cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

qbman-portal.c (53876B)


      1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
      2/*
      3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
      4 * Copyright 2016-2019 NXP
      5 *
      6 */
      7
      8#include <asm/cacheflush.h>
      9#include <linux/io.h>
     10#include <linux/slab.h>
     11#include <linux/spinlock.h>
     12#include <soc/fsl/dpaa2-global.h>
     13
     14#include "qbman-portal.h"
     15
     16/* All QBMan command and result structures use this "valid bit" encoding */
     17#define QB_VALID_BIT ((u32)0x80)
     18
     19/* QBMan portal management command codes */
     20#define QBMAN_MC_ACQUIRE       0x30
     21#define QBMAN_WQCHAN_CONFIGURE 0x46
     22
     23/* CINH register offsets */
     24#define QBMAN_CINH_SWP_EQCR_PI      0x800
     25#define QBMAN_CINH_SWP_EQCR_CI	    0x840
     26#define QBMAN_CINH_SWP_EQAR    0x8c0
     27#define QBMAN_CINH_SWP_CR_RT        0x900
     28#define QBMAN_CINH_SWP_VDQCR_RT     0x940
     29#define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
     30#define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
     31#define QBMAN_CINH_SWP_DQPI    0xa00
     32#define QBMAN_CINH_SWP_DQRR_ITR     0xa80
     33#define QBMAN_CINH_SWP_DCAP    0xac0
     34#define QBMAN_CINH_SWP_SDQCR   0xb00
     35#define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
     36#define QBMAN_CINH_SWP_RCR_PI       0xc00
     37#define QBMAN_CINH_SWP_RAR     0xcc0
     38#define QBMAN_CINH_SWP_ISR     0xe00
     39#define QBMAN_CINH_SWP_IER     0xe40
     40#define QBMAN_CINH_SWP_ISDR    0xe80
     41#define QBMAN_CINH_SWP_IIR     0xec0
     42#define QBMAN_CINH_SWP_ITPR    0xf40
     43
     44/* CENA register offsets */
     45#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
     46#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
     47#define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
     48#define QBMAN_CENA_SWP_CR      0x600
     49#define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
     50#define QBMAN_CENA_SWP_VDQCR   0x780
     51#define QBMAN_CENA_SWP_EQCR_CI 0x840
     52#define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
     53
     54/* CENA register offsets in memory-backed mode */
     55#define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
     56#define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
     57#define QBMAN_CENA_SWP_CR_MEM       0x1600
     58#define QBMAN_CENA_SWP_RR_MEM       0x1680
     59#define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
     60
     61/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
     62#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
     63
     64/* Define token used to determine if response written to memory is valid */
     65#define QMAN_DQ_TOKEN_VALID 1
     66
     67/* SDQCR attribute codes */
     68#define QB_SDQCR_FC_SHIFT   29
     69#define QB_SDQCR_FC_MASK    0x1
     70#define QB_SDQCR_DCT_SHIFT  24
     71#define QB_SDQCR_DCT_MASK   0x3
     72#define QB_SDQCR_TOK_SHIFT  16
     73#define QB_SDQCR_TOK_MASK   0xff
     74#define QB_SDQCR_SRC_SHIFT  0
     75#define QB_SDQCR_SRC_MASK   0xffff
     76
     77/* opaque token for static dequeues */
     78#define QMAN_SDQCR_TOKEN    0xbb
     79
     80#define QBMAN_EQCR_DCA_IDXMASK          0x0f
     81#define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
     82
     83#define EQ_DESC_SIZE_WITHOUT_FD 29
     84#define EQ_DESC_SIZE_FD_START 32
     85
     86enum qbman_sdqcr_dct {
     87	qbman_sdqcr_dct_null = 0,
     88	qbman_sdqcr_dct_prio_ics,
     89	qbman_sdqcr_dct_active_ics,
     90	qbman_sdqcr_dct_active
     91};
     92
     93enum qbman_sdqcr_fc {
     94	qbman_sdqcr_fc_one = 0,
     95	qbman_sdqcr_fc_up_to_3 = 1
     96};
     97
     98/* Internal Function declaration */
     99static int qbman_swp_enqueue_direct(struct qbman_swp *s,
    100				    const struct qbman_eq_desc *d,
    101				    const struct dpaa2_fd *fd);
    102static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
    103				      const struct qbman_eq_desc *d,
    104				      const struct dpaa2_fd *fd);
    105static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
    106					     const struct qbman_eq_desc *d,
    107					     const struct dpaa2_fd *fd,
    108					     uint32_t *flags,
    109					     int num_frames);
    110static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
    111					       const struct qbman_eq_desc *d,
    112					       const struct dpaa2_fd *fd,
    113					       uint32_t *flags,
    114					       int num_frames);
    115static int
    116qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
    117				       const struct qbman_eq_desc *d,
    118				       const struct dpaa2_fd *fd,
    119				       int num_frames);
    120static
    121int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
    122					     const struct qbman_eq_desc *d,
    123					     const struct dpaa2_fd *fd,
    124					     int num_frames);
    125static int qbman_swp_pull_direct(struct qbman_swp *s,
    126				 struct qbman_pull_desc *d);
    127static int qbman_swp_pull_mem_back(struct qbman_swp *s,
    128				   struct qbman_pull_desc *d);
    129
    130const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
    131const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
    132
    133static int qbman_swp_release_direct(struct qbman_swp *s,
    134				    const struct qbman_release_desc *d,
    135				    const u64 *buffers,
    136				    unsigned int num_buffers);
    137static int qbman_swp_release_mem_back(struct qbman_swp *s,
    138				      const struct qbman_release_desc *d,
    139				      const u64 *buffers,
    140				      unsigned int num_buffers);
    141
    142/* Function pointers */
    143int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
    144			     const struct qbman_eq_desc *d,
    145			     const struct dpaa2_fd *fd)
    146	= qbman_swp_enqueue_direct;
    147
    148int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
    149				      const struct qbman_eq_desc *d,
    150				      const struct dpaa2_fd *fd,
    151				      uint32_t *flags,
    152					     int num_frames)
    153	= qbman_swp_enqueue_multiple_direct;
    154
    155int
    156(*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
    157				       const struct qbman_eq_desc *d,
    158				       const struct dpaa2_fd *fd,
    159				       int num_frames)
    160	= qbman_swp_enqueue_multiple_desc_direct;
    161
    162int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
    163			= qbman_swp_pull_direct;
    164
    165const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
    166			= qbman_swp_dqrr_next_direct;
    167
    168int (*qbman_swp_release_ptr)(struct qbman_swp *s,
    169			     const struct qbman_release_desc *d,
    170			     const u64 *buffers,
    171			     unsigned int num_buffers)
    172			= qbman_swp_release_direct;
    173
    174/* Portal Access */
    175
    176static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
    177{
    178	return readl_relaxed(p->addr_cinh + offset);
    179}
    180
    181static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
    182					u32 value)
    183{
    184	writel_relaxed(value, p->addr_cinh + offset);
    185}
    186
    187static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
    188{
    189	return p->addr_cena + offset;
    190}
    191
    192#define QBMAN_CINH_SWP_CFG   0xd00
    193
    194#define SWP_CFG_DQRR_MF_SHIFT 20
    195#define SWP_CFG_EST_SHIFT     16
    196#define SWP_CFG_CPBS_SHIFT    15
    197#define SWP_CFG_WN_SHIFT      14
    198#define SWP_CFG_RPM_SHIFT     12
    199#define SWP_CFG_DCM_SHIFT     10
    200#define SWP_CFG_EPM_SHIFT     8
    201#define SWP_CFG_VPM_SHIFT     7
    202#define SWP_CFG_CPM_SHIFT     6
    203#define SWP_CFG_SD_SHIFT      5
    204#define SWP_CFG_SP_SHIFT      4
    205#define SWP_CFG_SE_SHIFT      3
    206#define SWP_CFG_DP_SHIFT      2
    207#define SWP_CFG_DE_SHIFT      1
    208#define SWP_CFG_EP_SHIFT      0
    209
    210static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
    211				    u8 epm, int sd, int sp, int se,
    212				    int dp, int de, int ep)
    213{
    214	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
    215		est << SWP_CFG_EST_SHIFT |
    216		wn << SWP_CFG_WN_SHIFT |
    217		rpm << SWP_CFG_RPM_SHIFT |
    218		dcm << SWP_CFG_DCM_SHIFT |
    219		epm << SWP_CFG_EPM_SHIFT |
    220		sd << SWP_CFG_SD_SHIFT |
    221		sp << SWP_CFG_SP_SHIFT |
    222		se << SWP_CFG_SE_SHIFT |
    223		dp << SWP_CFG_DP_SHIFT |
    224		de << SWP_CFG_DE_SHIFT |
    225		ep << SWP_CFG_EP_SHIFT);
    226}
    227
    228#define QMAN_RT_MODE	   0x00000100
    229
    230static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
    231{
    232	/* 'first' is included, 'last' is excluded */
    233	if (first <= last)
    234		return last - first;
    235	else
    236		return (2 * ringsize) - (first - last);
    237}
    238
    239/**
    240 * qbman_swp_init() - Create a functional object representing the given
    241 *                    QBMan portal descriptor.
    242 * @d: the given qbman swp descriptor
    243 *
    244 * Return qbman_swp portal for success, NULL if the object cannot
    245 * be created.
    246 */
    247struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
    248{
    249	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
    250	u32 reg;
    251	u32 mask_size;
    252	u32 eqcr_pi;
    253
    254	if (!p)
    255		return NULL;
    256
    257	spin_lock_init(&p->access_spinlock);
    258
    259	p->desc = d;
    260	p->mc.valid_bit = QB_VALID_BIT;
    261	p->sdq = 0;
    262	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
    263	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
    264	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
    265	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
    266		p->mr.valid_bit = QB_VALID_BIT;
    267
    268	atomic_set(&p->vdq.available, 1);
    269	p->vdq.valid_bit = QB_VALID_BIT;
    270	p->dqrr.next_idx = 0;
    271	p->dqrr.valid_bit = QB_VALID_BIT;
    272
    273	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
    274		p->dqrr.dqrr_size = 4;
    275		p->dqrr.reset_bug = 1;
    276	} else {
    277		p->dqrr.dqrr_size = 8;
    278		p->dqrr.reset_bug = 0;
    279	}
    280
    281	p->addr_cena = d->cena_bar;
    282	p->addr_cinh = d->cinh_bar;
    283
    284	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
    285
    286		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
    287			1, /* Writes Non-cacheable */
    288			0, /* EQCR_CI stashing threshold */
    289			3, /* RPM: RCR in array mode */
    290			2, /* DCM: Discrete consumption ack */
    291			2, /* EPM: EQCR in ring mode */
    292			1, /* mem stashing drop enable enable */
    293			1, /* mem stashing priority enable */
    294			1, /* mem stashing enable */
    295			1, /* dequeue stashing priority enable */
    296			0, /* dequeue stashing enable enable */
    297			0); /* EQCR_CI stashing priority enable */
    298	} else {
    299		memset(p->addr_cena, 0, 64 * 1024);
    300		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
    301			1, /* Writes Non-cacheable */
    302			1, /* EQCR_CI stashing threshold */
    303			3, /* RPM: RCR in array mode */
    304			2, /* DCM: Discrete consumption ack */
    305			0, /* EPM: EQCR in ring mode */
    306			1, /* mem stashing drop enable */
    307			1, /* mem stashing priority enable */
    308			1, /* mem stashing enable */
    309			1, /* dequeue stashing priority enable */
    310			0, /* dequeue stashing enable */
    311			0); /* EQCR_CI stashing priority enable */
    312		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
    313		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
    314		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
    315	}
    316
    317	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
    318	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
    319	if (!reg) {
    320		pr_err("qbman: the portal is not enabled!\n");
    321		kfree(p);
    322		return NULL;
    323	}
    324
    325	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
    326		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
    327		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
    328	}
    329	/*
    330	 * SDQCR needs to be initialized to 0 when no channels are
    331	 * being dequeued from or else the QMan HW will indicate an
    332	 * error.  The values that were calculated above will be
    333	 * applied when dequeues from a specific channel are enabled.
    334	 */
    335	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
    336
    337	p->eqcr.pi_ring_size = 8;
    338	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
    339		p->eqcr.pi_ring_size = 32;
    340		qbman_swp_enqueue_ptr =
    341			qbman_swp_enqueue_mem_back;
    342		qbman_swp_enqueue_multiple_ptr =
    343			qbman_swp_enqueue_multiple_mem_back;
    344		qbman_swp_enqueue_multiple_desc_ptr =
    345			qbman_swp_enqueue_multiple_desc_mem_back;
    346		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
    347		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
    348		qbman_swp_release_ptr = qbman_swp_release_mem_back;
    349	}
    350
    351	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
    352		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
    353	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
    354	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
    355	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
    356	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
    357			& p->eqcr.pi_ci_mask;
    358	p->eqcr.available = p->eqcr.pi_ring_size;
    359
    360	/* Initialize the software portal with a irq timeout period of 0us */
    361	qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
    362
    363	return p;
    364}
    365
    366/**
    367 * qbman_swp_finish() - Create and destroy a functional object representing
    368 *                      the given QBMan portal descriptor.
    369 * @p: the qbman_swp object to be destroyed
    370 */
    371void qbman_swp_finish(struct qbman_swp *p)
    372{
    373	kfree(p);
    374}
    375
    376/**
    377 * qbman_swp_interrupt_read_status()
    378 * @p: the given software portal
    379 *
    380 * Return the value in the SWP_ISR register.
    381 */
    382u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
    383{
    384	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
    385}
    386
    387/**
    388 * qbman_swp_interrupt_clear_status()
    389 * @p: the given software portal
    390 * @mask: The mask to clear in SWP_ISR register
    391 */
    392void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
    393{
    394	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
    395}
    396
    397/**
    398 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
    399 * @p: the given software portal
    400 *
    401 * Return the value in the SWP_IER register.
    402 */
    403u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
    404{
    405	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
    406}
    407
    408/**
    409 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
    410 * @p: the given software portal
    411 * @mask: The mask of bits to enable in SWP_IER
    412 */
    413void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
    414{
    415	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
    416}
    417
    418/**
    419 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
    420 * @p: the given software portal object
    421 *
    422 * Return the value in the SWP_IIR register.
    423 */
    424int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
    425{
    426	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
    427}
    428
    429/**
    430 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
    431 * @p: the given software portal object
    432 * @inhibit: whether to inhibit the IRQs
    433 */
    434void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
    435{
    436	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
    437}
    438
    439/*
    440 * Different management commands all use this common base layer of code to issue
    441 * commands and poll for results.
    442 */
    443
    444/*
    445 * Returns a pointer to where the caller should fill in their management command
    446 * (caller should ignore the verb byte)
    447 */
    448void *qbman_swp_mc_start(struct qbman_swp *p)
    449{
    450	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
    451		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
    452	else
    453		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
    454}
    455
    456/*
    457 * Commits merges in the caller-supplied command verb (which should not include
    458 * the valid-bit) and submits the command to hardware
    459 */
    460void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
    461{
    462	u8 *v = cmd;
    463
    464	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
    465		dma_wmb();
    466		*v = cmd_verb | p->mc.valid_bit;
    467	} else {
    468		*v = cmd_verb | p->mc.valid_bit;
    469		dma_wmb();
    470		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
    471	}
    472}
    473
    474/*
    475 * Checks for a completed response (returns non-NULL if only if the response
    476 * is complete).
    477 */
    478void *qbman_swp_mc_result(struct qbman_swp *p)
    479{
    480	u32 *ret, verb;
    481
    482	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
    483		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
    484		/* Remove the valid-bit - command completed if the rest
    485		 * is non-zero.
    486		 */
    487		verb = ret[0] & ~QB_VALID_BIT;
    488		if (!verb)
    489			return NULL;
    490		p->mc.valid_bit ^= QB_VALID_BIT;
    491	} else {
    492		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
    493		/* Command completed if the valid bit is toggled */
    494		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
    495			return NULL;
    496		/* Command completed if the rest is non-zero */
    497		verb = ret[0] & ~QB_VALID_BIT;
    498		if (!verb)
    499			return NULL;
    500		p->mr.valid_bit ^= QB_VALID_BIT;
    501	}
    502
    503	return ret;
    504}
    505
    506#define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
    507enum qb_enqueue_commands {
    508	enqueue_empty = 0,
    509	enqueue_response_always = 1,
    510	enqueue_rejects_to_fq = 2
    511};
    512
    513#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
    514#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
    515#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
    516#define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
    517
    518/*
    519 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
    520 *                         default/starting state.
    521 */
    522void qbman_eq_desc_clear(struct qbman_eq_desc *d)
    523{
    524	memset(d, 0, sizeof(*d));
    525}
    526
    527/**
    528 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
    529 * @d:                the enqueue descriptor.
    530 * @respond_success:  1 = enqueue with response always; 0 = enqueue with
    531 *                    rejections returned on a FQ.
    532 */
    533void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
    534{
    535	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
    536	if (respond_success)
    537		d->verb |= enqueue_response_always;
    538	else
    539		d->verb |= enqueue_rejects_to_fq;
    540}
    541
    542/*
    543 * Exactly one of the following descriptor "targets" should be set. (Calling any
    544 * one of these will replace the effect of any prior call to one of these.)
    545 *   -enqueue to a frame queue
    546 *   -enqueue to a queuing destination
    547 */
    548
    549/**
    550 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
    551 * @d:    the enqueue descriptor
    552 * @fqid: the id of the frame queue to be enqueued
    553 */
    554void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
    555{
    556	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
    557	d->tgtid = cpu_to_le32(fqid);
    558}
    559
    560/**
    561 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
    562 * @d:       the enqueue descriptor
    563 * @qdid:    the id of the queuing destination to be enqueued
    564 * @qd_bin:  the queuing destination bin
    565 * @qd_prio: the queuing destination priority
    566 */
    567void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
    568			  u32 qd_bin, u32 qd_prio)
    569{
    570	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
    571	d->tgtid = cpu_to_le32(qdid);
    572	d->qdbin = cpu_to_le16(qd_bin);
    573	d->qpri = qd_prio;
    574}
    575
    576#define EQAR_IDX(eqar)     ((eqar) & 0x7)
    577#define EQAR_VB(eqar)      ((eqar) & 0x80)
    578#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
    579
    580#define QB_RT_BIT ((u32)0x100)
    581/**
    582 * qbman_swp_enqueue_direct() - Issue an enqueue command
    583 * @s:  the software portal used for enqueue
    584 * @d:  the enqueue descriptor
    585 * @fd: the frame descriptor to be enqueued
    586 *
    587 * Please note that 'fd' should only be NULL if the "action" of the
    588 * descriptor is "orp_hole" or "orp_nesn".
    589 *
    590 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
    591 */
    592static
    593int qbman_swp_enqueue_direct(struct qbman_swp *s,
    594			     const struct qbman_eq_desc *d,
    595			     const struct dpaa2_fd *fd)
    596{
    597	int flags = 0;
    598	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
    599
    600	if (ret >= 0)
    601		ret = 0;
    602	else
    603		ret = -EBUSY;
    604	return  ret;
    605}
    606
    607/**
    608 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
    609 * @s:  the software portal used for enqueue
    610 * @d:  the enqueue descriptor
    611 * @fd: the frame descriptor to be enqueued
    612 *
    613 * Please note that 'fd' should only be NULL if the "action" of the
    614 * descriptor is "orp_hole" or "orp_nesn".
    615 *
    616 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
    617 */
    618static
    619int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
    620			       const struct qbman_eq_desc *d,
    621			       const struct dpaa2_fd *fd)
    622{
    623	int flags = 0;
    624	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
    625
    626	if (ret >= 0)
    627		ret = 0;
    628	else
    629		ret = -EBUSY;
    630	return  ret;
    631}
    632
    633/**
    634 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
    635 * using one enqueue descriptor
    636 * @s:  the software portal used for enqueue
    637 * @d:  the enqueue descriptor
    638 * @fd: table pointer of frame descriptor table to be enqueued
    639 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
    640 * @num_frames: number of fd to be enqueued
    641 *
    642 * Return the number of fd enqueued, or a negative error number.
    643 */
    644static
    645int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
    646				      const struct qbman_eq_desc *d,
    647				      const struct dpaa2_fd *fd,
    648				      uint32_t *flags,
    649				      int num_frames)
    650{
    651	uint32_t *p = NULL;
    652	const uint32_t *cl = (uint32_t *)d;
    653	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
    654	int i, num_enqueued = 0;
    655
    656	spin_lock(&s->access_spinlock);
    657	half_mask = (s->eqcr.pi_ci_mask>>1);
    658	full_mask = s->eqcr.pi_ci_mask;
    659
    660	if (!s->eqcr.available) {
    661		eqcr_ci = s->eqcr.ci;
    662		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
    663		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
    664		s->eqcr.ci &= full_mask;
    665
    666		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
    667					eqcr_ci, s->eqcr.ci);
    668		if (!s->eqcr.available) {
    669			spin_unlock(&s->access_spinlock);
    670			return 0;
    671		}
    672	}
    673
    674	eqcr_pi = s->eqcr.pi;
    675	num_enqueued = (s->eqcr.available < num_frames) ?
    676			s->eqcr.available : num_frames;
    677	s->eqcr.available -= num_enqueued;
    678	/* Fill in the EQCR ring */
    679	for (i = 0; i < num_enqueued; i++) {
    680		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    681		/* Skip copying the verb */
    682		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
    683		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
    684		       &fd[i], sizeof(*fd));
    685		eqcr_pi++;
    686	}
    687
    688	dma_wmb();
    689
    690	/* Set the verb byte, have to substitute in the valid-bit */
    691	eqcr_pi = s->eqcr.pi;
    692	for (i = 0; i < num_enqueued; i++) {
    693		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    694		p[0] = cl[0] | s->eqcr.pi_vb;
    695		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
    696			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
    697
    698			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
    699				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
    700		}
    701		eqcr_pi++;
    702		if (!(eqcr_pi & half_mask))
    703			s->eqcr.pi_vb ^= QB_VALID_BIT;
    704	}
    705
    706	/* Flush all the cacheline without load/store in between */
    707	eqcr_pi = s->eqcr.pi;
    708	for (i = 0; i < num_enqueued; i++)
    709		eqcr_pi++;
    710	s->eqcr.pi = eqcr_pi & full_mask;
    711	spin_unlock(&s->access_spinlock);
    712
    713	return num_enqueued;
    714}
    715
    716/**
    717 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
    718 * using one enqueue descriptor
    719 * @s:  the software portal used for enqueue
    720 * @d:  the enqueue descriptor
    721 * @fd: table pointer of frame descriptor table to be enqueued
    722 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
    723 * @num_frames: number of fd to be enqueued
    724 *
    725 * Return the number of fd enqueued, or a negative error number.
    726 */
    727static
    728int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
    729					const struct qbman_eq_desc *d,
    730					const struct dpaa2_fd *fd,
    731					uint32_t *flags,
    732					int num_frames)
    733{
    734	uint32_t *p = NULL;
    735	const uint32_t *cl = (uint32_t *)(d);
    736	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
    737	int i, num_enqueued = 0;
    738	unsigned long irq_flags;
    739
    740	spin_lock_irqsave(&s->access_spinlock, irq_flags);
    741
    742	half_mask = (s->eqcr.pi_ci_mask>>1);
    743	full_mask = s->eqcr.pi_ci_mask;
    744	if (!s->eqcr.available) {
    745		eqcr_ci = s->eqcr.ci;
    746		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
    747		s->eqcr.ci &= full_mask;
    748		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
    749					eqcr_ci, s->eqcr.ci);
    750		if (!s->eqcr.available) {
    751			spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
    752			return 0;
    753		}
    754	}
    755
    756	eqcr_pi = s->eqcr.pi;
    757	num_enqueued = (s->eqcr.available < num_frames) ?
    758			s->eqcr.available : num_frames;
    759	s->eqcr.available -= num_enqueued;
    760	/* Fill in the EQCR ring */
    761	for (i = 0; i < num_enqueued; i++) {
    762		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    763		/* Skip copying the verb */
    764		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
    765		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
    766		       &fd[i], sizeof(*fd));
    767		eqcr_pi++;
    768	}
    769
    770	/* Set the verb byte, have to substitute in the valid-bit */
    771	eqcr_pi = s->eqcr.pi;
    772	for (i = 0; i < num_enqueued; i++) {
    773		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    774		p[0] = cl[0] | s->eqcr.pi_vb;
    775		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
    776			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
    777
    778			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
    779				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
    780		}
    781		eqcr_pi++;
    782		if (!(eqcr_pi & half_mask))
    783			s->eqcr.pi_vb ^= QB_VALID_BIT;
    784	}
    785	s->eqcr.pi = eqcr_pi & full_mask;
    786
    787	dma_wmb();
    788	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
    789				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
    790	spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
    791
    792	return num_enqueued;
    793}
    794
    795/**
    796 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
    797 * using multiple enqueue descriptor
    798 * @s:  the software portal used for enqueue
    799 * @d:  table of minimal enqueue descriptor
    800 * @fd: table pointer of frame descriptor table to be enqueued
    801 * @num_frames: number of fd to be enqueued
    802 *
    803 * Return the number of fd enqueued, or a negative error number.
    804 */
    805static
    806int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
    807					   const struct qbman_eq_desc *d,
    808					   const struct dpaa2_fd *fd,
    809					   int num_frames)
    810{
    811	uint32_t *p;
    812	const uint32_t *cl;
    813	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
    814	int i, num_enqueued = 0;
    815
    816	half_mask = (s->eqcr.pi_ci_mask>>1);
    817	full_mask = s->eqcr.pi_ci_mask;
    818	if (!s->eqcr.available) {
    819		eqcr_ci = s->eqcr.ci;
    820		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
    821		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
    822		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
    823					eqcr_ci, s->eqcr.ci);
    824		if (!s->eqcr.available)
    825			return 0;
    826	}
    827
    828	eqcr_pi = s->eqcr.pi;
    829	num_enqueued = (s->eqcr.available < num_frames) ?
    830			s->eqcr.available : num_frames;
    831	s->eqcr.available -= num_enqueued;
    832	/* Fill in the EQCR ring */
    833	for (i = 0; i < num_enqueued; i++) {
    834		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    835		cl = (uint32_t *)(&d[i]);
    836		/* Skip copying the verb */
    837		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
    838		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
    839		       &fd[i], sizeof(*fd));
    840		eqcr_pi++;
    841	}
    842
    843	dma_wmb();
    844
    845	/* Set the verb byte, have to substitute in the valid-bit */
    846	eqcr_pi = s->eqcr.pi;
    847	for (i = 0; i < num_enqueued; i++) {
    848		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    849		cl = (uint32_t *)(&d[i]);
    850		p[0] = cl[0] | s->eqcr.pi_vb;
    851		eqcr_pi++;
    852		if (!(eqcr_pi & half_mask))
    853			s->eqcr.pi_vb ^= QB_VALID_BIT;
    854	}
    855
    856	/* Flush all the cacheline without load/store in between */
    857	eqcr_pi = s->eqcr.pi;
    858	for (i = 0; i < num_enqueued; i++)
    859		eqcr_pi++;
    860	s->eqcr.pi = eqcr_pi & full_mask;
    861
    862	return num_enqueued;
    863}
    864
    865/**
    866 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
    867 * using multiple enqueue descriptor
    868 * @s:  the software portal used for enqueue
    869 * @d:  table of minimal enqueue descriptor
    870 * @fd: table pointer of frame descriptor table to be enqueued
    871 * @num_frames: number of fd to be enqueued
    872 *
    873 * Return the number of fd enqueued, or a negative error number.
    874 */
    875static
    876int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
    877					   const struct qbman_eq_desc *d,
    878					   const struct dpaa2_fd *fd,
    879					   int num_frames)
    880{
    881	uint32_t *p;
    882	const uint32_t *cl;
    883	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
    884	int i, num_enqueued = 0;
    885
    886	half_mask = (s->eqcr.pi_ci_mask>>1);
    887	full_mask = s->eqcr.pi_ci_mask;
    888	if (!s->eqcr.available) {
    889		eqcr_ci = s->eqcr.ci;
    890		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
    891		s->eqcr.ci &= full_mask;
    892		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
    893					eqcr_ci, s->eqcr.ci);
    894		if (!s->eqcr.available)
    895			return 0;
    896	}
    897
    898	eqcr_pi = s->eqcr.pi;
    899	num_enqueued = (s->eqcr.available < num_frames) ?
    900			s->eqcr.available : num_frames;
    901	s->eqcr.available -= num_enqueued;
    902	/* Fill in the EQCR ring */
    903	for (i = 0; i < num_enqueued; i++) {
    904		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    905		cl = (uint32_t *)(&d[i]);
    906		/* Skip copying the verb */
    907		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
    908		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
    909		       &fd[i], sizeof(*fd));
    910		eqcr_pi++;
    911	}
    912
    913	/* Set the verb byte, have to substitute in the valid-bit */
    914	eqcr_pi = s->eqcr.pi;
    915	for (i = 0; i < num_enqueued; i++) {
    916		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
    917		cl = (uint32_t *)(&d[i]);
    918		p[0] = cl[0] | s->eqcr.pi_vb;
    919		eqcr_pi++;
    920		if (!(eqcr_pi & half_mask))
    921			s->eqcr.pi_vb ^= QB_VALID_BIT;
    922	}
    923
    924	s->eqcr.pi = eqcr_pi & full_mask;
    925
    926	dma_wmb();
    927	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
    928				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
    929
    930	return num_enqueued;
    931}
    932
    933/* Static (push) dequeue */
    934
    935/**
    936 * qbman_swp_push_get() - Get the push dequeue setup
    937 * @s:           the software portal object
    938 * @channel_idx: the channel index to query
    939 * @enabled:     returned boolean to show whether the push dequeue is enabled
    940 *               for the given channel
    941 */
    942void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
    943{
    944	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
    945
    946	WARN_ON(channel_idx > 15);
    947	*enabled = src | (1 << channel_idx);
    948}
    949
    950/**
    951 * qbman_swp_push_set() - Enable or disable push dequeue
    952 * @s:           the software portal object
    953 * @channel_idx: the channel index (0 to 15)
    954 * @enable:      enable or disable push dequeue
    955 */
    956void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
    957{
    958	u16 dqsrc;
    959
    960	WARN_ON(channel_idx > 15);
    961	if (enable)
    962		s->sdq |= 1 << channel_idx;
    963	else
    964		s->sdq &= ~(1 << channel_idx);
    965
    966	/* Read make the complete src map.  If no channels are enabled
    967	 * the SDQCR must be 0 or else QMan will assert errors
    968	 */
    969	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
    970	if (dqsrc != 0)
    971		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
    972	else
    973		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
    974}
    975
    976#define QB_VDQCR_VERB_DCT_SHIFT    0
    977#define QB_VDQCR_VERB_DT_SHIFT     2
    978#define QB_VDQCR_VERB_RLS_SHIFT    4
    979#define QB_VDQCR_VERB_WAE_SHIFT    5
    980
    981enum qb_pull_dt_e {
    982	qb_pull_dt_channel,
    983	qb_pull_dt_workqueue,
    984	qb_pull_dt_framequeue
    985};
    986
    987/**
    988 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
    989 *                           default/starting state
    990 * @d: the pull dequeue descriptor to be cleared
    991 */
    992void qbman_pull_desc_clear(struct qbman_pull_desc *d)
    993{
    994	memset(d, 0, sizeof(*d));
    995}
    996
    997/**
    998 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
    999 * @d:            the pull dequeue descriptor to be set
   1000 * @storage:      the pointer of the memory to store the dequeue result
   1001 * @storage_phys: the physical address of the storage memory
   1002 * @stash:        to indicate whether write allocate is enabled
   1003 *
   1004 * If not called, or if called with 'storage' as NULL, the result pull dequeues
   1005 * will produce results to DQRR. If 'storage' is non-NULL, then results are
   1006 * produced to the given memory location (using the DMA address which
   1007 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
   1008 * those writes to main-memory express a cache-warming attribute.
   1009 */
   1010void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
   1011				 struct dpaa2_dq *storage,
   1012				 dma_addr_t storage_phys,
   1013				 int stash)
   1014{
   1015	/* save the virtual address */
   1016	d->rsp_addr_virt = (u64)(uintptr_t)storage;
   1017
   1018	if (!storage) {
   1019		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
   1020		return;
   1021	}
   1022	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
   1023	if (stash)
   1024		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
   1025	else
   1026		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
   1027
   1028	d->rsp_addr = cpu_to_le64(storage_phys);
   1029}
   1030
   1031/**
   1032 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
   1033 * @d:         the pull dequeue descriptor to be set
   1034 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
   1035 */
   1036void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
   1037{
   1038	d->numf = numframes - 1;
   1039}
   1040
   1041/*
   1042 * Exactly one of the following descriptor "actions" should be set. (Calling any
   1043 * one of these will replace the effect of any prior call to one of these.)
   1044 * - pull dequeue from the given frame queue (FQ)
   1045 * - pull dequeue from any FQ in the given work queue (WQ)
   1046 * - pull dequeue from any FQ in any WQ in the given channel
   1047 */
   1048
   1049/**
   1050 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
   1051 * @d:    the pull dequeue descriptor to be set
   1052 * @fqid: the frame queue index of the given FQ
   1053 */
   1054void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
   1055{
   1056	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
   1057	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
   1058	d->dq_src = cpu_to_le32(fqid);
   1059}
   1060
   1061/**
   1062 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
   1063 * @d:    the pull dequeue descriptor to be set
   1064 * @wqid: composed of channel id and wqid within the channel
   1065 * @dct:  the dequeue command type
   1066 */
   1067void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
   1068			    enum qbman_pull_type_e dct)
   1069{
   1070	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
   1071	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
   1072	d->dq_src = cpu_to_le32(wqid);
   1073}
   1074
   1075/**
   1076 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
   1077 *                                 dequeues
   1078 * @d:    the pull dequeue descriptor to be set
   1079 * @chid: the channel id to be dequeued
   1080 * @dct:  the dequeue command type
   1081 */
   1082void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
   1083				 enum qbman_pull_type_e dct)
   1084{
   1085	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
   1086	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
   1087	d->dq_src = cpu_to_le32(chid);
   1088}
   1089
   1090/**
   1091 * qbman_swp_pull_direct() - Issue the pull dequeue command
   1092 * @s: the software portal object
   1093 * @d: the software portal descriptor which has been configured with
   1094 *     the set of qbman_pull_desc_set_*() calls
   1095 *
   1096 * Return 0 for success, and -EBUSY if the software portal is not ready
   1097 * to do pull dequeue.
   1098 */
   1099static
   1100int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
   1101{
   1102	struct qbman_pull_desc *p;
   1103
   1104	if (!atomic_dec_and_test(&s->vdq.available)) {
   1105		atomic_inc(&s->vdq.available);
   1106		return -EBUSY;
   1107	}
   1108	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
   1109	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
   1110		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
   1111	else
   1112		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
   1113	p->numf = d->numf;
   1114	p->tok = QMAN_DQ_TOKEN_VALID;
   1115	p->dq_src = d->dq_src;
   1116	p->rsp_addr = d->rsp_addr;
   1117	p->rsp_addr_virt = d->rsp_addr_virt;
   1118	dma_wmb();
   1119	/* Set the verb byte, have to substitute in the valid-bit */
   1120	p->verb = d->verb | s->vdq.valid_bit;
   1121	s->vdq.valid_bit ^= QB_VALID_BIT;
   1122
   1123	return 0;
   1124}
   1125
   1126/**
   1127 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
   1128 * @s: the software portal object
   1129 * @d: the software portal descriptor which has been configured with
   1130 *     the set of qbman_pull_desc_set_*() calls
   1131 *
   1132 * Return 0 for success, and -EBUSY if the software portal is not ready
   1133 * to do pull dequeue.
   1134 */
   1135static
   1136int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
   1137{
   1138	struct qbman_pull_desc *p;
   1139
   1140	if (!atomic_dec_and_test(&s->vdq.available)) {
   1141		atomic_inc(&s->vdq.available);
   1142		return -EBUSY;
   1143	}
   1144	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
   1145	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
   1146		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
   1147	else
   1148		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
   1149	p->numf = d->numf;
   1150	p->tok = QMAN_DQ_TOKEN_VALID;
   1151	p->dq_src = d->dq_src;
   1152	p->rsp_addr = d->rsp_addr;
   1153	p->rsp_addr_virt = d->rsp_addr_virt;
   1154
   1155	/* Set the verb byte, have to substitute in the valid-bit */
   1156	p->verb = d->verb | s->vdq.valid_bit;
   1157	s->vdq.valid_bit ^= QB_VALID_BIT;
   1158	dma_wmb();
   1159	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
   1160
   1161	return 0;
   1162}
   1163
   1164#define QMAN_DQRR_PI_MASK   0xf
   1165
   1166/**
   1167 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
   1168 * @s: the software portal object
   1169 *
   1170 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
   1171 * only once, so repeated calls can return a sequence of DQRR entries, without
   1172 * requiring they be consumed immediately or in any particular order.
   1173 */
   1174const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
   1175{
   1176	u32 verb;
   1177	u32 response_verb;
   1178	u32 flags;
   1179	struct dpaa2_dq *p;
   1180
   1181	/* Before using valid-bit to detect if something is there, we have to
   1182	 * handle the case of the DQRR reset bug...
   1183	 */
   1184	if (unlikely(s->dqrr.reset_bug)) {
   1185		/*
   1186		 * We pick up new entries by cache-inhibited producer index,
   1187		 * which means that a non-coherent mapping would require us to
   1188		 * invalidate and read *only* once that PI has indicated that
   1189		 * there's an entry here. The first trip around the DQRR ring
   1190		 * will be much less efficient than all subsequent trips around
   1191		 * it...
   1192		 */
   1193		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
   1194			QMAN_DQRR_PI_MASK;
   1195
   1196		/* there are new entries if pi != next_idx */
   1197		if (pi == s->dqrr.next_idx)
   1198			return NULL;
   1199
   1200		/*
   1201		 * if next_idx is/was the last ring index, and 'pi' is
   1202		 * different, we can disable the workaround as all the ring
   1203		 * entries have now been DMA'd to so valid-bit checking is
   1204		 * repaired. Note: this logic needs to be based on next_idx
   1205		 * (which increments one at a time), rather than on pi (which
   1206		 * can burst and wrap-around between our snapshots of it).
   1207		 */
   1208		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
   1209			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
   1210				 s->dqrr.next_idx, pi);
   1211			s->dqrr.reset_bug = 0;
   1212		}
   1213		prefetch(qbman_get_cmd(s,
   1214				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1215	}
   1216
   1217	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
   1218	verb = p->dq.verb;
   1219
   1220	/*
   1221	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
   1222	 * in the DQRR reset bug workaround, we shouldn't need to skip these
   1223	 * check, because we've already determined that a new entry is available
   1224	 * and we've invalidated the cacheline before reading it, so the
   1225	 * valid-bit behaviour is repaired and should tell us what we already
   1226	 * knew from reading PI.
   1227	 */
   1228	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
   1229		prefetch(qbman_get_cmd(s,
   1230				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1231		return NULL;
   1232	}
   1233	/*
   1234	 * There's something there. Move "next_idx" attention to the next ring
   1235	 * entry (and prefetch it) before returning what we found.
   1236	 */
   1237	s->dqrr.next_idx++;
   1238	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
   1239	if (!s->dqrr.next_idx)
   1240		s->dqrr.valid_bit ^= QB_VALID_BIT;
   1241
   1242	/*
   1243	 * If this is the final response to a volatile dequeue command
   1244	 * indicate that the vdq is available
   1245	 */
   1246	flags = p->dq.stat;
   1247	response_verb = verb & QBMAN_RESULT_MASK;
   1248	if ((response_verb == QBMAN_RESULT_DQ) &&
   1249	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
   1250	    (flags & DPAA2_DQ_STAT_EXPIRED))
   1251		atomic_inc(&s->vdq.available);
   1252
   1253	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1254
   1255	return p;
   1256}
   1257
   1258/**
   1259 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
   1260 * @s: the software portal object
   1261 *
   1262 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
   1263 * only once, so repeated calls can return a sequence of DQRR entries, without
   1264 * requiring they be consumed immediately or in any particular order.
   1265 */
   1266const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
   1267{
   1268	u32 verb;
   1269	u32 response_verb;
   1270	u32 flags;
   1271	struct dpaa2_dq *p;
   1272
   1273	/* Before using valid-bit to detect if something is there, we have to
   1274	 * handle the case of the DQRR reset bug...
   1275	 */
   1276	if (unlikely(s->dqrr.reset_bug)) {
   1277		/*
   1278		 * We pick up new entries by cache-inhibited producer index,
   1279		 * which means that a non-coherent mapping would require us to
   1280		 * invalidate and read *only* once that PI has indicated that
   1281		 * there's an entry here. The first trip around the DQRR ring
   1282		 * will be much less efficient than all subsequent trips around
   1283		 * it...
   1284		 */
   1285		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
   1286			QMAN_DQRR_PI_MASK;
   1287
   1288		/* there are new entries if pi != next_idx */
   1289		if (pi == s->dqrr.next_idx)
   1290			return NULL;
   1291
   1292		/*
   1293		 * if next_idx is/was the last ring index, and 'pi' is
   1294		 * different, we can disable the workaround as all the ring
   1295		 * entries have now been DMA'd to so valid-bit checking is
   1296		 * repaired. Note: this logic needs to be based on next_idx
   1297		 * (which increments one at a time), rather than on pi (which
   1298		 * can burst and wrap-around between our snapshots of it).
   1299		 */
   1300		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
   1301			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
   1302				 s->dqrr.next_idx, pi);
   1303			s->dqrr.reset_bug = 0;
   1304		}
   1305		prefetch(qbman_get_cmd(s,
   1306				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1307	}
   1308
   1309	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
   1310	verb = p->dq.verb;
   1311
   1312	/*
   1313	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
   1314	 * in the DQRR reset bug workaround, we shouldn't need to skip these
   1315	 * check, because we've already determined that a new entry is available
   1316	 * and we've invalidated the cacheline before reading it, so the
   1317	 * valid-bit behaviour is repaired and should tell us what we already
   1318	 * knew from reading PI.
   1319	 */
   1320	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
   1321		prefetch(qbman_get_cmd(s,
   1322				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1323		return NULL;
   1324	}
   1325	/*
   1326	 * There's something there. Move "next_idx" attention to the next ring
   1327	 * entry (and prefetch it) before returning what we found.
   1328	 */
   1329	s->dqrr.next_idx++;
   1330	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
   1331	if (!s->dqrr.next_idx)
   1332		s->dqrr.valid_bit ^= QB_VALID_BIT;
   1333
   1334	/*
   1335	 * If this is the final response to a volatile dequeue command
   1336	 * indicate that the vdq is available
   1337	 */
   1338	flags = p->dq.stat;
   1339	response_verb = verb & QBMAN_RESULT_MASK;
   1340	if ((response_verb == QBMAN_RESULT_DQ) &&
   1341	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
   1342	    (flags & DPAA2_DQ_STAT_EXPIRED))
   1343		atomic_inc(&s->vdq.available);
   1344
   1345	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
   1346
   1347	return p;
   1348}
   1349
   1350/**
   1351 * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
   1352 *                             qbman_swp_dqrr_next().
   1353 * @s: the software portal object
   1354 * @dq: the DQRR entry to be consumed
   1355 */
   1356void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
   1357{
   1358	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
   1359}
   1360
   1361/**
   1362 * qbman_result_has_new_result() - Check and get the dequeue response from the
   1363 *                                 dq storage memory set in pull dequeue command
   1364 * @s: the software portal object
   1365 * @dq: the dequeue result read from the memory
   1366 *
   1367 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
   1368 * dequeue result.
   1369 *
   1370 * Only used for user-provided storage of dequeue results, not DQRR. For
   1371 * efficiency purposes, the driver will perform any required endianness
   1372 * conversion to ensure that the user's dequeue result storage is in host-endian
   1373 * format. As such, once the user has called qbman_result_has_new_result() and
   1374 * been returned a valid dequeue result, they should not call it again on
   1375 * the same memory location (except of course if another dequeue command has
   1376 * been executed to produce a new result to that location).
   1377 */
   1378int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
   1379{
   1380	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
   1381		return 0;
   1382
   1383	/*
   1384	 * Set token to be 0 so we will detect change back to 1
   1385	 * next time the looping is traversed. Const is cast away here
   1386	 * as we want users to treat the dequeue responses as read only.
   1387	 */
   1388	((struct dpaa2_dq *)dq)->dq.tok = 0;
   1389
   1390	/*
   1391	 * Determine whether VDQCR is available based on whether the
   1392	 * current result is sitting in the first storage location of
   1393	 * the busy command.
   1394	 */
   1395	if (s->vdq.storage == dq) {
   1396		s->vdq.storage = NULL;
   1397		atomic_inc(&s->vdq.available);
   1398	}
   1399
   1400	return 1;
   1401}
   1402
   1403/**
   1404 * qbman_release_desc_clear() - Clear the contents of a descriptor to
   1405 *                              default/starting state.
   1406 * @d: the pull dequeue descriptor to be cleared
   1407 */
   1408void qbman_release_desc_clear(struct qbman_release_desc *d)
   1409{
   1410	memset(d, 0, sizeof(*d));
   1411	d->verb = 1 << 5; /* Release Command Valid */
   1412}
   1413
   1414/**
   1415 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
   1416 * @d:    the pull dequeue descriptor to be set
   1417 * @bpid: the bpid value to be set
   1418 */
   1419void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
   1420{
   1421	d->bpid = cpu_to_le16(bpid);
   1422}
   1423
   1424/**
   1425 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
   1426 * interrupt source should be asserted after the release command is completed.
   1427 * @d:      the pull dequeue descriptor to be set
   1428 * @enable: enable (1) or disable (0) value
   1429 */
   1430void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
   1431{
   1432	if (enable)
   1433		d->verb |= 1 << 6;
   1434	else
   1435		d->verb &= ~(1 << 6);
   1436}
   1437
   1438#define RAR_IDX(rar)     ((rar) & 0x7)
   1439#define RAR_VB(rar)      ((rar) & 0x80)
   1440#define RAR_SUCCESS(rar) ((rar) & 0x100)
   1441
   1442/**
   1443 * qbman_swp_release_direct() - Issue a buffer release command
   1444 * @s:           the software portal object
   1445 * @d:           the release descriptor
   1446 * @buffers:     a pointer pointing to the buffer address to be released
   1447 * @num_buffers: number of buffers to be released,  must be less than 8
   1448 *
   1449 * Return 0 for success, -EBUSY if the release command ring is not ready.
   1450 */
   1451int qbman_swp_release_direct(struct qbman_swp *s,
   1452			     const struct qbman_release_desc *d,
   1453			     const u64 *buffers, unsigned int num_buffers)
   1454{
   1455	int i;
   1456	struct qbman_release_desc *p;
   1457	u32 rar;
   1458
   1459	if (!num_buffers || (num_buffers > 7))
   1460		return -EINVAL;
   1461
   1462	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
   1463	if (!RAR_SUCCESS(rar))
   1464		return -EBUSY;
   1465
   1466	/* Start the release command */
   1467	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
   1468
   1469	/* Copy the caller's buffer pointers to the command */
   1470	for (i = 0; i < num_buffers; i++)
   1471		p->buf[i] = cpu_to_le64(buffers[i]);
   1472	p->bpid = d->bpid;
   1473
   1474	/*
   1475	 * Set the verb byte, have to substitute in the valid-bit
   1476	 * and the number of buffers.
   1477	 */
   1478	dma_wmb();
   1479	p->verb = d->verb | RAR_VB(rar) | num_buffers;
   1480
   1481	return 0;
   1482}
   1483
   1484/**
   1485 * qbman_swp_release_mem_back() - Issue a buffer release command
   1486 * @s:           the software portal object
   1487 * @d:           the release descriptor
   1488 * @buffers:     a pointer pointing to the buffer address to be released
   1489 * @num_buffers: number of buffers to be released,  must be less than 8
   1490 *
   1491 * Return 0 for success, -EBUSY if the release command ring is not ready.
   1492 */
   1493int qbman_swp_release_mem_back(struct qbman_swp *s,
   1494			       const struct qbman_release_desc *d,
   1495			       const u64 *buffers, unsigned int num_buffers)
   1496{
   1497	int i;
   1498	struct qbman_release_desc *p;
   1499	u32 rar;
   1500
   1501	if (!num_buffers || (num_buffers > 7))
   1502		return -EINVAL;
   1503
   1504	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
   1505	if (!RAR_SUCCESS(rar))
   1506		return -EBUSY;
   1507
   1508	/* Start the release command */
   1509	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
   1510
   1511	/* Copy the caller's buffer pointers to the command */
   1512	for (i = 0; i < num_buffers; i++)
   1513		p->buf[i] = cpu_to_le64(buffers[i]);
   1514	p->bpid = d->bpid;
   1515
   1516	p->verb = d->verb | RAR_VB(rar) | num_buffers;
   1517	dma_wmb();
   1518	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
   1519			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
   1520
   1521	return 0;
   1522}
   1523
   1524struct qbman_acquire_desc {
   1525	u8 verb;
   1526	u8 reserved;
   1527	__le16 bpid;
   1528	u8 num;
   1529	u8 reserved2[59];
   1530};
   1531
   1532struct qbman_acquire_rslt {
   1533	u8 verb;
   1534	u8 rslt;
   1535	__le16 reserved;
   1536	u8 num;
   1537	u8 reserved2[3];
   1538	__le64 buf[7];
   1539};
   1540
   1541/**
   1542 * qbman_swp_acquire() - Issue a buffer acquire command
   1543 * @s:           the software portal object
   1544 * @bpid:        the buffer pool index
   1545 * @buffers:     a pointer pointing to the acquired buffer addresses
   1546 * @num_buffers: number of buffers to be acquired, must be less than 8
   1547 *
   1548 * Return 0 for success, or negative error code if the acquire command
   1549 * fails.
   1550 */
   1551int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
   1552		      unsigned int num_buffers)
   1553{
   1554	struct qbman_acquire_desc *p;
   1555	struct qbman_acquire_rslt *r;
   1556	int i;
   1557
   1558	if (!num_buffers || (num_buffers > 7))
   1559		return -EINVAL;
   1560
   1561	/* Start the management command */
   1562	p = qbman_swp_mc_start(s);
   1563
   1564	if (!p)
   1565		return -EBUSY;
   1566
   1567	/* Encode the caller-provided attributes */
   1568	p->bpid = cpu_to_le16(bpid);
   1569	p->num = num_buffers;
   1570
   1571	/* Complete the management command */
   1572	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
   1573	if (unlikely(!r)) {
   1574		pr_err("qbman: acquire from BPID %d failed, no response\n",
   1575		       bpid);
   1576		return -EIO;
   1577	}
   1578
   1579	/* Decode the outcome */
   1580	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
   1581
   1582	/* Determine success or failure */
   1583	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
   1584		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
   1585		       bpid, r->rslt);
   1586		return -EIO;
   1587	}
   1588
   1589	WARN_ON(r->num > num_buffers);
   1590
   1591	/* Copy the acquired buffers to the caller's array */
   1592	for (i = 0; i < r->num; i++)
   1593		buffers[i] = le64_to_cpu(r->buf[i]);
   1594
   1595	return (int)r->num;
   1596}
   1597
   1598struct qbman_alt_fq_state_desc {
   1599	u8 verb;
   1600	u8 reserved[3];
   1601	__le32 fqid;
   1602	u8 reserved2[56];
   1603};
   1604
   1605struct qbman_alt_fq_state_rslt {
   1606	u8 verb;
   1607	u8 rslt;
   1608	u8 reserved[62];
   1609};
   1610
   1611#define ALT_FQ_FQID_MASK 0x00FFFFFF
   1612
   1613int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
   1614			   u8 alt_fq_verb)
   1615{
   1616	struct qbman_alt_fq_state_desc *p;
   1617	struct qbman_alt_fq_state_rslt *r;
   1618
   1619	/* Start the management command */
   1620	p = qbman_swp_mc_start(s);
   1621	if (!p)
   1622		return -EBUSY;
   1623
   1624	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
   1625
   1626	/* Complete the management command */
   1627	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
   1628	if (unlikely(!r)) {
   1629		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
   1630		       alt_fq_verb);
   1631		return -EIO;
   1632	}
   1633
   1634	/* Decode the outcome */
   1635	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
   1636
   1637	/* Determine success or failure */
   1638	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
   1639		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
   1640		       fqid, r->verb, r->rslt);
   1641		return -EIO;
   1642	}
   1643
   1644	return 0;
   1645}
   1646
   1647struct qbman_cdan_ctrl_desc {
   1648	u8 verb;
   1649	u8 reserved;
   1650	__le16 ch;
   1651	u8 we;
   1652	u8 ctrl;
   1653	__le16 reserved2;
   1654	__le64 cdan_ctx;
   1655	u8 reserved3[48];
   1656
   1657};
   1658
   1659struct qbman_cdan_ctrl_rslt {
   1660	u8 verb;
   1661	u8 rslt;
   1662	__le16 ch;
   1663	u8 reserved[60];
   1664};
   1665
   1666int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
   1667		       u8 we_mask, u8 cdan_en,
   1668		       u64 ctx)
   1669{
   1670	struct qbman_cdan_ctrl_desc *p = NULL;
   1671	struct qbman_cdan_ctrl_rslt *r = NULL;
   1672
   1673	/* Start the management command */
   1674	p = qbman_swp_mc_start(s);
   1675	if (!p)
   1676		return -EBUSY;
   1677
   1678	/* Encode the caller-provided attributes */
   1679	p->ch = cpu_to_le16(channelid);
   1680	p->we = we_mask;
   1681	if (cdan_en)
   1682		p->ctrl = 1;
   1683	else
   1684		p->ctrl = 0;
   1685	p->cdan_ctx = cpu_to_le64(ctx);
   1686
   1687	/* Complete the management command */
   1688	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
   1689	if (unlikely(!r)) {
   1690		pr_err("qbman: wqchan config failed, no response\n");
   1691		return -EIO;
   1692	}
   1693
   1694	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
   1695
   1696	/* Determine success or failure */
   1697	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
   1698		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
   1699		       channelid, r->rslt);
   1700		return -EIO;
   1701	}
   1702
   1703	return 0;
   1704}
   1705
   1706#define QBMAN_RESPONSE_VERB_MASK	0x7f
   1707#define QBMAN_FQ_QUERY_NP		0x45
   1708#define QBMAN_BP_QUERY			0x32
   1709
   1710struct qbman_fq_query_desc {
   1711	u8 verb;
   1712	u8 reserved[3];
   1713	__le32 fqid;
   1714	u8 reserved2[56];
   1715};
   1716
   1717int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
   1718			 struct qbman_fq_query_np_rslt *r)
   1719{
   1720	struct qbman_fq_query_desc *p;
   1721	void *resp;
   1722
   1723	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
   1724	if (!p)
   1725		return -EBUSY;
   1726
   1727	/* FQID is a 24 bit value */
   1728	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
   1729	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
   1730	if (!resp) {
   1731		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
   1732		       fqid);
   1733		return -EIO;
   1734	}
   1735	*r = *(struct qbman_fq_query_np_rslt *)resp;
   1736	/* Decode the outcome */
   1737	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
   1738
   1739	/* Determine success or failure */
   1740	if (r->rslt != QBMAN_MC_RSLT_OK) {
   1741		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
   1742		       p->fqid, r->rslt);
   1743		return -EIO;
   1744	}
   1745
   1746	return 0;
   1747}
   1748
   1749u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
   1750{
   1751	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
   1752}
   1753
   1754u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
   1755{
   1756	return le32_to_cpu(r->byte_cnt);
   1757}
   1758
   1759struct qbman_bp_query_desc {
   1760	u8 verb;
   1761	u8 reserved;
   1762	__le16 bpid;
   1763	u8 reserved2[60];
   1764};
   1765
   1766int qbman_bp_query(struct qbman_swp *s, u16 bpid,
   1767		   struct qbman_bp_query_rslt *r)
   1768{
   1769	struct qbman_bp_query_desc *p;
   1770	void *resp;
   1771
   1772	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
   1773	if (!p)
   1774		return -EBUSY;
   1775
   1776	p->bpid = cpu_to_le16(bpid);
   1777	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
   1778	if (!resp) {
   1779		pr_err("qbman: Query BPID %d fields failed, no response\n",
   1780		       bpid);
   1781		return -EIO;
   1782	}
   1783	*r = *(struct qbman_bp_query_rslt *)resp;
   1784	/* Decode the outcome */
   1785	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
   1786
   1787	/* Determine success or failure */
   1788	if (r->rslt != QBMAN_MC_RSLT_OK) {
   1789		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
   1790		       bpid, r->rslt);
   1791		return -EIO;
   1792	}
   1793
   1794	return 0;
   1795}
   1796
   1797u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
   1798{
   1799	return le32_to_cpu(a->fill);
   1800}
   1801
   1802/**
   1803 * qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
   1804 * @p: the software portal object
   1805 * @irq_threshold: interrupt threshold
   1806 * @irq_holdoff: interrupt holdoff (timeout) period in us
   1807 *
   1808 * Return 0 for success, or negative error code on error.
   1809 */
   1810int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
   1811				 u32 irq_holdoff)
   1812{
   1813	u32 itp, max_holdoff;
   1814
   1815	/* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
   1816	 * increments. This depends on the QBMAN internal frequency.
   1817	 */
   1818	itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
   1819	if (itp > 4096) {
   1820		max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
   1821		pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
   1822		return -EINVAL;
   1823	}
   1824
   1825	if (irq_threshold >= p->dqrr.dqrr_size) {
   1826		pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
   1827		return -EINVAL;
   1828	}
   1829
   1830	p->irq_threshold = irq_threshold;
   1831	p->irq_holdoff = irq_holdoff;
   1832
   1833	qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
   1834	qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
   1835
   1836	return 0;
   1837}
   1838
   1839/**
   1840 * qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
   1841 * @p: the software portal object
   1842 * @irq_threshold: interrupt threshold (an IRQ is generated when there are more
   1843 * DQRR entries in the portal than the threshold)
   1844 * @irq_holdoff: interrupt holdoff (timeout) period in us
   1845 */
   1846void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
   1847				  u32 *irq_holdoff)
   1848{
   1849	if (irq_threshold)
   1850		*irq_threshold = p->irq_threshold;
   1851	if (irq_holdoff)
   1852		*irq_holdoff = p->irq_holdoff;
   1853}