cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-ep93xx.c (19591B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for Cirrus Logic EP93xx SPI controller.
      4 *
      5 * Copyright (C) 2010-2011 Mika Westerberg
      6 *
      7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
      8 *
      9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
     10 *
     11 * For more information about the SPI controller see documentation on Cirrus
     12 * Logic web site:
     13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
     14 */
     15
     16#include <linux/io.h>
     17#include <linux/clk.h>
     18#include <linux/err.h>
     19#include <linux/delay.h>
     20#include <linux/device.h>
     21#include <linux/dmaengine.h>
     22#include <linux/bitops.h>
     23#include <linux/interrupt.h>
     24#include <linux/module.h>
     25#include <linux/platform_device.h>
     26#include <linux/sched.h>
     27#include <linux/scatterlist.h>
     28#include <linux/spi/spi.h>
     29
     30#include <linux/platform_data/dma-ep93xx.h>
     31#include <linux/platform_data/spi-ep93xx.h>
     32
     33#define SSPCR0			0x0000
     34#define SSPCR0_SPO		BIT(6)
     35#define SSPCR0_SPH		BIT(7)
     36#define SSPCR0_SCR_SHIFT	8
     37
     38#define SSPCR1			0x0004
     39#define SSPCR1_RIE		BIT(0)
     40#define SSPCR1_TIE		BIT(1)
     41#define SSPCR1_RORIE		BIT(2)
     42#define SSPCR1_LBM		BIT(3)
     43#define SSPCR1_SSE		BIT(4)
     44#define SSPCR1_MS		BIT(5)
     45#define SSPCR1_SOD		BIT(6)
     46
     47#define SSPDR			0x0008
     48
     49#define SSPSR			0x000c
     50#define SSPSR_TFE		BIT(0)
     51#define SSPSR_TNF		BIT(1)
     52#define SSPSR_RNE		BIT(2)
     53#define SSPSR_RFF		BIT(3)
     54#define SSPSR_BSY		BIT(4)
     55#define SSPCPSR			0x0010
     56
     57#define SSPIIR			0x0014
     58#define SSPIIR_RIS		BIT(0)
     59#define SSPIIR_TIS		BIT(1)
     60#define SSPIIR_RORIS		BIT(2)
     61#define SSPICR			SSPIIR
     62
     63/* timeout in milliseconds */
     64#define SPI_TIMEOUT		5
     65/* maximum depth of RX/TX FIFO */
     66#define SPI_FIFO_SIZE		8
     67
     68/**
     69 * struct ep93xx_spi - EP93xx SPI controller structure
     70 * @clk: clock for the controller
     71 * @mmio: pointer to ioremap()'d registers
     72 * @sspdr_phys: physical address of the SSPDR register
     73 * @tx: current byte in transfer to transmit
     74 * @rx: current byte in transfer to receive
     75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
     76 *              frame decreases this level and sending one frame increases it.
     77 * @dma_rx: RX DMA channel
     78 * @dma_tx: TX DMA channel
     79 * @dma_rx_data: RX parameters passed to the DMA engine
     80 * @dma_tx_data: TX parameters passed to the DMA engine
     81 * @rx_sgt: sg table for RX transfers
     82 * @tx_sgt: sg table for TX transfers
     83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
     84 *            the client
     85 */
     86struct ep93xx_spi {
     87	struct clk			*clk;
     88	void __iomem			*mmio;
     89	unsigned long			sspdr_phys;
     90	size_t				tx;
     91	size_t				rx;
     92	size_t				fifo_level;
     93	struct dma_chan			*dma_rx;
     94	struct dma_chan			*dma_tx;
     95	struct ep93xx_dma_data		dma_rx_data;
     96	struct ep93xx_dma_data		dma_tx_data;
     97	struct sg_table			rx_sgt;
     98	struct sg_table			tx_sgt;
     99	void				*zeropage;
    100};
    101
    102/* converts bits per word to CR0.DSS value */
    103#define bits_per_word_to_dss(bpw)	((bpw) - 1)
    104
    105/**
    106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
    107 * @master: SPI master
    108 * @rate: desired SPI output clock rate
    109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
    110 * @div_scr: pointer to return the scr divider
    111 */
    112static int ep93xx_spi_calc_divisors(struct spi_master *master,
    113				    u32 rate, u8 *div_cpsr, u8 *div_scr)
    114{
    115	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    116	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
    117	int cpsr, scr;
    118
    119	/*
    120	 * Make sure that max value is between values supported by the
    121	 * controller.
    122	 */
    123	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
    124
    125	/*
    126	 * Calculate divisors so that we can get speed according the
    127	 * following formula:
    128	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
    129	 *
    130	 * cpsr must be even number and starts from 2, scr can be any number
    131	 * between 0 and 255.
    132	 */
    133	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
    134		for (scr = 0; scr <= 255; scr++) {
    135			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
    136				*div_scr = (u8)scr;
    137				*div_cpsr = (u8)cpsr;
    138				return 0;
    139			}
    140		}
    141	}
    142
    143	return -EINVAL;
    144}
    145
    146static int ep93xx_spi_chip_setup(struct spi_master *master,
    147				 struct spi_device *spi,
    148				 struct spi_transfer *xfer)
    149{
    150	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    151	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
    152	u8 div_cpsr = 0;
    153	u8 div_scr = 0;
    154	u16 cr0;
    155	int err;
    156
    157	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
    158				       &div_cpsr, &div_scr);
    159	if (err)
    160		return err;
    161
    162	cr0 = div_scr << SSPCR0_SCR_SHIFT;
    163	if (spi->mode & SPI_CPOL)
    164		cr0 |= SSPCR0_SPO;
    165	if (spi->mode & SPI_CPHA)
    166		cr0 |= SSPCR0_SPH;
    167	cr0 |= dss;
    168
    169	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
    170		spi->mode, div_cpsr, div_scr, dss);
    171	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
    172
    173	writel(div_cpsr, espi->mmio + SSPCPSR);
    174	writel(cr0, espi->mmio + SSPCR0);
    175
    176	return 0;
    177}
    178
    179static void ep93xx_do_write(struct spi_master *master)
    180{
    181	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    182	struct spi_transfer *xfer = master->cur_msg->state;
    183	u32 val = 0;
    184
    185	if (xfer->bits_per_word > 8) {
    186		if (xfer->tx_buf)
    187			val = ((u16 *)xfer->tx_buf)[espi->tx];
    188		espi->tx += 2;
    189	} else {
    190		if (xfer->tx_buf)
    191			val = ((u8 *)xfer->tx_buf)[espi->tx];
    192		espi->tx += 1;
    193	}
    194	writel(val, espi->mmio + SSPDR);
    195}
    196
    197static void ep93xx_do_read(struct spi_master *master)
    198{
    199	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    200	struct spi_transfer *xfer = master->cur_msg->state;
    201	u32 val;
    202
    203	val = readl(espi->mmio + SSPDR);
    204	if (xfer->bits_per_word > 8) {
    205		if (xfer->rx_buf)
    206			((u16 *)xfer->rx_buf)[espi->rx] = val;
    207		espi->rx += 2;
    208	} else {
    209		if (xfer->rx_buf)
    210			((u8 *)xfer->rx_buf)[espi->rx] = val;
    211		espi->rx += 1;
    212	}
    213}
    214
    215/**
    216 * ep93xx_spi_read_write() - perform next RX/TX transfer
    217 * @master: SPI master
    218 *
    219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
    220 * called several times, the whole transfer will be completed. Returns
    221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
    222 *
    223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
    224 * full.
    225 */
    226static int ep93xx_spi_read_write(struct spi_master *master)
    227{
    228	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    229	struct spi_transfer *xfer = master->cur_msg->state;
    230
    231	/* read as long as RX FIFO has frames in it */
    232	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
    233		ep93xx_do_read(master);
    234		espi->fifo_level--;
    235	}
    236
    237	/* write as long as TX FIFO has room */
    238	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
    239		ep93xx_do_write(master);
    240		espi->fifo_level++;
    241	}
    242
    243	if (espi->rx == xfer->len)
    244		return 0;
    245
    246	return -EINPROGRESS;
    247}
    248
    249static enum dma_transfer_direction
    250ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
    251{
    252	switch (dir) {
    253	case DMA_TO_DEVICE:
    254		return DMA_MEM_TO_DEV;
    255	case DMA_FROM_DEVICE:
    256		return DMA_DEV_TO_MEM;
    257	default:
    258		return DMA_TRANS_NONE;
    259	}
    260}
    261
    262/**
    263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
    264 * @master: SPI master
    265 * @dir: DMA transfer direction
    266 *
    267 * Function configures the DMA, maps the buffer and prepares the DMA
    268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
    269 * in case of failure.
    270 */
    271static struct dma_async_tx_descriptor *
    272ep93xx_spi_dma_prepare(struct spi_master *master,
    273		       enum dma_data_direction dir)
    274{
    275	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    276	struct spi_transfer *xfer = master->cur_msg->state;
    277	struct dma_async_tx_descriptor *txd;
    278	enum dma_slave_buswidth buswidth;
    279	struct dma_slave_config conf;
    280	struct scatterlist *sg;
    281	struct sg_table *sgt;
    282	struct dma_chan *chan;
    283	const void *buf, *pbuf;
    284	size_t len = xfer->len;
    285	int i, ret, nents;
    286
    287	if (xfer->bits_per_word > 8)
    288		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
    289	else
    290		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
    291
    292	memset(&conf, 0, sizeof(conf));
    293	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
    294
    295	if (dir == DMA_FROM_DEVICE) {
    296		chan = espi->dma_rx;
    297		buf = xfer->rx_buf;
    298		sgt = &espi->rx_sgt;
    299
    300		conf.src_addr = espi->sspdr_phys;
    301		conf.src_addr_width = buswidth;
    302	} else {
    303		chan = espi->dma_tx;
    304		buf = xfer->tx_buf;
    305		sgt = &espi->tx_sgt;
    306
    307		conf.dst_addr = espi->sspdr_phys;
    308		conf.dst_addr_width = buswidth;
    309	}
    310
    311	ret = dmaengine_slave_config(chan, &conf);
    312	if (ret)
    313		return ERR_PTR(ret);
    314
    315	/*
    316	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
    317	 * because we are using @espi->zeropage to provide a zero RX buffer
    318	 * for the TX transfers and we have only allocated one page for that.
    319	 *
    320	 * For performance reasons we allocate a new sg_table only when
    321	 * needed. Otherwise we will re-use the current one. Eventually the
    322	 * last sg_table is released in ep93xx_spi_release_dma().
    323	 */
    324
    325	nents = DIV_ROUND_UP(len, PAGE_SIZE);
    326	if (nents != sgt->nents) {
    327		sg_free_table(sgt);
    328
    329		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
    330		if (ret)
    331			return ERR_PTR(ret);
    332	}
    333
    334	pbuf = buf;
    335	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
    336		size_t bytes = min_t(size_t, len, PAGE_SIZE);
    337
    338		if (buf) {
    339			sg_set_page(sg, virt_to_page(pbuf), bytes,
    340				    offset_in_page(pbuf));
    341		} else {
    342			sg_set_page(sg, virt_to_page(espi->zeropage),
    343				    bytes, 0);
    344		}
    345
    346		pbuf += bytes;
    347		len -= bytes;
    348	}
    349
    350	if (WARN_ON(len)) {
    351		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
    352		return ERR_PTR(-EINVAL);
    353	}
    354
    355	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
    356	if (!nents)
    357		return ERR_PTR(-ENOMEM);
    358
    359	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
    360				      DMA_CTRL_ACK);
    361	if (!txd) {
    362		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
    363		return ERR_PTR(-ENOMEM);
    364	}
    365	return txd;
    366}
    367
    368/**
    369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
    370 * @master: SPI master
    371 * @dir: DMA transfer direction
    372 *
    373 * Function finishes with the DMA transfer. After this, the DMA buffer is
    374 * unmapped.
    375 */
    376static void ep93xx_spi_dma_finish(struct spi_master *master,
    377				  enum dma_data_direction dir)
    378{
    379	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    380	struct dma_chan *chan;
    381	struct sg_table *sgt;
    382
    383	if (dir == DMA_FROM_DEVICE) {
    384		chan = espi->dma_rx;
    385		sgt = &espi->rx_sgt;
    386	} else {
    387		chan = espi->dma_tx;
    388		sgt = &espi->tx_sgt;
    389	}
    390
    391	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
    392}
    393
    394static void ep93xx_spi_dma_callback(void *callback_param)
    395{
    396	struct spi_master *master = callback_param;
    397
    398	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
    399	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
    400
    401	spi_finalize_current_transfer(master);
    402}
    403
    404static int ep93xx_spi_dma_transfer(struct spi_master *master)
    405{
    406	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    407	struct dma_async_tx_descriptor *rxd, *txd;
    408
    409	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
    410	if (IS_ERR(rxd)) {
    411		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
    412		return PTR_ERR(rxd);
    413	}
    414
    415	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
    416	if (IS_ERR(txd)) {
    417		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
    418		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
    419		return PTR_ERR(txd);
    420	}
    421
    422	/* We are ready when RX is done */
    423	rxd->callback = ep93xx_spi_dma_callback;
    424	rxd->callback_param = master;
    425
    426	/* Now submit both descriptors and start DMA */
    427	dmaengine_submit(rxd);
    428	dmaengine_submit(txd);
    429
    430	dma_async_issue_pending(espi->dma_rx);
    431	dma_async_issue_pending(espi->dma_tx);
    432
    433	/* signal that we need to wait for completion */
    434	return 1;
    435}
    436
    437static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
    438{
    439	struct spi_master *master = dev_id;
    440	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    441	u32 val;
    442
    443	/*
    444	 * If we got ROR (receive overrun) interrupt we know that something is
    445	 * wrong. Just abort the message.
    446	 */
    447	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
    448		/* clear the overrun interrupt */
    449		writel(0, espi->mmio + SSPICR);
    450		dev_warn(&master->dev,
    451			 "receive overrun, aborting the message\n");
    452		master->cur_msg->status = -EIO;
    453	} else {
    454		/*
    455		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
    456		 * simply execute next data transfer.
    457		 */
    458		if (ep93xx_spi_read_write(master)) {
    459			/*
    460			 * In normal case, there still is some processing left
    461			 * for current transfer. Let's wait for the next
    462			 * interrupt then.
    463			 */
    464			return IRQ_HANDLED;
    465		}
    466	}
    467
    468	/*
    469	 * Current transfer is finished, either with error or with success. In
    470	 * any case we disable interrupts and notify the worker to handle
    471	 * any post-processing of the message.
    472	 */
    473	val = readl(espi->mmio + SSPCR1);
    474	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
    475	writel(val, espi->mmio + SSPCR1);
    476
    477	spi_finalize_current_transfer(master);
    478
    479	return IRQ_HANDLED;
    480}
    481
    482static int ep93xx_spi_transfer_one(struct spi_master *master,
    483				   struct spi_device *spi,
    484				   struct spi_transfer *xfer)
    485{
    486	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    487	u32 val;
    488	int ret;
    489
    490	ret = ep93xx_spi_chip_setup(master, spi, xfer);
    491	if (ret) {
    492		dev_err(&master->dev, "failed to setup chip for transfer\n");
    493		return ret;
    494	}
    495
    496	master->cur_msg->state = xfer;
    497	espi->rx = 0;
    498	espi->tx = 0;
    499
    500	/*
    501	 * There is no point of setting up DMA for the transfers which will
    502	 * fit into the FIFO and can be transferred with a single interrupt.
    503	 * So in these cases we will be using PIO and don't bother for DMA.
    504	 */
    505	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
    506		return ep93xx_spi_dma_transfer(master);
    507
    508	/* Using PIO so prime the TX FIFO and enable interrupts */
    509	ep93xx_spi_read_write(master);
    510
    511	val = readl(espi->mmio + SSPCR1);
    512	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
    513	writel(val, espi->mmio + SSPCR1);
    514
    515	/* signal that we need to wait for completion */
    516	return 1;
    517}
    518
    519static int ep93xx_spi_prepare_message(struct spi_master *master,
    520				      struct spi_message *msg)
    521{
    522	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    523	unsigned long timeout;
    524
    525	/*
    526	 * Just to be sure: flush any data from RX FIFO.
    527	 */
    528	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
    529	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
    530		if (time_after(jiffies, timeout)) {
    531			dev_warn(&master->dev,
    532				 "timeout while flushing RX FIFO\n");
    533			return -ETIMEDOUT;
    534		}
    535		readl(espi->mmio + SSPDR);
    536	}
    537
    538	/*
    539	 * We explicitly handle FIFO level. This way we don't have to check TX
    540	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
    541	 */
    542	espi->fifo_level = 0;
    543
    544	return 0;
    545}
    546
    547static int ep93xx_spi_prepare_hardware(struct spi_master *master)
    548{
    549	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    550	u32 val;
    551	int ret;
    552
    553	ret = clk_prepare_enable(espi->clk);
    554	if (ret)
    555		return ret;
    556
    557	val = readl(espi->mmio + SSPCR1);
    558	val |= SSPCR1_SSE;
    559	writel(val, espi->mmio + SSPCR1);
    560
    561	return 0;
    562}
    563
    564static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
    565{
    566	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    567	u32 val;
    568
    569	val = readl(espi->mmio + SSPCR1);
    570	val &= ~SSPCR1_SSE;
    571	writel(val, espi->mmio + SSPCR1);
    572
    573	clk_disable_unprepare(espi->clk);
    574
    575	return 0;
    576}
    577
    578static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
    579{
    580	if (ep93xx_dma_chan_is_m2p(chan))
    581		return false;
    582
    583	chan->private = filter_param;
    584	return true;
    585}
    586
    587static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
    588{
    589	dma_cap_mask_t mask;
    590	int ret;
    591
    592	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
    593	if (!espi->zeropage)
    594		return -ENOMEM;
    595
    596	dma_cap_zero(mask);
    597	dma_cap_set(DMA_SLAVE, mask);
    598
    599	espi->dma_rx_data.port = EP93XX_DMA_SSP;
    600	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
    601	espi->dma_rx_data.name = "ep93xx-spi-rx";
    602
    603	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
    604					   &espi->dma_rx_data);
    605	if (!espi->dma_rx) {
    606		ret = -ENODEV;
    607		goto fail_free_page;
    608	}
    609
    610	espi->dma_tx_data.port = EP93XX_DMA_SSP;
    611	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
    612	espi->dma_tx_data.name = "ep93xx-spi-tx";
    613
    614	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
    615					   &espi->dma_tx_data);
    616	if (!espi->dma_tx) {
    617		ret = -ENODEV;
    618		goto fail_release_rx;
    619	}
    620
    621	return 0;
    622
    623fail_release_rx:
    624	dma_release_channel(espi->dma_rx);
    625	espi->dma_rx = NULL;
    626fail_free_page:
    627	free_page((unsigned long)espi->zeropage);
    628
    629	return ret;
    630}
    631
    632static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
    633{
    634	if (espi->dma_rx) {
    635		dma_release_channel(espi->dma_rx);
    636		sg_free_table(&espi->rx_sgt);
    637	}
    638	if (espi->dma_tx) {
    639		dma_release_channel(espi->dma_tx);
    640		sg_free_table(&espi->tx_sgt);
    641	}
    642
    643	if (espi->zeropage)
    644		free_page((unsigned long)espi->zeropage);
    645}
    646
    647static int ep93xx_spi_probe(struct platform_device *pdev)
    648{
    649	struct spi_master *master;
    650	struct ep93xx_spi_info *info;
    651	struct ep93xx_spi *espi;
    652	struct resource *res;
    653	int irq;
    654	int error;
    655
    656	info = dev_get_platdata(&pdev->dev);
    657	if (!info) {
    658		dev_err(&pdev->dev, "missing platform data\n");
    659		return -EINVAL;
    660	}
    661
    662	irq = platform_get_irq(pdev, 0);
    663	if (irq < 0)
    664		return -EBUSY;
    665
    666	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    667	if (!res) {
    668		dev_err(&pdev->dev, "unable to get iomem resource\n");
    669		return -ENODEV;
    670	}
    671
    672	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
    673	if (!master)
    674		return -ENOMEM;
    675
    676	master->use_gpio_descriptors = true;
    677	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
    678	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
    679	master->prepare_message = ep93xx_spi_prepare_message;
    680	master->transfer_one = ep93xx_spi_transfer_one;
    681	master->bus_num = pdev->id;
    682	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
    683	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
    684	/*
    685	 * The SPI core will count the number of GPIO descriptors to figure
    686	 * out the number of chip selects available on the platform.
    687	 */
    688	master->num_chipselect = 0;
    689
    690	platform_set_drvdata(pdev, master);
    691
    692	espi = spi_master_get_devdata(master);
    693
    694	espi->clk = devm_clk_get(&pdev->dev, NULL);
    695	if (IS_ERR(espi->clk)) {
    696		dev_err(&pdev->dev, "unable to get spi clock\n");
    697		error = PTR_ERR(espi->clk);
    698		goto fail_release_master;
    699	}
    700
    701	/*
    702	 * Calculate maximum and minimum supported clock rates
    703	 * for the controller.
    704	 */
    705	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
    706	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
    707
    708	espi->sspdr_phys = res->start + SSPDR;
    709
    710	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
    711	if (IS_ERR(espi->mmio)) {
    712		error = PTR_ERR(espi->mmio);
    713		goto fail_release_master;
    714	}
    715
    716	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
    717				0, "ep93xx-spi", master);
    718	if (error) {
    719		dev_err(&pdev->dev, "failed to request irq\n");
    720		goto fail_release_master;
    721	}
    722
    723	if (info->use_dma && ep93xx_spi_setup_dma(espi))
    724		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
    725
    726	/* make sure that the hardware is disabled */
    727	writel(0, espi->mmio + SSPCR1);
    728
    729	error = devm_spi_register_master(&pdev->dev, master);
    730	if (error) {
    731		dev_err(&pdev->dev, "failed to register SPI master\n");
    732		goto fail_free_dma;
    733	}
    734
    735	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
    736		 (unsigned long)res->start, irq);
    737
    738	return 0;
    739
    740fail_free_dma:
    741	ep93xx_spi_release_dma(espi);
    742fail_release_master:
    743	spi_master_put(master);
    744
    745	return error;
    746}
    747
    748static int ep93xx_spi_remove(struct platform_device *pdev)
    749{
    750	struct spi_master *master = platform_get_drvdata(pdev);
    751	struct ep93xx_spi *espi = spi_master_get_devdata(master);
    752
    753	ep93xx_spi_release_dma(espi);
    754
    755	return 0;
    756}
    757
    758static struct platform_driver ep93xx_spi_driver = {
    759	.driver		= {
    760		.name	= "ep93xx-spi",
    761	},
    762	.probe		= ep93xx_spi_probe,
    763	.remove		= ep93xx_spi_remove,
    764};
    765module_platform_driver(ep93xx_spi_driver);
    766
    767MODULE_DESCRIPTION("EP93xx SPI Controller driver");
    768MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
    769MODULE_LICENSE("GPL");
    770MODULE_ALIAS("platform:ep93xx-spi");