sym_malloc.c (8173B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * 8 * This driver is derived from the Linux sym53c8xx driver. 9 * Copyright (C) 1998-2000 Gerard Roudier 10 * 11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 12 * a port of the FreeBSD ncr driver to Linux-1.2.13. 13 * 14 * The original ncr driver has been written for 386bsd and FreeBSD by 15 * Wolfgang Stanglmeier <wolf@cologne.de> 16 * Stefan Esser <se@mi.Uni-Koeln.de> 17 * Copyright (C) 1994 Wolfgang Stanglmeier 18 * 19 * Other major contributions: 20 * 21 * NVRAM detection and reading. 22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 23 * 24 *----------------------------------------------------------------------------- 25 */ 26 27#include "sym_glue.h" 28 29/* 30 * Simple power of two buddy-like generic allocator. 31 * Provides naturally aligned memory chunks. 32 * 33 * This simple code is not intended to be fast, but to 34 * provide power of 2 aligned memory allocations. 35 * Since the SCRIPTS processor only supplies 8 bit arithmetic, 36 * this allocator allows simple and fast address calculations 37 * from the SCRIPTS code. In addition, cache line alignment 38 * is guaranteed for power of 2 cache line size. 39 * 40 * This allocator has been developed for the Linux sym53c8xx 41 * driver, since this O/S does not provide naturally aligned 42 * allocations. 43 * It has the advantage of allowing the driver to use private 44 * pages of memory that will be useful if we ever need to deal 45 * with IO MMUs for PCI. 46 */ 47static void *___sym_malloc(m_pool_p mp, int size) 48{ 49 int i = 0; 50 int s = (1 << SYM_MEM_SHIFT); 51 int j; 52 void *a; 53 m_link_p h = mp->h; 54 55 if (size > SYM_MEM_CLUSTER_SIZE) 56 return NULL; 57 58 while (size > s) { 59 s <<= 1; 60 ++i; 61 } 62 63 j = i; 64 while (!h[j].next) { 65 if (s == SYM_MEM_CLUSTER_SIZE) { 66 h[j].next = (m_link_p) M_GET_MEM_CLUSTER(); 67 if (h[j].next) 68 h[j].next->next = NULL; 69 break; 70 } 71 ++j; 72 s <<= 1; 73 } 74 a = h[j].next; 75 if (a) { 76 h[j].next = h[j].next->next; 77 while (j > i) { 78 j -= 1; 79 s >>= 1; 80 h[j].next = (m_link_p) (a+s); 81 h[j].next->next = NULL; 82 } 83 } 84#ifdef DEBUG 85 printf("___sym_malloc(%d) = %p\n", size, (void *) a); 86#endif 87 return a; 88} 89 90/* 91 * Counter-part of the generic allocator. 92 */ 93static void ___sym_mfree(m_pool_p mp, void *ptr, int size) 94{ 95 int i = 0; 96 int s = (1 << SYM_MEM_SHIFT); 97 m_link_p q; 98 unsigned long a, b; 99 m_link_p h = mp->h; 100 101#ifdef DEBUG 102 printf("___sym_mfree(%p, %d)\n", ptr, size); 103#endif 104 105 if (size > SYM_MEM_CLUSTER_SIZE) 106 return; 107 108 while (size > s) { 109 s <<= 1; 110 ++i; 111 } 112 113 a = (unsigned long)ptr; 114 115 while (1) { 116 if (s == SYM_MEM_CLUSTER_SIZE) { 117#ifdef SYM_MEM_FREE_UNUSED 118 M_FREE_MEM_CLUSTER((void *)a); 119#else 120 ((m_link_p) a)->next = h[i].next; 121 h[i].next = (m_link_p) a; 122#endif 123 break; 124 } 125 b = a ^ s; 126 q = &h[i]; 127 while (q->next && q->next != (m_link_p) b) { 128 q = q->next; 129 } 130 if (!q->next) { 131 ((m_link_p) a)->next = h[i].next; 132 h[i].next = (m_link_p) a; 133 break; 134 } 135 q->next = q->next->next; 136 a = a & b; 137 s <<= 1; 138 ++i; 139 } 140} 141 142/* 143 * Verbose and zeroing allocator that wrapps to the generic allocator. 144 */ 145static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags) 146{ 147 void *p; 148 149 p = ___sym_malloc(mp, size); 150 151 if (DEBUG_FLAGS & DEBUG_ALLOC) { 152 printf ("new %-10s[%4d] @%p.\n", name, size, p); 153 } 154 155 if (p) 156 memset(p, 0, size); 157 else if (uflags & SYM_MEM_WARN) 158 printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); 159 return p; 160} 161#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, SYM_MEM_WARN) 162 163/* 164 * Its counter-part. 165 */ 166static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name) 167{ 168 if (DEBUG_FLAGS & DEBUG_ALLOC) 169 printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 170 171 ___sym_mfree(mp, ptr, size); 172} 173 174/* 175 * Default memory pool we donnot need to involve in DMA. 176 * 177 * With DMA abstraction, we use functions (methods), to 178 * distinguish between non DMAable memory and DMAable memory. 179 */ 180static void *___mp0_get_mem_cluster(m_pool_p mp) 181{ 182 void *m = sym_get_mem_cluster(); 183 if (m) 184 ++mp->nump; 185 return m; 186} 187 188#ifdef SYM_MEM_FREE_UNUSED 189static void ___mp0_free_mem_cluster(m_pool_p mp, void *m) 190{ 191 sym_free_mem_cluster(m); 192 --mp->nump; 193} 194#else 195#define ___mp0_free_mem_cluster NULL 196#endif 197 198static struct sym_m_pool mp0 = { 199 NULL, 200 ___mp0_get_mem_cluster, 201 ___mp0_free_mem_cluster 202}; 203 204/* 205 * Methods that maintains DMAable pools according to user allocations. 206 * New pools are created on the fly when a new pool id is provided. 207 * They are deleted on the fly when they get emptied. 208 */ 209/* Get a memory cluster that matches the DMA constraints of a given pool */ 210static void * ___get_dma_mem_cluster(m_pool_p mp) 211{ 212 m_vtob_p vbp; 213 void *vaddr; 214 215 vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); 216 if (!vbp) 217 goto out_err; 218 219 vaddr = sym_m_get_dma_mem_cluster(mp, vbp); 220 if (vaddr) { 221 int hc = VTOB_HASH_CODE(vaddr); 222 vbp->next = mp->vtob[hc]; 223 mp->vtob[hc] = vbp; 224 ++mp->nump; 225 } 226 return vaddr; 227out_err: 228 return NULL; 229} 230 231#ifdef SYM_MEM_FREE_UNUSED 232/* Free a memory cluster and associated resources for DMA */ 233static void ___free_dma_mem_cluster(m_pool_p mp, void *m) 234{ 235 m_vtob_p *vbpp, vbp; 236 int hc = VTOB_HASH_CODE(m); 237 238 vbpp = &mp->vtob[hc]; 239 while (*vbpp && (*vbpp)->vaddr != m) 240 vbpp = &(*vbpp)->next; 241 if (*vbpp) { 242 vbp = *vbpp; 243 *vbpp = (*vbpp)->next; 244 sym_m_free_dma_mem_cluster(mp, vbp); 245 __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); 246 --mp->nump; 247 } 248} 249#endif 250 251/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */ 252static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat) 253{ 254 m_pool_p mp; 255 for (mp = mp0.next; 256 mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat); 257 mp = mp->next); 258 return mp; 259} 260 261/* Create a new memory DMAable pool (when fetch failed) */ 262static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat) 263{ 264 m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); 265 if (mp) { 266 mp->dev_dmat = dev_dmat; 267 mp->get_mem_cluster = ___get_dma_mem_cluster; 268#ifdef SYM_MEM_FREE_UNUSED 269 mp->free_mem_cluster = ___free_dma_mem_cluster; 270#endif 271 mp->next = mp0.next; 272 mp0.next = mp; 273 return mp; 274 } 275 return NULL; 276} 277 278#ifdef SYM_MEM_FREE_UNUSED 279/* Destroy a DMAable memory pool (when got emptied) */ 280static void ___del_dma_pool(m_pool_p p) 281{ 282 m_pool_p *pp = &mp0.next; 283 284 while (*pp && *pp != p) 285 pp = &(*pp)->next; 286 if (*pp) { 287 *pp = (*pp)->next; 288 __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); 289 } 290} 291#endif 292 293/* This lock protects only the memory allocation/free. */ 294static DEFINE_SPINLOCK(sym53c8xx_lock); 295 296/* 297 * Actual allocator for DMAable memory. 298 */ 299void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name) 300{ 301 unsigned long flags; 302 m_pool_p mp; 303 void *m = NULL; 304 305 spin_lock_irqsave(&sym53c8xx_lock, flags); 306 mp = ___get_dma_pool(dev_dmat); 307 if (!mp) 308 mp = ___cre_dma_pool(dev_dmat); 309 if (!mp) 310 goto out; 311 m = __sym_calloc(mp, size, name); 312#ifdef SYM_MEM_FREE_UNUSED 313 if (!mp->nump) 314 ___del_dma_pool(mp); 315#endif 316 317 out: 318 spin_unlock_irqrestore(&sym53c8xx_lock, flags); 319 return m; 320} 321 322void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name) 323{ 324 unsigned long flags; 325 m_pool_p mp; 326 327 spin_lock_irqsave(&sym53c8xx_lock, flags); 328 mp = ___get_dma_pool(dev_dmat); 329 if (!mp) 330 goto out; 331 __sym_mfree(mp, m, size, name); 332#ifdef SYM_MEM_FREE_UNUSED 333 if (!mp->nump) 334 ___del_dma_pool(mp); 335#endif 336 out: 337 spin_unlock_irqrestore(&sym53c8xx_lock, flags); 338} 339 340/* 341 * Actual virtual to bus physical address translator 342 * for 32 bit addressable DMAable memory. 343 */ 344dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m) 345{ 346 unsigned long flags; 347 m_pool_p mp; 348 int hc = VTOB_HASH_CODE(m); 349 m_vtob_p vp = NULL; 350 void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK); 351 dma_addr_t b; 352 353 spin_lock_irqsave(&sym53c8xx_lock, flags); 354 mp = ___get_dma_pool(dev_dmat); 355 if (mp) { 356 vp = mp->vtob[hc]; 357 while (vp && vp->vaddr != a) 358 vp = vp->next; 359 } 360 if (!vp) 361 panic("sym: VTOBUS FAILED!\n"); 362 b = vp->baddr + (m - a); 363 spin_unlock_irqrestore(&sym53c8xx_lock, flags); 364 return b; 365}