exch_recv_bls(ema->mp, fp);
   2640		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
   2641			 FC_FC_EX_CTX)
   2642			fc_exch_recv_seq_resp(ema->mp, fp);
   2643		else if (f_ctl & FC_FC_SEQ_CTX)
   2644			fc_exch_recv_resp(ema->mp, fp);
   2645		else	/* no EX_CTX and no SEQ_CTX */
   2646			fc_exch_recv_req(lport, ema->mp, fp);
   2647		break;
   2648	default:
   2649		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
   2650			     fr_eof(fp));
   2651		fc_frame_free(fp);
   2652	}
   2653}
   2654EXPORT_SYMBOL(fc_exch_recv);
   2655
   2656/**
   2657 * fc_exch_init() - Initialize the exchange layer for a local port
   2658 * @lport: The local port to initialize the exchange layer for
   2659 */
   2660int fc_exch_init(struct fc_lport *lport)
   2661{
   2662	if (!lport->tt.exch_mgr_reset)
   2663		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
   2664
   2665	return 0;
   2666}
   2667EXPORT_SYMBOL(fc_exch_init);
   2668
   2669/**
   2670 * fc_setup_exch_mgr() - Setup an exchange manager
   2671 */
   2672int fc_setup_exch_mgr(void)
   2673{
   2674	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
   2675					 0, SLAB_HWCACHE_ALIGN, NULL);
   2676	if (!fc_em_cachep)
   2677		return -ENOMEM;
   2678
   2679	/*
   2680	 * Initialize fc_cpu_mask and fc_cpu_order. The
   2681	 * fc_cpu_mask is set for nr_cpu_ids rounded up
   2682	 * to order of 2's * power and order is stored
   2683	 * in fc_cpu_order as this is later required in
   2684	 * mapping between an exch id and exch array index
   2685	 * in per cpu exch pool.
   2686	 *
   2687	 * This round up is required to align fc_cpu_mask
   2688	 * to exchange id's lower bits such that all incoming
   2689	 * frames of an exchange gets delivered to the same
   2690	 * cpu on which exchange originated by simple bitwise
   2691	 * AND operation between fc_cpu_mask and exchange id.
   2692	 */
   2693	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
   2694	fc_cpu_mask = (1 << fc_cpu_order) - 1;
   2695
   2696	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
   2697	if (!fc_exch_workqueue)
   2698		goto err;
   2699	return 0;
   2700err:
   2701	kmem_cache_destroy(fc_em_cachep);
   2702	return -ENOMEM;
   2703}
   2704
   2705/**
   2706 * fc_destroy_exch_mgr() - Destroy an exchange manager
   2707 */
   2708void fc_destroy_exch_mgr(void)
   2709{
   2710	destroy_workqueue(fc_exch_workqueue);
   2711	kmem_cache_destroy(fc_em_cachep);
   2712}