wd33c93.c (67105B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) 1996 John Shifflett, GeoLog Consulting 4 * john@geolog.com 5 * jshiffle@netcom.com 6 */ 7 8/* 9 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC 10 * provided much of the inspiration and some of the code for this 11 * driver. Everything I know about Amiga DMA was gleaned from careful 12 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I 13 * borrowed shamelessly from all over that source. Thanks Hamish! 14 * 15 * _This_ driver is (I feel) an improvement over the old one in 16 * several respects: 17 * 18 * - Target Disconnection/Reconnection is now supported. Any 19 * system with more than one device active on the SCSI bus 20 * will benefit from this. The driver defaults to what I 21 * call 'adaptive disconnect' - meaning that each command 22 * is evaluated individually as to whether or not it should 23 * be run with the option to disconnect/reselect (if the 24 * device chooses), or as a "SCSI-bus-hog". 25 * 26 * - Synchronous data transfers are now supported. Because of 27 * a few devices that choke after telling the driver that 28 * they can do sync transfers, we don't automatically use 29 * this faster protocol - it can be enabled via the command- 30 * line on a device-by-device basis. 31 * 32 * - Runtime operating parameters can now be specified through 33 * the 'amiboot' or the 'insmod' command line. For amiboot do: 34 * "amiboot [usual stuff] wd33c93=blah,blah,blah" 35 * The defaults should be good for most people. See the comment 36 * for 'setup_strings' below for more details. 37 * 38 * - The old driver relied exclusively on what the Western Digital 39 * docs call "Combination Level 2 Commands", which are a great 40 * idea in that the CPU is relieved of a lot of interrupt 41 * overhead. However, by accepting a certain (user-settable) 42 * amount of additional interrupts, this driver achieves 43 * better control over the SCSI bus, and data transfers are 44 * almost as fast while being much easier to define, track, 45 * and debug. 46 * 47 * 48 * TODO: 49 * more speed. linked commands. 50 * 51 * 52 * People with bug reports, wish-lists, complaints, comments, 53 * or improvements are asked to pah-leeez email me (John Shifflett) 54 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get 55 * this thing into as good a shape as possible, and I'm positive 56 * there are lots of lurking bugs and "Stupid Places". 57 * 58 * Updates: 59 * 60 * Added support for pre -A chips, which don't have advanced features 61 * and will generate CSR_RESEL rather than CSR_RESEL_AM. 62 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 63 * 64 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of 65 * default_sx_per for asynchronous data transfers. Added adjustment 66 * of transfer periods in sx_table to the actual input-clock. 67 * peter fuerst <post@pfrst.de> February 2007 68 */ 69 70#include <linux/module.h> 71 72#include <linux/string.h> 73#include <linux/delay.h> 74#include <linux/init.h> 75#include <linux/interrupt.h> 76#include <linux/blkdev.h> 77 78#include <scsi/scsi.h> 79#include <scsi/scsi_cmnd.h> 80#include <scsi/scsi_device.h> 81#include <scsi/scsi_host.h> 82 83#include <asm/irq.h> 84 85#include "wd33c93.h" 86 87#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns 88 89 90#define WD33C93_VERSION "1.26++" 91#define WD33C93_DATE "10/Feb/2007" 92 93MODULE_AUTHOR("John Shifflett"); 94MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); 95MODULE_LICENSE("GPL"); 96 97/* 98 * 'setup_strings' is a single string used to pass operating parameters and 99 * settings from the kernel/module command-line to the driver. 'setup_args[]' 100 * is an array of strings that define the compile-time default values for 101 * these settings. If Linux boots with an amiboot or insmod command-line, 102 * those settings are combined with 'setup_args[]'. Note that amiboot 103 * command-lines are prefixed with "wd33c93=" while insmod uses a 104 * "setup_strings=" prefix. The driver recognizes the following keywords 105 * (lower case required) and arguments: 106 * 107 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with 108 * the 7 possible SCSI devices. Set a bit to negotiate for 109 * asynchronous transfers on that device. To maintain 110 * backwards compatibility, a command-line such as 111 * "wd33c93=255" will be automatically translated to 112 * "wd33c93=nosync:0xff". 113 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is 114 * optional - if not present, same as "nodma:1". 115 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer 116 * period. Default is 500; acceptable values are 250 - 1000. 117 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. 118 * x = 1 does 'adaptive' disconnects, which is the default 119 * and generally the best choice. 120 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes 121 * various types of debug output to printed - see the DB_xxx 122 * defines in wd33c93.h 123 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values 124 * would be from 8 through 20. Default is 8. 125 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use 126 * Single Byte DMA, which is the default. Argument is 127 * optional - if not present, same as "burst:1". 128 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with 129 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable 130 * it, which is the default. Argument is optional - if not 131 * present, same as "fast:1". 132 * - next -No argument. Used to separate blocks of keywords when 133 * there's more than one host adapter in the system. 134 * 135 * Syntax Notes: 136 * - Numeric arguments can be decimal or the '0x' form of hex notation. There 137 * _must_ be a colon between a keyword and its numeric argument, with no 138 * spaces. 139 * - Keywords are separated by commas, no spaces, in the standard kernel 140 * command-line manner. 141 * - A keyword in the 'nth' comma-separated command-line member will overwrite 142 * the 'nth' element of setup_args[]. A blank command-line member (in 143 * other words, a comma with no preceding keyword) will _not_ overwrite 144 * the corresponding setup_args[] element. 145 * - If a keyword is used more than once, the first one applies to the first 146 * SCSI host found, the second to the second card, etc, unless the 'next' 147 * keyword is used to change the order. 148 * 149 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): 150 * - wd33c93=nosync:255 151 * - wd33c93=nodma 152 * - wd33c93=nodma:1 153 * - wd33c93=disconnect:2,nosync:0x08,period:250 154 * - wd33c93=debug:0x1c 155 */ 156 157/* Normally, no defaults are specified */ 158static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; 159 160static char *setup_strings; 161module_param(setup_strings, charp, 0); 162 163static void wd33c93_execute(struct Scsi_Host *instance); 164 165#ifdef CONFIG_WD33C93_PIO 166static inline uchar 167read_wd33c93(const wd33c93_regs regs, uchar reg_num) 168{ 169 uchar data; 170 171 outb(reg_num, regs.SASR); 172 data = inb(regs.SCMD); 173 return data; 174} 175 176static inline unsigned long 177read_wd33c93_count(const wd33c93_regs regs) 178{ 179 unsigned long value; 180 181 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 182 value = inb(regs.SCMD) << 16; 183 value |= inb(regs.SCMD) << 8; 184 value |= inb(regs.SCMD); 185 return value; 186} 187 188static inline uchar 189read_aux_stat(const wd33c93_regs regs) 190{ 191 return inb(regs.SASR); 192} 193 194static inline void 195write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 196{ 197 outb(reg_num, regs.SASR); 198 outb(value, regs.SCMD); 199} 200 201static inline void 202write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 203{ 204 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 205 outb((value >> 16) & 0xff, regs.SCMD); 206 outb((value >> 8) & 0xff, regs.SCMD); 207 outb( value & 0xff, regs.SCMD); 208} 209 210#define write_wd33c93_cmd(regs, cmd) \ 211 write_wd33c93((regs), WD_COMMAND, (cmd)) 212 213static inline void 214write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 215{ 216 int i; 217 218 outb(WD_CDB_1, regs.SASR); 219 for (i=0; i<len; i++) 220 outb(cmnd[i], regs.SCMD); 221} 222 223#else /* CONFIG_WD33C93_PIO */ 224static inline uchar 225read_wd33c93(const wd33c93_regs regs, uchar reg_num) 226{ 227 *regs.SASR = reg_num; 228 mb(); 229 return (*regs.SCMD); 230} 231 232static unsigned long 233read_wd33c93_count(const wd33c93_regs regs) 234{ 235 unsigned long value; 236 237 *regs.SASR = WD_TRANSFER_COUNT_MSB; 238 mb(); 239 value = *regs.SCMD << 16; 240 value |= *regs.SCMD << 8; 241 value |= *regs.SCMD; 242 mb(); 243 return value; 244} 245 246static inline uchar 247read_aux_stat(const wd33c93_regs regs) 248{ 249 return *regs.SASR; 250} 251 252static inline void 253write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 254{ 255 *regs.SASR = reg_num; 256 mb(); 257 *regs.SCMD = value; 258 mb(); 259} 260 261static void 262write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 263{ 264 *regs.SASR = WD_TRANSFER_COUNT_MSB; 265 mb(); 266 *regs.SCMD = value >> 16; 267 *regs.SCMD = value >> 8; 268 *regs.SCMD = value; 269 mb(); 270} 271 272static inline void 273write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) 274{ 275 *regs.SASR = WD_COMMAND; 276 mb(); 277 *regs.SCMD = cmd; 278 mb(); 279} 280 281static inline void 282write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 283{ 284 int i; 285 286 *regs.SASR = WD_CDB_1; 287 for (i = 0; i < len; i++) 288 *regs.SCMD = cmnd[i]; 289} 290#endif /* CONFIG_WD33C93_PIO */ 291 292static inline uchar 293read_1_byte(const wd33c93_regs regs) 294{ 295 uchar asr; 296 uchar x = 0; 297 298 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 299 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); 300 do { 301 asr = read_aux_stat(regs); 302 if (asr & ASR_DBR) 303 x = read_wd33c93(regs, WD_DATA); 304 } while (!(asr & ASR_INT)); 305 return x; 306} 307 308static int 309round_period(unsigned int period, const struct sx_period *sx_table) 310{ 311 int x; 312 313 for (x = 1; sx_table[x].period_ns; x++) { 314 if ((period <= sx_table[x - 0].period_ns) && 315 (period > sx_table[x - 1].period_ns)) { 316 return x; 317 } 318 } 319 return 7; 320} 321 322/* 323 * Calculate Synchronous Transfer Register value from SDTR code. 324 */ 325static uchar 326calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, 327 const struct sx_period *sx_table) 328{ 329 /* When doing Fast SCSI synchronous data transfers, the corresponding 330 * value in 'sx_table' is two times the actually used transfer period. 331 */ 332 uchar result; 333 334 if (offset && fast) { 335 fast = STR_FSS; 336 period *= 2; 337 } else { 338 fast = 0; 339 } 340 period *= 4; /* convert SDTR code to ns */ 341 result = sx_table[round_period(period,sx_table)].reg_value; 342 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; 343 result |= fast; 344 return result; 345} 346 347/* 348 * Calculate SDTR code bytes [3],[4] from period and offset. 349 */ 350static inline void 351calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, 352 uchar msg[2]) 353{ 354 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The 355 * actually used transfer period for Fast SCSI synchronous data 356 * transfers is half that value. 357 */ 358 period /= 4; 359 if (offset && fast) 360 period /= 2; 361 msg[0] = period; 362 msg[1] = offset; 363} 364 365static int wd33c93_queuecommand_lck(struct scsi_cmnd *cmd) 366{ 367 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd); 368 struct WD33C93_hostdata *hostdata; 369 struct scsi_cmnd *tmp; 370 371 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 372 373 DB(DB_QUEUE_COMMAND, 374 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0])) 375 376/* Set up a few fields in the scsi_cmnd structure for our own use: 377 * - host_scribble is the pointer to the next cmd in the input queue 378 * - result is what you'd expect 379 */ 380 cmd->host_scribble = NULL; 381 cmd->result = 0; 382 383/* We use the Scsi_Pointer structure that's included with each command 384 * as a scratchpad (as it's intended to be used!). The handy thing about 385 * the SCp.xxx fields is that they're always associated with a given 386 * cmd, and are preserved across disconnect-reselect. This means we 387 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages 388 * if we keep all the critical pointers and counters in SCp: 389 * - SCp.ptr is the pointer into the RAM buffer 390 * - SCp.this_residual is the size of that buffer 391 * - SCp.buffer points to the current scatter-gather buffer 392 * - SCp.buffers_residual tells us how many S.G. buffers there are 393 * - SCp.have_data_in is not used 394 * - SCp.sent_command is not used 395 * - SCp.phase records this command's SRCID_ER bit setting 396 */ 397 398 if (scsi_bufflen(cmd)) { 399 scsi_pointer->buffer = scsi_sglist(cmd); 400 scsi_pointer->buffers_residual = scsi_sg_count(cmd) - 1; 401 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer); 402 scsi_pointer->this_residual = scsi_pointer->buffer->length; 403 } else { 404 scsi_pointer->buffer = NULL; 405 scsi_pointer->buffers_residual = 0; 406 scsi_pointer->ptr = NULL; 407 scsi_pointer->this_residual = 0; 408 } 409 410/* WD docs state that at the conclusion of a "LEVEL2" command, the 411 * status byte can be retrieved from the LUN register. Apparently, 412 * this is the case only for *uninterrupted* LEVEL2 commands! If 413 * there are any unexpected phases entered, even if they are 100% 414 * legal (different devices may choose to do things differently), 415 * the LEVEL2 command sequence is exited. This often occurs prior 416 * to receiving the status byte, in which case the driver does a 417 * status phase interrupt and gets the status byte on its own. 418 * While such a command can then be "resumed" (ie restarted to 419 * finish up as a LEVEL2 command), the LUN register will NOT be 420 * a valid status byte at the command's conclusion, and we must 421 * use the byte obtained during the earlier interrupt. Here, we 422 * preset SCp.Status to an illegal value (0xff) so that when 423 * this command finally completes, we can tell where the actual 424 * status byte is stored. 425 */ 426 427 scsi_pointer->Status = ILLEGAL_STATUS_BYTE; 428 429 /* 430 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE 431 * commands are added to the head of the queue so that the desired 432 * sense data is not lost before REQUEST_SENSE executes. 433 */ 434 435 spin_lock_irq(&hostdata->lock); 436 437 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { 438 cmd->host_scribble = (uchar *) hostdata->input_Q; 439 hostdata->input_Q = cmd; 440 } else { /* find the end of the queue */ 441 for (tmp = (struct scsi_cmnd *) hostdata->input_Q; 442 tmp->host_scribble; 443 tmp = (struct scsi_cmnd *) tmp->host_scribble) ; 444 tmp->host_scribble = (uchar *) cmd; 445 } 446 447/* We know that there's at least one command in 'input_Q' now. 448 * Go see if any of them are runnable! 449 */ 450 451 wd33c93_execute(cmd->device->host); 452 453 DB(DB_QUEUE_COMMAND, printk(")Q ")) 454 455 spin_unlock_irq(&hostdata->lock); 456 return 0; 457} 458 459DEF_SCSI_QCMD(wd33c93_queuecommand) 460 461/* 462 * This routine attempts to start a scsi command. If the host_card is 463 * already connected, we give up immediately. Otherwise, look through 464 * the input_Q, using the first command we find that's intended 465 * for a currently non-busy target/lun. 466 * 467 * wd33c93_execute() is always called with interrupts disabled or from 468 * the wd33c93_intr itself, which means that a wd33c93 interrupt 469 * cannot occur while we are in here. 470 */ 471static void 472wd33c93_execute(struct Scsi_Host *instance) 473{ 474 struct scsi_pointer *scsi_pointer; 475 struct WD33C93_hostdata *hostdata = 476 (struct WD33C93_hostdata *) instance->hostdata; 477 const wd33c93_regs regs = hostdata->regs; 478 struct scsi_cmnd *cmd, *prev; 479 480 DB(DB_EXECUTE, printk("EX(")) 481 if (hostdata->selecting || hostdata->connected) { 482 DB(DB_EXECUTE, printk(")EX-0 ")) 483 return; 484 } 485 486 /* 487 * Search through the input_Q for a command destined 488 * for an idle target/lun. 489 */ 490 491 cmd = (struct scsi_cmnd *) hostdata->input_Q; 492 prev = NULL; 493 while (cmd) { 494 if (!(hostdata->busy[cmd->device->id] & 495 (1 << (cmd->device->lun & 0xff)))) 496 break; 497 prev = cmd; 498 cmd = (struct scsi_cmnd *) cmd->host_scribble; 499 } 500 501 /* quit if queue empty or all possible targets are busy */ 502 503 if (!cmd) { 504 DB(DB_EXECUTE, printk(")EX-1 ")) 505 return; 506 } 507 508 /* remove command from queue */ 509 510 if (prev) 511 prev->host_scribble = cmd->host_scribble; 512 else 513 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; 514 515#ifdef PROC_STATISTICS 516 hostdata->cmd_cnt[cmd->device->id]++; 517#endif 518 519 /* 520 * Start the selection process 521 */ 522 523 if (cmd->sc_data_direction == DMA_TO_DEVICE) 524 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 525 else 526 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); 527 528/* Now we need to figure out whether or not this command is a good 529 * candidate for disconnect/reselect. We guess to the best of our 530 * ability, based on a set of hierarchical rules. When several 531 * devices are operating simultaneously, disconnects are usually 532 * an advantage. In a single device system, or if only 1 device 533 * is being accessed, transfers usually go faster if disconnects 534 * are not allowed: 535 * 536 * + Commands should NEVER disconnect if hostdata->disconnect = 537 * DIS_NEVER (this holds for tape drives also), and ALWAYS 538 * disconnect if hostdata->disconnect = DIS_ALWAYS. 539 * + Tape drive commands should always be allowed to disconnect. 540 * + Disconnect should be allowed if disconnected_Q isn't empty. 541 * + Commands should NOT disconnect if input_Q is empty. 542 * + Disconnect should be allowed if there are commands in input_Q 543 * for a different target/lun. In this case, the other commands 544 * should be made disconnect-able, if not already. 545 * 546 * I know, I know - this code would flunk me out of any 547 * "C Programming 101" class ever offered. But it's easy 548 * to change around and experiment with for now. 549 */ 550 551 scsi_pointer = WD33C93_scsi_pointer(cmd); 552 scsi_pointer->phase = 0; /* assume no disconnect */ 553 if (hostdata->disconnect == DIS_NEVER) 554 goto no; 555 if (hostdata->disconnect == DIS_ALWAYS) 556 goto yes; 557 if (cmd->device->type == 1) /* tape drive? */ 558 goto yes; 559 if (hostdata->disconnected_Q) /* other commands disconnected? */ 560 goto yes; 561 if (!(hostdata->input_Q)) /* input_Q empty? */ 562 goto no; 563 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 564 prev = (struct scsi_cmnd *) prev->host_scribble) { 565 if ((prev->device->id != cmd->device->id) || 566 (prev->device->lun != cmd->device->lun)) { 567 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 568 prev = (struct scsi_cmnd *) prev->host_scribble) 569 WD33C93_scsi_pointer(prev)->phase = 1; 570 goto yes; 571 } 572 } 573 574 goto no; 575 576 yes: 577 scsi_pointer->phase = 1; 578 579#ifdef PROC_STATISTICS 580 hostdata->disc_allowed_cnt[cmd->device->id]++; 581#endif 582 583 no: 584 585 write_wd33c93(regs, WD_SOURCE_ID, scsi_pointer->phase ? SRCID_ER : 0); 586 587 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun); 588 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 589 hostdata->sync_xfer[cmd->device->id]); 590 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF)); 591 592 if ((hostdata->level2 == L2_NONE) || 593 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { 594 595 /* 596 * Do a 'Select-With-ATN' command. This will end with 597 * one of the following interrupts: 598 * CSR_RESEL_AM: failure - can try again later. 599 * CSR_TIMEOUT: failure - give up. 600 * CSR_SELECT: success - proceed. 601 */ 602 603 hostdata->selecting = cmd; 604 605/* Every target has its own synchronous transfer setting, kept in the 606 * sync_xfer array, and a corresponding status byte in sync_stat[]. 607 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its 608 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET 609 * means that the parameters are undetermined as yet, and that we 610 * need to send an SDTR message to this device after selection is 611 * complete: We set SS_FIRST to tell the interrupt routine to do so. 612 * If we've been asked not to try synchronous transfers on this 613 * target (and _all_ luns within it), we'll still send the SDTR message 614 * later, but at that time we'll negotiate for async by specifying a 615 * sync fifo depth of 0. 616 */ 617 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) 618 hostdata->sync_stat[cmd->device->id] = SS_FIRST; 619 hostdata->state = S_SELECTING; 620 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 621 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); 622 } else { 623 624 /* 625 * Do a 'Select-With-ATN-Xfer' command. This will end with 626 * one of the following interrupts: 627 * CSR_RESEL_AM: failure - can try again later. 628 * CSR_TIMEOUT: failure - give up. 629 * anything else: success - proceed. 630 */ 631 632 hostdata->connected = cmd; 633 write_wd33c93(regs, WD_COMMAND_PHASE, 0); 634 635 /* copy command_descriptor_block into WD chip 636 * (take advantage of auto-incrementing) 637 */ 638 639 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); 640 641 /* The wd33c93 only knows about Group 0, 1, and 5 commands when 642 * it's doing a 'select-and-transfer'. To be safe, we write the 643 * size of the CDB into the OWN_ID register for every case. This 644 * way there won't be problems with vendor-unique, audio, etc. 645 */ 646 647 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); 648 649 /* When doing a non-disconnect command with DMA, we can save 650 * ourselves a DATA phase interrupt later by setting everything 651 * up ahead of time. 652 */ 653 654 if (scsi_pointer->phase == 0 && hostdata->no_dma == 0) { 655 if (hostdata->dma_setup(cmd, 656 (cmd->sc_data_direction == DMA_TO_DEVICE) ? 657 DATA_OUT_DIR : DATA_IN_DIR)) 658 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 659 else { 660 write_wd33c93_count(regs, 661 scsi_pointer->this_residual); 662 write_wd33c93(regs, WD_CONTROL, 663 CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 664 hostdata->dma = D_DMA_RUNNING; 665 } 666 } else 667 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 668 669 hostdata->state = S_RUNNING_LEVEL2; 670 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 671 } 672 673 /* 674 * Since the SCSI bus can handle only 1 connection at a time, 675 * we get out of here now. If the selection fails, or when 676 * the command disconnects, we'll come back to this routine 677 * to search the input_Q again... 678 */ 679 680 DB(DB_EXECUTE, 681 printk("%s)EX-2 ", scsi_pointer->phase ? "d:" : "")) 682} 683 684static void 685transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, 686 int data_in_dir, struct WD33C93_hostdata *hostdata) 687{ 688 uchar asr; 689 690 DB(DB_TRANSFER, 691 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) 692 693 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 694 write_wd33c93_count(regs, cnt); 695 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 696 if (data_in_dir) { 697 do { 698 asr = read_aux_stat(regs); 699 if (asr & ASR_DBR) 700 *buf++ = read_wd33c93(regs, WD_DATA); 701 } while (!(asr & ASR_INT)); 702 } else { 703 do { 704 asr = read_aux_stat(regs); 705 if (asr & ASR_DBR) 706 write_wd33c93(regs, WD_DATA, *buf++); 707 } while (!(asr & ASR_INT)); 708 } 709 710 /* Note: we are returning with the interrupt UN-cleared. 711 * Since (presumably) an entire I/O operation has 712 * completed, the bus phase is probably different, and 713 * the interrupt routine will discover this when it 714 * responds to the uncleared int. 715 */ 716 717} 718 719static void 720transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, 721 int data_in_dir) 722{ 723 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd); 724 struct WD33C93_hostdata *hostdata; 725 unsigned long length; 726 727 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 728 729/* Normally, you'd expect 'this_residual' to be non-zero here. 730 * In a series of scatter-gather transfers, however, this 731 * routine will usually be called with 'this_residual' equal 732 * to 0 and 'buffers_residual' non-zero. This means that a 733 * previous transfer completed, clearing 'this_residual', and 734 * now we need to setup the next scatter-gather buffer as the 735 * source or destination for THIS transfer. 736 */ 737 if (!scsi_pointer->this_residual && scsi_pointer->buffers_residual) { 738 scsi_pointer->buffer = sg_next(scsi_pointer->buffer); 739 --scsi_pointer->buffers_residual; 740 scsi_pointer->this_residual = scsi_pointer->buffer->length; 741 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer); 742 } 743 if (!scsi_pointer->this_residual) /* avoid bogus setups */ 744 return; 745 746 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 747 hostdata->sync_xfer[cmd->device->id]); 748 749/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. 750 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. 751 */ 752 753 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { 754#ifdef PROC_STATISTICS 755 hostdata->pio_cnt++; 756#endif 757 transfer_pio(regs, (uchar *) scsi_pointer->ptr, 758 scsi_pointer->this_residual, data_in_dir, 759 hostdata); 760 length = scsi_pointer->this_residual; 761 scsi_pointer->this_residual = read_wd33c93_count(regs); 762 scsi_pointer->ptr += length - scsi_pointer->this_residual; 763 } 764 765/* We are able to do DMA (in fact, the Amiga hardware is 766 * already going!), so start up the wd33c93 in DMA mode. 767 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the 768 * transfer completes and causes an interrupt, we're 769 * reminded to tell the Amiga to shut down its end. We'll 770 * postpone the updating of 'this_residual' and 'ptr' 771 * until then. 772 */ 773 774 else { 775#ifdef PROC_STATISTICS 776 hostdata->dma_cnt++; 777#endif 778 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 779 write_wd33c93_count(regs, scsi_pointer->this_residual); 780 781 if ((hostdata->level2 >= L2_DATA) || 782 (hostdata->level2 == L2_BASIC && scsi_pointer->phase == 0)) { 783 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 784 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 785 hostdata->state = S_RUNNING_LEVEL2; 786 } else 787 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 788 789 hostdata->dma = D_DMA_RUNNING; 790 } 791} 792 793void 794wd33c93_intr(struct Scsi_Host *instance) 795{ 796 struct scsi_pointer *scsi_pointer; 797 struct WD33C93_hostdata *hostdata = 798 (struct WD33C93_hostdata *) instance->hostdata; 799 const wd33c93_regs regs = hostdata->regs; 800 struct scsi_cmnd *patch, *cmd; 801 uchar asr, sr, phs, id, lun, *ucp, msg; 802 unsigned long length, flags; 803 804 asr = read_aux_stat(regs); 805 if (!(asr & ASR_INT) || (asr & ASR_BSY)) 806 return; 807 808 spin_lock_irqsave(&hostdata->lock, flags); 809 810#ifdef PROC_STATISTICS 811 hostdata->int_cnt++; 812#endif 813 814 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ 815 scsi_pointer = WD33C93_scsi_pointer(cmd); 816 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ 817 phs = read_wd33c93(regs, WD_COMMAND_PHASE); 818 819 DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) 820 821/* After starting a DMA transfer, the next interrupt 822 * is guaranteed to be in response to completion of 823 * the transfer. Since the Amiga DMA hardware runs in 824 * in an open-ended fashion, it needs to be told when 825 * to stop; do that here if D_DMA_RUNNING is true. 826 * Also, we have to update 'this_residual' and 'ptr' 827 * based on the contents of the TRANSFER_COUNT register, 828 * in case the device decided to do an intermediate 829 * disconnect (a device may do this if it has to do a 830 * seek, or just to be nice and let other devices have 831 * some bus time during long transfers). After doing 832 * whatever is needed, we go on and service the WD3393 833 * interrupt normally. 834 */ 835 if (hostdata->dma == D_DMA_RUNNING) { 836 DB(DB_TRANSFER, 837 printk("[%p/%d:", scsi_pointer->ptr, scsi_pointer->this_residual)) 838 hostdata->dma_stop(cmd->device->host, cmd, 1); 839 hostdata->dma = D_DMA_OFF; 840 length = scsi_pointer->this_residual; 841 scsi_pointer->this_residual = read_wd33c93_count(regs); 842 scsi_pointer->ptr += length - scsi_pointer->this_residual; 843 DB(DB_TRANSFER, 844 printk("%p/%d]", scsi_pointer->ptr, scsi_pointer->this_residual)) 845 } 846 847/* Respond to the specific WD3393 interrupt - there are quite a few! */ 848 switch (sr) { 849 case CSR_TIMEOUT: 850 DB(DB_INTR, printk("TIMEOUT")) 851 852 if (hostdata->state == S_RUNNING_LEVEL2) 853 hostdata->connected = NULL; 854 else { 855 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ 856 hostdata->selecting = NULL; 857 } 858 859 cmd->result = DID_NO_CONNECT << 16; 860 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 861 hostdata->state = S_UNCONNECTED; 862 scsi_done(cmd); 863 864 /* From esp.c: 865 * There is a window of time within the scsi_done() path 866 * of execution where interrupts are turned back on full 867 * blast and left that way. During that time we could 868 * reconnect to a disconnected command, then we'd bomb 869 * out below. We could also end up executing two commands 870 * at _once_. ...just so you know why the restore_flags() 871 * is here... 872 */ 873 874 spin_unlock_irqrestore(&hostdata->lock, flags); 875 876/* We are not connected to a target - check to see if there 877 * are commands waiting to be executed. 878 */ 879 880 wd33c93_execute(instance); 881 break; 882 883/* Note: this interrupt should not occur in a LEVEL2 command */ 884 885 case CSR_SELECT: 886 DB(DB_INTR, printk("SELECT")) 887 hostdata->connected = cmd = 888 (struct scsi_cmnd *) hostdata->selecting; 889 hostdata->selecting = NULL; 890 891 /* construct an IDENTIFY message with correct disconnect bit */ 892 893 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun); 894 if (scsi_pointer->phase) 895 hostdata->outgoing_msg[0] |= 0x40; 896 897 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { 898 899 hostdata->sync_stat[cmd->device->id] = SS_WAITING; 900 901/* Tack on a 2nd message to ask about synchronous transfers. If we've 902 * been asked to do only asynchronous transfers on this device, we 903 * request a fifo depth of 0, which is equivalent to async - should 904 * solve the problems some people have had with GVP's Guru ROM. 905 */ 906 907 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; 908 hostdata->outgoing_msg[2] = 3; 909 hostdata->outgoing_msg[3] = EXTENDED_SDTR; 910 if (hostdata->no_sync & (1 << cmd->device->id)) { 911 calc_sync_msg(hostdata->default_sx_per, 0, 912 0, hostdata->outgoing_msg + 4); 913 } else { 914 calc_sync_msg(optimum_sx_per(hostdata), 915 OPTIMUM_SX_OFF, 916 hostdata->fast, 917 hostdata->outgoing_msg + 4); 918 } 919 hostdata->outgoing_len = 6; 920#ifdef SYNC_DEBUG 921 ucp = hostdata->outgoing_msg + 1; 922 printk(" sending SDTR %02x03%02x%02x%02x ", 923 ucp[0], ucp[2], ucp[3], ucp[4]); 924#endif 925 } else 926 hostdata->outgoing_len = 1; 927 928 hostdata->state = S_CONNECTED; 929 spin_unlock_irqrestore(&hostdata->lock, flags); 930 break; 931 932 case CSR_XFER_DONE | PHS_DATA_IN: 933 case CSR_UNEXP | PHS_DATA_IN: 934 case CSR_SRV_REQ | PHS_DATA_IN: 935 DB(DB_INTR, 936 printk("IN-%d.%d", scsi_pointer->this_residual, 937 scsi_pointer->buffers_residual)) 938 transfer_bytes(regs, cmd, DATA_IN_DIR); 939 if (hostdata->state != S_RUNNING_LEVEL2) 940 hostdata->state = S_CONNECTED; 941 spin_unlock_irqrestore(&hostdata->lock, flags); 942 break; 943 944 case CSR_XFER_DONE | PHS_DATA_OUT: 945 case CSR_UNEXP | PHS_DATA_OUT: 946 case CSR_SRV_REQ | PHS_DATA_OUT: 947 DB(DB_INTR, 948 printk("OUT-%d.%d", scsi_pointer->this_residual, 949 scsi_pointer->buffers_residual)) 950 transfer_bytes(regs, cmd, DATA_OUT_DIR); 951 if (hostdata->state != S_RUNNING_LEVEL2) 952 hostdata->state = S_CONNECTED; 953 spin_unlock_irqrestore(&hostdata->lock, flags); 954 break; 955 956/* Note: this interrupt should not occur in a LEVEL2 command */ 957 958 case CSR_XFER_DONE | PHS_COMMAND: 959 case CSR_UNEXP | PHS_COMMAND: 960 case CSR_SRV_REQ | PHS_COMMAND: 961 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0])) 962 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, 963 hostdata); 964 hostdata->state = S_CONNECTED; 965 spin_unlock_irqrestore(&hostdata->lock, flags); 966 break; 967 968 case CSR_XFER_DONE | PHS_STATUS: 969 case CSR_UNEXP | PHS_STATUS: 970 case CSR_SRV_REQ | PHS_STATUS: 971 DB(DB_INTR, printk("STATUS=")) 972 scsi_pointer->Status = read_1_byte(regs); 973 DB(DB_INTR, printk("%02x", scsi_pointer->Status)) 974 if (hostdata->level2 >= L2_BASIC) { 975 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 976 udelay(7); 977 hostdata->state = S_RUNNING_LEVEL2; 978 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); 979 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 980 } else { 981 hostdata->state = S_CONNECTED; 982 } 983 spin_unlock_irqrestore(&hostdata->lock, flags); 984 break; 985 986 case CSR_XFER_DONE | PHS_MESS_IN: 987 case CSR_UNEXP | PHS_MESS_IN: 988 case CSR_SRV_REQ | PHS_MESS_IN: 989 DB(DB_INTR, printk("MSG_IN=")) 990 991 msg = read_1_byte(regs); 992 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 993 udelay(7); 994 995 hostdata->incoming_msg[hostdata->incoming_ptr] = msg; 996 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) 997 msg = EXTENDED_MESSAGE; 998 else 999 hostdata->incoming_ptr = 0; 1000 1001 scsi_pointer->Message = msg; 1002 switch (msg) { 1003 1004 case COMMAND_COMPLETE: 1005 DB(DB_INTR, printk("CCMP")) 1006 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1007 hostdata->state = S_PRE_CMP_DISC; 1008 break; 1009 1010 case SAVE_POINTERS: 1011 DB(DB_INTR, printk("SDP")) 1012 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1013 hostdata->state = S_CONNECTED; 1014 break; 1015 1016 case RESTORE_POINTERS: 1017 DB(DB_INTR, printk("RDP")) 1018 if (hostdata->level2 >= L2_BASIC) { 1019 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1020 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1021 hostdata->state = S_RUNNING_LEVEL2; 1022 } else { 1023 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1024 hostdata->state = S_CONNECTED; 1025 } 1026 break; 1027 1028 case DISCONNECT: 1029 DB(DB_INTR, printk("DIS")) 1030 cmd->device->disconnect = 1; 1031 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1032 hostdata->state = S_PRE_TMP_DISC; 1033 break; 1034 1035 case MESSAGE_REJECT: 1036 DB(DB_INTR, printk("REJ")) 1037#ifdef SYNC_DEBUG 1038 printk("-REJ-"); 1039#endif 1040 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { 1041 hostdata->sync_stat[cmd->device->id] = SS_SET; 1042 /* we want default_sx_per, not DEFAULT_SX_PER */ 1043 hostdata->sync_xfer[cmd->device->id] = 1044 calc_sync_xfer(hostdata->default_sx_per 1045 / 4, 0, 0, hostdata->sx_table); 1046 } 1047 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1048 hostdata->state = S_CONNECTED; 1049 break; 1050 1051 case EXTENDED_MESSAGE: 1052 DB(DB_INTR, printk("EXT")) 1053 1054 ucp = hostdata->incoming_msg; 1055 1056#ifdef SYNC_DEBUG 1057 printk("%02x", ucp[hostdata->incoming_ptr]); 1058#endif 1059 /* Is this the last byte of the extended message? */ 1060 1061 if ((hostdata->incoming_ptr >= 2) && 1062 (hostdata->incoming_ptr == (ucp[1] + 1))) { 1063 1064 switch (ucp[2]) { /* what's the EXTENDED code? */ 1065 case EXTENDED_SDTR: 1066 /* default to default async period */ 1067 id = calc_sync_xfer(hostdata-> 1068 default_sx_per / 4, 0, 1069 0, hostdata->sx_table); 1070 if (hostdata->sync_stat[cmd->device->id] != 1071 SS_WAITING) { 1072 1073/* A device has sent an unsolicited SDTR message; rather than go 1074 * through the effort of decoding it and then figuring out what 1075 * our reply should be, we're just gonna say that we have a 1076 * synchronous fifo depth of 0. This will result in asynchronous 1077 * transfers - not ideal but so much easier. 1078 * Actually, this is OK because it assures us that if we don't 1079 * specifically ask for sync transfers, we won't do any. 1080 */ 1081 1082 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1083 hostdata->outgoing_msg[0] = 1084 EXTENDED_MESSAGE; 1085 hostdata->outgoing_msg[1] = 3; 1086 hostdata->outgoing_msg[2] = 1087 EXTENDED_SDTR; 1088 calc_sync_msg(hostdata-> 1089 default_sx_per, 0, 1090 0, hostdata->outgoing_msg + 3); 1091 hostdata->outgoing_len = 5; 1092 } else { 1093 if (ucp[4]) /* well, sync transfer */ 1094 id = calc_sync_xfer(ucp[3], ucp[4], 1095 hostdata->fast, 1096 hostdata->sx_table); 1097 else if (ucp[3]) /* very unlikely... */ 1098 id = calc_sync_xfer(ucp[3], ucp[4], 1099 0, hostdata->sx_table); 1100 } 1101 hostdata->sync_xfer[cmd->device->id] = id; 1102#ifdef SYNC_DEBUG 1103 printk(" sync_xfer=%02x\n", 1104 hostdata->sync_xfer[cmd->device->id]); 1105#endif 1106 hostdata->sync_stat[cmd->device->id] = 1107 SS_SET; 1108 write_wd33c93_cmd(regs, 1109 WD_CMD_NEGATE_ACK); 1110 hostdata->state = S_CONNECTED; 1111 break; 1112 case EXTENDED_WDTR: 1113 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1114 printk("sending WDTR "); 1115 hostdata->outgoing_msg[0] = 1116 EXTENDED_MESSAGE; 1117 hostdata->outgoing_msg[1] = 2; 1118 hostdata->outgoing_msg[2] = 1119 EXTENDED_WDTR; 1120 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ 1121 hostdata->outgoing_len = 4; 1122 write_wd33c93_cmd(regs, 1123 WD_CMD_NEGATE_ACK); 1124 hostdata->state = S_CONNECTED; 1125 break; 1126 default: 1127 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1128 printk 1129 ("Rejecting Unknown Extended Message(%02x). ", 1130 ucp[2]); 1131 hostdata->outgoing_msg[0] = 1132 MESSAGE_REJECT; 1133 hostdata->outgoing_len = 1; 1134 write_wd33c93_cmd(regs, 1135 WD_CMD_NEGATE_ACK); 1136 hostdata->state = S_CONNECTED; 1137 break; 1138 } 1139 hostdata->incoming_ptr = 0; 1140 } 1141 1142 /* We need to read more MESS_IN bytes for the extended message */ 1143 1144 else { 1145 hostdata->incoming_ptr++; 1146 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1147 hostdata->state = S_CONNECTED; 1148 } 1149 break; 1150 1151 default: 1152 printk("Rejecting Unknown Message(%02x) ", msg); 1153 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1154 hostdata->outgoing_msg[0] = MESSAGE_REJECT; 1155 hostdata->outgoing_len = 1; 1156 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1157 hostdata->state = S_CONNECTED; 1158 } 1159 spin_unlock_irqrestore(&hostdata->lock, flags); 1160 break; 1161 1162/* Note: this interrupt will occur only after a LEVEL2 command */ 1163 1164 case CSR_SEL_XFER_DONE: 1165 1166/* Make sure that reselection is enabled at this point - it may 1167 * have been turned off for the command that just completed. 1168 */ 1169 1170 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1171 if (phs == 0x60) { 1172 DB(DB_INTR, printk("SX-DONE")) 1173 scsi_pointer->Message = COMMAND_COMPLETE; 1174 lun = read_wd33c93(regs, WD_TARGET_LUN); 1175 DB(DB_INTR, printk(":%d.%d", scsi_pointer->Status, lun)) 1176 hostdata->connected = NULL; 1177 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1178 hostdata->state = S_UNCONNECTED; 1179 if (scsi_pointer->Status == ILLEGAL_STATUS_BYTE) 1180 scsi_pointer->Status = lun; 1181 if (cmd->cmnd[0] == REQUEST_SENSE 1182 && scsi_pointer->Status != SAM_STAT_GOOD) { 1183 set_host_byte(cmd, DID_ERROR); 1184 } else { 1185 set_host_byte(cmd, DID_OK); 1186 scsi_msg_to_host_byte(cmd, scsi_pointer->Message); 1187 set_status_byte(cmd, scsi_pointer->Status); 1188 } 1189 scsi_done(cmd); 1190 1191/* We are no longer connected to a target - check to see if 1192 * there are commands waiting to be executed. 1193 */ 1194 spin_unlock_irqrestore(&hostdata->lock, flags); 1195 wd33c93_execute(instance); 1196 } else { 1197 printk 1198 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", 1199 asr, sr, phs); 1200 spin_unlock_irqrestore(&hostdata->lock, flags); 1201 } 1202 break; 1203 1204/* Note: this interrupt will occur only after a LEVEL2 command */ 1205 1206 case CSR_SDP: 1207 DB(DB_INTR, printk("SDP")) 1208 hostdata->state = S_RUNNING_LEVEL2; 1209 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); 1210 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1211 spin_unlock_irqrestore(&hostdata->lock, flags); 1212 break; 1213 1214 case CSR_XFER_DONE | PHS_MESS_OUT: 1215 case CSR_UNEXP | PHS_MESS_OUT: 1216 case CSR_SRV_REQ | PHS_MESS_OUT: 1217 DB(DB_INTR, printk("MSG_OUT=")) 1218 1219/* To get here, we've probably requested MESSAGE_OUT and have 1220 * already put the correct bytes in outgoing_msg[] and filled 1221 * in outgoing_len. We simply send them out to the SCSI bus. 1222 * Sometimes we get MESSAGE_OUT phase when we're not expecting 1223 * it - like when our SDTR message is rejected by a target. Some 1224 * targets send the REJECT before receiving all of the extended 1225 * message, and then seem to go back to MESSAGE_OUT for a byte 1226 * or two. Not sure why, or if I'm doing something wrong to 1227 * cause this to happen. Regardless, it seems that sending 1228 * NOP messages in these situations results in no harm and 1229 * makes everyone happy. 1230 */ 1231 if (hostdata->outgoing_len == 0) { 1232 hostdata->outgoing_len = 1; 1233 hostdata->outgoing_msg[0] = NOP; 1234 } 1235 transfer_pio(regs, hostdata->outgoing_msg, 1236 hostdata->outgoing_len, DATA_OUT_DIR, hostdata); 1237 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) 1238 hostdata->outgoing_len = 0; 1239 hostdata->state = S_CONNECTED; 1240 spin_unlock_irqrestore(&hostdata->lock, flags); 1241 break; 1242 1243 case CSR_UNEXP_DISC: 1244 1245/* I think I've seen this after a request-sense that was in response 1246 * to an error condition, but not sure. We certainly need to do 1247 * something when we get this interrupt - the question is 'what?'. 1248 * Let's think positively, and assume some command has finished 1249 * in a legal manner (like a command that provokes a request-sense), 1250 * so we treat it as a normal command-complete-disconnect. 1251 */ 1252 1253/* Make sure that reselection is enabled at this point - it may 1254 * have been turned off for the command that just completed. 1255 */ 1256 1257 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1258 if (cmd == NULL) { 1259 printk(" - Already disconnected! "); 1260 hostdata->state = S_UNCONNECTED; 1261 spin_unlock_irqrestore(&hostdata->lock, flags); 1262 return; 1263 } 1264 DB(DB_INTR, printk("UNEXP_DISC")) 1265 hostdata->connected = NULL; 1266 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1267 hostdata->state = S_UNCONNECTED; 1268 if (cmd->cmnd[0] == REQUEST_SENSE && 1269 scsi_pointer->Status != SAM_STAT_GOOD) { 1270 set_host_byte(cmd, DID_ERROR); 1271 } else { 1272 set_host_byte(cmd, DID_OK); 1273 scsi_msg_to_host_byte(cmd, scsi_pointer->Message); 1274 set_status_byte(cmd, scsi_pointer->Status); 1275 } 1276 scsi_done(cmd); 1277 1278/* We are no longer connected to a target - check to see if 1279 * there are commands waiting to be executed. 1280 */ 1281 /* look above for comments on scsi_done() */ 1282 spin_unlock_irqrestore(&hostdata->lock, flags); 1283 wd33c93_execute(instance); 1284 break; 1285 1286 case CSR_DISC: 1287 1288/* Make sure that reselection is enabled at this point - it may 1289 * have been turned off for the command that just completed. 1290 */ 1291 1292 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1293 DB(DB_INTR, printk("DISC")) 1294 if (cmd == NULL) { 1295 printk(" - Already disconnected! "); 1296 hostdata->state = S_UNCONNECTED; 1297 } 1298 switch (hostdata->state) { 1299 case S_PRE_CMP_DISC: 1300 hostdata->connected = NULL; 1301 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1302 hostdata->state = S_UNCONNECTED; 1303 DB(DB_INTR, printk(":%d", scsi_pointer->Status)) 1304 if (cmd->cmnd[0] == REQUEST_SENSE 1305 && scsi_pointer->Status != SAM_STAT_GOOD) { 1306 set_host_byte(cmd, DID_ERROR); 1307 } else { 1308 set_host_byte(cmd, DID_OK); 1309 scsi_msg_to_host_byte(cmd, scsi_pointer->Message); 1310 set_status_byte(cmd, scsi_pointer->Status); 1311 } 1312 scsi_done(cmd); 1313 break; 1314 case S_PRE_TMP_DISC: 1315 case S_RUNNING_LEVEL2: 1316 cmd->host_scribble = (uchar *) hostdata->disconnected_Q; 1317 hostdata->disconnected_Q = cmd; 1318 hostdata->connected = NULL; 1319 hostdata->state = S_UNCONNECTED; 1320 1321#ifdef PROC_STATISTICS 1322 hostdata->disc_done_cnt[cmd->device->id]++; 1323#endif 1324 1325 break; 1326 default: 1327 printk("*** Unexpected DISCONNECT interrupt! ***"); 1328 hostdata->state = S_UNCONNECTED; 1329 } 1330 1331/* We are no longer connected to a target - check to see if 1332 * there are commands waiting to be executed. 1333 */ 1334 spin_unlock_irqrestore(&hostdata->lock, flags); 1335 wd33c93_execute(instance); 1336 break; 1337 1338 case CSR_RESEL_AM: 1339 case CSR_RESEL: 1340 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) 1341 1342 /* Old chips (pre -A ???) don't have advanced features and will 1343 * generate CSR_RESEL. In that case we have to extract the LUN the 1344 * hard way (see below). 1345 * First we have to make sure this reselection didn't 1346 * happen during Arbitration/Selection of some other device. 1347 * If yes, put losing command back on top of input_Q. 1348 */ 1349 if (hostdata->level2 <= L2_NONE) { 1350 1351 if (hostdata->selecting) { 1352 cmd = (struct scsi_cmnd *) hostdata->selecting; 1353 hostdata->selecting = NULL; 1354 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1355 cmd->host_scribble = 1356 (uchar *) hostdata->input_Q; 1357 hostdata->input_Q = cmd; 1358 } 1359 } 1360 1361 else { 1362 1363 if (cmd) { 1364 if (phs == 0x00) { 1365 hostdata->busy[cmd->device->id] &= 1366 ~(1 << (cmd->device->lun & 0xff)); 1367 cmd->host_scribble = 1368 (uchar *) hostdata->input_Q; 1369 hostdata->input_Q = cmd; 1370 } else { 1371 printk 1372 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", 1373 asr, sr, phs); 1374 while (1) 1375 printk("\r"); 1376 } 1377 } 1378 1379 } 1380 1381 /* OK - find out which device reselected us. */ 1382 1383 id = read_wd33c93(regs, WD_SOURCE_ID); 1384 id &= SRCID_MASK; 1385 1386 /* and extract the lun from the ID message. (Note that we don't 1387 * bother to check for a valid message here - I guess this is 1388 * not the right way to go, but...) 1389 */ 1390 1391 if (sr == CSR_RESEL_AM) { 1392 lun = read_wd33c93(regs, WD_DATA); 1393 if (hostdata->level2 < L2_RESELECT) 1394 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1395 lun &= 7; 1396 } else { 1397 /* Old chip; wait for msgin phase to pick up the LUN. */ 1398 for (lun = 255; lun; lun--) { 1399 if ((asr = read_aux_stat(regs)) & ASR_INT) 1400 break; 1401 udelay(10); 1402 } 1403 if (!(asr & ASR_INT)) { 1404 printk 1405 ("wd33c93: Reselected without IDENTIFY\n"); 1406 lun = 0; 1407 } else { 1408 /* Verify this is a change to MSG_IN and read the message */ 1409 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1410 udelay(7); 1411 if (sr == (CSR_ABORT | PHS_MESS_IN) || 1412 sr == (CSR_UNEXP | PHS_MESS_IN) || 1413 sr == (CSR_SRV_REQ | PHS_MESS_IN)) { 1414 /* Got MSG_IN, grab target LUN */ 1415 lun = read_1_byte(regs); 1416 /* Now we expect a 'paused with ACK asserted' int.. */ 1417 asr = read_aux_stat(regs); 1418 if (!(asr & ASR_INT)) { 1419 udelay(10); 1420 asr = read_aux_stat(regs); 1421 if (!(asr & ASR_INT)) 1422 printk 1423 ("wd33c93: No int after LUN on RESEL (%02x)\n", 1424 asr); 1425 } 1426 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1427 udelay(7); 1428 if (sr != CSR_MSGIN) 1429 printk 1430 ("wd33c93: Not paused with ACK on RESEL (%02x)\n", 1431 sr); 1432 lun &= 7; 1433 write_wd33c93_cmd(regs, 1434 WD_CMD_NEGATE_ACK); 1435 } else { 1436 printk 1437 ("wd33c93: Not MSG_IN on reselect (%02x)\n", 1438 sr); 1439 lun = 0; 1440 } 1441 } 1442 } 1443 1444 /* Now we look for the command that's reconnecting. */ 1445 1446 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; 1447 patch = NULL; 1448 while (cmd) { 1449 if (id == cmd->device->id && lun == (u8)cmd->device->lun) 1450 break; 1451 patch = cmd; 1452 cmd = (struct scsi_cmnd *) cmd->host_scribble; 1453 } 1454 1455 /* Hmm. Couldn't find a valid command.... What to do? */ 1456 1457 if (!cmd) { 1458 printk 1459 ("---TROUBLE: target %d.%d not in disconnect queue---", 1460 id, (u8)lun); 1461 spin_unlock_irqrestore(&hostdata->lock, flags); 1462 return; 1463 } 1464 1465 /* Ok, found the command - now start it up again. */ 1466 1467 if (patch) 1468 patch->host_scribble = cmd->host_scribble; 1469 else 1470 hostdata->disconnected_Q = 1471 (struct scsi_cmnd *) cmd->host_scribble; 1472 hostdata->connected = cmd; 1473 1474 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' 1475 * because these things are preserved over a disconnect. 1476 * But we DO need to fix the DPD bit so it's correct for this command. 1477 */ 1478 1479 if (cmd->sc_data_direction == DMA_TO_DEVICE) 1480 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 1481 else 1482 write_wd33c93(regs, WD_DESTINATION_ID, 1483 cmd->device->id | DSTID_DPD); 1484 if (hostdata->level2 >= L2_RESELECT) { 1485 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ 1486 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1487 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1488 hostdata->state = S_RUNNING_LEVEL2; 1489 } else 1490 hostdata->state = S_CONNECTED; 1491 1492 spin_unlock_irqrestore(&hostdata->lock, flags); 1493 break; 1494 1495 default: 1496 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); 1497 spin_unlock_irqrestore(&hostdata->lock, flags); 1498 } 1499 1500 DB(DB_INTR, printk("} ")) 1501 1502} 1503 1504static void 1505reset_wd33c93(struct Scsi_Host *instance) 1506{ 1507 struct WD33C93_hostdata *hostdata = 1508 (struct WD33C93_hostdata *) instance->hostdata; 1509 const wd33c93_regs regs = hostdata->regs; 1510 uchar sr; 1511 1512#ifdef CONFIG_SGI_IP22 1513 { 1514 int busycount = 0; 1515 extern void sgiwd93_reset(unsigned long); 1516 /* wait 'til the chip gets some time for us */ 1517 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) 1518 udelay (10); 1519 /* 1520 * there are scsi devices out there, which manage to lock up 1521 * the wd33c93 in a busy condition. In this state it won't 1522 * accept the reset command. The only way to solve this is to 1523 * give the chip a hardware reset (if possible). The code below 1524 * does this for the SGI Indy, where this is possible 1525 */ 1526 /* still busy ? */ 1527 if (read_aux_stat(regs) & ASR_BSY) 1528 sgiwd93_reset(instance->base); /* yeah, give it the hard one */ 1529 } 1530#endif 1531 1532 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | 1533 instance->this_id | hostdata->clock_freq); 1534 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1535 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 1536 calc_sync_xfer(hostdata->default_sx_per / 4, 1537 DEFAULT_SX_OFF, 0, hostdata->sx_table)); 1538 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); 1539 1540 1541#ifdef CONFIG_MVME147_SCSI 1542 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ 1543#endif 1544 1545 while (!(read_aux_stat(regs) & ASR_INT)) 1546 ; 1547 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1548 1549 hostdata->microcode = read_wd33c93(regs, WD_CDB_1); 1550 if (sr == 0x00) 1551 hostdata->chip = C_WD33C93; 1552 else if (sr == 0x01) { 1553 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ 1554 sr = read_wd33c93(regs, WD_QUEUE_TAG); 1555 if (sr == 0xa5) { 1556 hostdata->chip = C_WD33C93B; 1557 write_wd33c93(regs, WD_QUEUE_TAG, 0); 1558 } else 1559 hostdata->chip = C_WD33C93A; 1560 } else 1561 hostdata->chip = C_UNKNOWN_CHIP; 1562 1563 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ 1564 hostdata->fast = 0; 1565 1566 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); 1567 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1568} 1569 1570int 1571wd33c93_host_reset(struct scsi_cmnd * SCpnt) 1572{ 1573 struct Scsi_Host *instance; 1574 struct WD33C93_hostdata *hostdata; 1575 int i; 1576 1577 instance = SCpnt->device->host; 1578 spin_lock_irq(instance->host_lock); 1579 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1580 1581 printk("scsi%d: reset. ", instance->host_no); 1582 disable_irq(instance->irq); 1583 1584 hostdata->dma_stop(instance, NULL, 0); 1585 for (i = 0; i < 8; i++) { 1586 hostdata->busy[i] = 0; 1587 hostdata->sync_xfer[i] = 1588 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1589 0, hostdata->sx_table); 1590 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1591 } 1592 hostdata->input_Q = NULL; 1593 hostdata->selecting = NULL; 1594 hostdata->connected = NULL; 1595 hostdata->disconnected_Q = NULL; 1596 hostdata->state = S_UNCONNECTED; 1597 hostdata->dma = D_DMA_OFF; 1598 hostdata->incoming_ptr = 0; 1599 hostdata->outgoing_len = 0; 1600 1601 reset_wd33c93(instance); 1602 SCpnt->result = DID_RESET << 16; 1603 enable_irq(instance->irq); 1604 spin_unlock_irq(instance->host_lock); 1605 return SUCCESS; 1606} 1607 1608int 1609wd33c93_abort(struct scsi_cmnd * cmd) 1610{ 1611 struct Scsi_Host *instance; 1612 struct WD33C93_hostdata *hostdata; 1613 wd33c93_regs regs; 1614 struct scsi_cmnd *tmp, *prev; 1615 1616 disable_irq(cmd->device->host->irq); 1617 1618 instance = cmd->device->host; 1619 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1620 regs = hostdata->regs; 1621 1622/* 1623 * Case 1 : If the command hasn't been issued yet, we simply remove it 1624 * from the input_Q. 1625 */ 1626 1627 tmp = (struct scsi_cmnd *) hostdata->input_Q; 1628 prev = NULL; 1629 while (tmp) { 1630 if (tmp == cmd) { 1631 if (prev) 1632 prev->host_scribble = cmd->host_scribble; 1633 else 1634 hostdata->input_Q = 1635 (struct scsi_cmnd *) cmd->host_scribble; 1636 cmd->host_scribble = NULL; 1637 cmd->result = DID_ABORT << 16; 1638 printk 1639 ("scsi%d: Abort - removing command from input_Q. ", 1640 instance->host_no); 1641 enable_irq(cmd->device->host->irq); 1642 scsi_done(cmd); 1643 return SUCCESS; 1644 } 1645 prev = tmp; 1646 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1647 } 1648 1649/* 1650 * Case 2 : If the command is connected, we're going to fail the abort 1651 * and let the high level SCSI driver retry at a later time or 1652 * issue a reset. 1653 * 1654 * Timeouts, and therefore aborted commands, will be highly unlikely 1655 * and handling them cleanly in this situation would make the common 1656 * case of noresets less efficient, and would pollute our code. So, 1657 * we fail. 1658 */ 1659 1660 if (hostdata->connected == cmd) { 1661 uchar sr, asr; 1662 unsigned long timeout; 1663 1664 printk("scsi%d: Aborting connected command - ", 1665 instance->host_no); 1666 1667 printk("stopping DMA - "); 1668 if (hostdata->dma == D_DMA_RUNNING) { 1669 hostdata->dma_stop(instance, cmd, 0); 1670 hostdata->dma = D_DMA_OFF; 1671 } 1672 1673 printk("sending wd33c93 ABORT command - "); 1674 write_wd33c93(regs, WD_CONTROL, 1675 CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1676 write_wd33c93_cmd(regs, WD_CMD_ABORT); 1677 1678/* Now we have to attempt to flush out the FIFO... */ 1679 1680 printk("flushing fifo - "); 1681 timeout = 1000000; 1682 do { 1683 asr = read_aux_stat(regs); 1684 if (asr & ASR_DBR) 1685 read_wd33c93(regs, WD_DATA); 1686 } while (!(asr & ASR_INT) && timeout-- > 0); 1687 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1688 printk 1689 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", 1690 asr, sr, read_wd33c93_count(regs), timeout); 1691 1692 /* 1693 * Abort command processed. 1694 * Still connected. 1695 * We must disconnect. 1696 */ 1697 1698 printk("sending wd33c93 DISCONNECT command - "); 1699 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); 1700 1701 timeout = 1000000; 1702 asr = read_aux_stat(regs); 1703 while ((asr & ASR_CIP) && timeout-- > 0) 1704 asr = read_aux_stat(regs); 1705 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1706 printk("asr=%02x, sr=%02x.", asr, sr); 1707 1708 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1709 hostdata->connected = NULL; 1710 hostdata->state = S_UNCONNECTED; 1711 cmd->result = DID_ABORT << 16; 1712 1713/* sti();*/ 1714 wd33c93_execute(instance); 1715 1716 enable_irq(cmd->device->host->irq); 1717 scsi_done(cmd); 1718 return SUCCESS; 1719 } 1720 1721/* 1722 * Case 3: If the command is currently disconnected from the bus, 1723 * we're not going to expend much effort here: Let's just return 1724 * an ABORT_SNOOZE and hope for the best... 1725 */ 1726 1727 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; 1728 while (tmp) { 1729 if (tmp == cmd) { 1730 printk 1731 ("scsi%d: Abort - command found on disconnected_Q - ", 1732 instance->host_no); 1733 printk("Abort SNOOZE. "); 1734 enable_irq(cmd->device->host->irq); 1735 return FAILED; 1736 } 1737 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1738 } 1739 1740/* 1741 * Case 4 : If we reached this point, the command was not found in any of 1742 * the queues. 1743 * 1744 * We probably reached this point because of an unlikely race condition 1745 * between the command completing successfully and the abortion code, 1746 * so we won't panic, but we will notify the user in case something really 1747 * broke. 1748 */ 1749 1750/* sti();*/ 1751 wd33c93_execute(instance); 1752 1753 enable_irq(cmd->device->host->irq); 1754 printk("scsi%d: warning : SCSI command probably completed successfully" 1755 " before abortion. ", instance->host_no); 1756 return FAILED; 1757} 1758 1759#define MAX_WD33C93_HOSTS 4 1760#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) 1761#define SETUP_BUFFER_SIZE 200 1762static char setup_buffer[SETUP_BUFFER_SIZE]; 1763static char setup_used[MAX_SETUP_ARGS]; 1764static int done_setup = 0; 1765 1766static int 1767wd33c93_setup(char *str) 1768{ 1769 int i; 1770 char *p1, *p2; 1771 1772 /* The kernel does some processing of the command-line before calling 1773 * this function: If it begins with any decimal or hex number arguments, 1774 * ints[0] = how many numbers found and ints[1] through [n] are the values 1775 * themselves. str points to where the non-numeric arguments (if any) 1776 * start: We do our own parsing of those. We construct synthetic 'nosync' 1777 * keywords out of numeric args (to maintain compatibility with older 1778 * versions) and then add the rest of the arguments. 1779 */ 1780 1781 p1 = setup_buffer; 1782 *p1 = '\0'; 1783 if (str) 1784 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); 1785 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; 1786 p1 = setup_buffer; 1787 i = 0; 1788 while (*p1 && (i < MAX_SETUP_ARGS)) { 1789 p2 = strchr(p1, ','); 1790 if (p2) { 1791 *p2 = '\0'; 1792 if (p1 != p2) 1793 setup_args[i] = p1; 1794 p1 = p2 + 1; 1795 i++; 1796 } else { 1797 setup_args[i] = p1; 1798 break; 1799 } 1800 } 1801 for (i = 0; i < MAX_SETUP_ARGS; i++) 1802 setup_used[i] = 0; 1803 done_setup = 1; 1804 1805 return 1; 1806} 1807__setup("wd33c93=", wd33c93_setup); 1808 1809/* check_setup_args() returns index if key found, 0 if not 1810 */ 1811static int 1812check_setup_args(char *key, int *flags, int *val, char *buf) 1813{ 1814 int x; 1815 char *cp; 1816 1817 for (x = 0; x < MAX_SETUP_ARGS; x++) { 1818 if (setup_used[x]) 1819 continue; 1820 if (!strncmp(setup_args[x], key, strlen(key))) 1821 break; 1822 if (!strncmp(setup_args[x], "next", strlen("next"))) 1823 return 0; 1824 } 1825 if (x == MAX_SETUP_ARGS) 1826 return 0; 1827 setup_used[x] = 1; 1828 cp = setup_args[x] + strlen(key); 1829 *val = -1; 1830 if (*cp != ':') 1831 return ++x; 1832 cp++; 1833 if ((*cp >= '0') && (*cp <= '9')) { 1834 *val = simple_strtoul(cp, NULL, 0); 1835 } 1836 return ++x; 1837} 1838 1839/* 1840 * Calculate internal data-transfer-clock cycle from input-clock 1841 * frequency (/MHz) and fill 'sx_table'. 1842 * 1843 * The original driver used to rely on a fixed sx_table, containing periods 1844 * for (only) the lower limits of the respective input-clock-frequency ranges 1845 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with 1846 * this setting so far, it might be desirable to adjust the transfer periods 1847 * closer to the really attached, possibly 25% higher, input-clock, since 1848 * - the wd33c93 may really use a significant shorter period, than it has 1849 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz 1850 * instead). 1851 * - the wd33c93 may ask the target for a lower transfer rate, than the target 1852 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of 1853 * possible 200ns, which indeed shows up in tests as an approx. 10% lower 1854 * transfer rate). 1855 */ 1856static inline unsigned int 1857round_4(unsigned int x) 1858{ 1859 switch (x & 3) { 1860 case 1: --x; 1861 break; 1862 case 2: ++x; 1863 fallthrough; 1864 case 3: ++x; 1865 } 1866 return x; 1867} 1868 1869static void 1870calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) 1871{ 1872 unsigned int d, i; 1873 if (mhz < 11) 1874 d = 2; /* divisor for 8-10 MHz input-clock */ 1875 else if (mhz < 16) 1876 d = 3; /* divisor for 12-15 MHz input-clock */ 1877 else 1878 d = 4; /* divisor for 16-20 MHz input-clock */ 1879 1880 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ 1881 1882 sx_table[0].period_ns = 1; 1883 sx_table[0].reg_value = 0x20; 1884 for (i = 1; i < 8; i++) { 1885 sx_table[i].period_ns = round_4((i+1)*d / 100); 1886 sx_table[i].reg_value = (i+1)*0x10; 1887 } 1888 sx_table[7].reg_value = 0; 1889 sx_table[8].period_ns = 0; 1890 sx_table[8].reg_value = 0; 1891} 1892 1893/* 1894 * check and, maybe, map an init- or "clock:"- argument. 1895 */ 1896static uchar 1897set_clk_freq(int freq, int *mhz) 1898{ 1899 int x = freq; 1900 if (WD33C93_FS_8_10 == freq) 1901 freq = 8; 1902 else if (WD33C93_FS_12_15 == freq) 1903 freq = 12; 1904 else if (WD33C93_FS_16_20 == freq) 1905 freq = 16; 1906 else if (freq > 7 && freq < 11) 1907 x = WD33C93_FS_8_10; 1908 else if (freq > 11 && freq < 16) 1909 x = WD33C93_FS_12_15; 1910 else if (freq > 15 && freq < 21) 1911 x = WD33C93_FS_16_20; 1912 else { 1913 /* Hmm, wouldn't it be safer to assume highest freq here? */ 1914 x = WD33C93_FS_8_10; 1915 freq = 8; 1916 } 1917 *mhz = freq; 1918 return x; 1919} 1920 1921/* 1922 * to be used with the resync: fast: ... options 1923 */ 1924static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) 1925{ 1926 int i; 1927 for (i = 0; i < 8; i++) 1928 if (mask & (1 << i)) 1929 hd->sync_stat[i] = SS_UNSET; 1930} 1931 1932void 1933wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, 1934 dma_setup_t setup, dma_stop_t stop, int clock_freq) 1935{ 1936 struct WD33C93_hostdata *hostdata; 1937 int i; 1938 int flags; 1939 int val; 1940 char buf[32]; 1941 1942 if (!done_setup && setup_strings) 1943 wd33c93_setup(setup_strings); 1944 1945 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1946 1947 hostdata->regs = regs; 1948 hostdata->clock_freq = set_clk_freq(clock_freq, &i); 1949 calc_sx_table(i, hostdata->sx_table); 1950 hostdata->dma_setup = setup; 1951 hostdata->dma_stop = stop; 1952 hostdata->dma_bounce_buffer = NULL; 1953 hostdata->dma_bounce_len = 0; 1954 for (i = 0; i < 8; i++) { 1955 hostdata->busy[i] = 0; 1956 hostdata->sync_xfer[i] = 1957 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1958 0, hostdata->sx_table); 1959 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1960#ifdef PROC_STATISTICS 1961 hostdata->cmd_cnt[i] = 0; 1962 hostdata->disc_allowed_cnt[i] = 0; 1963 hostdata->disc_done_cnt[i] = 0; 1964#endif 1965 } 1966 hostdata->input_Q = NULL; 1967 hostdata->selecting = NULL; 1968 hostdata->connected = NULL; 1969 hostdata->disconnected_Q = NULL; 1970 hostdata->state = S_UNCONNECTED; 1971 hostdata->dma = D_DMA_OFF; 1972 hostdata->level2 = L2_BASIC; 1973 hostdata->disconnect = DIS_ADAPTIVE; 1974 hostdata->args = DEBUG_DEFAULTS; 1975 hostdata->incoming_ptr = 0; 1976 hostdata->outgoing_len = 0; 1977 hostdata->default_sx_per = DEFAULT_SX_PER; 1978 hostdata->no_dma = 0; /* default is DMA enabled */ 1979 1980#ifdef PROC_INTERFACE 1981 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | 1982 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; 1983#ifdef PROC_STATISTICS 1984 hostdata->dma_cnt = 0; 1985 hostdata->pio_cnt = 0; 1986 hostdata->int_cnt = 0; 1987#endif 1988#endif 1989 1990 if (check_setup_args("clock", &flags, &val, buf)) { 1991 hostdata->clock_freq = set_clk_freq(val, &val); 1992 calc_sx_table(val, hostdata->sx_table); 1993 } 1994 1995 if (check_setup_args("nosync", &flags, &val, buf)) 1996 hostdata->no_sync = val; 1997 1998 if (check_setup_args("nodma", &flags, &val, buf)) 1999 hostdata->no_dma = (val == -1) ? 1 : val; 2000 2001 if (check_setup_args("period", &flags, &val, buf)) 2002 hostdata->default_sx_per = 2003 hostdata->sx_table[round_period((unsigned int) val, 2004 hostdata->sx_table)].period_ns; 2005 2006 if (check_setup_args("disconnect", &flags, &val, buf)) { 2007 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) 2008 hostdata->disconnect = val; 2009 else 2010 hostdata->disconnect = DIS_ADAPTIVE; 2011 } 2012 2013 if (check_setup_args("level2", &flags, &val, buf)) 2014 hostdata->level2 = val; 2015 2016 if (check_setup_args("debug", &flags, &val, buf)) 2017 hostdata->args = val & DB_MASK; 2018 2019 if (check_setup_args("burst", &flags, &val, buf)) 2020 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; 2021 2022 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ 2023 && check_setup_args("fast", &flags, &val, buf)) 2024 hostdata->fast = !!val; 2025 2026 if ((i = check_setup_args("next", &flags, &val, buf))) { 2027 while (i) 2028 setup_used[--i] = 1; 2029 } 2030#ifdef PROC_INTERFACE 2031 if (check_setup_args("proc", &flags, &val, buf)) 2032 hostdata->proc = val; 2033#endif 2034 2035 spin_lock_irq(&hostdata->lock); 2036 reset_wd33c93(instance); 2037 spin_unlock_irq(&hostdata->lock); 2038 2039 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", 2040 instance->host_no, 2041 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == 2042 C_WD33C93A) ? 2043 "WD33c93A" : (hostdata->chip == 2044 C_WD33C93B) ? "WD33c93B" : "unknown", 2045 hostdata->microcode, hostdata->no_sync, hostdata->no_dma); 2046#ifdef DEBUGGING_ON 2047 printk(" debug_flags=0x%02x\n", hostdata->args); 2048#else 2049 printk(" debugging=OFF\n"); 2050#endif 2051 printk(" setup_args="); 2052 for (i = 0; i < MAX_SETUP_ARGS; i++) 2053 printk("%s,", setup_args[i]); 2054 printk("\n"); 2055 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE); 2056} 2057 2058int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len) 2059{ 2060#ifdef PROC_INTERFACE 2061 char *bp; 2062 struct WD33C93_hostdata *hd; 2063 int x; 2064 2065 hd = (struct WD33C93_hostdata *) instance->hostdata; 2066 2067/* We accept the following 2068 * keywords (same format as command-line, but arguments are not optional): 2069 * debug 2070 * disconnect 2071 * period 2072 * resync 2073 * proc 2074 * nodma 2075 * level2 2076 * burst 2077 * fast 2078 * nosync 2079 */ 2080 2081 buf[len] = '\0'; 2082 for (bp = buf; *bp; ) { 2083 while (',' == *bp || ' ' == *bp) 2084 ++bp; 2085 if (!strncmp(bp, "debug:", 6)) { 2086 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; 2087 } else if (!strncmp(bp, "disconnect:", 11)) { 2088 x = simple_strtoul(bp+11, &bp, 0); 2089 if (x < DIS_NEVER || x > DIS_ALWAYS) 2090 x = DIS_ADAPTIVE; 2091 hd->disconnect = x; 2092 } else if (!strncmp(bp, "period:", 7)) { 2093 x = simple_strtoul(bp+7, &bp, 0); 2094 hd->default_sx_per = 2095 hd->sx_table[round_period((unsigned int) x, 2096 hd->sx_table)].period_ns; 2097 } else if (!strncmp(bp, "resync:", 7)) { 2098 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); 2099 } else if (!strncmp(bp, "proc:", 5)) { 2100 hd->proc = simple_strtoul(bp+5, &bp, 0); 2101 } else if (!strncmp(bp, "nodma:", 6)) { 2102 hd->no_dma = simple_strtoul(bp+6, &bp, 0); 2103 } else if (!strncmp(bp, "level2:", 7)) { 2104 hd->level2 = simple_strtoul(bp+7, &bp, 0); 2105 } else if (!strncmp(bp, "burst:", 6)) { 2106 hd->dma_mode = 2107 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; 2108 } else if (!strncmp(bp, "fast:", 5)) { 2109 x = !!simple_strtol(bp+5, &bp, 0); 2110 if (x != hd->fast) 2111 set_resync(hd, 0xff); 2112 hd->fast = x; 2113 } else if (!strncmp(bp, "nosync:", 7)) { 2114 x = simple_strtoul(bp+7, &bp, 0); 2115 set_resync(hd, x ^ hd->no_sync); 2116 hd->no_sync = x; 2117 } else { 2118 break; /* unknown keyword,syntax-error,... */ 2119 } 2120 } 2121 return len; 2122#else 2123 return 0; 2124#endif 2125} 2126 2127int 2128wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance) 2129{ 2130#ifdef PROC_INTERFACE 2131 struct WD33C93_hostdata *hd; 2132 struct scsi_cmnd *cmd; 2133 int x; 2134 2135 hd = (struct WD33C93_hostdata *) instance->hostdata; 2136 2137 spin_lock_irq(&hd->lock); 2138 if (hd->proc & PR_VERSION) 2139 seq_printf(m, "\nVersion %s - %s.", 2140 WD33C93_VERSION, WD33C93_DATE); 2141 2142 if (hd->proc & PR_INFO) { 2143 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d" 2144 " dma_mode=%02x fast=%d", 2145 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); 2146 seq_puts(m, "\nsync_xfer[] = "); 2147 for (x = 0; x < 7; x++) 2148 seq_printf(m, "\t%02x", hd->sync_xfer[x]); 2149 seq_puts(m, "\nsync_stat[] = "); 2150 for (x = 0; x < 7; x++) 2151 seq_printf(m, "\t%02x", hd->sync_stat[x]); 2152 } 2153#ifdef PROC_STATISTICS 2154 if (hd->proc & PR_STATISTICS) { 2155 seq_puts(m, "\ncommands issued: "); 2156 for (x = 0; x < 7; x++) 2157 seq_printf(m, "\t%ld", hd->cmd_cnt[x]); 2158 seq_puts(m, "\ndisconnects allowed:"); 2159 for (x = 0; x < 7; x++) 2160 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]); 2161 seq_puts(m, "\ndisconnects done: "); 2162 for (x = 0; x < 7; x++) 2163 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]); 2164 seq_printf(m, 2165 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", 2166 hd->int_cnt, hd->dma_cnt, hd->pio_cnt); 2167 } 2168#endif 2169 if (hd->proc & PR_CONNECTED) { 2170 seq_puts(m, "\nconnected: "); 2171 if (hd->connected) { 2172 cmd = (struct scsi_cmnd *) hd->connected; 2173 seq_printf(m, " %d:%llu(%02x)", 2174 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2175 } 2176 } 2177 if (hd->proc & PR_INPUTQ) { 2178 seq_puts(m, "\ninput_Q: "); 2179 cmd = (struct scsi_cmnd *) hd->input_Q; 2180 while (cmd) { 2181 seq_printf(m, " %d:%llu(%02x)", 2182 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2183 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2184 } 2185 } 2186 if (hd->proc & PR_DISCQ) { 2187 seq_puts(m, "\ndisconnected_Q:"); 2188 cmd = (struct scsi_cmnd *) hd->disconnected_Q; 2189 while (cmd) { 2190 seq_printf(m, " %d:%llu(%02x)", 2191 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2192 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2193 } 2194 } 2195 seq_putc(m, '\n'); 2196 spin_unlock_irq(&hd->lock); 2197#endif /* PROC_INTERFACE */ 2198 return 0; 2199} 2200 2201EXPORT_SYMBOL(wd33c93_host_reset); 2202EXPORT_SYMBOL(wd33c93_init); 2203EXPORT_SYMBOL(wd33c93_abort); 2204EXPORT_SYMBOL(wd33c93_queuecommand); 2205EXPORT_SYMBOL(wd33c93_intr); 2206EXPORT_SYMBOL(wd33c93_show_info); 2207EXPORT_SYMBOL(wd33c93_write_info);