cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

qman_test_stash.c (17532B)


      1/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
      2 *
      3 * Redistribution and use in source and binary forms, with or without
      4 * modification, are permitted provided that the following conditions are met:
      5 *     * Redistributions of source code must retain the above copyright
      6 *	 notice, this list of conditions and the following disclaimer.
      7 *     * Redistributions in binary form must reproduce the above copyright
      8 *	 notice, this list of conditions and the following disclaimer in the
      9 *	 documentation and/or other materials provided with the distribution.
     10 *     * Neither the name of Freescale Semiconductor nor the
     11 *	 names of its contributors may be used to endorse or promote products
     12 *	 derived from this software without specific prior written permission.
     13 *
     14 * ALTERNATIVELY, this software may be distributed under the terms of the
     15 * GNU General Public License ("GPL") as published by the Free Software
     16 * Foundation, either version 2 of that License or (at your option) any
     17 * later version.
     18 *
     19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
     20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
     23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 */
     30
     31#include "qman_test.h"
     32
     33#include <linux/dma-mapping.h>
     34#include <linux/delay.h>
     35
     36/*
     37 * Algorithm:
     38 *
     39 * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
     40 * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
     41 * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
     42 * shuttle a "hot potato" frame around them such that every forwarding action
     43 * moves it from one cpu to another. (The use of more than one handler per cpu
     44 * is to allow enough handlers/FQs to truly test the significance of caching -
     45 * ie. when cache-expiries are occurring.)
     46 *
     47 * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
     48 * first and last words of the frame data will undergo a transformation step on
     49 * each forwarding action. To achieve this, each handler will be assigned a
     50 * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
     51 * received by a handler, the mixer of the expected sender is XOR'd into all
     52 * words of the entire frame, which is then validated against the original
     53 * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
     54 * the current handler. Apart from validating that the frame is taking the
     55 * expected path, this also provides some quasi-realistic overheads to each
     56 * forwarding action - dereferencing *all* the frame data, computation, and
     57 * conditional branching. There is a "special" handler designated to act as the
     58 * instigator of the test by creating an enqueuing the "hot potato" frame, and
     59 * to determine when the test has completed by counting HP_LOOPS iterations.
     60 *
     61 * Init phases:
     62 *
     63 * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
     64 *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
     65 *    handlers and link-list them (but do no other handler setup).
     66 *
     67 * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
     68 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
     69 *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
     70 *    and advance the iterator for the next loop. This includes a final fixup,
     71 *    which connects the last handler to the first (and which is why phase 2
     72 *    and 3 are separate).
     73 *
     74 * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
     75 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
     76 *    initialise FQ objects and advance the iterator for the next loop.
     77 *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
     78 *    initialisation targets the correct cpu.
     79 */
     80
     81/*
     82 * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
     83 * the fn from irq context, which is too restrictive).
     84 */
     85struct bstrap {
     86	int (*fn)(void);
     87	atomic_t started;
     88};
     89static int bstrap_fn(void *bs)
     90{
     91	struct bstrap *bstrap = bs;
     92	int err;
     93
     94	atomic_inc(&bstrap->started);
     95	err = bstrap->fn();
     96	if (err)
     97		return err;
     98	while (!kthread_should_stop())
     99		msleep(20);
    100	return 0;
    101}
    102static int on_all_cpus(int (*fn)(void))
    103{
    104	int cpu;
    105
    106	for_each_cpu(cpu, cpu_online_mask) {
    107		struct bstrap bstrap = {
    108			.fn = fn,
    109			.started = ATOMIC_INIT(0)
    110		};
    111		struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
    112			"hotpotato%d", cpu);
    113		int ret;
    114
    115		if (IS_ERR(k))
    116			return -ENOMEM;
    117		kthread_bind(k, cpu);
    118		wake_up_process(k);
    119		/*
    120		 * If we call kthread_stop() before the "wake up" has had an
    121		 * effect, then the thread may exit with -EINTR without ever
    122		 * running the function. So poll until it's started before
    123		 * requesting it to stop.
    124		 */
    125		while (!atomic_read(&bstrap.started))
    126			msleep(20);
    127		ret = kthread_stop(k);
    128		if (ret)
    129			return ret;
    130	}
    131	return 0;
    132}
    133
    134struct hp_handler {
    135
    136	/* The following data is stashed when 'rx' is dequeued; */
    137	/* -------------- */
    138	/* The Rx FQ, dequeues of which will stash the entire hp_handler */
    139	struct qman_fq rx;
    140	/* The Tx FQ we should forward to */
    141	struct qman_fq tx;
    142	/* The value we XOR post-dequeue, prior to validating */
    143	u32 rx_mixer;
    144	/* The value we XOR pre-enqueue, after validating */
    145	u32 tx_mixer;
    146	/* what the hotpotato address should be on dequeue */
    147	dma_addr_t addr;
    148	u32 *frame_ptr;
    149
    150	/* The following data isn't (necessarily) stashed on dequeue; */
    151	/* -------------- */
    152	u32 fqid_rx, fqid_tx;
    153	/* list node for linking us into 'hp_cpu' */
    154	struct list_head node;
    155	/* Just to check ... */
    156	unsigned int processor_id;
    157} ____cacheline_aligned;
    158
    159struct hp_cpu {
    160	/* identify the cpu we run on; */
    161	unsigned int processor_id;
    162	/* root node for the per-cpu list of handlers */
    163	struct list_head handlers;
    164	/* list node for linking us into 'hp_cpu_list' */
    165	struct list_head node;
    166	/*
    167	 * when repeatedly scanning 'hp_list', each time linking the n'th
    168	 * handlers together, this is used as per-cpu iterator state
    169	 */
    170	struct hp_handler *iterator;
    171};
    172
    173/* Each cpu has one of these */
    174static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
    175
    176/* links together the hp_cpu structs, in first-come first-serve order. */
    177static LIST_HEAD(hp_cpu_list);
    178static DEFINE_SPINLOCK(hp_lock);
    179
    180static unsigned int hp_cpu_list_length;
    181
    182/* the "special" handler, that starts and terminates the test. */
    183static struct hp_handler *special_handler;
    184static int loop_counter;
    185
    186/* handlers are allocated out of this, so they're properly aligned. */
    187static struct kmem_cache *hp_handler_slab;
    188
    189/* this is the frame data */
    190static void *__frame_ptr;
    191static u32 *frame_ptr;
    192static dma_addr_t frame_dma;
    193
    194/* needed for dma_map*() */
    195static const struct qm_portal_config *pcfg;
    196
    197/* the main function waits on this */
    198static DECLARE_WAIT_QUEUE_HEAD(queue);
    199
    200#define HP_PER_CPU	2
    201#define HP_LOOPS	8
    202/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
    203#define HP_NUM_WORDS	80
    204/* First word of the LFSR-based frame data */
    205#define HP_FIRST_WORD	0xabbaf00d
    206
    207static inline u32 do_lfsr(u32 prev)
    208{
    209	return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
    210}
    211
    212static int allocate_frame_data(void)
    213{
    214	u32 lfsr = HP_FIRST_WORD;
    215	int loop;
    216
    217	if (!qman_dma_portal) {
    218		pr_crit("portal not available\n");
    219		return -EIO;
    220	}
    221
    222	pcfg = qman_get_qm_portal_config(qman_dma_portal);
    223
    224	__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
    225	if (!__frame_ptr)
    226		return -ENOMEM;
    227
    228	frame_ptr = PTR_ALIGN(__frame_ptr, 64);
    229	for (loop = 0; loop < HP_NUM_WORDS; loop++) {
    230		frame_ptr[loop] = lfsr;
    231		lfsr = do_lfsr(lfsr);
    232	}
    233
    234	frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
    235				   DMA_BIDIRECTIONAL);
    236	if (dma_mapping_error(pcfg->dev, frame_dma)) {
    237		pr_crit("dma mapping failure\n");
    238		kfree(__frame_ptr);
    239		return -EIO;
    240	}
    241
    242	return 0;
    243}
    244
    245static void deallocate_frame_data(void)
    246{
    247	dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
    248			 DMA_BIDIRECTIONAL);
    249	kfree(__frame_ptr);
    250}
    251
    252static inline int process_frame_data(struct hp_handler *handler,
    253				     const struct qm_fd *fd)
    254{
    255	u32 *p = handler->frame_ptr;
    256	u32 lfsr = HP_FIRST_WORD;
    257	int loop;
    258
    259	if (qm_fd_addr_get64(fd) != handler->addr) {
    260		pr_crit("bad frame address, [%llX != %llX]\n",
    261			qm_fd_addr_get64(fd), handler->addr);
    262		return -EIO;
    263	}
    264	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
    265		*p ^= handler->rx_mixer;
    266		if (*p != lfsr) {
    267			pr_crit("corrupt frame data");
    268			return -EIO;
    269		}
    270		*p ^= handler->tx_mixer;
    271		lfsr = do_lfsr(lfsr);
    272	}
    273	return 0;
    274}
    275
    276static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
    277					    struct qman_fq *fq,
    278					    const struct qm_dqrr_entry *dqrr,
    279					    bool sched_napi)
    280{
    281	struct hp_handler *handler = (struct hp_handler *)fq;
    282
    283	if (process_frame_data(handler, &dqrr->fd)) {
    284		WARN_ON(1);
    285		goto skip;
    286	}
    287	if (qman_enqueue(&handler->tx, &dqrr->fd)) {
    288		pr_crit("qman_enqueue() failed");
    289		WARN_ON(1);
    290	}
    291skip:
    292	return qman_cb_dqrr_consume;
    293}
    294
    295static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
    296					     struct qman_fq *fq,
    297					     const struct qm_dqrr_entry *dqrr,
    298					     bool sched_napi)
    299{
    300	struct hp_handler *handler = (struct hp_handler *)fq;
    301
    302	process_frame_data(handler, &dqrr->fd);
    303	if (++loop_counter < HP_LOOPS) {
    304		if (qman_enqueue(&handler->tx, &dqrr->fd)) {
    305			pr_crit("qman_enqueue() failed");
    306			WARN_ON(1);
    307			goto skip;
    308		}
    309	} else {
    310		pr_info("Received final (%dth) frame\n", loop_counter);
    311		wake_up(&queue);
    312	}
    313skip:
    314	return qman_cb_dqrr_consume;
    315}
    316
    317static int create_per_cpu_handlers(void)
    318{
    319	struct hp_handler *handler;
    320	int loop;
    321	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
    322
    323	hp_cpu->processor_id = smp_processor_id();
    324	spin_lock(&hp_lock);
    325	list_add_tail(&hp_cpu->node, &hp_cpu_list);
    326	hp_cpu_list_length++;
    327	spin_unlock(&hp_lock);
    328	INIT_LIST_HEAD(&hp_cpu->handlers);
    329	for (loop = 0; loop < HP_PER_CPU; loop++) {
    330		handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
    331		if (!handler) {
    332			pr_crit("kmem_cache_alloc() failed");
    333			WARN_ON(1);
    334			return -EIO;
    335		}
    336		handler->processor_id = hp_cpu->processor_id;
    337		handler->addr = frame_dma;
    338		handler->frame_ptr = frame_ptr;
    339		list_add_tail(&handler->node, &hp_cpu->handlers);
    340	}
    341	return 0;
    342}
    343
    344static int destroy_per_cpu_handlers(void)
    345{
    346	struct list_head *loop, *tmp;
    347	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
    348
    349	spin_lock(&hp_lock);
    350	list_del(&hp_cpu->node);
    351	spin_unlock(&hp_lock);
    352	list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
    353		u32 flags = 0;
    354		struct hp_handler *handler = list_entry(loop, struct hp_handler,
    355							node);
    356		if (qman_retire_fq(&handler->rx, &flags) ||
    357		    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
    358			pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
    359			WARN_ON(1);
    360			return -EIO;
    361		}
    362		if (qman_oos_fq(&handler->rx)) {
    363			pr_crit("qman_oos_fq(rx) failed");
    364			WARN_ON(1);
    365			return -EIO;
    366		}
    367		qman_destroy_fq(&handler->rx);
    368		qman_destroy_fq(&handler->tx);
    369		qman_release_fqid(handler->fqid_rx);
    370		list_del(&handler->node);
    371		kmem_cache_free(hp_handler_slab, handler);
    372	}
    373	return 0;
    374}
    375
    376static inline u8 num_cachelines(u32 offset)
    377{
    378	u8 res = (offset + (L1_CACHE_BYTES - 1))
    379			 / (L1_CACHE_BYTES);
    380	if (res > 3)
    381		return 3;
    382	return res;
    383}
    384#define STASH_DATA_CL \
    385	num_cachelines(HP_NUM_WORDS * 4)
    386#define STASH_CTX_CL \
    387	num_cachelines(offsetof(struct hp_handler, fqid_rx))
    388
    389static int init_handler(void *h)
    390{
    391	struct qm_mcc_initfq opts;
    392	struct hp_handler *handler = h;
    393	int err;
    394
    395	if (handler->processor_id != smp_processor_id()) {
    396		err = -EIO;
    397		goto failed;
    398	}
    399	/* Set up rx */
    400	memset(&handler->rx, 0, sizeof(handler->rx));
    401	if (handler == special_handler)
    402		handler->rx.cb.dqrr = special_dqrr;
    403	else
    404		handler->rx.cb.dqrr = normal_dqrr;
    405	err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
    406	if (err) {
    407		pr_crit("qman_create_fq(rx) failed");
    408		goto failed;
    409	}
    410	memset(&opts, 0, sizeof(opts));
    411	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
    412				   QM_INITFQ_WE_CONTEXTA);
    413	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
    414	qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
    415	err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
    416			   QMAN_INITFQ_FLAG_LOCAL, &opts);
    417	if (err) {
    418		pr_crit("qman_init_fq(rx) failed");
    419		goto failed;
    420	}
    421	/* Set up tx */
    422	memset(&handler->tx, 0, sizeof(handler->tx));
    423	err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
    424			     &handler->tx);
    425	if (err) {
    426		pr_crit("qman_create_fq(tx) failed");
    427		goto failed;
    428	}
    429
    430	return 0;
    431failed:
    432	return err;
    433}
    434
    435static void init_handler_cb(void *h)
    436{
    437	if (init_handler(h))
    438		WARN_ON(1);
    439}
    440
    441static int init_phase2(void)
    442{
    443	int loop;
    444	u32 fqid = 0;
    445	u32 lfsr = 0xdeadbeef;
    446	struct hp_cpu *hp_cpu;
    447	struct hp_handler *handler;
    448
    449	for (loop = 0; loop < HP_PER_CPU; loop++) {
    450		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
    451			int err;
    452
    453			if (!loop)
    454				hp_cpu->iterator = list_first_entry(
    455						&hp_cpu->handlers,
    456						struct hp_handler, node);
    457			else
    458				hp_cpu->iterator = list_entry(
    459						hp_cpu->iterator->node.next,
    460						struct hp_handler, node);
    461			/* Rx FQID is the previous handler's Tx FQID */
    462			hp_cpu->iterator->fqid_rx = fqid;
    463			/* Allocate new FQID for Tx */
    464			err = qman_alloc_fqid(&fqid);
    465			if (err) {
    466				pr_crit("qman_alloc_fqid() failed");
    467				return err;
    468			}
    469			hp_cpu->iterator->fqid_tx = fqid;
    470			/* Rx mixer is the previous handler's Tx mixer */
    471			hp_cpu->iterator->rx_mixer = lfsr;
    472			/* Get new mixer for Tx */
    473			lfsr = do_lfsr(lfsr);
    474			hp_cpu->iterator->tx_mixer = lfsr;
    475		}
    476	}
    477	/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
    478	hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
    479	handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
    480	if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
    481		return 1;
    482	handler->fqid_rx = fqid;
    483	handler->rx_mixer = lfsr;
    484	/* and tag it as our "special" handler */
    485	special_handler = handler;
    486	return 0;
    487}
    488
    489static int init_phase3(void)
    490{
    491	int loop, err;
    492	struct hp_cpu *hp_cpu;
    493
    494	for (loop = 0; loop < HP_PER_CPU; loop++) {
    495		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
    496			if (!loop)
    497				hp_cpu->iterator = list_first_entry(
    498						&hp_cpu->handlers,
    499						struct hp_handler, node);
    500			else
    501				hp_cpu->iterator = list_entry(
    502						hp_cpu->iterator->node.next,
    503						struct hp_handler, node);
    504			preempt_disable();
    505			if (hp_cpu->processor_id == smp_processor_id()) {
    506				err = init_handler(hp_cpu->iterator);
    507				if (err)
    508					return err;
    509			} else {
    510				smp_call_function_single(hp_cpu->processor_id,
    511					init_handler_cb, hp_cpu->iterator, 1);
    512			}
    513			preempt_enable();
    514		}
    515	}
    516	return 0;
    517}
    518
    519static int send_first_frame(void *ignore)
    520{
    521	u32 *p = special_handler->frame_ptr;
    522	u32 lfsr = HP_FIRST_WORD;
    523	int loop, err;
    524	struct qm_fd fd;
    525
    526	if (special_handler->processor_id != smp_processor_id()) {
    527		err = -EIO;
    528		goto failed;
    529	}
    530	memset(&fd, 0, sizeof(fd));
    531	qm_fd_addr_set64(&fd, special_handler->addr);
    532	qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
    533	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
    534		if (*p != lfsr) {
    535			err = -EIO;
    536			pr_crit("corrupt frame data");
    537			goto failed;
    538		}
    539		*p ^= special_handler->tx_mixer;
    540		lfsr = do_lfsr(lfsr);
    541	}
    542	pr_info("Sending first frame\n");
    543	err = qman_enqueue(&special_handler->tx, &fd);
    544	if (err) {
    545		pr_crit("qman_enqueue() failed");
    546		goto failed;
    547	}
    548
    549	return 0;
    550failed:
    551	return err;
    552}
    553
    554static void send_first_frame_cb(void *ignore)
    555{
    556	if (send_first_frame(NULL))
    557		WARN_ON(1);
    558}
    559
    560int qman_test_stash(void)
    561{
    562	int err;
    563
    564	if (cpumask_weight(cpu_online_mask) < 2) {
    565		pr_info("%s(): skip - only 1 CPU\n", __func__);
    566		return 0;
    567	}
    568
    569	pr_info("%s(): Starting\n", __func__);
    570
    571	hp_cpu_list_length = 0;
    572	loop_counter = 0;
    573	hp_handler_slab = kmem_cache_create("hp_handler_slab",
    574			sizeof(struct hp_handler), L1_CACHE_BYTES,
    575			SLAB_HWCACHE_ALIGN, NULL);
    576	if (!hp_handler_slab) {
    577		err = -EIO;
    578		pr_crit("kmem_cache_create() failed");
    579		goto failed;
    580	}
    581
    582	err = allocate_frame_data();
    583	if (err)
    584		goto failed;
    585
    586	/* Init phase 1 */
    587	pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
    588	if (on_all_cpus(create_per_cpu_handlers)) {
    589		err = -EIO;
    590		pr_crit("on_each_cpu() failed");
    591		goto failed;
    592	}
    593	pr_info("Number of cpus: %d, total of %d handlers\n",
    594		hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
    595
    596	err = init_phase2();
    597	if (err)
    598		goto failed;
    599
    600	err = init_phase3();
    601	if (err)
    602		goto failed;
    603
    604	preempt_disable();
    605	if (special_handler->processor_id == smp_processor_id()) {
    606		err = send_first_frame(NULL);
    607		if (err)
    608			goto failed;
    609	} else {
    610		smp_call_function_single(special_handler->processor_id,
    611					 send_first_frame_cb, NULL, 1);
    612	}
    613	preempt_enable();
    614
    615	wait_event(queue, loop_counter == HP_LOOPS);
    616	deallocate_frame_data();
    617	if (on_all_cpus(destroy_per_cpu_handlers)) {
    618		err = -EIO;
    619		pr_crit("on_each_cpu() failed");
    620		goto failed;
    621	}
    622	kmem_cache_destroy(hp_handler_slab);
    623	pr_info("%s(): Finished\n", __func__);
    624
    625	return 0;
    626failed:
    627	WARN_ON(1);
    628	return err;
    629}