cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

storvsc_drv.c (59102B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2009, Microsoft Corporation.
      4 *
      5 * Authors:
      6 *   Haiyang Zhang <haiyangz@microsoft.com>
      7 *   Hank Janssen  <hjanssen@microsoft.com>
      8 *   K. Y. Srinivasan <kys@microsoft.com>
      9 */
     10
     11#include <linux/kernel.h>
     12#include <linux/wait.h>
     13#include <linux/sched.h>
     14#include <linux/completion.h>
     15#include <linux/string.h>
     16#include <linux/mm.h>
     17#include <linux/delay.h>
     18#include <linux/init.h>
     19#include <linux/slab.h>
     20#include <linux/module.h>
     21#include <linux/device.h>
     22#include <linux/hyperv.h>
     23#include <linux/blkdev.h>
     24#include <linux/dma-mapping.h>
     25
     26#include <scsi/scsi.h>
     27#include <scsi/scsi_cmnd.h>
     28#include <scsi/scsi_host.h>
     29#include <scsi/scsi_device.h>
     30#include <scsi/scsi_tcq.h>
     31#include <scsi/scsi_eh.h>
     32#include <scsi/scsi_devinfo.h>
     33#include <scsi/scsi_dbg.h>
     34#include <scsi/scsi_transport_fc.h>
     35#include <scsi/scsi_transport.h>
     36
     37/*
     38 * All wire protocol details (storage protocol between the guest and the host)
     39 * are consolidated here.
     40 *
     41 * Begin protocol definitions.
     42 */
     43
     44/*
     45 * Version history:
     46 * V1 Beta: 0.1
     47 * V1 RC < 2008/1/31: 1.0
     48 * V1 RC > 2008/1/31:  2.0
     49 * Win7: 4.2
     50 * Win8: 5.1
     51 * Win8.1: 6.0
     52 * Win10: 6.2
     53 */
     54
     55#define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)	((((MAJOR_) & 0xff) << 8) | \
     56						(((MINOR_) & 0xff)))
     57#define VMSTOR_PROTO_VERSION_WIN6	VMSTOR_PROTO_VERSION(2, 0)
     58#define VMSTOR_PROTO_VERSION_WIN7	VMSTOR_PROTO_VERSION(4, 2)
     59#define VMSTOR_PROTO_VERSION_WIN8	VMSTOR_PROTO_VERSION(5, 1)
     60#define VMSTOR_PROTO_VERSION_WIN8_1	VMSTOR_PROTO_VERSION(6, 0)
     61#define VMSTOR_PROTO_VERSION_WIN10	VMSTOR_PROTO_VERSION(6, 2)
     62
     63/*  Packet structure describing virtual storage requests. */
     64enum vstor_packet_operation {
     65	VSTOR_OPERATION_COMPLETE_IO		= 1,
     66	VSTOR_OPERATION_REMOVE_DEVICE		= 2,
     67	VSTOR_OPERATION_EXECUTE_SRB		= 3,
     68	VSTOR_OPERATION_RESET_LUN		= 4,
     69	VSTOR_OPERATION_RESET_ADAPTER		= 5,
     70	VSTOR_OPERATION_RESET_BUS		= 6,
     71	VSTOR_OPERATION_BEGIN_INITIALIZATION	= 7,
     72	VSTOR_OPERATION_END_INITIALIZATION	= 8,
     73	VSTOR_OPERATION_QUERY_PROTOCOL_VERSION	= 9,
     74	VSTOR_OPERATION_QUERY_PROPERTIES	= 10,
     75	VSTOR_OPERATION_ENUMERATE_BUS		= 11,
     76	VSTOR_OPERATION_FCHBA_DATA              = 12,
     77	VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
     78	VSTOR_OPERATION_MAXIMUM                 = 13
     79};
     80
     81/*
     82 * WWN packet for Fibre Channel HBA
     83 */
     84
     85struct hv_fc_wwn_packet {
     86	u8	primary_active;
     87	u8	reserved1[3];
     88	u8	primary_port_wwn[8];
     89	u8	primary_node_wwn[8];
     90	u8	secondary_port_wwn[8];
     91	u8	secondary_node_wwn[8];
     92};
     93
     94
     95
     96/*
     97 * SRB Flag Bits
     98 */
     99
    100#define SRB_FLAGS_QUEUE_ACTION_ENABLE		0x00000002
    101#define SRB_FLAGS_DISABLE_DISCONNECT		0x00000004
    102#define SRB_FLAGS_DISABLE_SYNCH_TRANSFER	0x00000008
    103#define SRB_FLAGS_BYPASS_FROZEN_QUEUE		0x00000010
    104#define SRB_FLAGS_DISABLE_AUTOSENSE		0x00000020
    105#define SRB_FLAGS_DATA_IN			0x00000040
    106#define SRB_FLAGS_DATA_OUT			0x00000080
    107#define SRB_FLAGS_NO_DATA_TRANSFER		0x00000000
    108#define SRB_FLAGS_UNSPECIFIED_DIRECTION	(SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
    109#define SRB_FLAGS_NO_QUEUE_FREEZE		0x00000100
    110#define SRB_FLAGS_ADAPTER_CACHE_ENABLE		0x00000200
    111#define SRB_FLAGS_FREE_SENSE_BUFFER		0x00000400
    112
    113/*
    114 * This flag indicates the request is part of the workflow for processing a D3.
    115 */
    116#define SRB_FLAGS_D3_PROCESSING			0x00000800
    117#define SRB_FLAGS_IS_ACTIVE			0x00010000
    118#define SRB_FLAGS_ALLOCATED_FROM_ZONE		0x00020000
    119#define SRB_FLAGS_SGLIST_FROM_POOL		0x00040000
    120#define SRB_FLAGS_BYPASS_LOCKED_QUEUE		0x00080000
    121#define SRB_FLAGS_NO_KEEP_AWAKE			0x00100000
    122#define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE	0x00200000
    123#define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT	0x00400000
    124#define SRB_FLAGS_DONT_START_NEXT_PACKET	0x00800000
    125#define SRB_FLAGS_PORT_DRIVER_RESERVED		0x0F000000
    126#define SRB_FLAGS_CLASS_DRIVER_RESERVED		0xF0000000
    127
    128#define SP_UNTAGGED			((unsigned char) ~0)
    129#define SRB_SIMPLE_TAG_REQUEST		0x20
    130
    131/*
    132 * Platform neutral description of a scsi request -
    133 * this remains the same across the write regardless of 32/64 bit
    134 * note: it's patterned off the SCSI_PASS_THROUGH structure
    135 */
    136#define STORVSC_MAX_CMD_LEN			0x10
    137
    138/* Sense buffer size is the same for all versions since Windows 8 */
    139#define STORVSC_SENSE_BUFFER_SIZE		0x14
    140#define STORVSC_MAX_BUF_LEN_WITH_PADDING	0x14
    141
    142/*
    143 * The storage protocol version is determined during the
    144 * initial exchange with the host.  It will indicate which
    145 * storage functionality is available in the host.
    146*/
    147static int vmstor_proto_version;
    148
    149#define STORVSC_LOGGING_NONE	0
    150#define STORVSC_LOGGING_ERROR	1
    151#define STORVSC_LOGGING_WARN	2
    152
    153static int logging_level = STORVSC_LOGGING_ERROR;
    154module_param(logging_level, int, S_IRUGO|S_IWUSR);
    155MODULE_PARM_DESC(logging_level,
    156	"Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
    157
    158static inline bool do_logging(int level)
    159{
    160	return logging_level >= level;
    161}
    162
    163#define storvsc_log(dev, level, fmt, ...)			\
    164do {								\
    165	if (do_logging(level))					\
    166		dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);	\
    167} while (0)
    168
    169struct vmscsi_request {
    170	u16 length;
    171	u8 srb_status;
    172	u8 scsi_status;
    173
    174	u8  port_number;
    175	u8  path_id;
    176	u8  target_id;
    177	u8  lun;
    178
    179	u8  cdb_length;
    180	u8  sense_info_length;
    181	u8  data_in;
    182	u8  reserved;
    183
    184	u32 data_transfer_length;
    185
    186	union {
    187		u8 cdb[STORVSC_MAX_CMD_LEN];
    188		u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
    189		u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
    190	};
    191	/*
    192	 * The following was added in win8.
    193	 */
    194	u16 reserve;
    195	u8  queue_tag;
    196	u8  queue_action;
    197	u32 srb_flags;
    198	u32 time_out_value;
    199	u32 queue_sort_ey;
    200
    201} __attribute((packed));
    202
    203/*
    204 * The list of windows version in order of preference.
    205 */
    206
    207static const int protocol_version[] = {
    208		VMSTOR_PROTO_VERSION_WIN10,
    209		VMSTOR_PROTO_VERSION_WIN8_1,
    210		VMSTOR_PROTO_VERSION_WIN8,
    211};
    212
    213
    214/*
    215 * This structure is sent during the initialization phase to get the different
    216 * properties of the channel.
    217 */
    218
    219#define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL		0x1
    220
    221struct vmstorage_channel_properties {
    222	u32 reserved;
    223	u16 max_channel_cnt;
    224	u16 reserved1;
    225
    226	u32 flags;
    227	u32   max_transfer_bytes;
    228
    229	u64  reserved2;
    230} __packed;
    231
    232/*  This structure is sent during the storage protocol negotiations. */
    233struct vmstorage_protocol_version {
    234	/* Major (MSW) and minor (LSW) version numbers. */
    235	u16 major_minor;
    236
    237	/*
    238	 * Revision number is auto-incremented whenever this file is changed
    239	 * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
    240	 * definitely indicate incompatibility--but it does indicate mismatched
    241	 * builds.
    242	 * This is only used on the windows side. Just set it to 0.
    243	 */
    244	u16 revision;
    245} __packed;
    246
    247/* Channel Property Flags */
    248#define STORAGE_CHANNEL_REMOVABLE_FLAG		0x1
    249#define STORAGE_CHANNEL_EMULATED_IDE_FLAG	0x2
    250
    251struct vstor_packet {
    252	/* Requested operation type */
    253	enum vstor_packet_operation operation;
    254
    255	/*  Flags - see below for values */
    256	u32 flags;
    257
    258	/* Status of the request returned from the server side. */
    259	u32 status;
    260
    261	/* Data payload area */
    262	union {
    263		/*
    264		 * Structure used to forward SCSI commands from the
    265		 * client to the server.
    266		 */
    267		struct vmscsi_request vm_srb;
    268
    269		/* Structure used to query channel properties. */
    270		struct vmstorage_channel_properties storage_channel_properties;
    271
    272		/* Used during version negotiations. */
    273		struct vmstorage_protocol_version version;
    274
    275		/* Fibre channel address packet */
    276		struct hv_fc_wwn_packet wwn_packet;
    277
    278		/* Number of sub-channels to create */
    279		u16 sub_channel_count;
    280
    281		/* This will be the maximum of the union members */
    282		u8  buffer[0x34];
    283	};
    284} __packed;
    285
    286/*
    287 * Packet Flags:
    288 *
    289 * This flag indicates that the server should send back a completion for this
    290 * packet.
    291 */
    292
    293#define REQUEST_COMPLETION_FLAG	0x1
    294
    295/* Matches Windows-end */
    296enum storvsc_request_type {
    297	WRITE_TYPE = 0,
    298	READ_TYPE,
    299	UNKNOWN_TYPE,
    300};
    301
    302/*
    303 * SRB status codes and masks; a subset of the codes used here.
    304 */
    305
    306#define SRB_STATUS_AUTOSENSE_VALID	0x80
    307#define SRB_STATUS_QUEUE_FROZEN		0x40
    308#define SRB_STATUS_INVALID_LUN	0x20
    309#define SRB_STATUS_SUCCESS	0x01
    310#define SRB_STATUS_ABORTED	0x02
    311#define SRB_STATUS_ERROR	0x04
    312#define SRB_STATUS_DATA_OVERRUN	0x12
    313
    314#define SRB_STATUS(status) \
    315	(status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
    316/*
    317 * This is the end of Protocol specific defines.
    318 */
    319
    320static int storvsc_ringbuffer_size = (128 * 1024);
    321static u32 max_outstanding_req_per_channel;
    322static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
    323
    324static int storvsc_vcpus_per_sub_channel = 4;
    325static unsigned int storvsc_max_hw_queues;
    326
    327module_param(storvsc_ringbuffer_size, int, S_IRUGO);
    328MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
    329
    330module_param(storvsc_max_hw_queues, uint, 0644);
    331MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
    332
    333module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
    334MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
    335
    336static int ring_avail_percent_lowater = 10;
    337module_param(ring_avail_percent_lowater, int, S_IRUGO);
    338MODULE_PARM_DESC(ring_avail_percent_lowater,
    339		"Select a channel if available ring size > this in percent");
    340
    341/*
    342 * Timeout in seconds for all devices managed by this driver.
    343 */
    344static int storvsc_timeout = 180;
    345
    346#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
    347static struct scsi_transport_template *fc_transport_template;
    348#endif
    349
    350static struct scsi_host_template scsi_driver;
    351static void storvsc_on_channel_callback(void *context);
    352
    353#define STORVSC_MAX_LUNS_PER_TARGET			255
    354#define STORVSC_MAX_TARGETS				2
    355#define STORVSC_MAX_CHANNELS				8
    356
    357#define STORVSC_FC_MAX_LUNS_PER_TARGET			255
    358#define STORVSC_FC_MAX_TARGETS				128
    359#define STORVSC_FC_MAX_CHANNELS				8
    360
    361#define STORVSC_IDE_MAX_LUNS_PER_TARGET			64
    362#define STORVSC_IDE_MAX_TARGETS				1
    363#define STORVSC_IDE_MAX_CHANNELS			1
    364
    365/*
    366 * Upper bound on the size of a storvsc packet.
    367 */
    368#define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
    369			      sizeof(struct vstor_packet))
    370
    371struct storvsc_cmd_request {
    372	struct scsi_cmnd *cmd;
    373
    374	struct hv_device *device;
    375
    376	/* Synchronize the request/response if needed */
    377	struct completion wait_event;
    378
    379	struct vmbus_channel_packet_multipage_buffer mpb;
    380	struct vmbus_packet_mpb_array *payload;
    381	u32 payload_sz;
    382
    383	struct vstor_packet vstor_packet;
    384};
    385
    386
    387/* A storvsc device is a device object that contains a vmbus channel */
    388struct storvsc_device {
    389	struct hv_device *device;
    390
    391	bool	 destroy;
    392	bool	 drain_notify;
    393	atomic_t num_outstanding_req;
    394	struct Scsi_Host *host;
    395
    396	wait_queue_head_t waiting_to_drain;
    397
    398	/*
    399	 * Each unique Port/Path/Target represents 1 channel ie scsi
    400	 * controller. In reality, the pathid, targetid is always 0
    401	 * and the port is set by us
    402	 */
    403	unsigned int port_number;
    404	unsigned char path_id;
    405	unsigned char target_id;
    406
    407	/*
    408	 * Max I/O, the device can support.
    409	 */
    410	u32   max_transfer_bytes;
    411	/*
    412	 * Number of sub-channels we will open.
    413	 */
    414	u16 num_sc;
    415	struct vmbus_channel **stor_chns;
    416	/*
    417	 * Mask of CPUs bound to subchannels.
    418	 */
    419	struct cpumask alloced_cpus;
    420	/*
    421	 * Serializes modifications of stor_chns[] from storvsc_do_io()
    422	 * and storvsc_change_target_cpu().
    423	 */
    424	spinlock_t lock;
    425	/* Used for vsc/vsp channel reset process */
    426	struct storvsc_cmd_request init_request;
    427	struct storvsc_cmd_request reset_request;
    428	/*
    429	 * Currently active port and node names for FC devices.
    430	 */
    431	u64 node_name;
    432	u64 port_name;
    433#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
    434	struct fc_rport *rport;
    435#endif
    436};
    437
    438struct hv_host_device {
    439	struct hv_device *dev;
    440	unsigned int port;
    441	unsigned char path;
    442	unsigned char target;
    443	struct workqueue_struct *handle_error_wq;
    444	struct work_struct host_scan_work;
    445	struct Scsi_Host *host;
    446};
    447
    448struct storvsc_scan_work {
    449	struct work_struct work;
    450	struct Scsi_Host *host;
    451	u8 lun;
    452	u8 tgt_id;
    453};
    454
    455static void storvsc_device_scan(struct work_struct *work)
    456{
    457	struct storvsc_scan_work *wrk;
    458	struct scsi_device *sdev;
    459
    460	wrk = container_of(work, struct storvsc_scan_work, work);
    461
    462	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
    463	if (!sdev)
    464		goto done;
    465	scsi_rescan_device(&sdev->sdev_gendev);
    466	scsi_device_put(sdev);
    467
    468done:
    469	kfree(wrk);
    470}
    471
    472static void storvsc_host_scan(struct work_struct *work)
    473{
    474	struct Scsi_Host *host;
    475	struct scsi_device *sdev;
    476	struct hv_host_device *host_device =
    477		container_of(work, struct hv_host_device, host_scan_work);
    478
    479	host = host_device->host;
    480	/*
    481	 * Before scanning the host, first check to see if any of the
    482	 * currently known devices have been hot removed. We issue a
    483	 * "unit ready" command against all currently known devices.
    484	 * This I/O will result in an error for devices that have been
    485	 * removed. As part of handling the I/O error, we remove the device.
    486	 *
    487	 * When a LUN is added or removed, the host sends us a signal to
    488	 * scan the host. Thus we are forced to discover the LUNs that
    489	 * may have been removed this way.
    490	 */
    491	mutex_lock(&host->scan_mutex);
    492	shost_for_each_device(sdev, host)
    493		scsi_test_unit_ready(sdev, 1, 1, NULL);
    494	mutex_unlock(&host->scan_mutex);
    495	/*
    496	 * Now scan the host to discover LUNs that may have been added.
    497	 */
    498	scsi_scan_host(host);
    499}
    500
    501static void storvsc_remove_lun(struct work_struct *work)
    502{
    503	struct storvsc_scan_work *wrk;
    504	struct scsi_device *sdev;
    505
    506	wrk = container_of(work, struct storvsc_scan_work, work);
    507	if (!scsi_host_get(wrk->host))
    508		goto done;
    509
    510	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
    511
    512	if (sdev) {
    513		scsi_remove_device(sdev);
    514		scsi_device_put(sdev);
    515	}
    516	scsi_host_put(wrk->host);
    517
    518done:
    519	kfree(wrk);
    520}
    521
    522
    523/*
    524 * We can get incoming messages from the host that are not in response to
    525 * messages that we have sent out. An example of this would be messages
    526 * received by the guest to notify dynamic addition/removal of LUNs. To
    527 * deal with potential race conditions where the driver may be in the
    528 * midst of being unloaded when we might receive an unsolicited message
    529 * from the host, we have implemented a mechanism to gurantee sequential
    530 * consistency:
    531 *
    532 * 1) Once the device is marked as being destroyed, we will fail all
    533 *    outgoing messages.
    534 * 2) We permit incoming messages when the device is being destroyed,
    535 *    only to properly account for messages already sent out.
    536 */
    537
    538static inline struct storvsc_device *get_out_stor_device(
    539					struct hv_device *device)
    540{
    541	struct storvsc_device *stor_device;
    542
    543	stor_device = hv_get_drvdata(device);
    544
    545	if (stor_device && stor_device->destroy)
    546		stor_device = NULL;
    547
    548	return stor_device;
    549}
    550
    551
    552static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
    553{
    554	dev->drain_notify = true;
    555	wait_event(dev->waiting_to_drain,
    556		   atomic_read(&dev->num_outstanding_req) == 0);
    557	dev->drain_notify = false;
    558}
    559
    560static inline struct storvsc_device *get_in_stor_device(
    561					struct hv_device *device)
    562{
    563	struct storvsc_device *stor_device;
    564
    565	stor_device = hv_get_drvdata(device);
    566
    567	if (!stor_device)
    568		goto get_in_err;
    569
    570	/*
    571	 * If the device is being destroyed; allow incoming
    572	 * traffic only to cleanup outstanding requests.
    573	 */
    574
    575	if (stor_device->destroy  &&
    576		(atomic_read(&stor_device->num_outstanding_req) == 0))
    577		stor_device = NULL;
    578
    579get_in_err:
    580	return stor_device;
    581
    582}
    583
    584static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
    585				      u32 new)
    586{
    587	struct storvsc_device *stor_device;
    588	struct vmbus_channel *cur_chn;
    589	bool old_is_alloced = false;
    590	struct hv_device *device;
    591	unsigned long flags;
    592	int cpu;
    593
    594	device = channel->primary_channel ?
    595			channel->primary_channel->device_obj
    596				: channel->device_obj;
    597	stor_device = get_out_stor_device(device);
    598	if (!stor_device)
    599		return;
    600
    601	/* See storvsc_do_io() -> get_og_chn(). */
    602	spin_lock_irqsave(&stor_device->lock, flags);
    603
    604	/*
    605	 * Determines if the storvsc device has other channels assigned to
    606	 * the "old" CPU to update the alloced_cpus mask and the stor_chns
    607	 * array.
    608	 */
    609	if (device->channel != channel && device->channel->target_cpu == old) {
    610		cur_chn = device->channel;
    611		old_is_alloced = true;
    612		goto old_is_alloced;
    613	}
    614	list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
    615		if (cur_chn == channel)
    616			continue;
    617		if (cur_chn->target_cpu == old) {
    618			old_is_alloced = true;
    619			goto old_is_alloced;
    620		}
    621	}
    622
    623old_is_alloced:
    624	if (old_is_alloced)
    625		WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
    626	else
    627		cpumask_clear_cpu(old, &stor_device->alloced_cpus);
    628
    629	/* "Flush" the stor_chns array. */
    630	for_each_possible_cpu(cpu) {
    631		if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
    632					cpu, &stor_device->alloced_cpus))
    633			WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
    634	}
    635
    636	WRITE_ONCE(stor_device->stor_chns[new], channel);
    637	cpumask_set_cpu(new, &stor_device->alloced_cpus);
    638
    639	spin_unlock_irqrestore(&stor_device->lock, flags);
    640}
    641
    642static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
    643{
    644	struct storvsc_cmd_request *request =
    645		(struct storvsc_cmd_request *)(unsigned long)rqst_addr;
    646
    647	if (rqst_addr == VMBUS_RQST_INIT)
    648		return VMBUS_RQST_INIT;
    649	if (rqst_addr == VMBUS_RQST_RESET)
    650		return VMBUS_RQST_RESET;
    651
    652	/*
    653	 * Cannot return an ID of 0, which is reserved for an unsolicited
    654	 * message from Hyper-V.
    655	 */
    656	return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
    657}
    658
    659static void handle_sc_creation(struct vmbus_channel *new_sc)
    660{
    661	struct hv_device *device = new_sc->primary_channel->device_obj;
    662	struct device *dev = &device->device;
    663	struct storvsc_device *stor_device;
    664	struct vmstorage_channel_properties props;
    665	int ret;
    666
    667	stor_device = get_out_stor_device(device);
    668	if (!stor_device)
    669		return;
    670
    671	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
    672	new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
    673
    674	new_sc->next_request_id_callback = storvsc_next_request_id;
    675
    676	ret = vmbus_open(new_sc,
    677			 storvsc_ringbuffer_size,
    678			 storvsc_ringbuffer_size,
    679			 (void *)&props,
    680			 sizeof(struct vmstorage_channel_properties),
    681			 storvsc_on_channel_callback, new_sc);
    682
    683	/* In case vmbus_open() fails, we don't use the sub-channel. */
    684	if (ret != 0) {
    685		dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
    686		return;
    687	}
    688
    689	new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
    690
    691	/* Add the sub-channel to the array of available channels. */
    692	stor_device->stor_chns[new_sc->target_cpu] = new_sc;
    693	cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
    694}
    695
    696static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
    697{
    698	struct device *dev = &device->device;
    699	struct storvsc_device *stor_device;
    700	int num_sc;
    701	struct storvsc_cmd_request *request;
    702	struct vstor_packet *vstor_packet;
    703	int ret, t;
    704
    705	/*
    706	 * If the number of CPUs is artificially restricted, such as
    707	 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
    708	 * sub-channels >= the number of CPUs. These sub-channels
    709	 * should not be created. The primary channel is already created
    710	 * and assigned to one CPU, so check against # CPUs - 1.
    711	 */
    712	num_sc = min((int)(num_online_cpus() - 1), max_chns);
    713	if (!num_sc)
    714		return;
    715
    716	stor_device = get_out_stor_device(device);
    717	if (!stor_device)
    718		return;
    719
    720	stor_device->num_sc = num_sc;
    721	request = &stor_device->init_request;
    722	vstor_packet = &request->vstor_packet;
    723
    724	/*
    725	 * Establish a handler for dealing with subchannels.
    726	 */
    727	vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
    728
    729	/*
    730	 * Request the host to create sub-channels.
    731	 */
    732	memset(request, 0, sizeof(struct storvsc_cmd_request));
    733	init_completion(&request->wait_event);
    734	vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
    735	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
    736	vstor_packet->sub_channel_count = num_sc;
    737
    738	ret = vmbus_sendpacket(device->channel, vstor_packet,
    739			       sizeof(struct vstor_packet),
    740			       VMBUS_RQST_INIT,
    741			       VM_PKT_DATA_INBAND,
    742			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
    743
    744	if (ret != 0) {
    745		dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
    746		return;
    747	}
    748
    749	t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
    750	if (t == 0) {
    751		dev_err(dev, "Failed to create sub-channel: timed out\n");
    752		return;
    753	}
    754
    755	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
    756	    vstor_packet->status != 0) {
    757		dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
    758			vstor_packet->operation, vstor_packet->status);
    759		return;
    760	}
    761
    762	/*
    763	 * We need to do nothing here, because vmbus_process_offer()
    764	 * invokes channel->sc_creation_callback, which will open and use
    765	 * the sub-channel(s).
    766	 */
    767}
    768
    769static void cache_wwn(struct storvsc_device *stor_device,
    770		      struct vstor_packet *vstor_packet)
    771{
    772	/*
    773	 * Cache the currently active port and node ww names.
    774	 */
    775	if (vstor_packet->wwn_packet.primary_active) {
    776		stor_device->node_name =
    777			wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
    778		stor_device->port_name =
    779			wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
    780	} else {
    781		stor_device->node_name =
    782			wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
    783		stor_device->port_name =
    784			wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
    785	}
    786}
    787
    788
    789static int storvsc_execute_vstor_op(struct hv_device *device,
    790				    struct storvsc_cmd_request *request,
    791				    bool status_check)
    792{
    793	struct storvsc_device *stor_device;
    794	struct vstor_packet *vstor_packet;
    795	int ret, t;
    796
    797	stor_device = get_out_stor_device(device);
    798	if (!stor_device)
    799		return -ENODEV;
    800
    801	vstor_packet = &request->vstor_packet;
    802
    803	init_completion(&request->wait_event);
    804	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
    805
    806	ret = vmbus_sendpacket(device->channel, vstor_packet,
    807			       sizeof(struct vstor_packet),
    808			       VMBUS_RQST_INIT,
    809			       VM_PKT_DATA_INBAND,
    810			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
    811	if (ret != 0)
    812		return ret;
    813
    814	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
    815	if (t == 0)
    816		return -ETIMEDOUT;
    817
    818	if (!status_check)
    819		return ret;
    820
    821	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
    822	    vstor_packet->status != 0)
    823		return -EINVAL;
    824
    825	return ret;
    826}
    827
    828static int storvsc_channel_init(struct hv_device *device, bool is_fc)
    829{
    830	struct storvsc_device *stor_device;
    831	struct storvsc_cmd_request *request;
    832	struct vstor_packet *vstor_packet;
    833	int ret, i;
    834	int max_chns;
    835	bool process_sub_channels = false;
    836
    837	stor_device = get_out_stor_device(device);
    838	if (!stor_device)
    839		return -ENODEV;
    840
    841	request = &stor_device->init_request;
    842	vstor_packet = &request->vstor_packet;
    843
    844	/*
    845	 * Now, initiate the vsc/vsp initialization protocol on the open
    846	 * channel
    847	 */
    848	memset(request, 0, sizeof(struct storvsc_cmd_request));
    849	vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
    850	ret = storvsc_execute_vstor_op(device, request, true);
    851	if (ret)
    852		return ret;
    853	/*
    854	 * Query host supported protocol version.
    855	 */
    856
    857	for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
    858		/* reuse the packet for version range supported */
    859		memset(vstor_packet, 0, sizeof(struct vstor_packet));
    860		vstor_packet->operation =
    861			VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
    862
    863		vstor_packet->version.major_minor = protocol_version[i];
    864
    865		/*
    866		 * The revision number is only used in Windows; set it to 0.
    867		 */
    868		vstor_packet->version.revision = 0;
    869		ret = storvsc_execute_vstor_op(device, request, false);
    870		if (ret != 0)
    871			return ret;
    872
    873		if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
    874			return -EINVAL;
    875
    876		if (vstor_packet->status == 0) {
    877			vmstor_proto_version = protocol_version[i];
    878
    879			break;
    880		}
    881	}
    882
    883	if (vstor_packet->status != 0) {
    884		dev_err(&device->device, "Obsolete Hyper-V version\n");
    885		return -EINVAL;
    886	}
    887
    888
    889	memset(vstor_packet, 0, sizeof(struct vstor_packet));
    890	vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
    891	ret = storvsc_execute_vstor_op(device, request, true);
    892	if (ret != 0)
    893		return ret;
    894
    895	/*
    896	 * Check to see if multi-channel support is there.
    897	 * Hosts that implement protocol version of 5.1 and above
    898	 * support multi-channel.
    899	 */
    900	max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
    901
    902	/*
    903	 * Allocate state to manage the sub-channels.
    904	 * We allocate an array based on the numbers of possible CPUs
    905	 * (Hyper-V does not support cpu online/offline).
    906	 * This Array will be sparseley populated with unique
    907	 * channels - primary + sub-channels.
    908	 * We will however populate all the slots to evenly distribute
    909	 * the load.
    910	 */
    911	stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
    912					 GFP_KERNEL);
    913	if (stor_device->stor_chns == NULL)
    914		return -ENOMEM;
    915
    916	device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
    917
    918	stor_device->stor_chns[device->channel->target_cpu] = device->channel;
    919	cpumask_set_cpu(device->channel->target_cpu,
    920			&stor_device->alloced_cpus);
    921
    922	if (vstor_packet->storage_channel_properties.flags &
    923	    STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
    924		process_sub_channels = true;
    925
    926	stor_device->max_transfer_bytes =
    927		vstor_packet->storage_channel_properties.max_transfer_bytes;
    928
    929	if (!is_fc)
    930		goto done;
    931
    932	/*
    933	 * For FC devices retrieve FC HBA data.
    934	 */
    935	memset(vstor_packet, 0, sizeof(struct vstor_packet));
    936	vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
    937	ret = storvsc_execute_vstor_op(device, request, true);
    938	if (ret != 0)
    939		return ret;
    940
    941	/*
    942	 * Cache the currently active port and node ww names.
    943	 */
    944	cache_wwn(stor_device, vstor_packet);
    945
    946done:
    947
    948	memset(vstor_packet, 0, sizeof(struct vstor_packet));
    949	vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
    950	ret = storvsc_execute_vstor_op(device, request, true);
    951	if (ret != 0)
    952		return ret;
    953
    954	if (process_sub_channels)
    955		handle_multichannel_storage(device, max_chns);
    956
    957	return ret;
    958}
    959
    960static void storvsc_handle_error(struct vmscsi_request *vm_srb,
    961				struct scsi_cmnd *scmnd,
    962				struct Scsi_Host *host,
    963				u8 asc, u8 ascq)
    964{
    965	struct storvsc_scan_work *wrk;
    966	void (*process_err_fn)(struct work_struct *work);
    967	struct hv_host_device *host_dev = shost_priv(host);
    968
    969	/*
    970	 * In some situations, Hyper-V sets multiple bits in the
    971	 * srb_status, such as ABORTED and ERROR. So process them
    972	 * individually, with the most specific bits first.
    973	 */
    974
    975	if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) {
    976		set_host_byte(scmnd, DID_NO_CONNECT);
    977		process_err_fn = storvsc_remove_lun;
    978		goto do_work;
    979	}
    980
    981	if (vm_srb->srb_status & SRB_STATUS_ABORTED) {
    982		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
    983		    /* Capacity data has changed */
    984		    (asc == 0x2a) && (ascq == 0x9)) {
    985			process_err_fn = storvsc_device_scan;
    986			/*
    987			 * Retry the I/O that triggered this.
    988			 */
    989			set_host_byte(scmnd, DID_REQUEUE);
    990			goto do_work;
    991		}
    992	}
    993
    994	if (vm_srb->srb_status & SRB_STATUS_ERROR) {
    995		/*
    996		 * Let upper layer deal with error when
    997		 * sense message is present.
    998		 */
    999		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
   1000			return;
   1001
   1002		/*
   1003		 * If there is an error; offline the device since all
   1004		 * error recovery strategies would have already been
   1005		 * deployed on the host side. However, if the command
   1006		 * were a pass-through command deal with it appropriately.
   1007		 */
   1008		switch (scmnd->cmnd[0]) {
   1009		case ATA_16:
   1010		case ATA_12:
   1011			set_host_byte(scmnd, DID_PASSTHROUGH);
   1012			break;
   1013		/*
   1014		 * On some Hyper-V hosts TEST_UNIT_READY command can
   1015		 * return SRB_STATUS_ERROR. Let the upper level code
   1016		 * deal with it based on the sense information.
   1017		 */
   1018		case TEST_UNIT_READY:
   1019			break;
   1020		default:
   1021			set_host_byte(scmnd, DID_ERROR);
   1022		}
   1023	}
   1024	return;
   1025
   1026do_work:
   1027	/*
   1028	 * We need to schedule work to process this error; schedule it.
   1029	 */
   1030	wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
   1031	if (!wrk) {
   1032		set_host_byte(scmnd, DID_TARGET_FAILURE);
   1033		return;
   1034	}
   1035
   1036	wrk->host = host;
   1037	wrk->lun = vm_srb->lun;
   1038	wrk->tgt_id = vm_srb->target_id;
   1039	INIT_WORK(&wrk->work, process_err_fn);
   1040	queue_work(host_dev->handle_error_wq, &wrk->work);
   1041}
   1042
   1043
   1044static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
   1045				       struct storvsc_device *stor_dev)
   1046{
   1047	struct scsi_cmnd *scmnd = cmd_request->cmd;
   1048	struct scsi_sense_hdr sense_hdr;
   1049	struct vmscsi_request *vm_srb;
   1050	u32 data_transfer_length;
   1051	struct Scsi_Host *host;
   1052	u32 payload_sz = cmd_request->payload_sz;
   1053	void *payload = cmd_request->payload;
   1054	bool sense_ok;
   1055
   1056	host = stor_dev->host;
   1057
   1058	vm_srb = &cmd_request->vstor_packet.vm_srb;
   1059	data_transfer_length = vm_srb->data_transfer_length;
   1060
   1061	scmnd->result = vm_srb->scsi_status;
   1062
   1063	if (scmnd->result) {
   1064		sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
   1065				SCSI_SENSE_BUFFERSIZE, &sense_hdr);
   1066
   1067		if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
   1068			scsi_print_sense_hdr(scmnd->device, "storvsc",
   1069					     &sense_hdr);
   1070	}
   1071
   1072	if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
   1073		storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
   1074					 sense_hdr.ascq);
   1075		/*
   1076		 * The Windows driver set data_transfer_length on
   1077		 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
   1078		 * is untouched.  In these cases we set it to 0.
   1079		 */
   1080		if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
   1081			data_transfer_length = 0;
   1082	}
   1083
   1084	/* Validate data_transfer_length (from Hyper-V) */
   1085	if (data_transfer_length > cmd_request->payload->range.len)
   1086		data_transfer_length = cmd_request->payload->range.len;
   1087
   1088	scsi_set_resid(scmnd,
   1089		cmd_request->payload->range.len - data_transfer_length);
   1090
   1091	scsi_done(scmnd);
   1092
   1093	if (payload_sz >
   1094		sizeof(struct vmbus_channel_packet_multipage_buffer))
   1095		kfree(payload);
   1096}
   1097
   1098static void storvsc_on_io_completion(struct storvsc_device *stor_device,
   1099				  struct vstor_packet *vstor_packet,
   1100				  struct storvsc_cmd_request *request)
   1101{
   1102	struct vstor_packet *stor_pkt;
   1103	struct hv_device *device = stor_device->device;
   1104
   1105	stor_pkt = &request->vstor_packet;
   1106
   1107	/*
   1108	 * The current SCSI handling on the host side does
   1109	 * not correctly handle:
   1110	 * INQUIRY command with page code parameter set to 0x80
   1111	 * MODE_SENSE command with cmd[2] == 0x1c
   1112	 *
   1113	 * Setup srb and scsi status so this won't be fatal.
   1114	 * We do this so we can distinguish truly fatal failues
   1115	 * (srb status == 0x4) and off-line the device in that case.
   1116	 */
   1117
   1118	if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
   1119	   (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
   1120		vstor_packet->vm_srb.scsi_status = 0;
   1121		vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
   1122	}
   1123
   1124	/* Copy over the status...etc */
   1125	stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
   1126	stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
   1127
   1128	/*
   1129	 * Copy over the sense_info_length, but limit to the known max
   1130	 * size if Hyper-V returns a bad value.
   1131	 */
   1132	stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
   1133		vstor_packet->vm_srb.sense_info_length);
   1134
   1135	if (vstor_packet->vm_srb.scsi_status != 0 ||
   1136	    vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
   1137
   1138		/*
   1139		 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
   1140		 * return errors when detecting devices using TEST_UNIT_READY,
   1141		 * and logging these as errors produces unhelpful noise.
   1142		 */
   1143		int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
   1144			STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
   1145
   1146		storvsc_log(device, loglevel,
   1147			"tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
   1148			scsi_cmd_to_rq(request->cmd)->tag,
   1149			stor_pkt->vm_srb.cdb[0],
   1150			vstor_packet->vm_srb.scsi_status,
   1151			vstor_packet->vm_srb.srb_status,
   1152			vstor_packet->status);
   1153	}
   1154
   1155	if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
   1156	    (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
   1157		memcpy(request->cmd->sense_buffer,
   1158		       vstor_packet->vm_srb.sense_data,
   1159		       stor_pkt->vm_srb.sense_info_length);
   1160
   1161	stor_pkt->vm_srb.data_transfer_length =
   1162		vstor_packet->vm_srb.data_transfer_length;
   1163
   1164	storvsc_command_completion(request, stor_device);
   1165
   1166	if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
   1167		stor_device->drain_notify)
   1168		wake_up(&stor_device->waiting_to_drain);
   1169}
   1170
   1171static void storvsc_on_receive(struct storvsc_device *stor_device,
   1172			     struct vstor_packet *vstor_packet,
   1173			     struct storvsc_cmd_request *request)
   1174{
   1175	struct hv_host_device *host_dev;
   1176	switch (vstor_packet->operation) {
   1177	case VSTOR_OPERATION_COMPLETE_IO:
   1178		storvsc_on_io_completion(stor_device, vstor_packet, request);
   1179		break;
   1180
   1181	case VSTOR_OPERATION_REMOVE_DEVICE:
   1182	case VSTOR_OPERATION_ENUMERATE_BUS:
   1183		host_dev = shost_priv(stor_device->host);
   1184		queue_work(
   1185			host_dev->handle_error_wq, &host_dev->host_scan_work);
   1186		break;
   1187
   1188	case VSTOR_OPERATION_FCHBA_DATA:
   1189		cache_wwn(stor_device, vstor_packet);
   1190#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   1191		fc_host_node_name(stor_device->host) = stor_device->node_name;
   1192		fc_host_port_name(stor_device->host) = stor_device->port_name;
   1193#endif
   1194		break;
   1195	default:
   1196		break;
   1197	}
   1198}
   1199
   1200static void storvsc_on_channel_callback(void *context)
   1201{
   1202	struct vmbus_channel *channel = (struct vmbus_channel *)context;
   1203	const struct vmpacket_descriptor *desc;
   1204	struct hv_device *device;
   1205	struct storvsc_device *stor_device;
   1206	struct Scsi_Host *shost;
   1207
   1208	if (channel->primary_channel != NULL)
   1209		device = channel->primary_channel->device_obj;
   1210	else
   1211		device = channel->device_obj;
   1212
   1213	stor_device = get_in_stor_device(device);
   1214	if (!stor_device)
   1215		return;
   1216
   1217	shost = stor_device->host;
   1218
   1219	foreach_vmbus_pkt(desc, channel) {
   1220		struct vstor_packet *packet = hv_pkt_data(desc);
   1221		struct storvsc_cmd_request *request = NULL;
   1222		u32 pktlen = hv_pkt_datalen(desc);
   1223		u64 rqst_id = desc->trans_id;
   1224		u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
   1225			sizeof(enum vstor_packet_operation);
   1226
   1227		if (pktlen < minlen) {
   1228			dev_err(&device->device,
   1229				"Invalid pkt: id=%llu, len=%u, minlen=%u\n",
   1230				rqst_id, pktlen, minlen);
   1231			continue;
   1232		}
   1233
   1234		if (rqst_id == VMBUS_RQST_INIT) {
   1235			request = &stor_device->init_request;
   1236		} else if (rqst_id == VMBUS_RQST_RESET) {
   1237			request = &stor_device->reset_request;
   1238		} else {
   1239			/* Hyper-V can send an unsolicited message with ID of 0 */
   1240			if (rqst_id == 0) {
   1241				/*
   1242				 * storvsc_on_receive() looks at the vstor_packet in the message
   1243				 * from the ring buffer.
   1244				 *
   1245				 * - If the operation in the vstor_packet is COMPLETE_IO, then
   1246				 *   we call storvsc_on_io_completion(), and dereference the
   1247				 *   guest memory address.  Make sure we don't call
   1248				 *   storvsc_on_io_completion() with a guest memory address
   1249				 *   that is zero if Hyper-V were to construct and send such
   1250				 *   a bogus packet.
   1251				 *
   1252				 * - If the operation in the vstor_packet is FCHBA_DATA, then
   1253				 *   we call cache_wwn(), and access the data payload area of
   1254				 *   the packet (wwn_packet); however, there is no guarantee
   1255				 *   that the packet is big enough to contain such area.
   1256				 *   Future-proof the code by rejecting such a bogus packet.
   1257				 */
   1258				if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
   1259				    packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
   1260					dev_err(&device->device, "Invalid packet with ID of 0\n");
   1261					continue;
   1262				}
   1263			} else {
   1264				struct scsi_cmnd *scmnd;
   1265
   1266				/* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
   1267				scmnd = scsi_host_find_tag(shost, rqst_id - 1);
   1268				if (scmnd == NULL) {
   1269					dev_err(&device->device, "Incorrect transaction ID\n");
   1270					continue;
   1271				}
   1272				request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
   1273				scsi_dma_unmap(scmnd);
   1274			}
   1275
   1276			storvsc_on_receive(stor_device, packet, request);
   1277			continue;
   1278		}
   1279
   1280		memcpy(&request->vstor_packet, packet,
   1281		       sizeof(struct vstor_packet));
   1282		complete(&request->wait_event);
   1283	}
   1284}
   1285
   1286static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
   1287				  bool is_fc)
   1288{
   1289	struct vmstorage_channel_properties props;
   1290	int ret;
   1291
   1292	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
   1293
   1294	device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
   1295	device->channel->next_request_id_callback = storvsc_next_request_id;
   1296
   1297	ret = vmbus_open(device->channel,
   1298			 ring_size,
   1299			 ring_size,
   1300			 (void *)&props,
   1301			 sizeof(struct vmstorage_channel_properties),
   1302			 storvsc_on_channel_callback, device->channel);
   1303
   1304	if (ret != 0)
   1305		return ret;
   1306
   1307	ret = storvsc_channel_init(device, is_fc);
   1308
   1309	return ret;
   1310}
   1311
   1312static int storvsc_dev_remove(struct hv_device *device)
   1313{
   1314	struct storvsc_device *stor_device;
   1315
   1316	stor_device = hv_get_drvdata(device);
   1317
   1318	stor_device->destroy = true;
   1319
   1320	/* Make sure flag is set before waiting */
   1321	wmb();
   1322
   1323	/*
   1324	 * At this point, all outbound traffic should be disable. We
   1325	 * only allow inbound traffic (responses) to proceed so that
   1326	 * outstanding requests can be completed.
   1327	 */
   1328
   1329	storvsc_wait_to_drain(stor_device);
   1330
   1331	/*
   1332	 * Since we have already drained, we don't need to busy wait
   1333	 * as was done in final_release_stor_device()
   1334	 * Note that we cannot set the ext pointer to NULL until
   1335	 * we have drained - to drain the outgoing packets, we need to
   1336	 * allow incoming packets.
   1337	 */
   1338	hv_set_drvdata(device, NULL);
   1339
   1340	/* Close the channel */
   1341	vmbus_close(device->channel);
   1342
   1343	kfree(stor_device->stor_chns);
   1344	kfree(stor_device);
   1345	return 0;
   1346}
   1347
   1348static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
   1349					u16 q_num)
   1350{
   1351	u16 slot = 0;
   1352	u16 hash_qnum;
   1353	const struct cpumask *node_mask;
   1354	int num_channels, tgt_cpu;
   1355
   1356	if (stor_device->num_sc == 0) {
   1357		stor_device->stor_chns[q_num] = stor_device->device->channel;
   1358		return stor_device->device->channel;
   1359	}
   1360
   1361	/*
   1362	 * Our channel array is sparsley populated and we
   1363	 * initiated I/O on a processor/hw-q that does not
   1364	 * currently have a designated channel. Fix this.
   1365	 * The strategy is simple:
   1366	 * I. Ensure NUMA locality
   1367	 * II. Distribute evenly (best effort)
   1368	 */
   1369
   1370	node_mask = cpumask_of_node(cpu_to_node(q_num));
   1371
   1372	num_channels = 0;
   1373	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
   1374		if (cpumask_test_cpu(tgt_cpu, node_mask))
   1375			num_channels++;
   1376	}
   1377	if (num_channels == 0) {
   1378		stor_device->stor_chns[q_num] = stor_device->device->channel;
   1379		return stor_device->device->channel;
   1380	}
   1381
   1382	hash_qnum = q_num;
   1383	while (hash_qnum >= num_channels)
   1384		hash_qnum -= num_channels;
   1385
   1386	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
   1387		if (!cpumask_test_cpu(tgt_cpu, node_mask))
   1388			continue;
   1389		if (slot == hash_qnum)
   1390			break;
   1391		slot++;
   1392	}
   1393
   1394	stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
   1395
   1396	return stor_device->stor_chns[q_num];
   1397}
   1398
   1399
   1400static int storvsc_do_io(struct hv_device *device,
   1401			 struct storvsc_cmd_request *request, u16 q_num)
   1402{
   1403	struct storvsc_device *stor_device;
   1404	struct vstor_packet *vstor_packet;
   1405	struct vmbus_channel *outgoing_channel, *channel;
   1406	unsigned long flags;
   1407	int ret = 0;
   1408	const struct cpumask *node_mask;
   1409	int tgt_cpu;
   1410
   1411	vstor_packet = &request->vstor_packet;
   1412	stor_device = get_out_stor_device(device);
   1413
   1414	if (!stor_device)
   1415		return -ENODEV;
   1416
   1417
   1418	request->device  = device;
   1419	/*
   1420	 * Select an appropriate channel to send the request out.
   1421	 */
   1422	/* See storvsc_change_target_cpu(). */
   1423	outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
   1424	if (outgoing_channel != NULL) {
   1425		if (outgoing_channel->target_cpu == q_num) {
   1426			/*
   1427			 * Ideally, we want to pick a different channel if
   1428			 * available on the same NUMA node.
   1429			 */
   1430			node_mask = cpumask_of_node(cpu_to_node(q_num));
   1431			for_each_cpu_wrap(tgt_cpu,
   1432				 &stor_device->alloced_cpus, q_num + 1) {
   1433				if (!cpumask_test_cpu(tgt_cpu, node_mask))
   1434					continue;
   1435				if (tgt_cpu == q_num)
   1436					continue;
   1437				channel = READ_ONCE(
   1438					stor_device->stor_chns[tgt_cpu]);
   1439				if (channel == NULL)
   1440					continue;
   1441				if (hv_get_avail_to_write_percent(
   1442							&channel->outbound)
   1443						> ring_avail_percent_lowater) {
   1444					outgoing_channel = channel;
   1445					goto found_channel;
   1446				}
   1447			}
   1448
   1449			/*
   1450			 * All the other channels on the same NUMA node are
   1451			 * busy. Try to use the channel on the current CPU
   1452			 */
   1453			if (hv_get_avail_to_write_percent(
   1454						&outgoing_channel->outbound)
   1455					> ring_avail_percent_lowater)
   1456				goto found_channel;
   1457
   1458			/*
   1459			 * If we reach here, all the channels on the current
   1460			 * NUMA node are busy. Try to find a channel in
   1461			 * other NUMA nodes
   1462			 */
   1463			for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
   1464				if (cpumask_test_cpu(tgt_cpu, node_mask))
   1465					continue;
   1466				channel = READ_ONCE(
   1467					stor_device->stor_chns[tgt_cpu]);
   1468				if (channel == NULL)
   1469					continue;
   1470				if (hv_get_avail_to_write_percent(
   1471							&channel->outbound)
   1472						> ring_avail_percent_lowater) {
   1473					outgoing_channel = channel;
   1474					goto found_channel;
   1475				}
   1476			}
   1477		}
   1478	} else {
   1479		spin_lock_irqsave(&stor_device->lock, flags);
   1480		outgoing_channel = stor_device->stor_chns[q_num];
   1481		if (outgoing_channel != NULL) {
   1482			spin_unlock_irqrestore(&stor_device->lock, flags);
   1483			goto found_channel;
   1484		}
   1485		outgoing_channel = get_og_chn(stor_device, q_num);
   1486		spin_unlock_irqrestore(&stor_device->lock, flags);
   1487	}
   1488
   1489found_channel:
   1490	vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
   1491
   1492	vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
   1493
   1494
   1495	vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
   1496
   1497
   1498	vstor_packet->vm_srb.data_transfer_length =
   1499	request->payload->range.len;
   1500
   1501	vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
   1502
   1503	if (request->payload->range.len) {
   1504
   1505		ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
   1506				request->payload, request->payload_sz,
   1507				vstor_packet,
   1508				sizeof(struct vstor_packet),
   1509				(unsigned long)request);
   1510	} else {
   1511		ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
   1512			       sizeof(struct vstor_packet),
   1513			       (unsigned long)request,
   1514			       VM_PKT_DATA_INBAND,
   1515			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
   1516	}
   1517
   1518	if (ret != 0)
   1519		return ret;
   1520
   1521	atomic_inc(&stor_device->num_outstanding_req);
   1522
   1523	return ret;
   1524}
   1525
   1526static int storvsc_device_alloc(struct scsi_device *sdevice)
   1527{
   1528	/*
   1529	 * Set blist flag to permit the reading of the VPD pages even when
   1530	 * the target may claim SPC-2 compliance. MSFT targets currently
   1531	 * claim SPC-2 compliance while they implement post SPC-2 features.
   1532	 * With this flag we can correctly handle WRITE_SAME_16 issues.
   1533	 *
   1534	 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
   1535	 * still supports REPORT LUN.
   1536	 */
   1537	sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
   1538
   1539	return 0;
   1540}
   1541
   1542static int storvsc_device_configure(struct scsi_device *sdevice)
   1543{
   1544	blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
   1545
   1546	sdevice->no_write_same = 1;
   1547
   1548	/*
   1549	 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
   1550	 * if the device is a MSFT virtual device.  If the host is
   1551	 * WIN10 or newer, allow write_same.
   1552	 */
   1553	if (!strncmp(sdevice->vendor, "Msft", 4)) {
   1554		switch (vmstor_proto_version) {
   1555		case VMSTOR_PROTO_VERSION_WIN8:
   1556		case VMSTOR_PROTO_VERSION_WIN8_1:
   1557			sdevice->scsi_level = SCSI_SPC_3;
   1558			break;
   1559		}
   1560
   1561		if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
   1562			sdevice->no_write_same = 0;
   1563	}
   1564
   1565	return 0;
   1566}
   1567
   1568static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
   1569			   sector_t capacity, int *info)
   1570{
   1571	sector_t nsect = capacity;
   1572	sector_t cylinders = nsect;
   1573	int heads, sectors_pt;
   1574
   1575	/*
   1576	 * We are making up these values; let us keep it simple.
   1577	 */
   1578	heads = 0xff;
   1579	sectors_pt = 0x3f;      /* Sectors per track */
   1580	sector_div(cylinders, heads * sectors_pt);
   1581	if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
   1582		cylinders = 0xffff;
   1583
   1584	info[0] = heads;
   1585	info[1] = sectors_pt;
   1586	info[2] = (int)cylinders;
   1587
   1588	return 0;
   1589}
   1590
   1591static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
   1592{
   1593	struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
   1594	struct hv_device *device = host_dev->dev;
   1595
   1596	struct storvsc_device *stor_device;
   1597	struct storvsc_cmd_request *request;
   1598	struct vstor_packet *vstor_packet;
   1599	int ret, t;
   1600
   1601	stor_device = get_out_stor_device(device);
   1602	if (!stor_device)
   1603		return FAILED;
   1604
   1605	request = &stor_device->reset_request;
   1606	vstor_packet = &request->vstor_packet;
   1607	memset(vstor_packet, 0, sizeof(struct vstor_packet));
   1608
   1609	init_completion(&request->wait_event);
   1610
   1611	vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
   1612	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
   1613	vstor_packet->vm_srb.path_id = stor_device->path_id;
   1614
   1615	ret = vmbus_sendpacket(device->channel, vstor_packet,
   1616			       sizeof(struct vstor_packet),
   1617			       VMBUS_RQST_RESET,
   1618			       VM_PKT_DATA_INBAND,
   1619			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
   1620	if (ret != 0)
   1621		return FAILED;
   1622
   1623	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
   1624	if (t == 0)
   1625		return TIMEOUT_ERROR;
   1626
   1627
   1628	/*
   1629	 * At this point, all outstanding requests in the adapter
   1630	 * should have been flushed out and return to us
   1631	 * There is a potential race here where the host may be in
   1632	 * the process of responding when we return from here.
   1633	 * Just wait for all in-transit packets to be accounted for
   1634	 * before we return from here.
   1635	 */
   1636	storvsc_wait_to_drain(stor_device);
   1637
   1638	return SUCCESS;
   1639}
   1640
   1641/*
   1642 * The host guarantees to respond to each command, although I/O latencies might
   1643 * be unbounded on Azure.  Reset the timer unconditionally to give the host a
   1644 * chance to perform EH.
   1645 */
   1646static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
   1647{
   1648#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   1649	if (scmnd->device->host->transportt == fc_transport_template)
   1650		return fc_eh_timed_out(scmnd);
   1651#endif
   1652	return BLK_EH_RESET_TIMER;
   1653}
   1654
   1655static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
   1656{
   1657	bool allowed = true;
   1658	u8 scsi_op = scmnd->cmnd[0];
   1659
   1660	switch (scsi_op) {
   1661	/* the host does not handle WRITE_SAME, log accident usage */
   1662	case WRITE_SAME:
   1663	/*
   1664	 * smartd sends this command and the host does not handle
   1665	 * this. So, don't send it.
   1666	 */
   1667	case SET_WINDOW:
   1668		set_host_byte(scmnd, DID_ERROR);
   1669		allowed = false;
   1670		break;
   1671	default:
   1672		break;
   1673	}
   1674	return allowed;
   1675}
   1676
   1677static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
   1678{
   1679	int ret;
   1680	struct hv_host_device *host_dev = shost_priv(host);
   1681	struct hv_device *dev = host_dev->dev;
   1682	struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
   1683	struct scatterlist *sgl;
   1684	struct vmscsi_request *vm_srb;
   1685	struct vmbus_packet_mpb_array  *payload;
   1686	u32 payload_sz;
   1687	u32 length;
   1688
   1689	if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
   1690		/*
   1691		 * On legacy hosts filter unimplemented commands.
   1692		 * Future hosts are expected to correctly handle
   1693		 * unsupported commands. Furthermore, it is
   1694		 * possible that some of the currently
   1695		 * unsupported commands maybe supported in
   1696		 * future versions of the host.
   1697		 */
   1698		if (!storvsc_scsi_cmd_ok(scmnd)) {
   1699			scsi_done(scmnd);
   1700			return 0;
   1701		}
   1702	}
   1703
   1704	/* Setup the cmd request */
   1705	cmd_request->cmd = scmnd;
   1706
   1707	memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
   1708	vm_srb = &cmd_request->vstor_packet.vm_srb;
   1709	vm_srb->time_out_value = 60;
   1710
   1711	vm_srb->srb_flags |=
   1712		SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
   1713
   1714	if (scmnd->device->tagged_supported) {
   1715		vm_srb->srb_flags |=
   1716		(SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
   1717		vm_srb->queue_tag = SP_UNTAGGED;
   1718		vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
   1719	}
   1720
   1721	/* Build the SRB */
   1722	switch (scmnd->sc_data_direction) {
   1723	case DMA_TO_DEVICE:
   1724		vm_srb->data_in = WRITE_TYPE;
   1725		vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
   1726		break;
   1727	case DMA_FROM_DEVICE:
   1728		vm_srb->data_in = READ_TYPE;
   1729		vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
   1730		break;
   1731	case DMA_NONE:
   1732		vm_srb->data_in = UNKNOWN_TYPE;
   1733		vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
   1734		break;
   1735	default:
   1736		/*
   1737		 * This is DMA_BIDIRECTIONAL or something else we are never
   1738		 * supposed to see here.
   1739		 */
   1740		WARN(1, "Unexpected data direction: %d\n",
   1741		     scmnd->sc_data_direction);
   1742		return -EINVAL;
   1743	}
   1744
   1745
   1746	vm_srb->port_number = host_dev->port;
   1747	vm_srb->path_id = scmnd->device->channel;
   1748	vm_srb->target_id = scmnd->device->id;
   1749	vm_srb->lun = scmnd->device->lun;
   1750
   1751	vm_srb->cdb_length = scmnd->cmd_len;
   1752
   1753	memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
   1754
   1755	sgl = (struct scatterlist *)scsi_sglist(scmnd);
   1756
   1757	length = scsi_bufflen(scmnd);
   1758	payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
   1759	payload_sz = sizeof(cmd_request->mpb);
   1760
   1761	if (scsi_sg_count(scmnd)) {
   1762		unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
   1763		unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
   1764		struct scatterlist *sg;
   1765		unsigned long hvpfn, hvpfns_to_add;
   1766		int j, i = 0, sg_count;
   1767
   1768		if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
   1769
   1770			payload_sz = (hvpg_count * sizeof(u64) +
   1771				      sizeof(struct vmbus_packet_mpb_array));
   1772			payload = kzalloc(payload_sz, GFP_ATOMIC);
   1773			if (!payload)
   1774				return SCSI_MLQUEUE_DEVICE_BUSY;
   1775		}
   1776
   1777		payload->range.len = length;
   1778		payload->range.offset = offset_in_hvpg;
   1779
   1780		sg_count = scsi_dma_map(scmnd);
   1781		if (sg_count < 0) {
   1782			ret = SCSI_MLQUEUE_DEVICE_BUSY;
   1783			goto err_free_payload;
   1784		}
   1785
   1786		for_each_sg(sgl, sg, sg_count, j) {
   1787			/*
   1788			 * Init values for the current sgl entry. hvpfns_to_add
   1789			 * is in units of Hyper-V size pages. Handling the
   1790			 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
   1791			 * values of sgl->offset that are larger than PAGE_SIZE.
   1792			 * Such offsets are handled even on other than the first
   1793			 * sgl entry, provided they are a multiple of PAGE_SIZE.
   1794			 */
   1795			hvpfn = HVPFN_DOWN(sg_dma_address(sg));
   1796			hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
   1797						 sg_dma_len(sg)) - hvpfn;
   1798
   1799			/*
   1800			 * Fill the next portion of the PFN array with
   1801			 * sequential Hyper-V PFNs for the continguous physical
   1802			 * memory described by the sgl entry. The end of the
   1803			 * last sgl should be reached at the same time that
   1804			 * the PFN array is filled.
   1805			 */
   1806			while (hvpfns_to_add--)
   1807				payload->range.pfn_array[i++] = hvpfn++;
   1808		}
   1809	}
   1810
   1811	cmd_request->payload = payload;
   1812	cmd_request->payload_sz = payload_sz;
   1813
   1814	/* Invokes the vsc to start an IO */
   1815	ret = storvsc_do_io(dev, cmd_request, get_cpu());
   1816	put_cpu();
   1817
   1818	if (ret == -EAGAIN) {
   1819		/* no more space */
   1820		ret = SCSI_MLQUEUE_DEVICE_BUSY;
   1821		goto err_free_payload;
   1822	}
   1823
   1824	return 0;
   1825
   1826err_free_payload:
   1827	if (payload_sz > sizeof(cmd_request->mpb))
   1828		kfree(payload);
   1829
   1830	return ret;
   1831}
   1832
   1833static struct scsi_host_template scsi_driver = {
   1834	.module	=		THIS_MODULE,
   1835	.name =			"storvsc_host_t",
   1836	.cmd_size =             sizeof(struct storvsc_cmd_request),
   1837	.bios_param =		storvsc_get_chs,
   1838	.queuecommand =		storvsc_queuecommand,
   1839	.eh_host_reset_handler =	storvsc_host_reset_handler,
   1840	.proc_name =		"storvsc_host",
   1841	.eh_timed_out =		storvsc_eh_timed_out,
   1842	.slave_alloc =		storvsc_device_alloc,
   1843	.slave_configure =	storvsc_device_configure,
   1844	.cmd_per_lun =		2048,
   1845	.this_id =		-1,
   1846	/* Ensure there are no gaps in presented sgls */
   1847	.virt_boundary_mask =	HV_HYP_PAGE_SIZE - 1,
   1848	.no_write_same =	1,
   1849	.track_queue_depth =	1,
   1850	.change_queue_depth =	storvsc_change_queue_depth,
   1851};
   1852
   1853enum {
   1854	SCSI_GUID,
   1855	IDE_GUID,
   1856	SFC_GUID,
   1857};
   1858
   1859static const struct hv_vmbus_device_id id_table[] = {
   1860	/* SCSI guid */
   1861	{ HV_SCSI_GUID,
   1862	  .driver_data = SCSI_GUID
   1863	},
   1864	/* IDE guid */
   1865	{ HV_IDE_GUID,
   1866	  .driver_data = IDE_GUID
   1867	},
   1868	/* Fibre Channel GUID */
   1869	{
   1870	  HV_SYNTHFC_GUID,
   1871	  .driver_data = SFC_GUID
   1872	},
   1873	{ },
   1874};
   1875
   1876MODULE_DEVICE_TABLE(vmbus, id_table);
   1877
   1878static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
   1879
   1880static bool hv_dev_is_fc(struct hv_device *hv_dev)
   1881{
   1882	return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
   1883}
   1884
   1885static int storvsc_probe(struct hv_device *device,
   1886			const struct hv_vmbus_device_id *dev_id)
   1887{
   1888	int ret;
   1889	int num_cpus = num_online_cpus();
   1890	int num_present_cpus = num_present_cpus();
   1891	struct Scsi_Host *host;
   1892	struct hv_host_device *host_dev;
   1893	bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
   1894	bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
   1895	int target = 0;
   1896	struct storvsc_device *stor_device;
   1897	int max_sub_channels = 0;
   1898	u32 max_xfer_bytes;
   1899
   1900	/*
   1901	 * We support sub-channels for storage on SCSI and FC controllers.
   1902	 * The number of sub-channels offerred is based on the number of
   1903	 * VCPUs in the guest.
   1904	 */
   1905	if (!dev_is_ide)
   1906		max_sub_channels =
   1907			(num_cpus - 1) / storvsc_vcpus_per_sub_channel;
   1908
   1909	scsi_driver.can_queue = max_outstanding_req_per_channel *
   1910				(max_sub_channels + 1) *
   1911				(100 - ring_avail_percent_lowater) / 100;
   1912
   1913	host = scsi_host_alloc(&scsi_driver,
   1914			       sizeof(struct hv_host_device));
   1915	if (!host)
   1916		return -ENOMEM;
   1917
   1918	host_dev = shost_priv(host);
   1919	memset(host_dev, 0, sizeof(struct hv_host_device));
   1920
   1921	host_dev->port = host->host_no;
   1922	host_dev->dev = device;
   1923	host_dev->host = host;
   1924
   1925
   1926	stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
   1927	if (!stor_device) {
   1928		ret = -ENOMEM;
   1929		goto err_out0;
   1930	}
   1931
   1932	stor_device->destroy = false;
   1933	init_waitqueue_head(&stor_device->waiting_to_drain);
   1934	stor_device->device = device;
   1935	stor_device->host = host;
   1936	spin_lock_init(&stor_device->lock);
   1937	hv_set_drvdata(device, stor_device);
   1938	dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
   1939
   1940	stor_device->port_number = host->host_no;
   1941	ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
   1942	if (ret)
   1943		goto err_out1;
   1944
   1945	host_dev->path = stor_device->path_id;
   1946	host_dev->target = stor_device->target_id;
   1947
   1948	switch (dev_id->driver_data) {
   1949	case SFC_GUID:
   1950		host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
   1951		host->max_id = STORVSC_FC_MAX_TARGETS;
   1952		host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
   1953#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   1954		host->transportt = fc_transport_template;
   1955#endif
   1956		break;
   1957
   1958	case SCSI_GUID:
   1959		host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
   1960		host->max_id = STORVSC_MAX_TARGETS;
   1961		host->max_channel = STORVSC_MAX_CHANNELS - 1;
   1962		break;
   1963
   1964	default:
   1965		host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
   1966		host->max_id = STORVSC_IDE_MAX_TARGETS;
   1967		host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
   1968		break;
   1969	}
   1970	/* max cmd length */
   1971	host->max_cmd_len = STORVSC_MAX_CMD_LEN;
   1972	/*
   1973	 * Any reasonable Hyper-V configuration should provide
   1974	 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
   1975	 * protecting it from any weird value.
   1976	 */
   1977	max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
   1978	/* max_hw_sectors_kb */
   1979	host->max_sectors = max_xfer_bytes >> 9;
   1980	/*
   1981	 * There are 2 requirements for Hyper-V storvsc sgl segments,
   1982	 * based on which the below calculation for max segments is
   1983	 * done:
   1984	 *
   1985	 * 1. Except for the first and last sgl segment, all sgl segments
   1986	 *    should be align to HV_HYP_PAGE_SIZE, that also means the
   1987	 *    maximum number of segments in a sgl can be calculated by
   1988	 *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
   1989	 *
   1990	 * 2. Except for the first and last, each entry in the SGL must
   1991	 *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
   1992	 */
   1993	host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
   1994	/*
   1995	 * For non-IDE disks, the host supports multiple channels.
   1996	 * Set the number of HW queues we are supporting.
   1997	 */
   1998	if (!dev_is_ide) {
   1999		if (storvsc_max_hw_queues > num_present_cpus) {
   2000			storvsc_max_hw_queues = 0;
   2001			storvsc_log(device, STORVSC_LOGGING_WARN,
   2002				"Resetting invalid storvsc_max_hw_queues value to default.\n");
   2003		}
   2004		if (storvsc_max_hw_queues)
   2005			host->nr_hw_queues = storvsc_max_hw_queues;
   2006		else
   2007			host->nr_hw_queues = num_present_cpus;
   2008	}
   2009
   2010	/*
   2011	 * Set the error handler work queue.
   2012	 */
   2013	host_dev->handle_error_wq =
   2014			alloc_ordered_workqueue("storvsc_error_wq_%d",
   2015						WQ_MEM_RECLAIM,
   2016						host->host_no);
   2017	if (!host_dev->handle_error_wq) {
   2018		ret = -ENOMEM;
   2019		goto err_out2;
   2020	}
   2021	INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
   2022	/* Register the HBA and start the scsi bus scan */
   2023	ret = scsi_add_host(host, &device->device);
   2024	if (ret != 0)
   2025		goto err_out3;
   2026
   2027	if (!dev_is_ide) {
   2028		scsi_scan_host(host);
   2029	} else {
   2030		target = (device->dev_instance.b[5] << 8 |
   2031			 device->dev_instance.b[4]);
   2032		ret = scsi_add_device(host, 0, target, 0);
   2033		if (ret)
   2034			goto err_out4;
   2035	}
   2036#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2037	if (host->transportt == fc_transport_template) {
   2038		struct fc_rport_identifiers ids = {
   2039			.roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
   2040		};
   2041
   2042		fc_host_node_name(host) = stor_device->node_name;
   2043		fc_host_port_name(host) = stor_device->port_name;
   2044		stor_device->rport = fc_remote_port_add(host, 0, &ids);
   2045		if (!stor_device->rport) {
   2046			ret = -ENOMEM;
   2047			goto err_out4;
   2048		}
   2049	}
   2050#endif
   2051	return 0;
   2052
   2053err_out4:
   2054	scsi_remove_host(host);
   2055
   2056err_out3:
   2057	destroy_workqueue(host_dev->handle_error_wq);
   2058
   2059err_out2:
   2060	/*
   2061	 * Once we have connected with the host, we would need to
   2062	 * to invoke storvsc_dev_remove() to rollback this state and
   2063	 * this call also frees up the stor_device; hence the jump around
   2064	 * err_out1 label.
   2065	 */
   2066	storvsc_dev_remove(device);
   2067	goto err_out0;
   2068
   2069err_out1:
   2070	kfree(stor_device->stor_chns);
   2071	kfree(stor_device);
   2072
   2073err_out0:
   2074	scsi_host_put(host);
   2075	return ret;
   2076}
   2077
   2078/* Change a scsi target's queue depth */
   2079static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
   2080{
   2081	if (queue_depth > scsi_driver.can_queue)
   2082		queue_depth = scsi_driver.can_queue;
   2083
   2084	return scsi_change_queue_depth(sdev, queue_depth);
   2085}
   2086
   2087static int storvsc_remove(struct hv_device *dev)
   2088{
   2089	struct storvsc_device *stor_device = hv_get_drvdata(dev);
   2090	struct Scsi_Host *host = stor_device->host;
   2091	struct hv_host_device *host_dev = shost_priv(host);
   2092
   2093#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2094	if (host->transportt == fc_transport_template) {
   2095		fc_remote_port_delete(stor_device->rport);
   2096		fc_remove_host(host);
   2097	}
   2098#endif
   2099	destroy_workqueue(host_dev->handle_error_wq);
   2100	scsi_remove_host(host);
   2101	storvsc_dev_remove(dev);
   2102	scsi_host_put(host);
   2103
   2104	return 0;
   2105}
   2106
   2107static int storvsc_suspend(struct hv_device *hv_dev)
   2108{
   2109	struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
   2110	struct Scsi_Host *host = stor_device->host;
   2111	struct hv_host_device *host_dev = shost_priv(host);
   2112
   2113	storvsc_wait_to_drain(stor_device);
   2114
   2115	drain_workqueue(host_dev->handle_error_wq);
   2116
   2117	vmbus_close(hv_dev->channel);
   2118
   2119	kfree(stor_device->stor_chns);
   2120	stor_device->stor_chns = NULL;
   2121
   2122	cpumask_clear(&stor_device->alloced_cpus);
   2123
   2124	return 0;
   2125}
   2126
   2127static int storvsc_resume(struct hv_device *hv_dev)
   2128{
   2129	int ret;
   2130
   2131	ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
   2132				     hv_dev_is_fc(hv_dev));
   2133	return ret;
   2134}
   2135
   2136static struct hv_driver storvsc_drv = {
   2137	.name = KBUILD_MODNAME,
   2138	.id_table = id_table,
   2139	.probe = storvsc_probe,
   2140	.remove = storvsc_remove,
   2141	.suspend = storvsc_suspend,
   2142	.resume = storvsc_resume,
   2143	.driver = {
   2144		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
   2145	},
   2146};
   2147
   2148#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2149static struct fc_function_template fc_transport_functions = {
   2150	.show_host_node_name = 1,
   2151	.show_host_port_name = 1,
   2152};
   2153#endif
   2154
   2155static int __init storvsc_drv_init(void)
   2156{
   2157	int ret;
   2158
   2159	/*
   2160	 * Divide the ring buffer data size (which is 1 page less
   2161	 * than the ring buffer size since that page is reserved for
   2162	 * the ring buffer indices) by the max request size (which is
   2163	 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
   2164	 */
   2165	max_outstanding_req_per_channel =
   2166		((storvsc_ringbuffer_size - PAGE_SIZE) /
   2167		ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
   2168		sizeof(struct vstor_packet) + sizeof(u64),
   2169		sizeof(u64)));
   2170
   2171#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2172	fc_transport_template = fc_attach_transport(&fc_transport_functions);
   2173	if (!fc_transport_template)
   2174		return -ENODEV;
   2175#endif
   2176
   2177	ret = vmbus_driver_register(&storvsc_drv);
   2178
   2179#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2180	if (ret)
   2181		fc_release_transport(fc_transport_template);
   2182#endif
   2183
   2184	return ret;
   2185}
   2186
   2187static void __exit storvsc_drv_exit(void)
   2188{
   2189	vmbus_driver_unregister(&storvsc_drv);
   2190#if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
   2191	fc_release_transport(fc_transport_template);
   2192#endif
   2193}
   2194
   2195MODULE_LICENSE("GPL");
   2196MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
   2197module_init(storvsc_drv_init);
   2198module_exit(storvsc_drv_exit);