cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

scsi_lib.c (88309B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 1999 Eric Youngdale
      4 * Copyright (C) 2014 Christoph Hellwig
      5 *
      6 *  SCSI queueing library.
      7 *      Initial versions: Eric Youngdale (eric@andante.org).
      8 *                        Based upon conversations with large numbers
      9 *                        of people at Linux Expo.
     10 */
     11
     12#include <linux/bio.h>
     13#include <linux/bitops.h>
     14#include <linux/blkdev.h>
     15#include <linux/completion.h>
     16#include <linux/kernel.h>
     17#include <linux/export.h>
     18#include <linux/init.h>
     19#include <linux/pci.h>
     20#include <linux/delay.h>
     21#include <linux/hardirq.h>
     22#include <linux/scatterlist.h>
     23#include <linux/blk-mq.h>
     24#include <linux/blk-integrity.h>
     25#include <linux/ratelimit.h>
     26#include <asm/unaligned.h>
     27
     28#include <scsi/scsi.h>
     29#include <scsi/scsi_cmnd.h>
     30#include <scsi/scsi_dbg.h>
     31#include <scsi/scsi_device.h>
     32#include <scsi/scsi_driver.h>
     33#include <scsi/scsi_eh.h>
     34#include <scsi/scsi_host.h>
     35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
     36#include <scsi/scsi_dh.h>
     37
     38#include <trace/events/scsi.h>
     39
     40#include "scsi_debugfs.h"
     41#include "scsi_priv.h"
     42#include "scsi_logging.h"
     43
     44/*
     45 * Size of integrity metadata is usually small, 1 inline sg should
     46 * cover normal cases.
     47 */
     48#ifdef CONFIG_ARCH_NO_SG_CHAIN
     49#define  SCSI_INLINE_PROT_SG_CNT  0
     50#define  SCSI_INLINE_SG_CNT  0
     51#else
     52#define  SCSI_INLINE_PROT_SG_CNT  1
     53#define  SCSI_INLINE_SG_CNT  2
     54#endif
     55
     56static struct kmem_cache *scsi_sense_cache;
     57static DEFINE_MUTEX(scsi_sense_cache_mutex);
     58
     59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
     60
     61int scsi_init_sense_cache(struct Scsi_Host *shost)
     62{
     63	int ret = 0;
     64
     65	mutex_lock(&scsi_sense_cache_mutex);
     66	if (!scsi_sense_cache) {
     67		scsi_sense_cache =
     68			kmem_cache_create_usercopy("scsi_sense_cache",
     69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
     70				0, SCSI_SENSE_BUFFERSIZE, NULL);
     71		if (!scsi_sense_cache)
     72			ret = -ENOMEM;
     73	}
     74	mutex_unlock(&scsi_sense_cache_mutex);
     75	return ret;
     76}
     77
     78/*
     79 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
     80 * not change behaviour from the previous unplug mechanism, experimentation
     81 * may prove this needs changing.
     82 */
     83#define SCSI_QUEUE_DELAY	3
     84
     85static void
     86scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
     87{
     88	struct Scsi_Host *host = cmd->device->host;
     89	struct scsi_device *device = cmd->device;
     90	struct scsi_target *starget = scsi_target(device);
     91
     92	/*
     93	 * Set the appropriate busy bit for the device/host.
     94	 *
     95	 * If the host/device isn't busy, assume that something actually
     96	 * completed, and that we should be able to queue a command now.
     97	 *
     98	 * Note that the prior mid-layer assumption that any host could
     99	 * always queue at least one command is now broken.  The mid-layer
    100	 * will implement a user specifiable stall (see
    101	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
    102	 * if a command is requeued with no other commands outstanding
    103	 * either for the device or for the host.
    104	 */
    105	switch (reason) {
    106	case SCSI_MLQUEUE_HOST_BUSY:
    107		atomic_set(&host->host_blocked, host->max_host_blocked);
    108		break;
    109	case SCSI_MLQUEUE_DEVICE_BUSY:
    110	case SCSI_MLQUEUE_EH_RETRY:
    111		atomic_set(&device->device_blocked,
    112			   device->max_device_blocked);
    113		break;
    114	case SCSI_MLQUEUE_TARGET_BUSY:
    115		atomic_set(&starget->target_blocked,
    116			   starget->max_target_blocked);
    117		break;
    118	}
    119}
    120
    121static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
    122{
    123	struct request *rq = scsi_cmd_to_rq(cmd);
    124
    125	if (rq->rq_flags & RQF_DONTPREP) {
    126		rq->rq_flags &= ~RQF_DONTPREP;
    127		scsi_mq_uninit_cmd(cmd);
    128	} else {
    129		WARN_ON_ONCE(true);
    130	}
    131	blk_mq_requeue_request(rq, true);
    132}
    133
    134/**
    135 * __scsi_queue_insert - private queue insertion
    136 * @cmd: The SCSI command being requeued
    137 * @reason:  The reason for the requeue
    138 * @unbusy: Whether the queue should be unbusied
    139 *
    140 * This is a private queue insertion.  The public interface
    141 * scsi_queue_insert() always assumes the queue should be unbusied
    142 * because it's always called before the completion.  This function is
    143 * for a requeue after completion, which should only occur in this
    144 * file.
    145 */
    146static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
    147{
    148	struct scsi_device *device = cmd->device;
    149
    150	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
    151		"Inserting command %p into mlqueue\n", cmd));
    152
    153	scsi_set_blocked(cmd, reason);
    154
    155	/*
    156	 * Decrement the counters, since these commands are no longer
    157	 * active on the host/device.
    158	 */
    159	if (unbusy)
    160		scsi_device_unbusy(device, cmd);
    161
    162	/*
    163	 * Requeue this command.  It will go before all other commands
    164	 * that are already in the queue. Schedule requeue work under
    165	 * lock such that the kblockd_schedule_work() call happens
    166	 * before blk_cleanup_queue() finishes.
    167	 */
    168	cmd->result = 0;
    169
    170	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
    171}
    172
    173/**
    174 * scsi_queue_insert - Reinsert a command in the queue.
    175 * @cmd:    command that we are adding to queue.
    176 * @reason: why we are inserting command to queue.
    177 *
    178 * We do this for one of two cases. Either the host is busy and it cannot accept
    179 * any more commands for the time being, or the device returned QUEUE_FULL and
    180 * can accept no more commands.
    181 *
    182 * Context: This could be called either from an interrupt context or a normal
    183 * process context.
    184 */
    185void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
    186{
    187	__scsi_queue_insert(cmd, reason, true);
    188}
    189
    190
    191/**
    192 * __scsi_execute - insert request and wait for the result
    193 * @sdev:	scsi device
    194 * @cmd:	scsi command
    195 * @data_direction: data direction
    196 * @buffer:	data buffer
    197 * @bufflen:	len of buffer
    198 * @sense:	optional sense buffer
    199 * @sshdr:	optional decoded sense header
    200 * @timeout:	request timeout in HZ
    201 * @retries:	number of times to retry request
    202 * @flags:	flags for ->cmd_flags
    203 * @rq_flags:	flags for ->rq_flags
    204 * @resid:	optional residual length
    205 *
    206 * Returns the scsi_cmnd result field if a command was executed, or a negative
    207 * Linux error code if we didn't get that far.
    208 */
    209int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
    210		 int data_direction, void *buffer, unsigned bufflen,
    211		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
    212		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
    213		 int *resid)
    214{
    215	struct request *req;
    216	struct scsi_cmnd *scmd;
    217	int ret;
    218
    219	req = scsi_alloc_request(sdev->request_queue,
    220			data_direction == DMA_TO_DEVICE ?
    221			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
    222			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
    223	if (IS_ERR(req))
    224		return PTR_ERR(req);
    225
    226	if (bufflen) {
    227		ret = blk_rq_map_kern(sdev->request_queue, req,
    228				      buffer, bufflen, GFP_NOIO);
    229		if (ret)
    230			goto out;
    231	}
    232	scmd = blk_mq_rq_to_pdu(req);
    233	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
    234	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
    235	scmd->allowed = retries;
    236	req->timeout = timeout;
    237	req->cmd_flags |= flags;
    238	req->rq_flags |= rq_flags | RQF_QUIET;
    239
    240	/*
    241	 * head injection *required* here otherwise quiesce won't work
    242	 */
    243	blk_execute_rq(req, true);
    244
    245	/*
    246	 * Some devices (USB mass-storage in particular) may transfer
    247	 * garbage data together with a residue indicating that the data
    248	 * is invalid.  Prevent the garbage from being misinterpreted
    249	 * and prevent security leaks by zeroing out the excess data.
    250	 */
    251	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
    252		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
    253
    254	if (resid)
    255		*resid = scmd->resid_len;
    256	if (sense && scmd->sense_len)
    257		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
    258	if (sshdr)
    259		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
    260				     sshdr);
    261	ret = scmd->result;
    262 out:
    263	blk_mq_free_request(req);
    264
    265	return ret;
    266}
    267EXPORT_SYMBOL(__scsi_execute);
    268
    269/*
    270 * Wake up the error handler if necessary. Avoid as follows that the error
    271 * handler is not woken up if host in-flight requests number ==
    272 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
    273 * with an RCU read lock in this function to ensure that this function in
    274 * its entirety either finishes before scsi_eh_scmd_add() increases the
    275 * host_failed counter or that it notices the shost state change made by
    276 * scsi_eh_scmd_add().
    277 */
    278static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
    279{
    280	unsigned long flags;
    281
    282	rcu_read_lock();
    283	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
    284	if (unlikely(scsi_host_in_recovery(shost))) {
    285		spin_lock_irqsave(shost->host_lock, flags);
    286		if (shost->host_failed || shost->host_eh_scheduled)
    287			scsi_eh_wakeup(shost);
    288		spin_unlock_irqrestore(shost->host_lock, flags);
    289	}
    290	rcu_read_unlock();
    291}
    292
    293void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
    294{
    295	struct Scsi_Host *shost = sdev->host;
    296	struct scsi_target *starget = scsi_target(sdev);
    297
    298	scsi_dec_host_busy(shost, cmd);
    299
    300	if (starget->can_queue > 0)
    301		atomic_dec(&starget->target_busy);
    302
    303	sbitmap_put(&sdev->budget_map, cmd->budget_token);
    304	cmd->budget_token = -1;
    305}
    306
    307static void scsi_kick_queue(struct request_queue *q)
    308{
    309	blk_mq_run_hw_queues(q, false);
    310}
    311
    312/*
    313 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
    314 * and call blk_run_queue for all the scsi_devices on the target -
    315 * including current_sdev first.
    316 *
    317 * Called with *no* scsi locks held.
    318 */
    319static void scsi_single_lun_run(struct scsi_device *current_sdev)
    320{
    321	struct Scsi_Host *shost = current_sdev->host;
    322	struct scsi_device *sdev, *tmp;
    323	struct scsi_target *starget = scsi_target(current_sdev);
    324	unsigned long flags;
    325
    326	spin_lock_irqsave(shost->host_lock, flags);
    327	starget->starget_sdev_user = NULL;
    328	spin_unlock_irqrestore(shost->host_lock, flags);
    329
    330	/*
    331	 * Call blk_run_queue for all LUNs on the target, starting with
    332	 * current_sdev. We race with others (to set starget_sdev_user),
    333	 * but in most cases, we will be first. Ideally, each LU on the
    334	 * target would get some limited time or requests on the target.
    335	 */
    336	scsi_kick_queue(current_sdev->request_queue);
    337
    338	spin_lock_irqsave(shost->host_lock, flags);
    339	if (starget->starget_sdev_user)
    340		goto out;
    341	list_for_each_entry_safe(sdev, tmp, &starget->devices,
    342			same_target_siblings) {
    343		if (sdev == current_sdev)
    344			continue;
    345		if (scsi_device_get(sdev))
    346			continue;
    347
    348		spin_unlock_irqrestore(shost->host_lock, flags);
    349		scsi_kick_queue(sdev->request_queue);
    350		spin_lock_irqsave(shost->host_lock, flags);
    351
    352		scsi_device_put(sdev);
    353	}
    354 out:
    355	spin_unlock_irqrestore(shost->host_lock, flags);
    356}
    357
    358static inline bool scsi_device_is_busy(struct scsi_device *sdev)
    359{
    360	if (scsi_device_busy(sdev) >= sdev->queue_depth)
    361		return true;
    362	if (atomic_read(&sdev->device_blocked) > 0)
    363		return true;
    364	return false;
    365}
    366
    367static inline bool scsi_target_is_busy(struct scsi_target *starget)
    368{
    369	if (starget->can_queue > 0) {
    370		if (atomic_read(&starget->target_busy) >= starget->can_queue)
    371			return true;
    372		if (atomic_read(&starget->target_blocked) > 0)
    373			return true;
    374	}
    375	return false;
    376}
    377
    378static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
    379{
    380	if (atomic_read(&shost->host_blocked) > 0)
    381		return true;
    382	if (shost->host_self_blocked)
    383		return true;
    384	return false;
    385}
    386
    387static void scsi_starved_list_run(struct Scsi_Host *shost)
    388{
    389	LIST_HEAD(starved_list);
    390	struct scsi_device *sdev;
    391	unsigned long flags;
    392
    393	spin_lock_irqsave(shost->host_lock, flags);
    394	list_splice_init(&shost->starved_list, &starved_list);
    395
    396	while (!list_empty(&starved_list)) {
    397		struct request_queue *slq;
    398
    399		/*
    400		 * As long as shost is accepting commands and we have
    401		 * starved queues, call blk_run_queue. scsi_request_fn
    402		 * drops the queue_lock and can add us back to the
    403		 * starved_list.
    404		 *
    405		 * host_lock protects the starved_list and starved_entry.
    406		 * scsi_request_fn must get the host_lock before checking
    407		 * or modifying starved_list or starved_entry.
    408		 */
    409		if (scsi_host_is_busy(shost))
    410			break;
    411
    412		sdev = list_entry(starved_list.next,
    413				  struct scsi_device, starved_entry);
    414		list_del_init(&sdev->starved_entry);
    415		if (scsi_target_is_busy(scsi_target(sdev))) {
    416			list_move_tail(&sdev->starved_entry,
    417				       &shost->starved_list);
    418			continue;
    419		}
    420
    421		/*
    422		 * Once we drop the host lock, a racing scsi_remove_device()
    423		 * call may remove the sdev from the starved list and destroy
    424		 * it and the queue.  Mitigate by taking a reference to the
    425		 * queue and never touching the sdev again after we drop the
    426		 * host lock.  Note: if __scsi_remove_device() invokes
    427		 * blk_cleanup_queue() before the queue is run from this
    428		 * function then blk_run_queue() will return immediately since
    429		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
    430		 */
    431		slq = sdev->request_queue;
    432		if (!blk_get_queue(slq))
    433			continue;
    434		spin_unlock_irqrestore(shost->host_lock, flags);
    435
    436		scsi_kick_queue(slq);
    437		blk_put_queue(slq);
    438
    439		spin_lock_irqsave(shost->host_lock, flags);
    440	}
    441	/* put any unprocessed entries back */
    442	list_splice(&starved_list, &shost->starved_list);
    443	spin_unlock_irqrestore(shost->host_lock, flags);
    444}
    445
    446/**
    447 * scsi_run_queue - Select a proper request queue to serve next.
    448 * @q:  last request's queue
    449 *
    450 * The previous command was completely finished, start a new one if possible.
    451 */
    452static void scsi_run_queue(struct request_queue *q)
    453{
    454	struct scsi_device *sdev = q->queuedata;
    455
    456	if (scsi_target(sdev)->single_lun)
    457		scsi_single_lun_run(sdev);
    458	if (!list_empty(&sdev->host->starved_list))
    459		scsi_starved_list_run(sdev->host);
    460
    461	blk_mq_run_hw_queues(q, false);
    462}
    463
    464void scsi_requeue_run_queue(struct work_struct *work)
    465{
    466	struct scsi_device *sdev;
    467	struct request_queue *q;
    468
    469	sdev = container_of(work, struct scsi_device, requeue_work);
    470	q = sdev->request_queue;
    471	scsi_run_queue(q);
    472}
    473
    474void scsi_run_host_queues(struct Scsi_Host *shost)
    475{
    476	struct scsi_device *sdev;
    477
    478	shost_for_each_device(sdev, shost)
    479		scsi_run_queue(sdev->request_queue);
    480}
    481
    482static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
    483{
    484	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
    485		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
    486
    487		if (drv->uninit_command)
    488			drv->uninit_command(cmd);
    489	}
    490}
    491
    492void scsi_free_sgtables(struct scsi_cmnd *cmd)
    493{
    494	if (cmd->sdb.table.nents)
    495		sg_free_table_chained(&cmd->sdb.table,
    496				SCSI_INLINE_SG_CNT);
    497	if (scsi_prot_sg_count(cmd))
    498		sg_free_table_chained(&cmd->prot_sdb->table,
    499				SCSI_INLINE_PROT_SG_CNT);
    500}
    501EXPORT_SYMBOL_GPL(scsi_free_sgtables);
    502
    503static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
    504{
    505	scsi_free_sgtables(cmd);
    506	scsi_uninit_cmd(cmd);
    507}
    508
    509static void scsi_run_queue_async(struct scsi_device *sdev)
    510{
    511	if (scsi_target(sdev)->single_lun ||
    512	    !list_empty(&sdev->host->starved_list)) {
    513		kblockd_schedule_work(&sdev->requeue_work);
    514	} else {
    515		/*
    516		 * smp_mb() present in sbitmap_queue_clear() or implied in
    517		 * .end_io is for ordering writing .device_busy in
    518		 * scsi_device_unbusy() and reading sdev->restarts.
    519		 */
    520		int old = atomic_read(&sdev->restarts);
    521
    522		/*
    523		 * ->restarts has to be kept as non-zero if new budget
    524		 *  contention occurs.
    525		 *
    526		 *  No need to run queue when either another re-run
    527		 *  queue wins in updating ->restarts or a new budget
    528		 *  contention occurs.
    529		 */
    530		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
    531			blk_mq_run_hw_queues(sdev->request_queue, true);
    532	}
    533}
    534
    535/* Returns false when no more bytes to process, true if there are more */
    536static bool scsi_end_request(struct request *req, blk_status_t error,
    537		unsigned int bytes)
    538{
    539	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
    540	struct scsi_device *sdev = cmd->device;
    541	struct request_queue *q = sdev->request_queue;
    542
    543	if (blk_update_request(req, error, bytes))
    544		return true;
    545
    546	// XXX:
    547	if (blk_queue_add_random(q))
    548		add_disk_randomness(req->q->disk);
    549
    550	if (!blk_rq_is_passthrough(req)) {
    551		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
    552		cmd->flags &= ~SCMD_INITIALIZED;
    553	}
    554
    555	/*
    556	 * Calling rcu_barrier() is not necessary here because the
    557	 * SCSI error handler guarantees that the function called by
    558	 * call_rcu() has been called before scsi_end_request() is
    559	 * called.
    560	 */
    561	destroy_rcu_head(&cmd->rcu);
    562
    563	/*
    564	 * In the MQ case the command gets freed by __blk_mq_end_request,
    565	 * so we have to do all cleanup that depends on it earlier.
    566	 *
    567	 * We also can't kick the queues from irq context, so we
    568	 * will have to defer it to a workqueue.
    569	 */
    570	scsi_mq_uninit_cmd(cmd);
    571
    572	/*
    573	 * queue is still alive, so grab the ref for preventing it
    574	 * from being cleaned up during running queue.
    575	 */
    576	percpu_ref_get(&q->q_usage_counter);
    577
    578	__blk_mq_end_request(req, error);
    579
    580	scsi_run_queue_async(sdev);
    581
    582	percpu_ref_put(&q->q_usage_counter);
    583	return false;
    584}
    585
    586/**
    587 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
    588 * @cmd:	SCSI command
    589 * @result:	scsi error code
    590 *
    591 * Translate a SCSI result code into a blk_status_t value. May reset the host
    592 * byte of @cmd->result.
    593 */
    594static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
    595{
    596	switch (host_byte(result)) {
    597	case DID_OK:
    598		if (scsi_status_is_good(result))
    599			return BLK_STS_OK;
    600		return BLK_STS_IOERR;
    601	case DID_TRANSPORT_FAILFAST:
    602	case DID_TRANSPORT_MARGINAL:
    603		return BLK_STS_TRANSPORT;
    604	case DID_TARGET_FAILURE:
    605		set_host_byte(cmd, DID_OK);
    606		return BLK_STS_TARGET;
    607	case DID_NEXUS_FAILURE:
    608		set_host_byte(cmd, DID_OK);
    609		return BLK_STS_NEXUS;
    610	case DID_ALLOC_FAILURE:
    611		set_host_byte(cmd, DID_OK);
    612		return BLK_STS_NOSPC;
    613	case DID_MEDIUM_ERROR:
    614		set_host_byte(cmd, DID_OK);
    615		return BLK_STS_MEDIUM;
    616	default:
    617		return BLK_STS_IOERR;
    618	}
    619}
    620
    621/**
    622 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
    623 * @rq: request to examine
    624 *
    625 * Description:
    626 *     A request could be merge of IOs which require different failure
    627 *     handling.  This function determines the number of bytes which
    628 *     can be failed from the beginning of the request without
    629 *     crossing into area which need to be retried further.
    630 *
    631 * Return:
    632 *     The number of bytes to fail.
    633 */
    634static unsigned int scsi_rq_err_bytes(const struct request *rq)
    635{
    636	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
    637	unsigned int bytes = 0;
    638	struct bio *bio;
    639
    640	if (!(rq->rq_flags & RQF_MIXED_MERGE))
    641		return blk_rq_bytes(rq);
    642
    643	/*
    644	 * Currently the only 'mixing' which can happen is between
    645	 * different fastfail types.  We can safely fail portions
    646	 * which have all the failfast bits that the first one has -
    647	 * the ones which are at least as eager to fail as the first
    648	 * one.
    649	 */
    650	for (bio = rq->bio; bio; bio = bio->bi_next) {
    651		if ((bio->bi_opf & ff) != ff)
    652			break;
    653		bytes += bio->bi_iter.bi_size;
    654	}
    655
    656	/* this could lead to infinite loop */
    657	BUG_ON(blk_rq_bytes(rq) && !bytes);
    658	return bytes;
    659}
    660
    661/* Helper for scsi_io_completion() when "reprep" action required. */
    662static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
    663				      struct request_queue *q)
    664{
    665	/* A new command will be prepared and issued. */
    666	scsi_mq_requeue_cmd(cmd);
    667}
    668
    669static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
    670{
    671	struct request *req = scsi_cmd_to_rq(cmd);
    672	unsigned long wait_for;
    673
    674	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
    675		return false;
    676
    677	wait_for = (cmd->allowed + 1) * req->timeout;
    678	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
    679		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
    680			    wait_for/HZ);
    681		return true;
    682	}
    683	return false;
    684}
    685
    686/* Helper for scsi_io_completion() when special action required. */
    687static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
    688{
    689	struct request_queue *q = cmd->device->request_queue;
    690	struct request *req = scsi_cmd_to_rq(cmd);
    691	int level = 0;
    692	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
    693	      ACTION_DELAYED_RETRY} action;
    694	struct scsi_sense_hdr sshdr;
    695	bool sense_valid;
    696	bool sense_current = true;      /* false implies "deferred sense" */
    697	blk_status_t blk_stat;
    698
    699	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
    700	if (sense_valid)
    701		sense_current = !scsi_sense_is_deferred(&sshdr);
    702
    703	blk_stat = scsi_result_to_blk_status(cmd, result);
    704
    705	if (host_byte(result) == DID_RESET) {
    706		/* Third party bus reset or reset for error recovery
    707		 * reasons.  Just retry the command and see what
    708		 * happens.
    709		 */
    710		action = ACTION_RETRY;
    711	} else if (sense_valid && sense_current) {
    712		switch (sshdr.sense_key) {
    713		case UNIT_ATTENTION:
    714			if (cmd->device->removable) {
    715				/* Detected disc change.  Set a bit
    716				 * and quietly refuse further access.
    717				 */
    718				cmd->device->changed = 1;
    719				action = ACTION_FAIL;
    720			} else {
    721				/* Must have been a power glitch, or a
    722				 * bus reset.  Could not have been a
    723				 * media change, so we just retry the
    724				 * command and see what happens.
    725				 */
    726				action = ACTION_RETRY;
    727			}
    728			break;
    729		case ILLEGAL_REQUEST:
    730			/* If we had an ILLEGAL REQUEST returned, then
    731			 * we may have performed an unsupported
    732			 * command.  The only thing this should be
    733			 * would be a ten byte read where only a six
    734			 * byte read was supported.  Also, on a system
    735			 * where READ CAPACITY failed, we may have
    736			 * read past the end of the disk.
    737			 */
    738			if ((cmd->device->use_10_for_rw &&
    739			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
    740			    (cmd->cmnd[0] == READ_10 ||
    741			     cmd->cmnd[0] == WRITE_10)) {
    742				/* This will issue a new 6-byte command. */
    743				cmd->device->use_10_for_rw = 0;
    744				action = ACTION_REPREP;
    745			} else if (sshdr.asc == 0x10) /* DIX */ {
    746				action = ACTION_FAIL;
    747				blk_stat = BLK_STS_PROTECTION;
    748			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
    749			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
    750				action = ACTION_FAIL;
    751				blk_stat = BLK_STS_TARGET;
    752			} else
    753				action = ACTION_FAIL;
    754			break;
    755		case ABORTED_COMMAND:
    756			action = ACTION_FAIL;
    757			if (sshdr.asc == 0x10) /* DIF */
    758				blk_stat = BLK_STS_PROTECTION;
    759			break;
    760		case NOT_READY:
    761			/* If the device is in the process of becoming
    762			 * ready, or has a temporary blockage, retry.
    763			 */
    764			if (sshdr.asc == 0x04) {
    765				switch (sshdr.ascq) {
    766				case 0x01: /* becoming ready */
    767				case 0x04: /* format in progress */
    768				case 0x05: /* rebuild in progress */
    769				case 0x06: /* recalculation in progress */
    770				case 0x07: /* operation in progress */
    771				case 0x08: /* Long write in progress */
    772				case 0x09: /* self test in progress */
    773				case 0x11: /* notify (enable spinup) required */
    774				case 0x14: /* space allocation in progress */
    775				case 0x1a: /* start stop unit in progress */
    776				case 0x1b: /* sanitize in progress */
    777				case 0x1d: /* configuration in progress */
    778				case 0x24: /* depopulation in progress */
    779					action = ACTION_DELAYED_RETRY;
    780					break;
    781				case 0x0a: /* ALUA state transition */
    782					blk_stat = BLK_STS_TRANSPORT;
    783					fallthrough;
    784				default:
    785					action = ACTION_FAIL;
    786					break;
    787				}
    788			} else
    789				action = ACTION_FAIL;
    790			break;
    791		case VOLUME_OVERFLOW:
    792			/* See SSC3rXX or current. */
    793			action = ACTION_FAIL;
    794			break;
    795		case DATA_PROTECT:
    796			action = ACTION_FAIL;
    797			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
    798			    (sshdr.asc == 0x55 &&
    799			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
    800				/* Insufficient zone resources */
    801				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
    802			}
    803			break;
    804		default:
    805			action = ACTION_FAIL;
    806			break;
    807		}
    808	} else
    809		action = ACTION_FAIL;
    810
    811	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
    812		action = ACTION_FAIL;
    813
    814	switch (action) {
    815	case ACTION_FAIL:
    816		/* Give up and fail the remainder of the request */
    817		if (!(req->rq_flags & RQF_QUIET)) {
    818			static DEFINE_RATELIMIT_STATE(_rs,
    819					DEFAULT_RATELIMIT_INTERVAL,
    820					DEFAULT_RATELIMIT_BURST);
    821
    822			if (unlikely(scsi_logging_level))
    823				level =
    824				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
    825						    SCSI_LOG_MLCOMPLETE_BITS);
    826
    827			/*
    828			 * if logging is enabled the failure will be printed
    829			 * in scsi_log_completion(), so avoid duplicate messages
    830			 */
    831			if (!level && __ratelimit(&_rs)) {
    832				scsi_print_result(cmd, NULL, FAILED);
    833				if (sense_valid)
    834					scsi_print_sense(cmd);
    835				scsi_print_command(cmd);
    836			}
    837		}
    838		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
    839			return;
    840		fallthrough;
    841	case ACTION_REPREP:
    842		scsi_io_completion_reprep(cmd, q);
    843		break;
    844	case ACTION_RETRY:
    845		/* Retry the same command immediately */
    846		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
    847		break;
    848	case ACTION_DELAYED_RETRY:
    849		/* Retry the same command after a delay */
    850		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
    851		break;
    852	}
    853}
    854
    855/*
    856 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
    857 * new result that may suppress further error checking. Also modifies
    858 * *blk_statp in some cases.
    859 */
    860static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
    861					blk_status_t *blk_statp)
    862{
    863	bool sense_valid;
    864	bool sense_current = true;	/* false implies "deferred sense" */
    865	struct request *req = scsi_cmd_to_rq(cmd);
    866	struct scsi_sense_hdr sshdr;
    867
    868	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
    869	if (sense_valid)
    870		sense_current = !scsi_sense_is_deferred(&sshdr);
    871
    872	if (blk_rq_is_passthrough(req)) {
    873		if (sense_valid) {
    874			/*
    875			 * SG_IO wants current and deferred errors
    876			 */
    877			cmd->sense_len = min(8 + cmd->sense_buffer[7],
    878					     SCSI_SENSE_BUFFERSIZE);
    879		}
    880		if (sense_current)
    881			*blk_statp = scsi_result_to_blk_status(cmd, result);
    882	} else if (blk_rq_bytes(req) == 0 && sense_current) {
    883		/*
    884		 * Flush commands do not transfers any data, and thus cannot use
    885		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
    886		 * This sets *blk_statp explicitly for the problem case.
    887		 */
    888		*blk_statp = scsi_result_to_blk_status(cmd, result);
    889	}
    890	/*
    891	 * Recovered errors need reporting, but they're always treated as
    892	 * success, so fiddle the result code here.  For passthrough requests
    893	 * we already took a copy of the original into sreq->result which
    894	 * is what gets returned to the user
    895	 */
    896	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
    897		bool do_print = true;
    898		/*
    899		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
    900		 * skip print since caller wants ATA registers. Only occurs
    901		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
    902		 */
    903		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
    904			do_print = false;
    905		else if (req->rq_flags & RQF_QUIET)
    906			do_print = false;
    907		if (do_print)
    908			scsi_print_sense(cmd);
    909		result = 0;
    910		/* for passthrough, *blk_statp may be set */
    911		*blk_statp = BLK_STS_OK;
    912	}
    913	/*
    914	 * Another corner case: the SCSI status byte is non-zero but 'good'.
    915	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
    916	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
    917	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
    918	 * intermediate statuses (both obsolete in SAM-4) as good.
    919	 */
    920	if ((result & 0xff) && scsi_status_is_good(result)) {
    921		result = 0;
    922		*blk_statp = BLK_STS_OK;
    923	}
    924	return result;
    925}
    926
    927/**
    928 * scsi_io_completion - Completion processing for SCSI commands.
    929 * @cmd:	command that is finished.
    930 * @good_bytes:	number of processed bytes.
    931 *
    932 * We will finish off the specified number of sectors. If we are done, the
    933 * command block will be released and the queue function will be goosed. If we
    934 * are not done then we have to figure out what to do next:
    935 *
    936 *   a) We can call scsi_io_completion_reprep().  The request will be
    937 *	unprepared and put back on the queue.  Then a new command will
    938 *	be created for it.  This should be used if we made forward
    939 *	progress, or if we want to switch from READ(10) to READ(6) for
    940 *	example.
    941 *
    942 *   b) We can call scsi_io_completion_action().  The request will be
    943 *	put back on the queue and retried using the same command as
    944 *	before, possibly after a delay.
    945 *
    946 *   c) We can call scsi_end_request() with blk_stat other than
    947 *	BLK_STS_OK, to fail the remainder of the request.
    948 */
    949void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
    950{
    951	int result = cmd->result;
    952	struct request_queue *q = cmd->device->request_queue;
    953	struct request *req = scsi_cmd_to_rq(cmd);
    954	blk_status_t blk_stat = BLK_STS_OK;
    955
    956	if (unlikely(result))	/* a nz result may or may not be an error */
    957		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
    958
    959	/*
    960	 * Next deal with any sectors which we were able to correctly
    961	 * handle.
    962	 */
    963	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
    964		"%u sectors total, %d bytes done.\n",
    965		blk_rq_sectors(req), good_bytes));
    966
    967	/*
    968	 * Failed, zero length commands always need to drop down
    969	 * to retry code. Fast path should return in this block.
    970	 */
    971	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
    972		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
    973			return; /* no bytes remaining */
    974	}
    975
    976	/* Kill remainder if no retries. */
    977	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
    978		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
    979			WARN_ONCE(true,
    980			    "Bytes remaining after failed, no-retry command");
    981		return;
    982	}
    983
    984	/*
    985	 * If there had been no error, but we have leftover bytes in the
    986	 * request just queue the command up again.
    987	 */
    988	if (likely(result == 0))
    989		scsi_io_completion_reprep(cmd, q);
    990	else
    991		scsi_io_completion_action(cmd, result);
    992}
    993
    994static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
    995		struct request *rq)
    996{
    997	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
    998	       !op_is_write(req_op(rq)) &&
    999	       sdev->host->hostt->dma_need_drain(rq);
   1000}
   1001
   1002/**
   1003 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
   1004 * @cmd: SCSI command data structure to initialize.
   1005 *
   1006 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
   1007 * for @cmd.
   1008 *
   1009 * Returns:
   1010 * * BLK_STS_OK       - on success
   1011 * * BLK_STS_RESOURCE - if the failure is retryable
   1012 * * BLK_STS_IOERR    - if the failure is fatal
   1013 */
   1014blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
   1015{
   1016	struct scsi_device *sdev = cmd->device;
   1017	struct request *rq = scsi_cmd_to_rq(cmd);
   1018	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
   1019	struct scatterlist *last_sg = NULL;
   1020	blk_status_t ret;
   1021	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
   1022	int count;
   1023
   1024	if (WARN_ON_ONCE(!nr_segs))
   1025		return BLK_STS_IOERR;
   1026
   1027	/*
   1028	 * Make sure there is space for the drain.  The driver must adjust
   1029	 * max_hw_segments to be prepared for this.
   1030	 */
   1031	if (need_drain)
   1032		nr_segs++;
   1033
   1034	/*
   1035	 * If sg table allocation fails, requeue request later.
   1036	 */
   1037	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
   1038			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
   1039		return BLK_STS_RESOURCE;
   1040
   1041	/*
   1042	 * Next, walk the list, and fill in the addresses and sizes of
   1043	 * each segment.
   1044	 */
   1045	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
   1046
   1047	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
   1048		unsigned int pad_len =
   1049			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
   1050
   1051		last_sg->length += pad_len;
   1052		cmd->extra_len += pad_len;
   1053	}
   1054
   1055	if (need_drain) {
   1056		sg_unmark_end(last_sg);
   1057		last_sg = sg_next(last_sg);
   1058		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
   1059		sg_mark_end(last_sg);
   1060
   1061		cmd->extra_len += sdev->dma_drain_len;
   1062		count++;
   1063	}
   1064
   1065	BUG_ON(count > cmd->sdb.table.nents);
   1066	cmd->sdb.table.nents = count;
   1067	cmd->sdb.length = blk_rq_payload_bytes(rq);
   1068
   1069	if (blk_integrity_rq(rq)) {
   1070		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
   1071		int ivecs;
   1072
   1073		if (WARN_ON_ONCE(!prot_sdb)) {
   1074			/*
   1075			 * This can happen if someone (e.g. multipath)
   1076			 * queues a command to a device on an adapter
   1077			 * that does not support DIX.
   1078			 */
   1079			ret = BLK_STS_IOERR;
   1080			goto out_free_sgtables;
   1081		}
   1082
   1083		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
   1084
   1085		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
   1086				prot_sdb->table.sgl,
   1087				SCSI_INLINE_PROT_SG_CNT)) {
   1088			ret = BLK_STS_RESOURCE;
   1089			goto out_free_sgtables;
   1090		}
   1091
   1092		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
   1093						prot_sdb->table.sgl);
   1094		BUG_ON(count > ivecs);
   1095		BUG_ON(count > queue_max_integrity_segments(rq->q));
   1096
   1097		cmd->prot_sdb = prot_sdb;
   1098		cmd->prot_sdb->table.nents = count;
   1099	}
   1100
   1101	return BLK_STS_OK;
   1102out_free_sgtables:
   1103	scsi_free_sgtables(cmd);
   1104	return ret;
   1105}
   1106EXPORT_SYMBOL(scsi_alloc_sgtables);
   1107
   1108/**
   1109 * scsi_initialize_rq - initialize struct scsi_cmnd partially
   1110 * @rq: Request associated with the SCSI command to be initialized.
   1111 *
   1112 * This function initializes the members of struct scsi_cmnd that must be
   1113 * initialized before request processing starts and that won't be
   1114 * reinitialized if a SCSI command is requeued.
   1115 */
   1116static void scsi_initialize_rq(struct request *rq)
   1117{
   1118	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
   1119
   1120	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
   1121	cmd->cmd_len = MAX_COMMAND_SIZE;
   1122	cmd->sense_len = 0;
   1123	init_rcu_head(&cmd->rcu);
   1124	cmd->jiffies_at_alloc = jiffies;
   1125	cmd->retries = 0;
   1126}
   1127
   1128struct request *scsi_alloc_request(struct request_queue *q,
   1129		unsigned int op, blk_mq_req_flags_t flags)
   1130{
   1131	struct request *rq;
   1132
   1133	rq = blk_mq_alloc_request(q, op, flags);
   1134	if (!IS_ERR(rq))
   1135		scsi_initialize_rq(rq);
   1136	return rq;
   1137}
   1138EXPORT_SYMBOL_GPL(scsi_alloc_request);
   1139
   1140/*
   1141 * Only called when the request isn't completed by SCSI, and not freed by
   1142 * SCSI
   1143 */
   1144static void scsi_cleanup_rq(struct request *rq)
   1145{
   1146	if (rq->rq_flags & RQF_DONTPREP) {
   1147		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
   1148		rq->rq_flags &= ~RQF_DONTPREP;
   1149	}
   1150}
   1151
   1152/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
   1153void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
   1154{
   1155	struct request *rq = scsi_cmd_to_rq(cmd);
   1156
   1157	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
   1158		cmd->flags |= SCMD_INITIALIZED;
   1159		scsi_initialize_rq(rq);
   1160	}
   1161
   1162	cmd->device = dev;
   1163	INIT_LIST_HEAD(&cmd->eh_entry);
   1164	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
   1165}
   1166
   1167static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
   1168		struct request *req)
   1169{
   1170	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
   1171
   1172	/*
   1173	 * Passthrough requests may transfer data, in which case they must
   1174	 * a bio attached to them.  Or they might contain a SCSI command
   1175	 * that does not transfer data, in which case they may optionally
   1176	 * submit a request without an attached bio.
   1177	 */
   1178	if (req->bio) {
   1179		blk_status_t ret = scsi_alloc_sgtables(cmd);
   1180		if (unlikely(ret != BLK_STS_OK))
   1181			return ret;
   1182	} else {
   1183		BUG_ON(blk_rq_bytes(req));
   1184
   1185		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
   1186	}
   1187
   1188	cmd->transfersize = blk_rq_bytes(req);
   1189	return BLK_STS_OK;
   1190}
   1191
   1192static blk_status_t
   1193scsi_device_state_check(struct scsi_device *sdev, struct request *req)
   1194{
   1195	switch (sdev->sdev_state) {
   1196	case SDEV_CREATED:
   1197		return BLK_STS_OK;
   1198	case SDEV_OFFLINE:
   1199	case SDEV_TRANSPORT_OFFLINE:
   1200		/*
   1201		 * If the device is offline we refuse to process any
   1202		 * commands.  The device must be brought online
   1203		 * before trying any recovery commands.
   1204		 */
   1205		if (!sdev->offline_already) {
   1206			sdev->offline_already = true;
   1207			sdev_printk(KERN_ERR, sdev,
   1208				    "rejecting I/O to offline device\n");
   1209		}
   1210		return BLK_STS_IOERR;
   1211	case SDEV_DEL:
   1212		/*
   1213		 * If the device is fully deleted, we refuse to
   1214		 * process any commands as well.
   1215		 */
   1216		sdev_printk(KERN_ERR, sdev,
   1217			    "rejecting I/O to dead device\n");
   1218		return BLK_STS_IOERR;
   1219	case SDEV_BLOCK:
   1220	case SDEV_CREATED_BLOCK:
   1221		return BLK_STS_RESOURCE;
   1222	case SDEV_QUIESCE:
   1223		/*
   1224		 * If the device is blocked we only accept power management
   1225		 * commands.
   1226		 */
   1227		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
   1228			return BLK_STS_RESOURCE;
   1229		return BLK_STS_OK;
   1230	default:
   1231		/*
   1232		 * For any other not fully online state we only allow
   1233		 * power management commands.
   1234		 */
   1235		if (req && !(req->rq_flags & RQF_PM))
   1236			return BLK_STS_OFFLINE;
   1237		return BLK_STS_OK;
   1238	}
   1239}
   1240
   1241/*
   1242 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
   1243 * and return the token else return -1.
   1244 */
   1245static inline int scsi_dev_queue_ready(struct request_queue *q,
   1246				  struct scsi_device *sdev)
   1247{
   1248	int token;
   1249
   1250	token = sbitmap_get(&sdev->budget_map);
   1251	if (atomic_read(&sdev->device_blocked)) {
   1252		if (token < 0)
   1253			goto out;
   1254
   1255		if (scsi_device_busy(sdev) > 1)
   1256			goto out_dec;
   1257
   1258		/*
   1259		 * unblock after device_blocked iterates to zero
   1260		 */
   1261		if (atomic_dec_return(&sdev->device_blocked) > 0)
   1262			goto out_dec;
   1263		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
   1264				   "unblocking device at zero depth\n"));
   1265	}
   1266
   1267	return token;
   1268out_dec:
   1269	if (token >= 0)
   1270		sbitmap_put(&sdev->budget_map, token);
   1271out:
   1272	return -1;
   1273}
   1274
   1275/*
   1276 * scsi_target_queue_ready: checks if there we can send commands to target
   1277 * @sdev: scsi device on starget to check.
   1278 */
   1279static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
   1280					   struct scsi_device *sdev)
   1281{
   1282	struct scsi_target *starget = scsi_target(sdev);
   1283	unsigned int busy;
   1284
   1285	if (starget->single_lun) {
   1286		spin_lock_irq(shost->host_lock);
   1287		if (starget->starget_sdev_user &&
   1288		    starget->starget_sdev_user != sdev) {
   1289			spin_unlock_irq(shost->host_lock);
   1290			return 0;
   1291		}
   1292		starget->starget_sdev_user = sdev;
   1293		spin_unlock_irq(shost->host_lock);
   1294	}
   1295
   1296	if (starget->can_queue <= 0)
   1297		return 1;
   1298
   1299	busy = atomic_inc_return(&starget->target_busy) - 1;
   1300	if (atomic_read(&starget->target_blocked) > 0) {
   1301		if (busy)
   1302			goto starved;
   1303
   1304		/*
   1305		 * unblock after target_blocked iterates to zero
   1306		 */
   1307		if (atomic_dec_return(&starget->target_blocked) > 0)
   1308			goto out_dec;
   1309
   1310		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
   1311				 "unblocking target at zero depth\n"));
   1312	}
   1313
   1314	if (busy >= starget->can_queue)
   1315		goto starved;
   1316
   1317	return 1;
   1318
   1319starved:
   1320	spin_lock_irq(shost->host_lock);
   1321	list_move_tail(&sdev->starved_entry, &shost->starved_list);
   1322	spin_unlock_irq(shost->host_lock);
   1323out_dec:
   1324	if (starget->can_queue > 0)
   1325		atomic_dec(&starget->target_busy);
   1326	return 0;
   1327}
   1328
   1329/*
   1330 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
   1331 * return 0. We must end up running the queue again whenever 0 is
   1332 * returned, else IO can hang.
   1333 */
   1334static inline int scsi_host_queue_ready(struct request_queue *q,
   1335				   struct Scsi_Host *shost,
   1336				   struct scsi_device *sdev,
   1337				   struct scsi_cmnd *cmd)
   1338{
   1339	if (scsi_host_in_recovery(shost))
   1340		return 0;
   1341
   1342	if (atomic_read(&shost->host_blocked) > 0) {
   1343		if (scsi_host_busy(shost) > 0)
   1344			goto starved;
   1345
   1346		/*
   1347		 * unblock after host_blocked iterates to zero
   1348		 */
   1349		if (atomic_dec_return(&shost->host_blocked) > 0)
   1350			goto out_dec;
   1351
   1352		SCSI_LOG_MLQUEUE(3,
   1353			shost_printk(KERN_INFO, shost,
   1354				     "unblocking host at zero depth\n"));
   1355	}
   1356
   1357	if (shost->host_self_blocked)
   1358		goto starved;
   1359
   1360	/* We're OK to process the command, so we can't be starved */
   1361	if (!list_empty(&sdev->starved_entry)) {
   1362		spin_lock_irq(shost->host_lock);
   1363		if (!list_empty(&sdev->starved_entry))
   1364			list_del_init(&sdev->starved_entry);
   1365		spin_unlock_irq(shost->host_lock);
   1366	}
   1367
   1368	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
   1369
   1370	return 1;
   1371
   1372starved:
   1373	spin_lock_irq(shost->host_lock);
   1374	if (list_empty(&sdev->starved_entry))
   1375		list_add_tail(&sdev->starved_entry, &shost->starved_list);
   1376	spin_unlock_irq(shost->host_lock);
   1377out_dec:
   1378	scsi_dec_host_busy(shost, cmd);
   1379	return 0;
   1380}
   1381
   1382/*
   1383 * Busy state exporting function for request stacking drivers.
   1384 *
   1385 * For efficiency, no lock is taken to check the busy state of
   1386 * shost/starget/sdev, since the returned value is not guaranteed and
   1387 * may be changed after request stacking drivers call the function,
   1388 * regardless of taking lock or not.
   1389 *
   1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
   1391 * needs to return 'not busy'. Otherwise, request stacking drivers
   1392 * may hold requests forever.
   1393 */
   1394static bool scsi_mq_lld_busy(struct request_queue *q)
   1395{
   1396	struct scsi_device *sdev = q->queuedata;
   1397	struct Scsi_Host *shost;
   1398
   1399	if (blk_queue_dying(q))
   1400		return false;
   1401
   1402	shost = sdev->host;
   1403
   1404	/*
   1405	 * Ignore host/starget busy state.
   1406	 * Since block layer does not have a concept of fairness across
   1407	 * multiple queues, congestion of host/starget needs to be handled
   1408	 * in SCSI layer.
   1409	 */
   1410	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
   1411		return true;
   1412
   1413	return false;
   1414}
   1415
   1416/*
   1417 * Block layer request completion callback. May be called from interrupt
   1418 * context.
   1419 */
   1420static void scsi_complete(struct request *rq)
   1421{
   1422	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
   1423	enum scsi_disposition disposition;
   1424
   1425	INIT_LIST_HEAD(&cmd->eh_entry);
   1426
   1427	atomic_inc(&cmd->device->iodone_cnt);
   1428	if (cmd->result)
   1429		atomic_inc(&cmd->device->ioerr_cnt);
   1430
   1431	disposition = scsi_decide_disposition(cmd);
   1432	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
   1433		disposition = SUCCESS;
   1434
   1435	scsi_log_completion(cmd, disposition);
   1436
   1437	switch (disposition) {
   1438	case SUCCESS:
   1439		scsi_finish_command(cmd);
   1440		break;
   1441	case NEEDS_RETRY:
   1442		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
   1443		break;
   1444	case ADD_TO_MLQUEUE:
   1445		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
   1446		break;
   1447	default:
   1448		scsi_eh_scmd_add(cmd);
   1449		break;
   1450	}
   1451}
   1452
   1453/**
   1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
   1455 * @cmd: command block we are dispatching.
   1456 *
   1457 * Return: nonzero return request was rejected and device's queue needs to be
   1458 * plugged.
   1459 */
   1460static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
   1461{
   1462	struct Scsi_Host *host = cmd->device->host;
   1463	int rtn = 0;
   1464
   1465	atomic_inc(&cmd->device->iorequest_cnt);
   1466
   1467	/* check if the device is still usable */
   1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
   1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
   1470		 * returns an immediate error upwards, and signals
   1471		 * that the device is no longer present */
   1472		cmd->result = DID_NO_CONNECT << 16;
   1473		goto done;
   1474	}
   1475
   1476	/* Check to see if the scsi lld made this device blocked. */
   1477	if (unlikely(scsi_device_blocked(cmd->device))) {
   1478		/*
   1479		 * in blocked state, the command is just put back on
   1480		 * the device queue.  The suspend state has already
   1481		 * blocked the queue so future requests should not
   1482		 * occur until the device transitions out of the
   1483		 * suspend state.
   1484		 */
   1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
   1486			"queuecommand : device blocked\n"));
   1487		return SCSI_MLQUEUE_DEVICE_BUSY;
   1488	}
   1489
   1490	/* Store the LUN value in cmnd, if needed. */
   1491	if (cmd->device->lun_in_cdb)
   1492		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
   1493			       (cmd->device->lun << 5 & 0xe0);
   1494
   1495	scsi_log_send(cmd);
   1496
   1497	/*
   1498	 * Before we queue this command, check if the command
   1499	 * length exceeds what the host adapter can handle.
   1500	 */
   1501	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
   1502		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
   1503			       "queuecommand : command too long. "
   1504			       "cdb_size=%d host->max_cmd_len=%d\n",
   1505			       cmd->cmd_len, cmd->device->host->max_cmd_len));
   1506		cmd->result = (DID_ABORT << 16);
   1507		goto done;
   1508	}
   1509
   1510	if (unlikely(host->shost_state == SHOST_DEL)) {
   1511		cmd->result = (DID_NO_CONNECT << 16);
   1512		goto done;
   1513
   1514	}
   1515
   1516	trace_scsi_dispatch_cmd_start(cmd);
   1517	rtn = host->hostt->queuecommand(host, cmd);
   1518	if (rtn) {
   1519		trace_scsi_dispatch_cmd_error(cmd, rtn);
   1520		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
   1521		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
   1522			rtn = SCSI_MLQUEUE_HOST_BUSY;
   1523
   1524		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
   1525			"queuecommand : request rejected\n"));
   1526	}
   1527
   1528	return rtn;
   1529 done:
   1530	scsi_done(cmd);
   1531	return 0;
   1532}
   1533
   1534/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
   1535static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
   1536{
   1537	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
   1538		sizeof(struct scatterlist);
   1539}
   1540
   1541static blk_status_t scsi_prepare_cmd(struct request *req)
   1542{
   1543	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
   1544	struct scsi_device *sdev = req->q->queuedata;
   1545	struct Scsi_Host *shost = sdev->host;
   1546	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
   1547	struct scatterlist *sg;
   1548
   1549	scsi_init_command(sdev, cmd);
   1550
   1551	cmd->eh_eflags = 0;
   1552	cmd->allowed = 0;
   1553	cmd->prot_type = 0;
   1554	cmd->prot_flags = 0;
   1555	cmd->submitter = 0;
   1556	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
   1557	cmd->underflow = 0;
   1558	cmd->transfersize = 0;
   1559	cmd->host_scribble = NULL;
   1560	cmd->result = 0;
   1561	cmd->extra_len = 0;
   1562	cmd->state = 0;
   1563	if (in_flight)
   1564		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
   1565
   1566	/*
   1567	 * Only clear the driver-private command data if the LLD does not supply
   1568	 * a function to initialize that data.
   1569	 */
   1570	if (!shost->hostt->init_cmd_priv)
   1571		memset(cmd + 1, 0, shost->hostt->cmd_size);
   1572
   1573	cmd->prot_op = SCSI_PROT_NORMAL;
   1574	if (blk_rq_bytes(req))
   1575		cmd->sc_data_direction = rq_dma_dir(req);
   1576	else
   1577		cmd->sc_data_direction = DMA_NONE;
   1578
   1579	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
   1580	cmd->sdb.table.sgl = sg;
   1581
   1582	if (scsi_host_get_prot(shost)) {
   1583		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
   1584
   1585		cmd->prot_sdb->table.sgl =
   1586			(struct scatterlist *)(cmd->prot_sdb + 1);
   1587	}
   1588
   1589	/*
   1590	 * Special handling for passthrough commands, which don't go to the ULP
   1591	 * at all:
   1592	 */
   1593	if (blk_rq_is_passthrough(req))
   1594		return scsi_setup_scsi_cmnd(sdev, req);
   1595
   1596	if (sdev->handler && sdev->handler->prep_fn) {
   1597		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
   1598
   1599		if (ret != BLK_STS_OK)
   1600			return ret;
   1601	}
   1602
   1603	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
   1604	return scsi_cmd_to_driver(cmd)->init_command(cmd);
   1605}
   1606
   1607static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
   1608{
   1609	struct request *req = scsi_cmd_to_rq(cmd);
   1610
   1611	switch (cmd->submitter) {
   1612	case SUBMITTED_BY_BLOCK_LAYER:
   1613		break;
   1614	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
   1615		return scsi_eh_done(cmd);
   1616	case SUBMITTED_BY_SCSI_RESET_IOCTL:
   1617		return;
   1618	}
   1619
   1620	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
   1621		return;
   1622	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
   1623		return;
   1624	trace_scsi_dispatch_cmd_done(cmd);
   1625
   1626	if (complete_directly)
   1627		blk_mq_complete_request_direct(req, scsi_complete);
   1628	else
   1629		blk_mq_complete_request(req);
   1630}
   1631
   1632void scsi_done(struct scsi_cmnd *cmd)
   1633{
   1634	scsi_done_internal(cmd, false);
   1635}
   1636EXPORT_SYMBOL(scsi_done);
   1637
   1638void scsi_done_direct(struct scsi_cmnd *cmd)
   1639{
   1640	scsi_done_internal(cmd, true);
   1641}
   1642EXPORT_SYMBOL(scsi_done_direct);
   1643
   1644static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
   1645{
   1646	struct scsi_device *sdev = q->queuedata;
   1647
   1648	sbitmap_put(&sdev->budget_map, budget_token);
   1649}
   1650
   1651static int scsi_mq_get_budget(struct request_queue *q)
   1652{
   1653	struct scsi_device *sdev = q->queuedata;
   1654	int token = scsi_dev_queue_ready(q, sdev);
   1655
   1656	if (token >= 0)
   1657		return token;
   1658
   1659	atomic_inc(&sdev->restarts);
   1660
   1661	/*
   1662	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
   1663	 * .restarts must be incremented before .device_busy is read because the
   1664	 * code in scsi_run_queue_async() depends on the order of these operations.
   1665	 */
   1666	smp_mb__after_atomic();
   1667
   1668	/*
   1669	 * If all in-flight requests originated from this LUN are completed
   1670	 * before reading .device_busy, sdev->device_busy will be observed as
   1671	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
   1672	 * soon. Otherwise, completion of one of these requests will observe
   1673	 * the .restarts flag, and the request queue will be run for handling
   1674	 * this request, see scsi_end_request().
   1675	 */
   1676	if (unlikely(scsi_device_busy(sdev) == 0 &&
   1677				!scsi_device_blocked(sdev)))
   1678		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
   1679	return -1;
   1680}
   1681
   1682static void scsi_mq_set_rq_budget_token(struct request *req, int token)
   1683{
   1684	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
   1685
   1686	cmd->budget_token = token;
   1687}
   1688
   1689static int scsi_mq_get_rq_budget_token(struct request *req)
   1690{
   1691	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
   1692
   1693	return cmd->budget_token;
   1694}
   1695
   1696static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
   1697			 const struct blk_mq_queue_data *bd)
   1698{
   1699	struct request *req = bd->rq;
   1700	struct request_queue *q = req->q;
   1701	struct scsi_device *sdev = q->queuedata;
   1702	struct Scsi_Host *shost = sdev->host;
   1703	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
   1704	blk_status_t ret;
   1705	int reason;
   1706
   1707	WARN_ON_ONCE(cmd->budget_token < 0);
   1708
   1709	/*
   1710	 * If the device is not in running state we will reject some or all
   1711	 * commands.
   1712	 */
   1713	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
   1714		ret = scsi_device_state_check(sdev, req);
   1715		if (ret != BLK_STS_OK)
   1716			goto out_put_budget;
   1717	}
   1718
   1719	ret = BLK_STS_RESOURCE;
   1720	if (!scsi_target_queue_ready(shost, sdev))
   1721		goto out_put_budget;
   1722	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
   1723		goto out_dec_target_busy;
   1724
   1725	if (!(req->rq_flags & RQF_DONTPREP)) {
   1726		ret = scsi_prepare_cmd(req);
   1727		if (ret != BLK_STS_OK)
   1728			goto out_dec_host_busy;
   1729		req->rq_flags |= RQF_DONTPREP;
   1730	} else {
   1731		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
   1732	}
   1733
   1734	cmd->flags &= SCMD_PRESERVED_FLAGS;
   1735	if (sdev->simple_tags)
   1736		cmd->flags |= SCMD_TAGGED;
   1737	if (bd->last)
   1738		cmd->flags |= SCMD_LAST;
   1739
   1740	scsi_set_resid(cmd, 0);
   1741	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
   1742	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
   1743
   1744	blk_mq_start_request(req);
   1745	reason = scsi_dispatch_cmd(cmd);
   1746	if (reason) {
   1747		scsi_set_blocked(cmd, reason);
   1748		ret = BLK_STS_RESOURCE;
   1749		goto out_dec_host_busy;
   1750	}
   1751
   1752	return BLK_STS_OK;
   1753
   1754out_dec_host_busy:
   1755	scsi_dec_host_busy(shost, cmd);
   1756out_dec_target_busy:
   1757	if (scsi_target(sdev)->can_queue > 0)
   1758		atomic_dec(&scsi_target(sdev)->target_busy);
   1759out_put_budget:
   1760	scsi_mq_put_budget(q, cmd->budget_token);
   1761	cmd->budget_token = -1;
   1762	switch (ret) {
   1763	case BLK_STS_OK:
   1764		break;
   1765	case BLK_STS_RESOURCE:
   1766	case BLK_STS_ZONE_RESOURCE:
   1767		if (scsi_device_blocked(sdev))
   1768			ret = BLK_STS_DEV_RESOURCE;
   1769		break;
   1770	case BLK_STS_AGAIN:
   1771		cmd->result = DID_BUS_BUSY << 16;
   1772		if (req->rq_flags & RQF_DONTPREP)
   1773			scsi_mq_uninit_cmd(cmd);
   1774		break;
   1775	default:
   1776		if (unlikely(!scsi_device_online(sdev)))
   1777			cmd->result = DID_NO_CONNECT << 16;
   1778		else
   1779			cmd->result = DID_ERROR << 16;
   1780		/*
   1781		 * Make sure to release all allocated resources when
   1782		 * we hit an error, as we will never see this command
   1783		 * again.
   1784		 */
   1785		if (req->rq_flags & RQF_DONTPREP)
   1786			scsi_mq_uninit_cmd(cmd);
   1787		scsi_run_queue_async(sdev);
   1788		break;
   1789	}
   1790	return ret;
   1791}
   1792
   1793static enum blk_eh_timer_return scsi_timeout(struct request *req,
   1794		bool reserved)
   1795{
   1796	if (reserved)
   1797		return BLK_EH_RESET_TIMER;
   1798	return scsi_times_out(req);
   1799}
   1800
   1801static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
   1802				unsigned int hctx_idx, unsigned int numa_node)
   1803{
   1804	struct Scsi_Host *shost = set->driver_data;
   1805	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
   1806	struct scatterlist *sg;
   1807	int ret = 0;
   1808
   1809	cmd->sense_buffer =
   1810		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
   1811	if (!cmd->sense_buffer)
   1812		return -ENOMEM;
   1813
   1814	if (scsi_host_get_prot(shost)) {
   1815		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
   1816			shost->hostt->cmd_size;
   1817		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
   1818	}
   1819
   1820	if (shost->hostt->init_cmd_priv) {
   1821		ret = shost->hostt->init_cmd_priv(shost, cmd);
   1822		if (ret < 0)
   1823			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
   1824	}
   1825
   1826	return ret;
   1827}
   1828
   1829static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
   1830				 unsigned int hctx_idx)
   1831{
   1832	struct Scsi_Host *shost = set->driver_data;
   1833	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
   1834
   1835	if (shost->hostt->exit_cmd_priv)
   1836		shost->hostt->exit_cmd_priv(shost, cmd);
   1837	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
   1838}
   1839
   1840
   1841static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
   1842{
   1843	struct Scsi_Host *shost = hctx->driver_data;
   1844
   1845	if (shost->hostt->mq_poll)
   1846		return shost->hostt->mq_poll(shost, hctx->queue_num);
   1847
   1848	return 0;
   1849}
   1850
   1851static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
   1852			  unsigned int hctx_idx)
   1853{
   1854	struct Scsi_Host *shost = data;
   1855
   1856	hctx->driver_data = shost;
   1857	return 0;
   1858}
   1859
   1860static int scsi_map_queues(struct blk_mq_tag_set *set)
   1861{
   1862	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
   1863
   1864	if (shost->hostt->map_queues)
   1865		return shost->hostt->map_queues(shost);
   1866	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
   1867}
   1868
   1869void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
   1870{
   1871	struct device *dev = shost->dma_dev;
   1872
   1873	/*
   1874	 * this limit is imposed by hardware restrictions
   1875	 */
   1876	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
   1877					SG_MAX_SEGMENTS));
   1878
   1879	if (scsi_host_prot_dma(shost)) {
   1880		shost->sg_prot_tablesize =
   1881			min_not_zero(shost->sg_prot_tablesize,
   1882				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
   1883		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
   1884		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
   1885	}
   1886
   1887	if (dev->dma_mask) {
   1888		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
   1889				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
   1890	}
   1891	blk_queue_max_hw_sectors(q, shost->max_sectors);
   1892	blk_queue_segment_boundary(q, shost->dma_boundary);
   1893	dma_set_seg_boundary(dev, shost->dma_boundary);
   1894
   1895	blk_queue_max_segment_size(q, shost->max_segment_size);
   1896	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
   1897	dma_set_max_seg_size(dev, queue_max_segment_size(q));
   1898
   1899	/*
   1900	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
   1901	 * which is a common minimum for HBAs, and the minimum DMA alignment,
   1902	 * which is set by the platform.
   1903	 *
   1904	 * Devices that require a bigger alignment can increase it later.
   1905	 */
   1906	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
   1907}
   1908EXPORT_SYMBOL_GPL(__scsi_init_queue);
   1909
   1910static const struct blk_mq_ops scsi_mq_ops_no_commit = {
   1911	.get_budget	= scsi_mq_get_budget,
   1912	.put_budget	= scsi_mq_put_budget,
   1913	.queue_rq	= scsi_queue_rq,
   1914	.complete	= scsi_complete,
   1915	.timeout	= scsi_timeout,
   1916#ifdef CONFIG_BLK_DEBUG_FS
   1917	.show_rq	= scsi_show_rq,
   1918#endif
   1919	.init_request	= scsi_mq_init_request,
   1920	.exit_request	= scsi_mq_exit_request,
   1921	.cleanup_rq	= scsi_cleanup_rq,
   1922	.busy		= scsi_mq_lld_busy,
   1923	.map_queues	= scsi_map_queues,
   1924	.init_hctx	= scsi_init_hctx,
   1925	.poll		= scsi_mq_poll,
   1926	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
   1927	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
   1928};
   1929
   1930
   1931static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
   1932{
   1933	struct Scsi_Host *shost = hctx->driver_data;
   1934
   1935	shost->hostt->commit_rqs(shost, hctx->queue_num);
   1936}
   1937
   1938static const struct blk_mq_ops scsi_mq_ops = {
   1939	.get_budget	= scsi_mq_get_budget,
   1940	.put_budget	= scsi_mq_put_budget,
   1941	.queue_rq	= scsi_queue_rq,
   1942	.commit_rqs	= scsi_commit_rqs,
   1943	.complete	= scsi_complete,
   1944	.timeout	= scsi_timeout,
   1945#ifdef CONFIG_BLK_DEBUG_FS
   1946	.show_rq	= scsi_show_rq,
   1947#endif
   1948	.init_request	= scsi_mq_init_request,
   1949	.exit_request	= scsi_mq_exit_request,
   1950	.cleanup_rq	= scsi_cleanup_rq,
   1951	.busy		= scsi_mq_lld_busy,
   1952	.map_queues	= scsi_map_queues,
   1953	.init_hctx	= scsi_init_hctx,
   1954	.poll		= scsi_mq_poll,
   1955	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
   1956	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
   1957};
   1958
   1959int scsi_mq_setup_tags(struct Scsi_Host *shost)
   1960{
   1961	unsigned int cmd_size, sgl_size;
   1962	struct blk_mq_tag_set *tag_set = &shost->tag_set;
   1963
   1964	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
   1965				scsi_mq_inline_sgl_size(shost));
   1966	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
   1967	if (scsi_host_get_prot(shost))
   1968		cmd_size += sizeof(struct scsi_data_buffer) +
   1969			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
   1970
   1971	memset(tag_set, 0, sizeof(*tag_set));
   1972	if (shost->hostt->commit_rqs)
   1973		tag_set->ops = &scsi_mq_ops;
   1974	else
   1975		tag_set->ops = &scsi_mq_ops_no_commit;
   1976	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
   1977	tag_set->nr_maps = shost->nr_maps ? : 1;
   1978	tag_set->queue_depth = shost->can_queue;
   1979	tag_set->cmd_size = cmd_size;
   1980	tag_set->numa_node = dev_to_node(shost->dma_dev);
   1981	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
   1982	tag_set->flags |=
   1983		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
   1984	tag_set->driver_data = shost;
   1985	if (shost->host_tagset)
   1986		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
   1987
   1988	return blk_mq_alloc_tag_set(tag_set);
   1989}
   1990
   1991void scsi_mq_destroy_tags(struct Scsi_Host *shost)
   1992{
   1993	blk_mq_free_tag_set(&shost->tag_set);
   1994}
   1995
   1996/**
   1997 * scsi_device_from_queue - return sdev associated with a request_queue
   1998 * @q: The request queue to return the sdev from
   1999 *
   2000 * Return the sdev associated with a request queue or NULL if the
   2001 * request_queue does not reference a SCSI device.
   2002 */
   2003struct scsi_device *scsi_device_from_queue(struct request_queue *q)
   2004{
   2005	struct scsi_device *sdev = NULL;
   2006
   2007	if (q->mq_ops == &scsi_mq_ops_no_commit ||
   2008	    q->mq_ops == &scsi_mq_ops)
   2009		sdev = q->queuedata;
   2010	if (!sdev || !get_device(&sdev->sdev_gendev))
   2011		sdev = NULL;
   2012
   2013	return sdev;
   2014}
   2015/*
   2016 * pktcdvd should have been integrated into the SCSI layers, but for historical
   2017 * reasons like the old IDE driver it isn't.  This export allows it to safely
   2018 * probe if a given device is a SCSI one and only attach to that.
   2019 */
   2020#ifdef CONFIG_CDROM_PKTCDVD_MODULE
   2021EXPORT_SYMBOL_GPL(scsi_device_from_queue);
   2022#endif
   2023
   2024/**
   2025 * scsi_block_requests - Utility function used by low-level drivers to prevent
   2026 * further commands from being queued to the device.
   2027 * @shost:  host in question
   2028 *
   2029 * There is no timer nor any other means by which the requests get unblocked
   2030 * other than the low-level driver calling scsi_unblock_requests().
   2031 */
   2032void scsi_block_requests(struct Scsi_Host *shost)
   2033{
   2034	shost->host_self_blocked = 1;
   2035}
   2036EXPORT_SYMBOL(scsi_block_requests);
   2037
   2038/**
   2039 * scsi_unblock_requests - Utility function used by low-level drivers to allow
   2040 * further commands to be queued to the device.
   2041 * @shost:  host in question
   2042 *
   2043 * There is no timer nor any other means by which the requests get unblocked
   2044 * other than the low-level driver calling scsi_unblock_requests(). This is done
   2045 * as an API function so that changes to the internals of the scsi mid-layer
   2046 * won't require wholesale changes to drivers that use this feature.
   2047 */
   2048void scsi_unblock_requests(struct Scsi_Host *shost)
   2049{
   2050	shost->host_self_blocked = 0;
   2051	scsi_run_host_queues(shost);
   2052}
   2053EXPORT_SYMBOL(scsi_unblock_requests);
   2054
   2055void scsi_exit_queue(void)
   2056{
   2057	kmem_cache_destroy(scsi_sense_cache);
   2058}
   2059
   2060/**
   2061 *	scsi_mode_select - issue a mode select
   2062 *	@sdev:	SCSI device to be queried
   2063 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
   2064 *	@sp:	Save page bit (0 == don't save, 1 == save)
   2065 *	@buffer: request buffer (may not be smaller than eight bytes)
   2066 *	@len:	length of request buffer.
   2067 *	@timeout: command timeout
   2068 *	@retries: number of retries before failing
   2069 *	@data: returns a structure abstracting the mode header data
   2070 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
   2071 *		must be SCSI_SENSE_BUFFERSIZE big.
   2072 *
   2073 *	Returns zero if successful; negative error number or scsi
   2074 *	status on error
   2075 *
   2076 */
   2077int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
   2078		     unsigned char *buffer, int len, int timeout, int retries,
   2079		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
   2080{
   2081	unsigned char cmd[10];
   2082	unsigned char *real_buffer;
   2083	int ret;
   2084
   2085	memset(cmd, 0, sizeof(cmd));
   2086	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
   2087
   2088	/*
   2089	 * Use MODE SELECT(10) if the device asked for it or if the mode page
   2090	 * and the mode select header cannot fit within the maximumm 255 bytes
   2091	 * of the MODE SELECT(6) command.
   2092	 */
   2093	if (sdev->use_10_for_ms ||
   2094	    len + 4 > 255 ||
   2095	    data->block_descriptor_length > 255) {
   2096		if (len > 65535 - 8)
   2097			return -EINVAL;
   2098		real_buffer = kmalloc(8 + len, GFP_KERNEL);
   2099		if (!real_buffer)
   2100			return -ENOMEM;
   2101		memcpy(real_buffer + 8, buffer, len);
   2102		len += 8;
   2103		real_buffer[0] = 0;
   2104		real_buffer[1] = 0;
   2105		real_buffer[2] = data->medium_type;
   2106		real_buffer[3] = data->device_specific;
   2107		real_buffer[4] = data->longlba ? 0x01 : 0;
   2108		real_buffer[5] = 0;
   2109		put_unaligned_be16(data->block_descriptor_length,
   2110				   &real_buffer[6]);
   2111
   2112		cmd[0] = MODE_SELECT_10;
   2113		put_unaligned_be16(len, &cmd[7]);
   2114	} else {
   2115		if (data->longlba)
   2116			return -EINVAL;
   2117
   2118		real_buffer = kmalloc(4 + len, GFP_KERNEL);
   2119		if (!real_buffer)
   2120			return -ENOMEM;
   2121		memcpy(real_buffer + 4, buffer, len);
   2122		len += 4;
   2123		real_buffer[0] = 0;
   2124		real_buffer[1] = data->medium_type;
   2125		real_buffer[2] = data->device_specific;
   2126		real_buffer[3] = data->block_descriptor_length;
   2127
   2128		cmd[0] = MODE_SELECT;
   2129		cmd[4] = len;
   2130	}
   2131
   2132	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
   2133			       sshdr, timeout, retries, NULL);
   2134	kfree(real_buffer);
   2135	return ret;
   2136}
   2137EXPORT_SYMBOL_GPL(scsi_mode_select);
   2138
   2139/**
   2140 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
   2141 *	@sdev:	SCSI device to be queried
   2142 *	@dbd:	set to prevent mode sense from returning block descriptors
   2143 *	@modepage: mode page being requested
   2144 *	@buffer: request buffer (may not be smaller than eight bytes)
   2145 *	@len:	length of request buffer.
   2146 *	@timeout: command timeout
   2147 *	@retries: number of retries before failing
   2148 *	@data: returns a structure abstracting the mode header data
   2149 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
   2150 *		must be SCSI_SENSE_BUFFERSIZE big.
   2151 *
   2152 *	Returns zero if successful, or a negative error number on failure
   2153 */
   2154int
   2155scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
   2156		  unsigned char *buffer, int len, int timeout, int retries,
   2157		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
   2158{
   2159	unsigned char cmd[12];
   2160	int use_10_for_ms;
   2161	int header_length;
   2162	int result, retry_count = retries;
   2163	struct scsi_sense_hdr my_sshdr;
   2164
   2165	memset(data, 0, sizeof(*data));
   2166	memset(&cmd[0], 0, 12);
   2167
   2168	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
   2169	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
   2170	cmd[2] = modepage;
   2171
   2172	/* caller might not be interested in sense, but we need it */
   2173	if (!sshdr)
   2174		sshdr = &my_sshdr;
   2175
   2176 retry:
   2177	use_10_for_ms = sdev->use_10_for_ms || len > 255;
   2178
   2179	if (use_10_for_ms) {
   2180		if (len < 8 || len > 65535)
   2181			return -EINVAL;
   2182
   2183		cmd[0] = MODE_SENSE_10;
   2184		put_unaligned_be16(len, &cmd[7]);
   2185		header_length = 8;
   2186	} else {
   2187		if (len < 4)
   2188			return -EINVAL;
   2189
   2190		cmd[0] = MODE_SENSE;
   2191		cmd[4] = len;
   2192		header_length = 4;
   2193	}
   2194
   2195	memset(buffer, 0, len);
   2196
   2197	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
   2198				  sshdr, timeout, retries, NULL);
   2199	if (result < 0)
   2200		return result;
   2201
   2202	/* This code looks awful: what it's doing is making sure an
   2203	 * ILLEGAL REQUEST sense return identifies the actual command
   2204	 * byte as the problem.  MODE_SENSE commands can return
   2205	 * ILLEGAL REQUEST if the code page isn't supported */
   2206
   2207	if (!scsi_status_is_good(result)) {
   2208		if (scsi_sense_valid(sshdr)) {
   2209			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
   2210			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
   2211				/*
   2212				 * Invalid command operation code: retry using
   2213				 * MODE SENSE(6) if this was a MODE SENSE(10)
   2214				 * request, except if the request mode page is
   2215				 * too large for MODE SENSE single byte
   2216				 * allocation length field.
   2217				 */
   2218				if (use_10_for_ms) {
   2219					if (len > 255)
   2220						return -EIO;
   2221					sdev->use_10_for_ms = 0;
   2222					goto retry;
   2223				}
   2224			}
   2225			if (scsi_status_is_check_condition(result) &&
   2226			    sshdr->sense_key == UNIT_ATTENTION &&
   2227			    retry_count) {
   2228				retry_count--;
   2229				goto retry;
   2230			}
   2231		}
   2232		return -EIO;
   2233	}
   2234	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
   2235		     (modepage == 6 || modepage == 8))) {
   2236		/* Initio breakage? */
   2237		header_length = 0;
   2238		data->length = 13;
   2239		data->medium_type = 0;
   2240		data->device_specific = 0;
   2241		data->longlba = 0;
   2242		data->block_descriptor_length = 0;
   2243	} else if (use_10_for_ms) {
   2244		data->length = get_unaligned_be16(&buffer[0]) + 2;
   2245		data->medium_type = buffer[2];
   2246		data->device_specific = buffer[3];
   2247		data->longlba = buffer[4] & 0x01;
   2248		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
   2249	} else {
   2250		data->length = buffer[0] + 1;
   2251		data->medium_type = buffer[1];
   2252		data->device_specific = buffer[2];
   2253		data->block_descriptor_length = buffer[3];
   2254	}
   2255	data->header_length = header_length;
   2256
   2257	return 0;
   2258}
   2259EXPORT_SYMBOL(scsi_mode_sense);
   2260
   2261/**
   2262 *	scsi_test_unit_ready - test if unit is ready
   2263 *	@sdev:	scsi device to change the state of.
   2264 *	@timeout: command timeout
   2265 *	@retries: number of retries before failing
   2266 *	@sshdr: outpout pointer for decoded sense information.
   2267 *
   2268 *	Returns zero if unsuccessful or an error if TUR failed.  For
   2269 *	removable media, UNIT_ATTENTION sets ->changed flag.
   2270 **/
   2271int
   2272scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
   2273		     struct scsi_sense_hdr *sshdr)
   2274{
   2275	char cmd[] = {
   2276		TEST_UNIT_READY, 0, 0, 0, 0, 0,
   2277	};
   2278	int result;
   2279
   2280	/* try to eat the UNIT_ATTENTION if there are enough retries */
   2281	do {
   2282		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
   2283					  timeout, 1, NULL);
   2284		if (sdev->removable && scsi_sense_valid(sshdr) &&
   2285		    sshdr->sense_key == UNIT_ATTENTION)
   2286			sdev->changed = 1;
   2287	} while (scsi_sense_valid(sshdr) &&
   2288		 sshdr->sense_key == UNIT_ATTENTION && --retries);
   2289
   2290	return result;
   2291}
   2292EXPORT_SYMBOL(scsi_test_unit_ready);
   2293
   2294/**
   2295 *	scsi_device_set_state - Take the given device through the device state model.
   2296 *	@sdev:	scsi device to change the state of.
   2297 *	@state:	state to change to.
   2298 *
   2299 *	Returns zero if successful or an error if the requested
   2300 *	transition is illegal.
   2301 */
   2302int
   2303scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
   2304{
   2305	enum scsi_device_state oldstate = sdev->sdev_state;
   2306
   2307	if (state == oldstate)
   2308		return 0;
   2309
   2310	switch (state) {
   2311	case SDEV_CREATED:
   2312		switch (oldstate) {
   2313		case SDEV_CREATED_BLOCK:
   2314			break;
   2315		default:
   2316			goto illegal;
   2317		}
   2318		break;
   2319
   2320	case SDEV_RUNNING:
   2321		switch (oldstate) {
   2322		case SDEV_CREATED:
   2323		case SDEV_OFFLINE:
   2324		case SDEV_TRANSPORT_OFFLINE:
   2325		case SDEV_QUIESCE:
   2326		case SDEV_BLOCK:
   2327			break;
   2328		default:
   2329			goto illegal;
   2330		}
   2331		break;
   2332
   2333	case SDEV_QUIESCE:
   2334		switch (oldstate) {
   2335		case SDEV_RUNNING:
   2336		case SDEV_OFFLINE:
   2337		case SDEV_TRANSPORT_OFFLINE:
   2338			break;
   2339		default:
   2340			goto illegal;
   2341		}
   2342		break;
   2343
   2344	case SDEV_OFFLINE:
   2345	case SDEV_TRANSPORT_OFFLINE:
   2346		switch (oldstate) {
   2347		case SDEV_CREATED:
   2348		case SDEV_RUNNING:
   2349		case SDEV_QUIESCE:
   2350		case SDEV_BLOCK:
   2351			break;
   2352		default:
   2353			goto illegal;
   2354		}
   2355		break;
   2356
   2357	case SDEV_BLOCK:
   2358		switch (oldstate) {
   2359		case SDEV_RUNNING:
   2360		case SDEV_CREATED_BLOCK:
   2361		case SDEV_QUIESCE:
   2362		case SDEV_OFFLINE:
   2363			break;
   2364		default:
   2365			goto illegal;
   2366		}
   2367		break;
   2368
   2369	case SDEV_CREATED_BLOCK:
   2370		switch (oldstate) {
   2371		case SDEV_CREATED:
   2372			break;
   2373		default:
   2374			goto illegal;
   2375		}
   2376		break;
   2377
   2378	case SDEV_CANCEL:
   2379		switch (oldstate) {
   2380		case SDEV_CREATED:
   2381		case SDEV_RUNNING:
   2382		case SDEV_QUIESCE:
   2383		case SDEV_OFFLINE:
   2384		case SDEV_TRANSPORT_OFFLINE:
   2385			break;
   2386		default:
   2387			goto illegal;
   2388		}
   2389		break;
   2390
   2391	case SDEV_DEL:
   2392		switch (oldstate) {
   2393		case SDEV_CREATED:
   2394		case SDEV_RUNNING:
   2395		case SDEV_OFFLINE:
   2396		case SDEV_TRANSPORT_OFFLINE:
   2397		case SDEV_CANCEL:
   2398		case SDEV_BLOCK:
   2399		case SDEV_CREATED_BLOCK:
   2400			break;
   2401		default:
   2402			goto illegal;
   2403		}
   2404		break;
   2405
   2406	}
   2407	sdev->offline_already = false;
   2408	sdev->sdev_state = state;
   2409	return 0;
   2410
   2411 illegal:
   2412	SCSI_LOG_ERROR_RECOVERY(1,
   2413				sdev_printk(KERN_ERR, sdev,
   2414					    "Illegal state transition %s->%s",
   2415					    scsi_device_state_name(oldstate),
   2416					    scsi_device_state_name(state))
   2417				);
   2418	return -EINVAL;
   2419}
   2420EXPORT_SYMBOL(scsi_device_set_state);
   2421
   2422/**
   2423 *	scsi_evt_emit - emit a single SCSI device uevent
   2424 *	@sdev: associated SCSI device
   2425 *	@evt: event to emit
   2426 *
   2427 *	Send a single uevent (scsi_event) to the associated scsi_device.
   2428 */
   2429static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
   2430{
   2431	int idx = 0;
   2432	char *envp[3];
   2433
   2434	switch (evt->evt_type) {
   2435	case SDEV_EVT_MEDIA_CHANGE:
   2436		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
   2437		break;
   2438	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
   2439		scsi_rescan_device(&sdev->sdev_gendev);
   2440		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
   2441		break;
   2442	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
   2443		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
   2444		break;
   2445	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
   2446	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
   2447		break;
   2448	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
   2449		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
   2450		break;
   2451	case SDEV_EVT_LUN_CHANGE_REPORTED:
   2452		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
   2453		break;
   2454	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
   2455		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
   2456		break;
   2457	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
   2458		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
   2459		break;
   2460	default:
   2461		/* do nothing */
   2462		break;
   2463	}
   2464
   2465	envp[idx++] = NULL;
   2466
   2467	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
   2468}
   2469
   2470/**
   2471 *	scsi_evt_thread - send a uevent for each scsi event
   2472 *	@work: work struct for scsi_device
   2473 *
   2474 *	Dispatch queued events to their associated scsi_device kobjects
   2475 *	as uevents.
   2476 */
   2477void scsi_evt_thread(struct work_struct *work)
   2478{
   2479	struct scsi_device *sdev;
   2480	enum scsi_device_event evt_type;
   2481	LIST_HEAD(event_list);
   2482
   2483	sdev = container_of(work, struct scsi_device, event_work);
   2484
   2485	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
   2486		if (test_and_clear_bit(evt_type, sdev->pending_events))
   2487			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
   2488
   2489	while (1) {
   2490		struct scsi_event *evt;
   2491		struct list_head *this, *tmp;
   2492		unsigned long flags;
   2493
   2494		spin_lock_irqsave(&sdev->list_lock, flags);
   2495		list_splice_init(&sdev->event_list, &event_list);
   2496		spin_unlock_irqrestore(&sdev->list_lock, flags);
   2497
   2498		if (list_empty(&event_list))
   2499			break;
   2500
   2501		list_for_each_safe(this, tmp, &event_list) {
   2502			evt = list_entry(this, struct scsi_event, node);
   2503			list_del(&evt->node);
   2504			scsi_evt_emit(sdev, evt);
   2505			kfree(evt);
   2506		}
   2507	}
   2508}
   2509
   2510/**
   2511 * 	sdev_evt_send - send asserted event to uevent thread
   2512 *	@sdev: scsi_device event occurred on
   2513 *	@evt: event to send
   2514 *
   2515 *	Assert scsi device event asynchronously.
   2516 */
   2517void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
   2518{
   2519	unsigned long flags;
   2520
   2521#if 0
   2522	/* FIXME: currently this check eliminates all media change events
   2523	 * for polled devices.  Need to update to discriminate between AN
   2524	 * and polled events */
   2525	if (!test_bit(evt->evt_type, sdev->supported_events)) {
   2526		kfree(evt);
   2527		return;
   2528	}
   2529#endif
   2530
   2531	spin_lock_irqsave(&sdev->list_lock, flags);
   2532	list_add_tail(&evt->node, &sdev->event_list);
   2533	schedule_work(&sdev->event_work);
   2534	spin_unlock_irqrestore(&sdev->list_lock, flags);
   2535}
   2536EXPORT_SYMBOL_GPL(sdev_evt_send);
   2537
   2538/**
   2539 * 	sdev_evt_alloc - allocate a new scsi event
   2540 *	@evt_type: type of event to allocate
   2541 *	@gfpflags: GFP flags for allocation
   2542 *
   2543 *	Allocates and returns a new scsi_event.
   2544 */
   2545struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
   2546				  gfp_t gfpflags)
   2547{
   2548	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
   2549	if (!evt)
   2550		return NULL;
   2551
   2552	evt->evt_type = evt_type;
   2553	INIT_LIST_HEAD(&evt->node);
   2554
   2555	/* evt_type-specific initialization, if any */
   2556	switch (evt_type) {
   2557	case SDEV_EVT_MEDIA_CHANGE:
   2558	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
   2559	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
   2560	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
   2561	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
   2562	case SDEV_EVT_LUN_CHANGE_REPORTED:
   2563	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
   2564	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
   2565	default:
   2566		/* do nothing */
   2567		break;
   2568	}
   2569
   2570	return evt;
   2571}
   2572EXPORT_SYMBOL_GPL(sdev_evt_alloc);
   2573
   2574/**
   2575 * 	sdev_evt_send_simple - send asserted event to uevent thread
   2576 *	@sdev: scsi_device event occurred on
   2577 *	@evt_type: type of event to send
   2578 *	@gfpflags: GFP flags for allocation
   2579 *
   2580 *	Assert scsi device event asynchronously, given an event type.
   2581 */
   2582void sdev_evt_send_simple(struct scsi_device *sdev,
   2583			  enum scsi_device_event evt_type, gfp_t gfpflags)
   2584{
   2585	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
   2586	if (!evt) {
   2587		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
   2588			    evt_type);
   2589		return;
   2590	}
   2591
   2592	sdev_evt_send(sdev, evt);
   2593}
   2594EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
   2595
   2596/**
   2597 *	scsi_device_quiesce - Block all commands except power management.
   2598 *	@sdev:	scsi device to quiesce.
   2599 *
   2600 *	This works by trying to transition to the SDEV_QUIESCE state
   2601 *	(which must be a legal transition).  When the device is in this
   2602 *	state, only power management requests will be accepted, all others will
   2603 *	be deferred.
   2604 *
   2605 *	Must be called with user context, may sleep.
   2606 *
   2607 *	Returns zero if unsuccessful or an error if not.
   2608 */
   2609int
   2610scsi_device_quiesce(struct scsi_device *sdev)
   2611{
   2612	struct request_queue *q = sdev->request_queue;
   2613	int err;
   2614
   2615	/*
   2616	 * It is allowed to call scsi_device_quiesce() multiple times from
   2617	 * the same context but concurrent scsi_device_quiesce() calls are
   2618	 * not allowed.
   2619	 */
   2620	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
   2621
   2622	if (sdev->quiesced_by == current)
   2623		return 0;
   2624
   2625	blk_set_pm_only(q);
   2626
   2627	blk_mq_freeze_queue(q);
   2628	/*
   2629	 * Ensure that the effect of blk_set_pm_only() will be visible
   2630	 * for percpu_ref_tryget() callers that occur after the queue
   2631	 * unfreeze even if the queue was already frozen before this function
   2632	 * was called. See also https://lwn.net/Articles/573497/.
   2633	 */
   2634	synchronize_rcu();
   2635	blk_mq_unfreeze_queue(q);
   2636
   2637	mutex_lock(&sdev->state_mutex);
   2638	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
   2639	if (err == 0)
   2640		sdev->quiesced_by = current;
   2641	else
   2642		blk_clear_pm_only(q);
   2643	mutex_unlock(&sdev->state_mutex);
   2644
   2645	return err;
   2646}
   2647EXPORT_SYMBOL(scsi_device_quiesce);
   2648
   2649/**
   2650 *	scsi_device_resume - Restart user issued commands to a quiesced device.
   2651 *	@sdev:	scsi device to resume.
   2652 *
   2653 *	Moves the device from quiesced back to running and restarts the
   2654 *	queues.
   2655 *
   2656 *	Must be called with user context, may sleep.
   2657 */
   2658void scsi_device_resume(struct scsi_device *sdev)
   2659{
   2660	/* check if the device state was mutated prior to resume, and if
   2661	 * so assume the state is being managed elsewhere (for example
   2662	 * device deleted during suspend)
   2663	 */
   2664	mutex_lock(&sdev->state_mutex);
   2665	if (sdev->sdev_state == SDEV_QUIESCE)
   2666		scsi_device_set_state(sdev, SDEV_RUNNING);
   2667	if (sdev->quiesced_by) {
   2668		sdev->quiesced_by = NULL;
   2669		blk_clear_pm_only(sdev->request_queue);
   2670	}
   2671	mutex_unlock(&sdev->state_mutex);
   2672}
   2673EXPORT_SYMBOL(scsi_device_resume);
   2674
   2675static void
   2676device_quiesce_fn(struct scsi_device *sdev, void *data)
   2677{
   2678	scsi_device_quiesce(sdev);
   2679}
   2680
   2681void
   2682scsi_target_quiesce(struct scsi_target *starget)
   2683{
   2684	starget_for_each_device(starget, NULL, device_quiesce_fn);
   2685}
   2686EXPORT_SYMBOL(scsi_target_quiesce);
   2687
   2688static void
   2689device_resume_fn(struct scsi_device *sdev, void *data)
   2690{
   2691	scsi_device_resume(sdev);
   2692}
   2693
   2694void
   2695scsi_target_resume(struct scsi_target *starget)
   2696{
   2697	starget_for_each_device(starget, NULL, device_resume_fn);
   2698}
   2699EXPORT_SYMBOL(scsi_target_resume);
   2700
   2701static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
   2702{
   2703	if (scsi_device_set_state(sdev, SDEV_BLOCK))
   2704		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
   2705
   2706	return 0;
   2707}
   2708
   2709void scsi_start_queue(struct scsi_device *sdev)
   2710{
   2711	if (cmpxchg(&sdev->queue_stopped, 1, 0))
   2712		blk_mq_unquiesce_queue(sdev->request_queue);
   2713}
   2714
   2715static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
   2716{
   2717	/*
   2718	 * The atomic variable of ->queue_stopped covers that
   2719	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
   2720	 *
   2721	 * However, we still need to wait until quiesce is done
   2722	 * in case that queue has been stopped.
   2723	 */
   2724	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
   2725		if (nowait)
   2726			blk_mq_quiesce_queue_nowait(sdev->request_queue);
   2727		else
   2728			blk_mq_quiesce_queue(sdev->request_queue);
   2729	} else {
   2730		if (!nowait)
   2731			blk_mq_wait_quiesce_done(sdev->request_queue);
   2732	}
   2733}
   2734
   2735/**
   2736 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
   2737 * @sdev: device to block
   2738 *
   2739 * Pause SCSI command processing on the specified device. Does not sleep.
   2740 *
   2741 * Returns zero if successful or a negative error code upon failure.
   2742 *
   2743 * Notes:
   2744 * This routine transitions the device to the SDEV_BLOCK state (which must be
   2745 * a legal transition). When the device is in this state, command processing
   2746 * is paused until the device leaves the SDEV_BLOCK state. See also
   2747 * scsi_internal_device_unblock_nowait().
   2748 */
   2749int scsi_internal_device_block_nowait(struct scsi_device *sdev)
   2750{
   2751	int ret = __scsi_internal_device_block_nowait(sdev);
   2752
   2753	/*
   2754	 * The device has transitioned to SDEV_BLOCK.  Stop the
   2755	 * block layer from calling the midlayer with this device's
   2756	 * request queue.
   2757	 */
   2758	if (!ret)
   2759		scsi_stop_queue(sdev, true);
   2760	return ret;
   2761}
   2762EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
   2763
   2764/**
   2765 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
   2766 * @sdev: device to block
   2767 *
   2768 * Pause SCSI command processing on the specified device and wait until all
   2769 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
   2770 *
   2771 * Returns zero if successful or a negative error code upon failure.
   2772 *
   2773 * Note:
   2774 * This routine transitions the device to the SDEV_BLOCK state (which must be
   2775 * a legal transition). When the device is in this state, command processing
   2776 * is paused until the device leaves the SDEV_BLOCK state. See also
   2777 * scsi_internal_device_unblock().
   2778 */
   2779static int scsi_internal_device_block(struct scsi_device *sdev)
   2780{
   2781	int err;
   2782
   2783	mutex_lock(&sdev->state_mutex);
   2784	err = __scsi_internal_device_block_nowait(sdev);
   2785	if (err == 0)
   2786		scsi_stop_queue(sdev, false);
   2787	mutex_unlock(&sdev->state_mutex);
   2788
   2789	return err;
   2790}
   2791
   2792/**
   2793 * scsi_internal_device_unblock_nowait - resume a device after a block request
   2794 * @sdev:	device to resume
   2795 * @new_state:	state to set the device to after unblocking
   2796 *
   2797 * Restart the device queue for a previously suspended SCSI device. Does not
   2798 * sleep.
   2799 *
   2800 * Returns zero if successful or a negative error code upon failure.
   2801 *
   2802 * Notes:
   2803 * This routine transitions the device to the SDEV_RUNNING state or to one of
   2804 * the offline states (which must be a legal transition) allowing the midlayer
   2805 * to goose the queue for this device.
   2806 */
   2807int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
   2808					enum scsi_device_state new_state)
   2809{
   2810	switch (new_state) {
   2811	case SDEV_RUNNING:
   2812	case SDEV_TRANSPORT_OFFLINE:
   2813		break;
   2814	default:
   2815		return -EINVAL;
   2816	}
   2817
   2818	/*
   2819	 * Try to transition the scsi device to SDEV_RUNNING or one of the
   2820	 * offlined states and goose the device queue if successful.
   2821	 */
   2822	switch (sdev->sdev_state) {
   2823	case SDEV_BLOCK:
   2824	case SDEV_TRANSPORT_OFFLINE:
   2825		sdev->sdev_state = new_state;
   2826		break;
   2827	case SDEV_CREATED_BLOCK:
   2828		if (new_state == SDEV_TRANSPORT_OFFLINE ||
   2829		    new_state == SDEV_OFFLINE)
   2830			sdev->sdev_state = new_state;
   2831		else
   2832			sdev->sdev_state = SDEV_CREATED;
   2833		break;
   2834	case SDEV_CANCEL:
   2835	case SDEV_OFFLINE:
   2836		break;
   2837	default:
   2838		return -EINVAL;
   2839	}
   2840	scsi_start_queue(sdev);
   2841
   2842	return 0;
   2843}
   2844EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
   2845
   2846/**
   2847 * scsi_internal_device_unblock - resume a device after a block request
   2848 * @sdev:	device to resume
   2849 * @new_state:	state to set the device to after unblocking
   2850 *
   2851 * Restart the device queue for a previously suspended SCSI device. May sleep.
   2852 *
   2853 * Returns zero if successful or a negative error code upon failure.
   2854 *
   2855 * Notes:
   2856 * This routine transitions the device to the SDEV_RUNNING state or to one of
   2857 * the offline states (which must be a legal transition) allowing the midlayer
   2858 * to goose the queue for this device.
   2859 */
   2860static int scsi_internal_device_unblock(struct scsi_device *sdev,
   2861					enum scsi_device_state new_state)
   2862{
   2863	int ret;
   2864
   2865	mutex_lock(&sdev->state_mutex);
   2866	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
   2867	mutex_unlock(&sdev->state_mutex);
   2868
   2869	return ret;
   2870}
   2871
   2872static void
   2873device_block(struct scsi_device *sdev, void *data)
   2874{
   2875	int ret;
   2876
   2877	ret = scsi_internal_device_block(sdev);
   2878
   2879	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
   2880		  dev_name(&sdev->sdev_gendev), ret);
   2881}
   2882
   2883static int
   2884target_block(struct device *dev, void *data)
   2885{
   2886	if (scsi_is_target_device(dev))
   2887		starget_for_each_device(to_scsi_target(dev), NULL,
   2888					device_block);
   2889	return 0;
   2890}
   2891
   2892void
   2893scsi_target_block(struct device *dev)
   2894{
   2895	if (scsi_is_target_device(dev))
   2896		starget_for_each_device(to_scsi_target(dev), NULL,
   2897					device_block);
   2898	else
   2899		device_for_each_child(dev, NULL, target_block);
   2900}
   2901EXPORT_SYMBOL_GPL(scsi_target_block);
   2902
   2903static void
   2904device_unblock(struct scsi_device *sdev, void *data)
   2905{
   2906	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
   2907}
   2908
   2909static int
   2910target_unblock(struct device *dev, void *data)
   2911{
   2912	if (scsi_is_target_device(dev))
   2913		starget_for_each_device(to_scsi_target(dev), data,
   2914					device_unblock);
   2915	return 0;
   2916}
   2917
   2918void
   2919scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
   2920{
   2921	if (scsi_is_target_device(dev))
   2922		starget_for_each_device(to_scsi_target(dev), &new_state,
   2923					device_unblock);
   2924	else
   2925		device_for_each_child(dev, &new_state, target_unblock);
   2926}
   2927EXPORT_SYMBOL_GPL(scsi_target_unblock);
   2928
   2929int
   2930scsi_host_block(struct Scsi_Host *shost)
   2931{
   2932	struct scsi_device *sdev;
   2933	int ret = 0;
   2934
   2935	/*
   2936	 * Call scsi_internal_device_block_nowait so we can avoid
   2937	 * calling synchronize_rcu() for each LUN.
   2938	 */
   2939	shost_for_each_device(sdev, shost) {
   2940		mutex_lock(&sdev->state_mutex);
   2941		ret = scsi_internal_device_block_nowait(sdev);
   2942		mutex_unlock(&sdev->state_mutex);
   2943		if (ret) {
   2944			scsi_device_put(sdev);
   2945			break;
   2946		}
   2947	}
   2948
   2949	/*
   2950	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
   2951	 * calling synchronize_rcu() once is enough.
   2952	 */
   2953	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
   2954
   2955	if (!ret)
   2956		synchronize_rcu();
   2957
   2958	return ret;
   2959}
   2960EXPORT_SYMBOL_GPL(scsi_host_block);
   2961
   2962int
   2963scsi_host_unblock(struct Scsi_Host *shost, int new_state)
   2964{
   2965	struct scsi_device *sdev;
   2966	int ret = 0;
   2967
   2968	shost_for_each_device(sdev, shost) {
   2969		ret = scsi_internal_device_unblock(sdev, new_state);
   2970		if (ret) {
   2971			scsi_device_put(sdev);
   2972			break;
   2973		}
   2974	}
   2975	return ret;
   2976}
   2977EXPORT_SYMBOL_GPL(scsi_host_unblock);
   2978
   2979/**
   2980 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
   2981 * @sgl:	scatter-gather list
   2982 * @sg_count:	number of segments in sg
   2983 * @offset:	offset in bytes into sg, on return offset into the mapped area
   2984 * @len:	bytes to map, on return number of bytes mapped
   2985 *
   2986 * Returns virtual address of the start of the mapped page
   2987 */
   2988void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
   2989			  size_t *offset, size_t *len)
   2990{
   2991	int i;
   2992	size_t sg_len = 0, len_complete = 0;
   2993	struct scatterlist *sg;
   2994	struct page *page;
   2995
   2996	WARN_ON(!irqs_disabled());
   2997
   2998	for_each_sg(sgl, sg, sg_count, i) {
   2999		len_complete = sg_len; /* Complete sg-entries */
   3000		sg_len += sg->length;
   3001		if (sg_len > *offset)
   3002			break;
   3003	}
   3004
   3005	if (unlikely(i == sg_count)) {
   3006		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
   3007			"elements %d\n",
   3008		       __func__, sg_len, *offset, sg_count);
   3009		WARN_ON(1);
   3010		return NULL;
   3011	}
   3012
   3013	/* Offset starting from the beginning of first page in this sg-entry */
   3014	*offset = *offset - len_complete + sg->offset;
   3015
   3016	/* Assumption: contiguous pages can be accessed as "page + i" */
   3017	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
   3018	*offset &= ~PAGE_MASK;
   3019
   3020	/* Bytes in this sg-entry from *offset to the end of the page */
   3021	sg_len = PAGE_SIZE - *offset;
   3022	if (*len > sg_len)
   3023		*len = sg_len;
   3024
   3025	return kmap_atomic(page);
   3026}
   3027EXPORT_SYMBOL(scsi_kmap_atomic_sg);
   3028
   3029/**
   3030 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
   3031 * @virt:	virtual address to be unmapped
   3032 */
   3033void scsi_kunmap_atomic_sg(void *virt)
   3034{
   3035	kunmap_atomic(virt);
   3036}
   3037EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
   3038
   3039void sdev_disable_disk_events(struct scsi_device *sdev)
   3040{
   3041	atomic_inc(&sdev->disk_events_disable_depth);
   3042}
   3043EXPORT_SYMBOL(sdev_disable_disk_events);
   3044
   3045void sdev_enable_disk_events(struct scsi_device *sdev)
   3046{
   3047	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
   3048		return;
   3049	atomic_dec(&sdev->disk_events_disable_depth);
   3050}
   3051EXPORT_SYMBOL(sdev_enable_disk_events);
   3052
   3053static unsigned char designator_prio(const unsigned char *d)
   3054{
   3055	if (d[1] & 0x30)
   3056		/* not associated with LUN */
   3057		return 0;
   3058
   3059	if (d[3] == 0)
   3060		/* invalid length */
   3061		return 0;
   3062
   3063	/*
   3064	 * Order of preference for lun descriptor:
   3065	 * - SCSI name string
   3066	 * - NAA IEEE Registered Extended
   3067	 * - EUI-64 based 16-byte
   3068	 * - EUI-64 based 12-byte
   3069	 * - NAA IEEE Registered
   3070	 * - NAA IEEE Extended
   3071	 * - EUI-64 based 8-byte
   3072	 * - SCSI name string (truncated)
   3073	 * - T10 Vendor ID
   3074	 * as longer descriptors reduce the likelyhood
   3075	 * of identification clashes.
   3076	 */
   3077
   3078	switch (d[1] & 0xf) {
   3079	case 8:
   3080		/* SCSI name string, variable-length UTF-8 */
   3081		return 9;
   3082	case 3:
   3083		switch (d[4] >> 4) {
   3084		case 6:
   3085			/* NAA registered extended */
   3086			return 8;
   3087		case 5:
   3088			/* NAA registered */
   3089			return 5;
   3090		case 4:
   3091			/* NAA extended */
   3092			return 4;
   3093		case 3:
   3094			/* NAA locally assigned */
   3095			return 1;
   3096		default:
   3097			break;
   3098		}
   3099		break;
   3100	case 2:
   3101		switch (d[3]) {
   3102		case 16:
   3103			/* EUI64-based, 16 byte */
   3104			return 7;
   3105		case 12:
   3106			/* EUI64-based, 12 byte */
   3107			return 6;
   3108		case 8:
   3109			/* EUI64-based, 8 byte */
   3110			return 3;
   3111		default:
   3112			break;
   3113		}
   3114		break;
   3115	case 1:
   3116		/* T10 vendor ID */
   3117		return 1;
   3118	default:
   3119		break;
   3120	}
   3121
   3122	return 0;
   3123}
   3124
   3125/**
   3126 * scsi_vpd_lun_id - return a unique device identification
   3127 * @sdev: SCSI device
   3128 * @id:   buffer for the identification
   3129 * @id_len:  length of the buffer
   3130 *
   3131 * Copies a unique device identification into @id based
   3132 * on the information in the VPD page 0x83 of the device.
   3133 * The string will be formatted as a SCSI name string.
   3134 *
   3135 * Returns the length of the identification or error on failure.
   3136 * If the identifier is longer than the supplied buffer the actual
   3137 * identifier length is returned and the buffer is not zero-padded.
   3138 */
   3139int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
   3140{
   3141	u8 cur_id_prio = 0;
   3142	u8 cur_id_size = 0;
   3143	const unsigned char *d, *cur_id_str;
   3144	const struct scsi_vpd *vpd_pg83;
   3145	int id_size = -EINVAL;
   3146
   3147	rcu_read_lock();
   3148	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
   3149	if (!vpd_pg83) {
   3150		rcu_read_unlock();
   3151		return -ENXIO;
   3152	}
   3153
   3154	/* The id string must be at least 20 bytes + terminating NULL byte */
   3155	if (id_len < 21) {
   3156		rcu_read_unlock();
   3157		return -EINVAL;
   3158	}
   3159
   3160	memset(id, 0, id_len);
   3161	for (d = vpd_pg83->data + 4;
   3162	     d < vpd_pg83->data + vpd_pg83->len;
   3163	     d += d[3] + 4) {
   3164		u8 prio = designator_prio(d);
   3165
   3166		if (prio == 0 || cur_id_prio > prio)
   3167			continue;
   3168
   3169		switch (d[1] & 0xf) {
   3170		case 0x1:
   3171			/* T10 Vendor ID */
   3172			if (cur_id_size > d[3])
   3173				break;
   3174			cur_id_prio = prio;
   3175			cur_id_size = d[3];
   3176			if (cur_id_size + 4 > id_len)
   3177				cur_id_size = id_len - 4;
   3178			cur_id_str = d + 4;
   3179			id_size = snprintf(id, id_len, "t10.%*pE",
   3180					   cur_id_size, cur_id_str);
   3181			break;
   3182		case 0x2:
   3183			/* EUI-64 */
   3184			cur_id_prio = prio;
   3185			cur_id_size = d[3];
   3186			cur_id_str = d + 4;
   3187			switch (cur_id_size) {
   3188			case 8:
   3189				id_size = snprintf(id, id_len,
   3190						   "eui.%8phN",
   3191						   cur_id_str);
   3192				break;
   3193			case 12:
   3194				id_size = snprintf(id, id_len,
   3195						   "eui.%12phN",
   3196						   cur_id_str);
   3197				break;
   3198			case 16:
   3199				id_size = snprintf(id, id_len,
   3200						   "eui.%16phN",
   3201						   cur_id_str);
   3202				break;
   3203			default:
   3204				break;
   3205			}
   3206			break;
   3207		case 0x3:
   3208			/* NAA */
   3209			cur_id_prio = prio;
   3210			cur_id_size = d[3];
   3211			cur_id_str = d + 4;
   3212			switch (cur_id_size) {
   3213			case 8:
   3214				id_size = snprintf(id, id_len,
   3215						   "naa.%8phN",
   3216						   cur_id_str);
   3217				break;
   3218			case 16:
   3219				id_size = snprintf(id, id_len,
   3220						   "naa.%16phN",
   3221						   cur_id_str);
   3222				break;
   3223			default:
   3224				break;
   3225			}
   3226			break;
   3227		case 0x8:
   3228			/* SCSI name string */
   3229			if (cur_id_size > d[3])
   3230				break;
   3231			/* Prefer others for truncated descriptor */
   3232			if (d[3] > id_len) {
   3233				prio = 2;
   3234				if (cur_id_prio > prio)
   3235					break;
   3236			}
   3237			cur_id_prio = prio;
   3238			cur_id_size = id_size = d[3];
   3239			cur_id_str = d + 4;
   3240			if (cur_id_size >= id_len)
   3241				cur_id_size = id_len - 1;
   3242			memcpy(id, cur_id_str, cur_id_size);
   3243			break;
   3244		default:
   3245			break;
   3246		}
   3247	}
   3248	rcu_read_unlock();
   3249
   3250	return id_size;
   3251}
   3252EXPORT_SYMBOL(scsi_vpd_lun_id);
   3253
   3254/*
   3255 * scsi_vpd_tpg_id - return a target port group identifier
   3256 * @sdev: SCSI device
   3257 *
   3258 * Returns the Target Port Group identifier from the information
   3259 * froom VPD page 0x83 of the device.
   3260 *
   3261 * Returns the identifier or error on failure.
   3262 */
   3263int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
   3264{
   3265	const unsigned char *d;
   3266	const struct scsi_vpd *vpd_pg83;
   3267	int group_id = -EAGAIN, rel_port = -1;
   3268
   3269	rcu_read_lock();
   3270	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
   3271	if (!vpd_pg83) {
   3272		rcu_read_unlock();
   3273		return -ENXIO;
   3274	}
   3275
   3276	d = vpd_pg83->data + 4;
   3277	while (d < vpd_pg83->data + vpd_pg83->len) {
   3278		switch (d[1] & 0xf) {
   3279		case 0x4:
   3280			/* Relative target port */
   3281			rel_port = get_unaligned_be16(&d[6]);
   3282			break;
   3283		case 0x5:
   3284			/* Target port group */
   3285			group_id = get_unaligned_be16(&d[6]);
   3286			break;
   3287		default:
   3288			break;
   3289		}
   3290		d += d[3] + 4;
   3291	}
   3292	rcu_read_unlock();
   3293
   3294	if (group_id >= 0 && rel_id && rel_port != -1)
   3295		*rel_id = rel_port;
   3296
   3297	return group_id;
   3298}
   3299EXPORT_SYMBOL(scsi_vpd_tpg_id);
   3300
   3301/**
   3302 * scsi_build_sense - build sense data for a command
   3303 * @scmd:	scsi command for which the sense should be formatted
   3304 * @desc:	Sense format (non-zero == descriptor format,
   3305 *              0 == fixed format)
   3306 * @key:	Sense key
   3307 * @asc:	Additional sense code
   3308 * @ascq:	Additional sense code qualifier
   3309 *
   3310 **/
   3311void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
   3312{
   3313	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
   3314	scmd->result = SAM_STAT_CHECK_CONDITION;
   3315}
   3316EXPORT_SYMBOL_GPL(scsi_build_sense);