cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sym_hipd.h (33668B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
      4 * of PCI-SCSI IO processors.
      5 *
      6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
      7 *
      8 * This driver is derived from the Linux sym53c8xx driver.
      9 * Copyright (C) 1998-2000  Gerard Roudier
     10 *
     11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
     12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
     13 *
     14 * The original ncr driver has been written for 386bsd and FreeBSD by
     15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
     16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
     17 * Copyright (C) 1994  Wolfgang Stanglmeier
     18 *
     19 * Other major contributions:
     20 *
     21 * NVRAM detection and reading.
     22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
     23 *
     24 *-----------------------------------------------------------------------------
     25 */
     26
     27#include <linux/gfp.h>
     28
     29#ifndef SYM_HIPD_H
     30#define SYM_HIPD_H
     31
     32/*
     33 *  Generic driver options.
     34 *
     35 *  They may be defined in platform specific headers, if they 
     36 *  are useful.
     37 *
     38 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
     39 *        When this option is set, the driver will use a queue per 
     40 *        device and handle QUEUE FULL status requeuing internally.
     41 *
     42 *    SYM_OPT_LIMIT_COMMAND_REORDERING
     43 *        When this option is set, the driver tries to limit tagged 
     44 *        command reordering to some reasonable value.
     45 *        (set for Linux)
     46 */
     47#if 0
     48#define SYM_OPT_HANDLE_DEVICE_QUEUEING
     49#define SYM_OPT_LIMIT_COMMAND_REORDERING
     50#endif
     51
     52/*
     53 *  Active debugging tags and verbosity.
     54 *  Both DEBUG_FLAGS and sym_verbose can be redefined 
     55 *  by the platform specific code to something else.
     56 */
     57#define DEBUG_ALLOC	(0x0001)
     58#define DEBUG_PHASE	(0x0002)
     59#define DEBUG_POLL	(0x0004)
     60#define DEBUG_QUEUE	(0x0008)
     61#define DEBUG_RESULT	(0x0010)
     62#define DEBUG_SCATTER	(0x0020)
     63#define DEBUG_SCRIPT	(0x0040)
     64#define DEBUG_TINY	(0x0080)
     65#define DEBUG_TIMING	(0x0100)
     66#define DEBUG_NEGO	(0x0200)
     67#define DEBUG_TAGS	(0x0400)
     68#define DEBUG_POINTER	(0x0800)
     69
     70#ifndef DEBUG_FLAGS
     71#define DEBUG_FLAGS	(0x0000)
     72#endif
     73
     74#ifndef sym_verbose
     75#define sym_verbose	(np->verbose)
     76#endif
     77
     78/*
     79 *  These ones should have been already defined.
     80 */
     81#ifndef assert
     82#define	assert(expression) { \
     83	if (!(expression)) { \
     84		(void)panic( \
     85			"assertion \"%s\" failed: file \"%s\", line %d\n", \
     86			#expression, \
     87			__FILE__, __LINE__); \
     88	} \
     89}
     90#endif
     91
     92/*
     93 *  Number of tasks per device we want to handle.
     94 */
     95#if	SYM_CONF_MAX_TAG_ORDER > 8
     96#error	"more than 256 tags per logical unit not allowed."
     97#endif
     98#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
     99
    100/*
    101 *  Donnot use more tasks that we can handle.
    102 */
    103#ifndef	SYM_CONF_MAX_TAG
    104#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
    105#endif
    106#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
    107#undef	SYM_CONF_MAX_TAG
    108#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
    109#endif
    110
    111/*
    112 *    This one means 'NO TAG for this job'
    113 */
    114#define NO_TAG	(256)
    115
    116/*
    117 *  Number of SCSI targets.
    118 */
    119#if	SYM_CONF_MAX_TARGET > 16
    120#error	"more than 16 targets not allowed."
    121#endif
    122
    123/*
    124 *  Number of logical units per target.
    125 */
    126#if	SYM_CONF_MAX_LUN > 64
    127#error	"more than 64 logical units per target not allowed."
    128#endif
    129
    130/*
    131 *    Asynchronous pre-scaler (ns). Shall be 40 for 
    132 *    the SCSI timings to be compliant.
    133 */
    134#define	SYM_CONF_MIN_ASYNC (40)
    135
    136
    137/*
    138 * MEMORY ALLOCATOR.
    139 */
    140
    141#define SYM_MEM_WARN	1	/* Warn on failed operations */
    142
    143#define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
    144#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
    145#define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
    146/*
    147 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
    148 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
    149 *  (1 PAGE at a time is just fine).
    150 */
    151#define SYM_MEM_SHIFT	4
    152#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
    153#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
    154
    155/*
    156 *  Number of entries in the START and DONE queues.
    157 *
    158 *  We limit to 1 PAGE in order to succeed allocation of 
    159 *  these queues. Each entry is 8 bytes long (2 DWORDS).
    160 */
    161#ifdef	SYM_CONF_MAX_START
    162#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
    163#else
    164#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
    165#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
    166#endif
    167
    168#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
    169#undef	SYM_CONF_MAX_QUEUE
    170#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
    171#undef	SYM_CONF_MAX_START
    172#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
    173#endif
    174
    175/*
    176 *  For this one, we want a short name :-)
    177 */
    178#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
    179
    180/*
    181 *  Common definitions for both bus space based and legacy IO methods.
    182 */
    183
    184#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
    185#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
    186#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
    187
    188#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
    189#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
    190#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
    191
    192#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
    193#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
    194#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
    195
    196#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
    197#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
    198#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
    199
    200#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
    201#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
    202#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
    203#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
    204#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
    205#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
    206
    207/*
    208 *  We normally want the chip to have a consistent view
    209 *  of driver internal data structures when we restart it.
    210 *  Thus these macros.
    211 */
    212#define OUTL_DSP(np, v)				\
    213	do {					\
    214		MEMORY_WRITE_BARRIER();		\
    215		OUTL(np, nc_dsp, (v));		\
    216	} while (0)
    217
    218#define OUTONB_STD()				\
    219	do {					\
    220		MEMORY_WRITE_BARRIER();		\
    221		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
    222	} while (0)
    223
    224/*
    225 *  Command control block states.
    226 */
    227#define HS_IDLE		(0)
    228#define HS_BUSY		(1)
    229#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
    230#define HS_DISCONNECT	(3)	/* Disconnected by target */
    231#define HS_WAIT		(4)	/* waiting for resource	  */
    232
    233#define HS_DONEMASK	(0x80)
    234#define HS_COMPLETE	(4|HS_DONEMASK)
    235#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
    236#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
    237#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
    238
    239/*
    240 *  Software Interrupt Codes
    241 */
    242#define	SIR_BAD_SCSI_STATUS	(1)
    243#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
    244#define	SIR_MSG_RECEIVED	(3)
    245#define	SIR_MSG_WEIRD		(4)
    246#define	SIR_NEGO_FAILED		(5)
    247#define	SIR_NEGO_PROTO		(6)
    248#define	SIR_SCRIPT_STOPPED	(7)
    249#define	SIR_REJECT_TO_SEND	(8)
    250#define	SIR_SWIDE_OVERRUN	(9)
    251#define	SIR_SODL_UNDERRUN	(10)
    252#define	SIR_RESEL_NO_MSG_IN	(11)
    253#define	SIR_RESEL_NO_IDENTIFY	(12)
    254#define	SIR_RESEL_BAD_LUN	(13)
    255#define	SIR_TARGET_SELECTED	(14)
    256#define	SIR_RESEL_BAD_I_T_L	(15)
    257#define	SIR_RESEL_BAD_I_T_L_Q	(16)
    258#define	SIR_ABORT_SENT		(17)
    259#define	SIR_RESEL_ABORTED	(18)
    260#define	SIR_MSG_OUT_DONE	(19)
    261#define	SIR_COMPLETE_ERROR	(20)
    262#define	SIR_DATA_OVERRUN	(21)
    263#define	SIR_BAD_PHASE		(22)
    264#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
    265#define	SIR_DMAP_DIRTY		(23)
    266#define	SIR_MAX			(23)
    267#else
    268#define	SIR_MAX			(22)
    269#endif
    270
    271/*
    272 *  Extended error bit codes.
    273 *  xerr_status field of struct sym_ccb.
    274 */
    275#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
    276#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
    277#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
    278#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
    279#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
    280
    281/*
    282 *  Negotiation status.
    283 *  nego_status field of struct sym_ccb.
    284 */
    285#define NS_SYNC		(1)
    286#define NS_WIDE		(2)
    287#define NS_PPR		(3)
    288
    289/*
    290 *  A CCB hashed table is used to retrieve CCB address 
    291 *  from DSA value.
    292 */
    293#define CCB_HASH_SHIFT		8
    294#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
    295#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
    296#if 1
    297#define CCB_HASH_CODE(dsa)	\
    298	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
    299#else
    300#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
    301#endif
    302
    303#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
    304/*
    305 *  We may want to use segment registers for 64 bit DMA.
    306 *  16 segments registers -> up to 64 GB addressable.
    307 */
    308#define SYM_DMAP_SHIFT	(4)
    309#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
    310#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
    311#endif
    312
    313/*
    314 *  Device flags.
    315 */
    316#define SYM_DISC_ENABLED	(1)
    317#define SYM_TAGS_ENABLED	(1<<1)
    318#define SYM_SCAN_BOOT_DISABLED	(1<<2)
    319#define SYM_SCAN_LUNS_DISABLED	(1<<3)
    320
    321/*
    322 *  Host adapter miscellaneous flags.
    323 */
    324#define SYM_AVOID_BUS_RESET	(1)
    325
    326/*
    327 *  Misc.
    328 */
    329#define SYM_SNOOP_TIMEOUT (10000000)
    330#define BUS_8_BIT	0
    331#define BUS_16_BIT	1
    332
    333/*
    334 *  Gather negotiable parameters value
    335 */
    336struct sym_trans {
    337	u8 period;
    338	u8 offset;
    339	unsigned int width:1;
    340	unsigned int iu:1;
    341	unsigned int dt:1;
    342	unsigned int qas:1;
    343	unsigned int check_nego:1;
    344	unsigned int renego:2;
    345};
    346
    347/*
    348 *  Global TCB HEADER.
    349 *
    350 *  Due to lack of indirect addressing on earlier NCR chips,
    351 *  this substructure is copied from the TCB to a global 
    352 *  address after selection.
    353 *  For SYMBIOS chips that support LOAD/STORE this copy is 
    354 *  not needed and thus not performed.
    355 */
    356struct sym_tcbh {
    357	/*
    358	 *  Scripts bus addresses of LUN table accessed from scripts.
    359	 *  LUN #0 is a special case, since multi-lun devices are rare, 
    360	 *  and we we want to speed-up the general case and not waste 
    361	 *  resources.
    362	 */
    363	u32	luntbl_sa;	/* bus address of this table	*/
    364	u32	lun0_sa;	/* bus address of LCB #0	*/
    365	/*
    366	 *  Actual SYNC/WIDE IO registers value for this target.
    367	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and 
    368	 *  so have alignment constraints.
    369	 */
    370/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
    371/*1*/	u_char	sval;		/* -> SXFER  io register	*/
    372/*2*/	u_char	filler1;
    373/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
    374};
    375
    376/*
    377 *  Target Control Block
    378 */
    379struct sym_tcb {
    380	/*
    381	 *  TCB header.
    382	 *  Assumed at offset 0.
    383	 */
    384/*0*/	struct sym_tcbh head;
    385
    386	/*
    387	 *  LUN table used by the SCRIPTS processor.
    388	 *  An array of bus addresses is used on reselection.
    389	 */
    390	u32	*luntbl;	/* LCBs bus address table	*/
    391	int	nlcb;		/* Number of valid LCBs (including LUN #0) */
    392
    393	/*
    394	 *  LUN table used by the C code.
    395	 */
    396	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
    397#if SYM_CONF_MAX_LUN > 1
    398	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
    399#endif
    400
    401#ifdef	SYM_HAVE_STCB
    402	/*
    403	 *  O/S specific data structure.
    404	 */
    405	struct sym_stcb s;
    406#endif
    407
    408	/* Transfer goal */
    409	struct sym_trans tgoal;
    410
    411	/* Last printed transfer speed */
    412	struct sym_trans tprint;
    413
    414	/*
    415	 * Keep track of the CCB used for the negotiation in order
    416	 * to ensure that only 1 negotiation is queued at a time.
    417	 */
    418	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
    419
    420	/*
    421	 *  Set when we want to reset the device.
    422	 */
    423	u_char	to_reset;
    424
    425	/*
    426	 *  Other user settable limits and options.
    427	 *  These limits are read from the NVRAM if present.
    428	 */
    429	unsigned char	usrflags;
    430	unsigned char	usr_period;
    431	unsigned char	usr_width;
    432	unsigned short	usrtags;
    433	struct scsi_target *starget;
    434};
    435
    436/*
    437 *  Global LCB HEADER.
    438 *
    439 *  Due to lack of indirect addressing on earlier NCR chips,
    440 *  this substructure is copied from the LCB to a global 
    441 *  address after selection.
    442 *  For SYMBIOS chips that support LOAD/STORE this copy is 
    443 *  not needed and thus not performed.
    444 */
    445struct sym_lcbh {
    446	/*
    447	 *  SCRIPTS address jumped by SCRIPTS on reselection.
    448	 *  For not probed logical units, this address points to 
    449	 *  SCRIPTS that deal with bad LU handling (must be at 
    450	 *  offset zero of the LCB for that reason).
    451	 */
    452/*0*/	u32	resel_sa;
    453
    454	/*
    455	 *  Task (bus address of a CCB) read from SCRIPTS that points 
    456	 *  to the unique ITL nexus allowed to be disconnected.
    457	 */
    458	u32	itl_task_sa;
    459
    460	/*
    461	 *  Task table bus address (read from SCRIPTS).
    462	 */
    463	u32	itlq_tbl_sa;
    464};
    465
    466/*
    467 *  Logical Unit Control Block
    468 */
    469struct sym_lcb {
    470	/*
    471	 *  TCB header.
    472	 *  Assumed at offset 0.
    473	 */
    474/*0*/	struct sym_lcbh head;
    475
    476	/*
    477	 *  Task table read from SCRIPTS that contains pointers to 
    478	 *  ITLQ nexuses. The bus address read from SCRIPTS is 
    479	 *  inside the header.
    480	 */
    481	u32	*itlq_tbl;	/* Kernel virtual address	*/
    482
    483	/*
    484	 *  Busy CCBs management.
    485	 */
    486	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
    487	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
    488
    489	/*
    490	 *  Circular tag allocation buffer.
    491	 */
    492	u_short	ia_tag;		/* Tag allocation index		*/
    493	u_short	if_tag;		/* Tag release index		*/
    494	u_char	*cb_tags;	/* Circular tags buffer		*/
    495
    496	/*
    497	 *  O/S specific data structure.
    498	 */
    499#ifdef	SYM_HAVE_SLCB
    500	struct sym_slcb s;
    501#endif
    502
    503#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
    504	/*
    505	 *  Optionnaly the driver can handle device queueing, 
    506	 *  and requeues internally command to redo.
    507	 */
    508	SYM_QUEHEAD waiting_ccbq;
    509	SYM_QUEHEAD started_ccbq;
    510	int	num_sgood;
    511	u_short	started_tags;
    512	u_short	started_no_tag;
    513	u_short	started_max;
    514	u_short	started_limit;
    515#endif
    516
    517#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
    518	/*
    519	 *  Optionally the driver can try to prevent SCSI 
    520	 *  IOs from being reordered too much.
    521	 */
    522	u_char		tags_si;	/* Current index to tags sum	*/
    523	u_short		tags_sum[2];	/* Tags sum counters		*/
    524	u_short		tags_since;	/* # of tags since last switch	*/
    525#endif
    526
    527	/*
    528	 *  Set when we want to clear all tasks.
    529	 */
    530	u_char to_clear;
    531
    532	/*
    533	 *  Capabilities.
    534	 */
    535	u_char	user_flags;
    536	u_char	curr_flags;
    537};
    538
    539/*
    540 *  Action from SCRIPTS on a task.
    541 *  Is part of the CCB, but is also used separately to plug 
    542 *  error handling action to perform from SCRIPTS.
    543 */
    544struct sym_actscr {
    545	u32	start;		/* Jumped by SCRIPTS after selection	*/
    546	u32	restart;	/* Jumped by SCRIPTS on relection	*/
    547};
    548
    549/*
    550 *  Phase mismatch context.
    551 *
    552 *  It is part of the CCB and is used as parameters for the 
    553 *  DATA pointer. We need two contexts to handle correctly the 
    554 *  SAVED DATA POINTER.
    555 */
    556struct sym_pmc {
    557	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
    558	u32	ret;		/* SCRIPT return address	*/
    559};
    560
    561/*
    562 *  LUN control block lookup.
    563 *  We use a direct pointer for LUN #0, and a table of 
    564 *  pointers which is only allocated for devices that support 
    565 *  LUN(s) > 0.
    566 */
    567#if SYM_CONF_MAX_LUN <= 1
    568#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
    569#else
    570#define sym_lp(tp, lun) \
    571	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
    572#endif
    573
    574/*
    575 *  Status are used by the host and the script processor.
    576 *
    577 *  The last four bytes (status[4]) are copied to the 
    578 *  scratchb register (declared as scr0..scr3) just after the 
    579 *  select/reselect, and copied back just after disconnecting.
    580 *  Inside the script the XX_REG are used.
    581 */
    582
    583/*
    584 *  Last four bytes (script)
    585 */
    586#define  HX_REG	scr0
    587#define  HX_PRT	nc_scr0
    588#define  HS_REG	scr1
    589#define  HS_PRT	nc_scr1
    590#define  SS_REG	scr2
    591#define  SS_PRT	nc_scr2
    592#define  HF_REG	scr3
    593#define  HF_PRT	nc_scr3
    594
    595/*
    596 *  Last four bytes (host)
    597 */
    598#define  host_xflags   phys.head.status[0]
    599#define  host_status   phys.head.status[1]
    600#define  ssss_status   phys.head.status[2]
    601#define  host_flags    phys.head.status[3]
    602
    603/*
    604 *  Host flags
    605 */
    606#define HF_IN_PM0	1u
    607#define HF_IN_PM1	(1u<<1)
    608#define HF_ACT_PM	(1u<<2)
    609#define HF_DP_SAVED	(1u<<3)
    610#define HF_SENSE	(1u<<4)
    611#define HF_EXT_ERR	(1u<<5)
    612#define HF_DATA_IN	(1u<<6)
    613#ifdef SYM_CONF_IARB_SUPPORT
    614#define HF_HINT_IARB	(1u<<7)
    615#endif
    616
    617/*
    618 *  More host flags
    619 */
    620#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
    621#define	HX_DMAP_DIRTY	(1u<<7)
    622#endif
    623
    624/*
    625 *  Global CCB HEADER.
    626 *
    627 *  Due to lack of indirect addressing on earlier NCR chips,
    628 *  this substructure is copied from the ccb to a global 
    629 *  address after selection (or reselection) and copied back 
    630 *  before disconnect.
    631 *  For SYMBIOS chips that support LOAD/STORE this copy is 
    632 *  not needed and thus not performed.
    633 */
    634
    635struct sym_ccbh {
    636	/*
    637	 *  Start and restart SCRIPTS addresses (must be at 0).
    638	 */
    639/*0*/	struct sym_actscr go;
    640
    641	/*
    642	 *  SCRIPTS jump address that deal with data pointers.
    643	 *  'savep' points to the position in the script responsible 
    644	 *  for the actual transfer of data.
    645	 *  It's written on reception of a SAVE_DATA_POINTER message.
    646	 */
    647	u32	savep;		/* Jump address to saved data pointer	*/
    648	u32	lastp;		/* SCRIPTS address at end of data	*/
    649
    650	/*
    651	 *  Status fields.
    652	 */
    653	u8	status[4];
    654};
    655
    656/*
    657 *  GET/SET the value of the data pointer used by SCRIPTS.
    658 *
    659 *  We must distinguish between the LOAD/STORE-based SCRIPTS 
    660 *  that use directly the header in the CCB, and the NCR-GENERIC 
    661 *  SCRIPTS that use the copy of the header in the HCB.
    662 */
    663#if	SYM_CONF_GENERIC_SUPPORT
    664#define sym_set_script_dp(np, cp, dp)				\
    665	do {							\
    666		if (np->features & FE_LDSTR)			\
    667			cp->phys.head.lastp = cpu_to_scr(dp);	\
    668		else						\
    669			np->ccb_head.lastp = cpu_to_scr(dp);	\
    670	} while (0)
    671#define sym_get_script_dp(np, cp) 				\
    672	scr_to_cpu((np->features & FE_LDSTR) ?			\
    673		cp->phys.head.lastp : np->ccb_head.lastp)
    674#else
    675#define sym_set_script_dp(np, cp, dp)				\
    676	do {							\
    677		cp->phys.head.lastp = cpu_to_scr(dp);		\
    678	} while (0)
    679
    680#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
    681#endif
    682
    683/*
    684 *  Data Structure Block
    685 *
    686 *  During execution of a ccb by the script processor, the 
    687 *  DSA (data structure address) register points to this 
    688 *  substructure of the ccb.
    689 */
    690struct sym_dsb {
    691	/*
    692	 *  CCB header.
    693	 *  Also assumed at offset 0 of the sym_ccb structure.
    694	 */
    695/*0*/	struct sym_ccbh head;
    696
    697	/*
    698	 *  Phase mismatch contexts.
    699	 *  We need two to handle correctly the SAVED DATA POINTER.
    700	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 
    701	 *  for address calculation from SCRIPTS.
    702	 */
    703	struct sym_pmc pm0;
    704	struct sym_pmc pm1;
    705
    706	/*
    707	 *  Table data for Script
    708	 */
    709	struct sym_tblsel  select;
    710	struct sym_tblmove smsg;
    711	struct sym_tblmove smsg_ext;
    712	struct sym_tblmove cmd;
    713	struct sym_tblmove sense;
    714	struct sym_tblmove wresid;
    715	struct sym_tblmove data [SYM_CONF_MAX_SG];
    716};
    717
    718/*
    719 *  Our Command Control Block
    720 */
    721struct sym_ccb {
    722	/*
    723	 *  This is the data structure which is pointed by the DSA 
    724	 *  register when it is executed by the script processor.
    725	 *  It must be the first entry.
    726	 */
    727	struct sym_dsb phys;
    728
    729	/*
    730	 *  Pointer to CAM ccb and related stuff.
    731	 */
    732	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
    733	u8	cdb_buf[16];	/* Copy of CDB			*/
    734#define	SYM_SNS_BBUF_LEN 32
    735	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
    736	int	data_len;	/* Total data length		*/
    737	int	segments;	/* Number of SG segments	*/
    738
    739	u8	order;		/* Tag type (if tagged command)	*/
    740	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
    741
    742	u_char	nego_status;	/* Negotiation status		*/
    743	u_char	xerr_status;	/* Extended error flags		*/
    744	u32	extra_bytes;	/* Extraneous bytes transferred	*/
    745
    746	/*
    747	 *  Message areas.
    748	 *  We prepare a message to be sent after selection.
    749	 *  We may use a second one if the command is rescheduled 
    750	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
    751	 *  Contents are IDENTIFY and SIMPLE_TAG.
    752	 *  While negotiating sync or wide transfer,
    753	 *  a SDTR or WDTR message is appended.
    754	 */
    755	u_char	scsi_smsg [12];
    756	u_char	scsi_smsg2[12];
    757
    758	/*
    759	 *  Auto request sense related fields.
    760	 */
    761	u_char	sensecmd[6];	/* Request Sense command	*/
    762	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
    763	u_char	sv_xerr_status;	/* Saved extended status	*/
    764	int	sv_resid;	/* Saved residual		*/
    765
    766	/*
    767	 *  Other fields.
    768	 */
    769	u32	ccb_ba;		/* BUS address of this CCB	*/
    770	u_short	tag;		/* Tag for this transfer	*/
    771				/*  NO_TAG means no tag		*/
    772	u_char	target;
    773	u_char	lun;
    774	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
    775	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
    776	u32	startp;		/* Initial data pointer		*/
    777	u32	goalp;		/* Expected last data pointer	*/
    778	int	ext_sg;		/* Extreme data pointer, used	*/
    779	int	ext_ofs;	/*  to calculate the residual.	*/
    780#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
    781	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
    782	u_char	started;	/* CCB queued to the squeue	*/
    783#endif
    784	u_char	to_abort;	/* Want this IO to be aborted	*/
    785#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
    786	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
    787#endif
    788};
    789
    790#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
    791
    792typedef struct device *m_pool_ident_t;
    793
    794/*
    795 *  Host Control Block
    796 */
    797struct sym_hcb {
    798	/*
    799	 *  Global headers.
    800	 *  Due to poorness of addressing capabilities, earlier 
    801	 *  chips (810, 815, 825) copy part of the data structures 
    802	 *  (CCB, TCB and LCB) in fixed areas.
    803	 */
    804#if	SYM_CONF_GENERIC_SUPPORT
    805	struct sym_ccbh	ccb_head;
    806	struct sym_tcbh	tcb_head;
    807	struct sym_lcbh	lcb_head;
    808#endif
    809	/*
    810	 *  Idle task and invalid task actions and 
    811	 *  their bus addresses.
    812	 */
    813	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
    814	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
    815
    816	/*
    817	 *  Dummy lun table to protect us against target 
    818	 *  returning bad lun number on reselection.
    819	 */
    820	u32	*badluntbl;	/* Table physical address	*/
    821	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
    822
    823	/*
    824	 *  Bus address of this host control block.
    825	 */
    826	u32	hcb_ba;
    827
    828	/*
    829	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
    830	 *  The START_RAM64 script loads the MMRS and MMWS from this 
    831	 *  field.
    832	 */
    833	u32	scr_ram_seg;
    834
    835	/*
    836	 *  Initial value of some IO register bits.
    837	 *  These values are assumed to have been set by BIOS, and may 
    838	 *  be used to probe adapter implementation differences.
    839	 */
    840	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
    841		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
    842		sv_stest1;
    843
    844	/*
    845	 *  Actual initial value of IO register bits used by the 
    846	 *  driver. They are loaded at initialisation according to  
    847	 *  features that are to be enabled/disabled.
    848	 */
    849	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 
    850		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
    851
    852	/*
    853	 *  Target data.
    854	 */
    855	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
    856
    857	/*
    858	 *  Target control block bus address array used by the SCRIPT 
    859	 *  on reselection.
    860	 */
    861	u32		*targtbl;
    862	u32		targtbl_ba;
    863
    864	/*
    865	 *  DMA pool handle for this HBA.
    866	 */
    867	m_pool_ident_t	bus_dmat;
    868
    869	/*
    870	 *  O/S specific data structure
    871	 */
    872	struct sym_shcb s;
    873
    874	/*
    875	 *  Physical bus addresses of the chip.
    876	 */
    877	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
    878	u32		ram_ba;		/* RAM 32 bit BUS address	*/
    879
    880	/*
    881	 *  SCRIPTS virtual and physical bus addresses.
    882	 *  'script'  is loaded in the on-chip RAM if present.
    883	 *  'scripth' stays in main memory for all chips except the 
    884	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
    885	 */
    886	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
    887	u_char		*scriptb0;
    888	u_char		*scriptz0;
    889	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
    890	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
    891	u32		scriptz_ba;
    892	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
    893	u_short		scriptb_sz;
    894	u_short		scriptz_sz;
    895
    896	/*
    897	 *  Bus addresses, setup and patch methods for 
    898	 *  the selected firmware.
    899	 */
    900	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
    901	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
    902	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
    903	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
    904	void		(*fw_patch)(struct Scsi_Host *);
    905	char		*fw_name;
    906
    907	/*
    908	 *  General controller parameters and configuration.
    909	 */
    910	u_int	features;	/* Chip features map		*/
    911	u_char	myaddr;		/* SCSI id of the adapter	*/
    912	u_char	maxburst;	/* log base 2 of dwords burst	*/
    913	u_char	maxwide;	/* Maximum transfer width	*/
    914	u_char	minsync;	/* Min sync period factor (ST)	*/
    915	u_char	maxsync;	/* Max sync period factor (ST)	*/
    916	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
    917	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
    918	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
    919	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
    920	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
    921	u_char	clock_divn;	/* Number of clock divisors	*/
    922	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
    923	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
    924	/*
    925	 *  Start queue management.
    926	 *  It is filled up by the host processor and accessed by the 
    927	 *  SCRIPTS processor in order to start SCSI commands.
    928	 */
    929	volatile		/* Prevent code optimizations	*/
    930	u32	*squeue;	/* Start queue virtual address	*/
    931	u32	squeue_ba;	/* Start queue BUS address	*/
    932	u_short	squeueput;	/* Next free slot of the queue	*/
    933	u_short	actccbs;	/* Number of allocated CCBs	*/
    934
    935	/*
    936	 *  Command completion queue.
    937	 *  It is the same size as the start queue to avoid overflow.
    938	 */
    939	u_short	dqueueget;	/* Next position to scan	*/
    940	volatile		/* Prevent code optimizations	*/
    941	u32	*dqueue;	/* Completion (done) queue	*/
    942	u32	dqueue_ba;	/* Done queue BUS address	*/
    943
    944	/*
    945	 *  Miscellaneous buffers accessed by the scripts-processor.
    946	 *  They shall be DWORD aligned, because they may be read or 
    947	 *  written with a script command.
    948	 */
    949	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
    950	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
    951	u32		lastmsg;	/* Last SCSI message sent	*/
    952	u32		scratch;	/* Scratch for SCSI receive	*/
    953					/* Also used for cache test 	*/
    954	/*
    955	 *  Miscellaneous configuration and status parameters.
    956	 */
    957	u_char		usrflags;	/* Miscellaneous user flags	*/
    958	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
    959	u_char		verbose;	/* Verbosity for this controller*/
    960
    961	/*
    962	 *  CCB lists and queue.
    963	 */
    964	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
    965					/* CCB_HASH_SIZE lists of CCBs	*/
    966	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
    967	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
    968
    969	/*
    970	 *  During error handling and/or recovery,
    971	 *  active CCBs that are to be completed with 
    972	 *  error or requeued are moved from the busy_ccbq
    973	 *  to the comp_ccbq prior to completion.
    974	 */
    975	SYM_QUEHEAD	comp_ccbq;
    976
    977#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
    978	SYM_QUEHEAD	dummy_ccbq;
    979#endif
    980
    981	/*
    982	 *  IMMEDIATE ARBITRATION (IARB) control.
    983	 *
    984	 *  We keep track in 'last_cp' of the last CCB that has been 
    985	 *  queued to the SCRIPTS processor and clear 'last_cp' when 
    986	 *  this CCB completes. If last_cp is not zero at the moment 
    987	 *  we queue a new CCB, we set a flag in 'last_cp' that is 
    988	 *  used by the SCRIPTS as a hint for setting IARB.
    989	 *  We donnot set more than 'iarb_max' consecutive hints for 
    990	 *  IARB in order to leave devices a chance to reselect.
    991	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
    992	 */
    993#ifdef SYM_CONF_IARB_SUPPORT
    994	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
    995	u_short		iarb_count;	/* Actual # of these hints	*/
    996	struct sym_ccb *	last_cp;
    997#endif
    998
    999	/*
   1000	 *  Command abort handling.
   1001	 *  We need to synchronize tightly with the SCRIPTS 
   1002	 *  processor in order to handle things correctly.
   1003	 */
   1004	u_char		abrt_msg[4];	/* Message to send buffer	*/
   1005	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
   1006	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
   1007	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
   1008
   1009	/*
   1010	 *  64 bit DMA handling.
   1011	 */
   1012#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
   1013	u_char	use_dac;		/* Use PCI DAC cycles		*/
   1014#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
   1015	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
   1016	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
   1017#endif
   1018#endif
   1019};
   1020
   1021#if SYM_CONF_DMA_ADDRESSING_MODE == 0
   1022#define use_dac(np)	0
   1023#define set_dac(np)	do { } while (0)
   1024#else
   1025#define use_dac(np)	(np)->use_dac
   1026#define set_dac(np)	(np)->use_dac = 1
   1027#endif
   1028
   1029#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
   1030
   1031
   1032/*
   1033 *  FIRMWARES (sym_fw.c)
   1034 */
   1035struct sym_fw * sym_find_firmware(struct sym_chip *chip);
   1036void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
   1037
   1038/*
   1039 *  Driver methods called from O/S specific code.
   1040 */
   1041char *sym_driver_name(void);
   1042void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
   1043int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
   1044struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
   1045#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
   1046void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
   1047#else
   1048void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
   1049#endif
   1050void sym_start_up(struct Scsi_Host *, int reason);
   1051irqreturn_t sym_interrupt(struct Scsi_Host *);
   1052int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
   1053struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
   1054void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
   1055struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
   1056int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
   1057int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
   1058int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
   1059int sym_reset_scsi_target(struct sym_hcb *np, int target);
   1060void sym_hcb_free(struct sym_hcb *np);
   1061int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
   1062
   1063/*
   1064 *  Build a scatter/gather entry.
   1065 *
   1066 *  For 64 bit systems, we use the 8 upper bits of the size field 
   1067 *  to provide bus address bits 32-39 to the SCRIPTS processor.
   1068 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
   1069 */
   1070
   1071#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
   1072#define DMA_DAC_MASK	DMA_BIT_MASK(32)
   1073#define sym_build_sge(np, data, badd, len)	\
   1074do {						\
   1075	(data)->addr = cpu_to_scr(badd);	\
   1076	(data)->size = cpu_to_scr(len);		\
   1077} while (0)
   1078#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
   1079#define DMA_DAC_MASK	DMA_BIT_MASK(40)
   1080#define sym_build_sge(np, data, badd, len)				\
   1081do {									\
   1082	(data)->addr = cpu_to_scr(badd);				\
   1083	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
   1084} while (0)
   1085#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
   1086#define DMA_DAC_MASK	DMA_BIT_MASK(64)
   1087int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
   1088static inline void
   1089sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
   1090{
   1091	u32 h = (badd>>32);
   1092	int s = (h&SYM_DMAP_MASK);
   1093
   1094	if (h != np->dmap_bah[s])
   1095		goto bad;
   1096good:
   1097	(data)->addr = cpu_to_scr(badd);
   1098	(data)->size = cpu_to_scr((s<<24) + len);
   1099	return;
   1100bad:
   1101	s = sym_lookup_dmap(np, h, s);
   1102	goto good;
   1103}
   1104#else
   1105#error "Unsupported DMA addressing mode"
   1106#endif
   1107
   1108/*
   1109 *  MEMORY ALLOCATOR.
   1110 */
   1111
   1112#define sym_get_mem_cluster()	\
   1113	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
   1114#define sym_free_mem_cluster(p)	\
   1115	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
   1116
   1117/*
   1118 *  Link between free memory chunks of a given size.
   1119 */
   1120typedef struct sym_m_link {
   1121	struct sym_m_link *next;
   1122} *m_link_p;
   1123
   1124/*
   1125 *  Virtual to bus physical translation for a given cluster.
   1126 *  Such a structure is only useful with DMA abstraction.
   1127 */
   1128typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
   1129	struct sym_m_vtob *next;
   1130	void *vaddr;		/* Virtual address */
   1131	dma_addr_t baddr;	/* Bus physical address */
   1132} *m_vtob_p;
   1133
   1134/* Hash this stuff a bit to speed up translations */
   1135#define VTOB_HASH_SHIFT		5
   1136#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
   1137#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
   1138#define VTOB_HASH_CODE(m)	\
   1139	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
   1140
   1141/*
   1142 *  Memory pool of a given kind.
   1143 *  Ideally, we want to use:
   1144 *  1) 1 pool for memory we donnot need to involve in DMA.
   1145 *  2) The same pool for controllers that require same DMA 
   1146 *     constraints and features.
   1147 *     The OS specific m_pool_id_t thing and the sym_m_pool_match() 
   1148 *     method are expected to tell the driver about.
   1149 */
   1150typedef struct sym_m_pool {
   1151	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
   1152	void * (*get_mem_cluster)(struct sym_m_pool *);
   1153#ifdef	SYM_MEM_FREE_UNUSED
   1154	void (*free_mem_cluster)(struct sym_m_pool *, void *);
   1155#endif
   1156#define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
   1157#define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
   1158	int nump;
   1159	m_vtob_p vtob[VTOB_HASH_SIZE];
   1160	struct sym_m_pool *next;
   1161	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
   1162} *m_pool_p;
   1163
   1164/*
   1165 *  Alloc, free and translate addresses to bus physical 
   1166 *  for DMAable memory.
   1167 */
   1168void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
   1169void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
   1170dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
   1171
   1172/*
   1173 * Verbs used by the driver code for DMAable memory handling.
   1174 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 
   1175 * being discarded.
   1176 */
   1177#define _uvptv_(p) ((void *)((u_long)(p)))
   1178
   1179#define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
   1180#define _sym_mfree_dma(np, p, l, n)	\
   1181			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
   1182#define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
   1183#define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
   1184#define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
   1185
   1186/*
   1187 *  We have to provide the driver memory allocator with methods for 
   1188 *  it to maintain virtual to bus physical address translations.
   1189 */
   1190
   1191#define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
   1192
   1193static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
   1194{
   1195	void *vaddr = NULL;
   1196	dma_addr_t baddr = 0;
   1197
   1198	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
   1199			GFP_ATOMIC);
   1200	if (vaddr) {
   1201		vbp->vaddr = vaddr;
   1202		vbp->baddr = baddr;
   1203	}
   1204	return vaddr;
   1205}
   1206
   1207static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
   1208{
   1209	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
   1210			vbp->baddr);
   1211}
   1212
   1213#endif /* SYM_HIPD_H */