cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pm-mips.c (10603B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * MIPS-specific support for Broadcom STB S2/S3/S5 power management
      4 *
      5 * Copyright (C) 2016-2017 Broadcom
      6 */
      7
      8#include <linux/kernel.h>
      9#include <linux/printk.h>
     10#include <linux/io.h>
     11#include <linux/of.h>
     12#include <linux/of_address.h>
     13#include <linux/delay.h>
     14#include <linux/suspend.h>
     15#include <asm/bmips.h>
     16#include <asm/tlbflush.h>
     17
     18#include "pm.h"
     19
     20#define S2_NUM_PARAMS		6
     21#define MAX_NUM_MEMC		3
     22
     23/* S3 constants */
     24#define MAX_GP_REGS		16
     25#define MAX_CP0_REGS		32
     26#define NUM_MEMC_CLIENTS	128
     27#define AON_CTRL_RAM_SIZE	128
     28#define BRCMSTB_S3_MAGIC	0x5AFEB007
     29
     30#define CLEAR_RESET_MASK	0x01
     31
     32/* Index each CP0 register that needs to be saved */
     33#define CONTEXT		0
     34#define USER_LOCAL	1
     35#define PGMK		2
     36#define HWRENA		3
     37#define COMPARE		4
     38#define STATUS		5
     39#define CONFIG		6
     40#define MODE		7
     41#define EDSP		8
     42#define BOOT_VEC	9
     43#define EBASE		10
     44
     45struct brcmstb_memc {
     46	void __iomem *ddr_phy_base;
     47	void __iomem *arb_base;
     48};
     49
     50struct brcmstb_pm_control {
     51	void __iomem *aon_ctrl_base;
     52	void __iomem *aon_sram_base;
     53	void __iomem *timers_base;
     54	struct brcmstb_memc memcs[MAX_NUM_MEMC];
     55	int num_memc;
     56};
     57
     58struct brcm_pm_s3_context {
     59	u32			cp0_regs[MAX_CP0_REGS];
     60	u32			memc0_rts[NUM_MEMC_CLIENTS];
     61	u32			sc_boot_vec;
     62};
     63
     64struct brcmstb_mem_transfer;
     65
     66struct brcmstb_mem_transfer {
     67	struct brcmstb_mem_transfer	*next;
     68	void				*src;
     69	void				*dst;
     70	dma_addr_t			pa_src;
     71	dma_addr_t			pa_dst;
     72	u32				len;
     73	u8				key;
     74	u8				mode;
     75	u8				src_remapped;
     76	u8				dst_remapped;
     77	u8				src_dst_remapped;
     78};
     79
     80#define AON_SAVE_SRAM(base, idx, val) \
     81	__raw_writel(val, base + (idx << 2))
     82
     83/* Used for saving registers in asm */
     84u32 gp_regs[MAX_GP_REGS];
     85
     86#define	BSP_CLOCK_STOP		0x00
     87#define PM_INITIATE		0x01
     88
     89static struct brcmstb_pm_control ctrl;
     90
     91static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx)
     92{
     93	/* Generic MIPS */
     94	ctx->cp0_regs[CONTEXT] = read_c0_context();
     95	ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal();
     96	ctx->cp0_regs[PGMK] = read_c0_pagemask();
     97	ctx->cp0_regs[HWRENA] = read_c0_cache();
     98	ctx->cp0_regs[COMPARE] = read_c0_compare();
     99	ctx->cp0_regs[STATUS] = read_c0_status();
    100
    101	/* Broadcom specific */
    102	ctx->cp0_regs[CONFIG] = read_c0_brcm_config();
    103	ctx->cp0_regs[MODE] = read_c0_brcm_mode();
    104	ctx->cp0_regs[EDSP] = read_c0_brcm_edsp();
    105	ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec();
    106	ctx->cp0_regs[EBASE] = read_c0_ebase();
    107
    108	ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0);
    109}
    110
    111static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx)
    112{
    113	/* Restore cp0 state */
    114	bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec);
    115
    116	/* Generic MIPS */
    117	write_c0_context(ctx->cp0_regs[CONTEXT]);
    118	write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]);
    119	write_c0_pagemask(ctx->cp0_regs[PGMK]);
    120	write_c0_cache(ctx->cp0_regs[HWRENA]);
    121	write_c0_compare(ctx->cp0_regs[COMPARE]);
    122	write_c0_status(ctx->cp0_regs[STATUS]);
    123
    124	/* Broadcom specific */
    125	write_c0_brcm_config(ctx->cp0_regs[CONFIG]);
    126	write_c0_brcm_mode(ctx->cp0_regs[MODE]);
    127	write_c0_brcm_edsp(ctx->cp0_regs[EDSP]);
    128	write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]);
    129	write_c0_ebase(ctx->cp0_regs[EBASE]);
    130}
    131
    132static void  brcmstb_pm_handshake(void)
    133{
    134	void __iomem *base = ctrl.aon_ctrl_base;
    135	u32 tmp;
    136
    137	/* BSP power handshake, v1 */
    138	tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
    139	tmp &= ~1UL;
    140	__raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS);
    141	(void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
    142
    143	__raw_writel(0, base + AON_CTRL_PM_INITIATE);
    144	(void)__raw_readl(base + AON_CTRL_PM_INITIATE);
    145	__raw_writel(BSP_CLOCK_STOP | PM_INITIATE,
    146		     base + AON_CTRL_PM_INITIATE);
    147	/*
    148	 * HACK: BSP may have internal race on the CLOCK_STOP command.
    149	 * Avoid touching the BSP for a few milliseconds.
    150	 */
    151	mdelay(3);
    152}
    153
    154static void brcmstb_pm_s5(void)
    155{
    156	void __iomem *base = ctrl.aon_ctrl_base;
    157
    158	brcmstb_pm_handshake();
    159
    160	/* Clear magic s3 warm-boot value */
    161	AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0);
    162
    163	/* Set the countdown */
    164	__raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT);
    165	(void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT);
    166
    167	/* Prepare to S5 cold boot */
    168	__raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL);
    169	(void)__raw_readl(base + AON_CTRL_PM_CTRL);
    170
    171	__raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base +
    172		      AON_CTRL_PM_CTRL);
    173	(void)__raw_readl(base + AON_CTRL_PM_CTRL);
    174
    175	__asm__ __volatile__(
    176	"	wait\n"
    177	: : : "memory");
    178}
    179
    180static int brcmstb_pm_s3(void)
    181{
    182	struct brcm_pm_s3_context s3_context;
    183	void __iomem *memc_arb_base;
    184	unsigned long flags;
    185	u32 tmp;
    186	int i;
    187
    188	/* Prepare for s3 */
    189	AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC);
    190	AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry);
    191	AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0);
    192
    193	/* Clear RESET_HISTORY */
    194	tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
    195	tmp &= ~CLEAR_RESET_MASK;
    196	__raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
    197
    198	local_irq_save(flags);
    199
    200	/* Inhibit DDR_RSTb pulse for both MMCs*/
    201	for (i = 0; i < ctrl.num_memc; i++) {
    202		tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base +
    203			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
    204
    205		tmp &= ~0x0f;
    206		__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
    207			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
    208		tmp |= (0x05 | BIT(5));
    209		__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
    210			DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
    211	}
    212
    213	/* Save CP0 context */
    214	brcm_pm_save_cp0_context(&s3_context);
    215
    216	/* Save RTS(skip debug register) */
    217	memc_arb_base = ctrl.memcs[0].arb_base + 4;
    218	for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
    219		s3_context.memc0_rts[i] = __raw_readl(memc_arb_base);
    220		memc_arb_base += 4;
    221	}
    222
    223	/* Save I/O context */
    224	local_flush_tlb_all();
    225	_dma_cache_wback_inv(0, ~0);
    226
    227	brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz);
    228
    229	/* CPU reconfiguration */
    230	local_flush_tlb_all();
    231	bmips_cpu_setup();
    232	cpumask_clear(&bmips_booted_mask);
    233
    234	/* Restore RTS (skip debug register) */
    235	memc_arb_base = ctrl.memcs[0].arb_base + 4;
    236	for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
    237		__raw_writel(s3_context.memc0_rts[i], memc_arb_base);
    238		memc_arb_base += 4;
    239	}
    240
    241	/* restore CP0 context */
    242	brcm_pm_restore_cp0_context(&s3_context);
    243
    244	local_irq_restore(flags);
    245
    246	return 0;
    247}
    248
    249static int brcmstb_pm_s2(void)
    250{
    251	/*
    252	 * We need to pass 6 arguments to an assembly function. Lets avoid the
    253	 * stack and pass arguments in a explicit 4 byte array. The assembly
    254	 * code assumes all arguments are 4 bytes and arguments are ordered
    255	 * like so:
    256	 *
    257	 * 0: AON_CTRl base register
    258	 * 1: DDR_PHY base register
    259	 * 2: TIMERS base resgister
    260	 * 3: I-Cache line size
    261	 * 4: Restart vector address
    262	 * 5: Restart vector size
    263	 */
    264	u32 s2_params[6];
    265
    266	/* Prepare s2 parameters */
    267	s2_params[0] = (u32)ctrl.aon_ctrl_base;
    268	s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base;
    269	s2_params[2] = (u32)ctrl.timers_base;
    270	s2_params[3] = (u32)current_cpu_data.icache.linesz;
    271	s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC;
    272	s2_params[5] = (u32)(bmips_smp_int_vec_end -
    273		bmips_smp_int_vec);
    274
    275	/* Drop to standby */
    276	brcm_pm_do_s2(s2_params);
    277
    278	return 0;
    279}
    280
    281static int brcmstb_pm_standby(bool deep_standby)
    282{
    283	brcmstb_pm_handshake();
    284
    285	/* Send IRQs to BMIPS_WARM_RESTART_VEC */
    286	clear_c0_cause(CAUSEF_IV);
    287	irq_disable_hazard();
    288	set_c0_status(ST0_BEV);
    289	irq_disable_hazard();
    290
    291	if (deep_standby)
    292		brcmstb_pm_s3();
    293	else
    294		brcmstb_pm_s2();
    295
    296	/* Send IRQs to normal runtime vectors */
    297	clear_c0_status(ST0_BEV);
    298	irq_disable_hazard();
    299	set_c0_cause(CAUSEF_IV);
    300	irq_disable_hazard();
    301
    302	return 0;
    303}
    304
    305static int brcmstb_pm_enter(suspend_state_t state)
    306{
    307	int ret = -EINVAL;
    308
    309	switch (state) {
    310	case PM_SUSPEND_STANDBY:
    311		ret = brcmstb_pm_standby(false);
    312		break;
    313	case PM_SUSPEND_MEM:
    314		ret = brcmstb_pm_standby(true);
    315		break;
    316	}
    317
    318	return ret;
    319}
    320
    321static int brcmstb_pm_valid(suspend_state_t state)
    322{
    323	switch (state) {
    324	case PM_SUSPEND_STANDBY:
    325		return true;
    326	case PM_SUSPEND_MEM:
    327		return true;
    328	default:
    329		return false;
    330	}
    331}
    332
    333static const struct platform_suspend_ops brcmstb_pm_ops = {
    334	.enter		= brcmstb_pm_enter,
    335	.valid		= brcmstb_pm_valid,
    336};
    337
    338static const struct of_device_id aon_ctrl_dt_ids[] = {
    339	{ .compatible = "brcm,brcmstb-aon-ctrl" },
    340	{ /* sentinel */ }
    341};
    342
    343static const struct of_device_id ddr_phy_dt_ids[] = {
    344	{ .compatible = "brcm,brcmstb-ddr-phy" },
    345	{ /* sentinel */ }
    346};
    347
    348static const struct of_device_id arb_dt_ids[] = {
    349	{ .compatible = "brcm,brcmstb-memc-arb" },
    350	{ /* sentinel */ }
    351};
    352
    353static const struct of_device_id timers_ids[] = {
    354	{ .compatible = "brcm,brcmstb-timers" },
    355	{ /* sentinel */ }
    356};
    357
    358static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn,
    359						 int index)
    360{
    361	return of_io_request_and_map(dn, index, dn->full_name);
    362}
    363
    364static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
    365					   int index, const void **ofdata)
    366{
    367	struct device_node *dn;
    368	const struct of_device_id *match;
    369
    370	dn = of_find_matching_node_and_match(NULL, matches, &match);
    371	if (!dn)
    372		return ERR_PTR(-EINVAL);
    373
    374	if (ofdata)
    375		*ofdata = match->data;
    376
    377	return brcmstb_ioremap_node(dn, index);
    378}
    379
    380static int brcmstb_pm_init(void)
    381{
    382	struct device_node *dn;
    383	void __iomem *base;
    384	int i;
    385
    386	/* AON ctrl registers */
    387	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
    388	if (IS_ERR(base)) {
    389		pr_err("error mapping AON_CTRL\n");
    390		goto aon_err;
    391	}
    392	ctrl.aon_ctrl_base = base;
    393
    394	/* AON SRAM registers */
    395	base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
    396	if (IS_ERR(base)) {
    397		pr_err("error mapping AON_SRAM\n");
    398		goto sram_err;
    399	}
    400	ctrl.aon_sram_base = base;
    401
    402	ctrl.num_memc = 0;
    403	/* Map MEMC DDR PHY registers */
    404	for_each_matching_node(dn, ddr_phy_dt_ids) {
    405		i = ctrl.num_memc;
    406		if (i >= MAX_NUM_MEMC) {
    407			pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC);
    408			of_node_put(dn);
    409			break;
    410		}
    411		base = brcmstb_ioremap_node(dn, 0);
    412		if (IS_ERR(base)) {
    413			of_node_put(dn);
    414			goto ddr_err;
    415		}
    416
    417		ctrl.memcs[i].ddr_phy_base = base;
    418		ctrl.num_memc++;
    419	}
    420
    421	/* MEMC ARB registers */
    422	base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL);
    423	if (IS_ERR(base)) {
    424		pr_err("error mapping MEMC ARB\n");
    425		goto ddr_err;
    426	}
    427	ctrl.memcs[0].arb_base = base;
    428
    429	/* Timer registers */
    430	base = brcmstb_ioremap_match(timers_ids, 0, NULL);
    431	if (IS_ERR(base)) {
    432		pr_err("error mapping timers\n");
    433		goto tmr_err;
    434	}
    435	ctrl.timers_base = base;
    436
    437	/* s3 cold boot aka s5 */
    438	pm_power_off = brcmstb_pm_s5;
    439
    440	suspend_set_ops(&brcmstb_pm_ops);
    441
    442	return 0;
    443
    444tmr_err:
    445	iounmap(ctrl.memcs[0].arb_base);
    446ddr_err:
    447	for (i = 0; i < ctrl.num_memc; i++)
    448		iounmap(ctrl.memcs[i].ddr_phy_base);
    449
    450	iounmap(ctrl.aon_sram_base);
    451sram_err:
    452	iounmap(ctrl.aon_ctrl_base);
    453aon_err:
    454	return PTR_ERR(base);
    455}
    456arch_initcall(brcmstb_pm_init);