cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-fsl-dspi.c (35979B)


      1// SPDX-License-Identifier: GPL-2.0+
      2//
      3// Copyright 2013 Freescale Semiconductor, Inc.
      4// Copyright 2020 NXP
      5//
      6// Freescale DSPI driver
      7// This file contains a driver for the Freescale DSPI
      8
      9#include <linux/clk.h>
     10#include <linux/delay.h>
     11#include <linux/dmaengine.h>
     12#include <linux/dma-mapping.h>
     13#include <linux/interrupt.h>
     14#include <linux/kernel.h>
     15#include <linux/module.h>
     16#include <linux/of_device.h>
     17#include <linux/pinctrl/consumer.h>
     18#include <linux/regmap.h>
     19#include <linux/spi/spi.h>
     20#include <linux/spi/spi-fsl-dspi.h>
     21
     22#define DRIVER_NAME			"fsl-dspi"
     23
     24#define SPI_MCR				0x00
     25#define SPI_MCR_MASTER			BIT(31)
     26#define SPI_MCR_PCSIS(x)		((x) << 16)
     27#define SPI_MCR_CLR_TXF			BIT(11)
     28#define SPI_MCR_CLR_RXF			BIT(10)
     29#define SPI_MCR_XSPI			BIT(3)
     30#define SPI_MCR_DIS_TXF			BIT(13)
     31#define SPI_MCR_DIS_RXF			BIT(12)
     32#define SPI_MCR_HALT			BIT(0)
     33
     34#define SPI_TCR				0x08
     35#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
     36
     37#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
     38#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
     39#define SPI_CTAR_CPOL			BIT(26)
     40#define SPI_CTAR_CPHA			BIT(25)
     41#define SPI_CTAR_LSBFE			BIT(24)
     42#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
     43#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
     44#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
     45#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
     46#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
     47#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
     48#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
     49#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
     50#define SPI_CTAR_SCALE_BITS		0xf
     51
     52#define SPI_CTAR0_SLAVE			0x0c
     53
     54#define SPI_SR				0x2c
     55#define SPI_SR_TCFQF			BIT(31)
     56#define SPI_SR_TFUF			BIT(27)
     57#define SPI_SR_TFFF			BIT(25)
     58#define SPI_SR_CMDTCF			BIT(23)
     59#define SPI_SR_SPEF			BIT(21)
     60#define SPI_SR_RFOF			BIT(19)
     61#define SPI_SR_TFIWF			BIT(18)
     62#define SPI_SR_RFDF			BIT(17)
     63#define SPI_SR_CMDFFF			BIT(16)
     64#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
     65					SPI_SR_TFUF | SPI_SR_TFFF | \
     66					SPI_SR_CMDTCF | SPI_SR_SPEF | \
     67					SPI_SR_RFOF | SPI_SR_TFIWF | \
     68					SPI_SR_RFDF | SPI_SR_CMDFFF)
     69
     70#define SPI_RSER_TFFFE			BIT(25)
     71#define SPI_RSER_TFFFD			BIT(24)
     72#define SPI_RSER_RFDFE			BIT(17)
     73#define SPI_RSER_RFDFD			BIT(16)
     74
     75#define SPI_RSER			0x30
     76#define SPI_RSER_TCFQE			BIT(31)
     77#define SPI_RSER_CMDTCFE		BIT(23)
     78
     79#define SPI_PUSHR			0x34
     80#define SPI_PUSHR_CMD_CONT		BIT(15)
     81#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
     82#define SPI_PUSHR_CMD_EOQ		BIT(11)
     83#define SPI_PUSHR_CMD_CTCNT		BIT(10)
     84#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
     85
     86#define SPI_PUSHR_SLAVE			0x34
     87
     88#define SPI_POPR			0x38
     89
     90#define SPI_TXFR0			0x3c
     91#define SPI_TXFR1			0x40
     92#define SPI_TXFR2			0x44
     93#define SPI_TXFR3			0x48
     94#define SPI_RXFR0			0x7c
     95#define SPI_RXFR1			0x80
     96#define SPI_RXFR2			0x84
     97#define SPI_RXFR3			0x88
     98
     99#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
    100#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
    101#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
    102
    103#define SPI_SREX			0x13c
    104
    105#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
    106#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
    107
    108#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
    109
    110struct chip_data {
    111	u32			ctar_val;
    112};
    113
    114enum dspi_trans_mode {
    115	DSPI_XSPI_MODE,
    116	DSPI_DMA_MODE,
    117};
    118
    119struct fsl_dspi_devtype_data {
    120	enum dspi_trans_mode	trans_mode;
    121	u8			max_clock_factor;
    122	int			fifo_size;
    123};
    124
    125enum {
    126	LS1021A,
    127	LS1012A,
    128	LS1028A,
    129	LS1043A,
    130	LS1046A,
    131	LS2080A,
    132	LS2085A,
    133	LX2160A,
    134	MCF5441X,
    135	VF610,
    136};
    137
    138static const struct fsl_dspi_devtype_data devtype_data[] = {
    139	[VF610] = {
    140		.trans_mode		= DSPI_DMA_MODE,
    141		.max_clock_factor	= 2,
    142		.fifo_size		= 4,
    143	},
    144	[LS1021A] = {
    145		/* Has A-011218 DMA erratum */
    146		.trans_mode		= DSPI_XSPI_MODE,
    147		.max_clock_factor	= 8,
    148		.fifo_size		= 4,
    149	},
    150	[LS1012A] = {
    151		/* Has A-011218 DMA erratum */
    152		.trans_mode		= DSPI_XSPI_MODE,
    153		.max_clock_factor	= 8,
    154		.fifo_size		= 16,
    155	},
    156	[LS1028A] = {
    157		.trans_mode		= DSPI_XSPI_MODE,
    158		.max_clock_factor	= 8,
    159		.fifo_size		= 4,
    160	},
    161	[LS1043A] = {
    162		/* Has A-011218 DMA erratum */
    163		.trans_mode		= DSPI_XSPI_MODE,
    164		.max_clock_factor	= 8,
    165		.fifo_size		= 16,
    166	},
    167	[LS1046A] = {
    168		/* Has A-011218 DMA erratum */
    169		.trans_mode		= DSPI_XSPI_MODE,
    170		.max_clock_factor	= 8,
    171		.fifo_size		= 16,
    172	},
    173	[LS2080A] = {
    174		.trans_mode		= DSPI_XSPI_MODE,
    175		.max_clock_factor	= 8,
    176		.fifo_size		= 4,
    177	},
    178	[LS2085A] = {
    179		.trans_mode		= DSPI_XSPI_MODE,
    180		.max_clock_factor	= 8,
    181		.fifo_size		= 4,
    182	},
    183	[LX2160A] = {
    184		.trans_mode		= DSPI_XSPI_MODE,
    185		.max_clock_factor	= 8,
    186		.fifo_size		= 4,
    187	},
    188	[MCF5441X] = {
    189		.trans_mode		= DSPI_DMA_MODE,
    190		.max_clock_factor	= 8,
    191		.fifo_size		= 16,
    192	},
    193};
    194
    195struct fsl_dspi_dma {
    196	u32					*tx_dma_buf;
    197	struct dma_chan				*chan_tx;
    198	dma_addr_t				tx_dma_phys;
    199	struct completion			cmd_tx_complete;
    200	struct dma_async_tx_descriptor		*tx_desc;
    201
    202	u32					*rx_dma_buf;
    203	struct dma_chan				*chan_rx;
    204	dma_addr_t				rx_dma_phys;
    205	struct completion			cmd_rx_complete;
    206	struct dma_async_tx_descriptor		*rx_desc;
    207};
    208
    209struct fsl_dspi {
    210	struct spi_controller			*ctlr;
    211	struct platform_device			*pdev;
    212
    213	struct regmap				*regmap;
    214	struct regmap				*regmap_pushr;
    215	int					irq;
    216	struct clk				*clk;
    217
    218	struct spi_transfer			*cur_transfer;
    219	struct spi_message			*cur_msg;
    220	struct chip_data			*cur_chip;
    221	size_t					progress;
    222	size_t					len;
    223	const void				*tx;
    224	void					*rx;
    225	u16					tx_cmd;
    226	const struct fsl_dspi_devtype_data	*devtype_data;
    227
    228	struct completion			xfer_done;
    229
    230	struct fsl_dspi_dma			*dma;
    231
    232	int					oper_word_size;
    233	int					oper_bits_per_word;
    234
    235	int					words_in_flight;
    236
    237	/*
    238	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
    239	 * individually (in XSPI mode)
    240	 */
    241	int					pushr_cmd;
    242	int					pushr_tx;
    243
    244	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
    245	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
    246};
    247
    248static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
    249{
    250	switch (dspi->oper_word_size) {
    251	case 1:
    252		*txdata = *(u8 *)dspi->tx;
    253		break;
    254	case 2:
    255		*txdata = *(u16 *)dspi->tx;
    256		break;
    257	case 4:
    258		*txdata = *(u32 *)dspi->tx;
    259		break;
    260	}
    261	dspi->tx += dspi->oper_word_size;
    262}
    263
    264static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
    265{
    266	switch (dspi->oper_word_size) {
    267	case 1:
    268		*(u8 *)dspi->rx = rxdata;
    269		break;
    270	case 2:
    271		*(u16 *)dspi->rx = rxdata;
    272		break;
    273	case 4:
    274		*(u32 *)dspi->rx = rxdata;
    275		break;
    276	}
    277	dspi->rx += dspi->oper_word_size;
    278}
    279
    280static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
    281{
    282	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
    283	dspi->tx += sizeof(u32);
    284}
    285
    286static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
    287{
    288	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
    289	dspi->rx += sizeof(u32);
    290}
    291
    292static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
    293{
    294	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
    295	dspi->tx += sizeof(u16);
    296}
    297
    298static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
    299{
    300	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
    301	dspi->rx += sizeof(u16);
    302}
    303
    304static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
    305{
    306	u16 hi = *(u16 *)dspi->tx;
    307	u16 lo = *(u16 *)(dspi->tx + 2);
    308
    309	*txdata = (u32)hi << 16 | lo;
    310	dspi->tx += sizeof(u32);
    311}
    312
    313static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
    314{
    315	u16 hi = rxdata & 0xffff;
    316	u16 lo = rxdata >> 16;
    317
    318	*(u16 *)dspi->rx = lo;
    319	*(u16 *)(dspi->rx + 2) = hi;
    320	dspi->rx += sizeof(u32);
    321}
    322
    323/*
    324 * Pop one word from the TX buffer for pushing into the
    325 * PUSHR register (TX FIFO)
    326 */
    327static u32 dspi_pop_tx(struct fsl_dspi *dspi)
    328{
    329	u32 txdata = 0;
    330
    331	if (dspi->tx)
    332		dspi->host_to_dev(dspi, &txdata);
    333	dspi->len -= dspi->oper_word_size;
    334	return txdata;
    335}
    336
    337/* Prepare one TX FIFO entry (txdata plus cmd) */
    338static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
    339{
    340	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
    341
    342	if (spi_controller_is_slave(dspi->ctlr))
    343		return data;
    344
    345	if (dspi->len > 0)
    346		cmd |= SPI_PUSHR_CMD_CONT;
    347	return cmd << 16 | data;
    348}
    349
    350/* Push one word to the RX buffer from the POPR register (RX FIFO) */
    351static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
    352{
    353	if (!dspi->rx)
    354		return;
    355	dspi->dev_to_host(dspi, rxdata);
    356}
    357
    358static void dspi_tx_dma_callback(void *arg)
    359{
    360	struct fsl_dspi *dspi = arg;
    361	struct fsl_dspi_dma *dma = dspi->dma;
    362
    363	complete(&dma->cmd_tx_complete);
    364}
    365
    366static void dspi_rx_dma_callback(void *arg)
    367{
    368	struct fsl_dspi *dspi = arg;
    369	struct fsl_dspi_dma *dma = dspi->dma;
    370	int i;
    371
    372	if (dspi->rx) {
    373		for (i = 0; i < dspi->words_in_flight; i++)
    374			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
    375	}
    376
    377	complete(&dma->cmd_rx_complete);
    378}
    379
    380static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
    381{
    382	struct device *dev = &dspi->pdev->dev;
    383	struct fsl_dspi_dma *dma = dspi->dma;
    384	int time_left;
    385	int i;
    386
    387	for (i = 0; i < dspi->words_in_flight; i++)
    388		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
    389
    390	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
    391					dma->tx_dma_phys,
    392					dspi->words_in_flight *
    393					DMA_SLAVE_BUSWIDTH_4_BYTES,
    394					DMA_MEM_TO_DEV,
    395					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    396	if (!dma->tx_desc) {
    397		dev_err(dev, "Not able to get desc for DMA xfer\n");
    398		return -EIO;
    399	}
    400
    401	dma->tx_desc->callback = dspi_tx_dma_callback;
    402	dma->tx_desc->callback_param = dspi;
    403	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
    404		dev_err(dev, "DMA submit failed\n");
    405		return -EINVAL;
    406	}
    407
    408	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
    409					dma->rx_dma_phys,
    410					dspi->words_in_flight *
    411					DMA_SLAVE_BUSWIDTH_4_BYTES,
    412					DMA_DEV_TO_MEM,
    413					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    414	if (!dma->rx_desc) {
    415		dev_err(dev, "Not able to get desc for DMA xfer\n");
    416		return -EIO;
    417	}
    418
    419	dma->rx_desc->callback = dspi_rx_dma_callback;
    420	dma->rx_desc->callback_param = dspi;
    421	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
    422		dev_err(dev, "DMA submit failed\n");
    423		return -EINVAL;
    424	}
    425
    426	reinit_completion(&dspi->dma->cmd_rx_complete);
    427	reinit_completion(&dspi->dma->cmd_tx_complete);
    428
    429	dma_async_issue_pending(dma->chan_rx);
    430	dma_async_issue_pending(dma->chan_tx);
    431
    432	if (spi_controller_is_slave(dspi->ctlr)) {
    433		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
    434		return 0;
    435	}
    436
    437	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
    438						DMA_COMPLETION_TIMEOUT);
    439	if (time_left == 0) {
    440		dev_err(dev, "DMA tx timeout\n");
    441		dmaengine_terminate_all(dma->chan_tx);
    442		dmaengine_terminate_all(dma->chan_rx);
    443		return -ETIMEDOUT;
    444	}
    445
    446	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
    447						DMA_COMPLETION_TIMEOUT);
    448	if (time_left == 0) {
    449		dev_err(dev, "DMA rx timeout\n");
    450		dmaengine_terminate_all(dma->chan_tx);
    451		dmaengine_terminate_all(dma->chan_rx);
    452		return -ETIMEDOUT;
    453	}
    454
    455	return 0;
    456}
    457
    458static void dspi_setup_accel(struct fsl_dspi *dspi);
    459
    460static int dspi_dma_xfer(struct fsl_dspi *dspi)
    461{
    462	struct spi_message *message = dspi->cur_msg;
    463	struct device *dev = &dspi->pdev->dev;
    464	int ret = 0;
    465
    466	/*
    467	 * dspi->len gets decremented by dspi_pop_tx_pushr in
    468	 * dspi_next_xfer_dma_submit
    469	 */
    470	while (dspi->len) {
    471		/* Figure out operational bits-per-word for this chunk */
    472		dspi_setup_accel(dspi);
    473
    474		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
    475		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
    476			dspi->words_in_flight = dspi->devtype_data->fifo_size;
    477
    478		message->actual_length += dspi->words_in_flight *
    479					  dspi->oper_word_size;
    480
    481		ret = dspi_next_xfer_dma_submit(dspi);
    482		if (ret) {
    483			dev_err(dev, "DMA transfer failed\n");
    484			break;
    485		}
    486	}
    487
    488	return ret;
    489}
    490
    491static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
    492{
    493	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
    494	struct device *dev = &dspi->pdev->dev;
    495	struct dma_slave_config cfg;
    496	struct fsl_dspi_dma *dma;
    497	int ret;
    498
    499	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
    500	if (!dma)
    501		return -ENOMEM;
    502
    503	dma->chan_rx = dma_request_chan(dev, "rx");
    504	if (IS_ERR(dma->chan_rx)) {
    505		dev_err(dev, "rx dma channel not available\n");
    506		ret = PTR_ERR(dma->chan_rx);
    507		return ret;
    508	}
    509
    510	dma->chan_tx = dma_request_chan(dev, "tx");
    511	if (IS_ERR(dma->chan_tx)) {
    512		dev_err(dev, "tx dma channel not available\n");
    513		ret = PTR_ERR(dma->chan_tx);
    514		goto err_tx_channel;
    515	}
    516
    517	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
    518					     dma_bufsize, &dma->tx_dma_phys,
    519					     GFP_KERNEL);
    520	if (!dma->tx_dma_buf) {
    521		ret = -ENOMEM;
    522		goto err_tx_dma_buf;
    523	}
    524
    525	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
    526					     dma_bufsize, &dma->rx_dma_phys,
    527					     GFP_KERNEL);
    528	if (!dma->rx_dma_buf) {
    529		ret = -ENOMEM;
    530		goto err_rx_dma_buf;
    531	}
    532
    533	memset(&cfg, 0, sizeof(cfg));
    534	cfg.src_addr = phy_addr + SPI_POPR;
    535	cfg.dst_addr = phy_addr + SPI_PUSHR;
    536	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    537	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    538	cfg.src_maxburst = 1;
    539	cfg.dst_maxburst = 1;
    540
    541	cfg.direction = DMA_DEV_TO_MEM;
    542	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
    543	if (ret) {
    544		dev_err(dev, "can't configure rx dma channel\n");
    545		ret = -EINVAL;
    546		goto err_slave_config;
    547	}
    548
    549	cfg.direction = DMA_MEM_TO_DEV;
    550	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
    551	if (ret) {
    552		dev_err(dev, "can't configure tx dma channel\n");
    553		ret = -EINVAL;
    554		goto err_slave_config;
    555	}
    556
    557	dspi->dma = dma;
    558	init_completion(&dma->cmd_tx_complete);
    559	init_completion(&dma->cmd_rx_complete);
    560
    561	return 0;
    562
    563err_slave_config:
    564	dma_free_coherent(dma->chan_rx->device->dev,
    565			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
    566err_rx_dma_buf:
    567	dma_free_coherent(dma->chan_tx->device->dev,
    568			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
    569err_tx_dma_buf:
    570	dma_release_channel(dma->chan_tx);
    571err_tx_channel:
    572	dma_release_channel(dma->chan_rx);
    573
    574	devm_kfree(dev, dma);
    575	dspi->dma = NULL;
    576
    577	return ret;
    578}
    579
    580static void dspi_release_dma(struct fsl_dspi *dspi)
    581{
    582	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
    583	struct fsl_dspi_dma *dma = dspi->dma;
    584
    585	if (!dma)
    586		return;
    587
    588	if (dma->chan_tx) {
    589		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
    590				  dma->tx_dma_buf, dma->tx_dma_phys);
    591		dma_release_channel(dma->chan_tx);
    592	}
    593
    594	if (dma->chan_rx) {
    595		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
    596				  dma->rx_dma_buf, dma->rx_dma_phys);
    597		dma_release_channel(dma->chan_rx);
    598	}
    599}
    600
    601static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
    602			   unsigned long clkrate)
    603{
    604	/* Valid baud rate pre-scaler values */
    605	int pbr_tbl[4] = {2, 3, 5, 7};
    606	int brs[16] = {	2,	4,	6,	8,
    607			16,	32,	64,	128,
    608			256,	512,	1024,	2048,
    609			4096,	8192,	16384,	32768 };
    610	int scale_needed, scale, minscale = INT_MAX;
    611	int i, j;
    612
    613	scale_needed = clkrate / speed_hz;
    614	if (clkrate % speed_hz)
    615		scale_needed++;
    616
    617	for (i = 0; i < ARRAY_SIZE(brs); i++)
    618		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
    619			scale = brs[i] * pbr_tbl[j];
    620			if (scale >= scale_needed) {
    621				if (scale < minscale) {
    622					minscale = scale;
    623					*br = i;
    624					*pbr = j;
    625				}
    626				break;
    627			}
    628		}
    629
    630	if (minscale == INT_MAX) {
    631		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
    632			speed_hz, clkrate);
    633		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
    634		*br =  ARRAY_SIZE(brs) - 1;
    635	}
    636}
    637
    638static void ns_delay_scale(char *psc, char *sc, int delay_ns,
    639			   unsigned long clkrate)
    640{
    641	int scale_needed, scale, minscale = INT_MAX;
    642	int pscale_tbl[4] = {1, 3, 5, 7};
    643	u32 remainder;
    644	int i, j;
    645
    646	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
    647				   &remainder);
    648	if (remainder)
    649		scale_needed++;
    650
    651	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
    652		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
    653			scale = pscale_tbl[i] * (2 << j);
    654			if (scale >= scale_needed) {
    655				if (scale < minscale) {
    656					minscale = scale;
    657					*psc = i;
    658					*sc = j;
    659				}
    660				break;
    661			}
    662		}
    663
    664	if (minscale == INT_MAX) {
    665		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
    666			delay_ns, clkrate);
    667		*psc = ARRAY_SIZE(pscale_tbl) - 1;
    668		*sc = SPI_CTAR_SCALE_BITS;
    669	}
    670}
    671
    672static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
    673{
    674	/*
    675	 * The only time when the PCS doesn't need continuation after this word
    676	 * is when it's last. We need to look ahead, because we actually call
    677	 * dspi_pop_tx (the function that decrements dspi->len) _after_
    678	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
    679	 * word is enough. If there's more to transmit than that,
    680	 * dspi_xspi_write will know to split the FIFO writes in 2, and
    681	 * generate a new PUSHR command with the final word that will have PCS
    682	 * deasserted (not continued) here.
    683	 */
    684	if (dspi->len > dspi->oper_word_size)
    685		cmd |= SPI_PUSHR_CMD_CONT;
    686	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
    687}
    688
    689static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
    690{
    691	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
    692}
    693
    694static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
    695{
    696	int num_bytes = num_words * dspi->oper_word_size;
    697	u16 tx_cmd = dspi->tx_cmd;
    698
    699	/*
    700	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
    701	 * and cs_change does not want the PCS to stay on), then we need a new
    702	 * PUSHR command, since this one (for the body of the buffer)
    703	 * necessarily has the CONT bit set.
    704	 * So send one word less during this go, to force a split and a command
    705	 * with a single word next time, when CONT will be unset.
    706	 */
    707	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
    708		tx_cmd |= SPI_PUSHR_CMD_EOQ;
    709
    710	/* Update CTARE */
    711	regmap_write(dspi->regmap, SPI_CTARE(0),
    712		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
    713		     SPI_CTARE_DTCP(num_words));
    714
    715	/*
    716	 * Write the CMD FIFO entry first, and then the two
    717	 * corresponding TX FIFO entries (or one...).
    718	 */
    719	dspi_pushr_cmd_write(dspi, tx_cmd);
    720
    721	/* Fill TX FIFO with as many transfers as possible */
    722	while (num_words--) {
    723		u32 data = dspi_pop_tx(dspi);
    724
    725		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
    726		if (dspi->oper_bits_per_word > 16)
    727			dspi_pushr_txdata_write(dspi, data >> 16);
    728	}
    729}
    730
    731static u32 dspi_popr_read(struct fsl_dspi *dspi)
    732{
    733	u32 rxdata = 0;
    734
    735	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
    736	return rxdata;
    737}
    738
    739static void dspi_fifo_read(struct fsl_dspi *dspi)
    740{
    741	int num_fifo_entries = dspi->words_in_flight;
    742
    743	/* Read one FIFO entry and push to rx buffer */
    744	while (num_fifo_entries--)
    745		dspi_push_rx(dspi, dspi_popr_read(dspi));
    746}
    747
    748static void dspi_setup_accel(struct fsl_dspi *dspi)
    749{
    750	struct spi_transfer *xfer = dspi->cur_transfer;
    751	bool odd = !!(dspi->len & 1);
    752
    753	/* No accel for frames not multiple of 8 bits at the moment */
    754	if (xfer->bits_per_word % 8)
    755		goto no_accel;
    756
    757	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
    758		dspi->oper_bits_per_word = 16;
    759	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
    760		dspi->oper_bits_per_word = 8;
    761	} else {
    762		/* Start off with maximum supported by hardware */
    763		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
    764			dspi->oper_bits_per_word = 32;
    765		else
    766			dspi->oper_bits_per_word = 16;
    767
    768		/*
    769		 * And go down only if the buffer can't be sent with
    770		 * words this big
    771		 */
    772		do {
    773			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
    774				break;
    775
    776			dspi->oper_bits_per_word /= 2;
    777		} while (dspi->oper_bits_per_word > 8);
    778	}
    779
    780	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
    781		dspi->dev_to_host = dspi_8on32_dev_to_host;
    782		dspi->host_to_dev = dspi_8on32_host_to_dev;
    783	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
    784		dspi->dev_to_host = dspi_8on16_dev_to_host;
    785		dspi->host_to_dev = dspi_8on16_host_to_dev;
    786	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
    787		dspi->dev_to_host = dspi_16on32_dev_to_host;
    788		dspi->host_to_dev = dspi_16on32_host_to_dev;
    789	} else {
    790no_accel:
    791		dspi->dev_to_host = dspi_native_dev_to_host;
    792		dspi->host_to_dev = dspi_native_host_to_dev;
    793		dspi->oper_bits_per_word = xfer->bits_per_word;
    794	}
    795
    796	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
    797
    798	/*
    799	 * Update CTAR here (code is common for XSPI and DMA modes).
    800	 * We will update CTARE in the portion specific to XSPI, when we
    801	 * also know the preload value (DTCP).
    802	 */
    803	regmap_write(dspi->regmap, SPI_CTAR(0),
    804		     dspi->cur_chip->ctar_val |
    805		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
    806}
    807
    808static void dspi_fifo_write(struct fsl_dspi *dspi)
    809{
    810	int num_fifo_entries = dspi->devtype_data->fifo_size;
    811	struct spi_transfer *xfer = dspi->cur_transfer;
    812	struct spi_message *msg = dspi->cur_msg;
    813	int num_words, num_bytes;
    814
    815	dspi_setup_accel(dspi);
    816
    817	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
    818	if (dspi->oper_word_size == 4)
    819		num_fifo_entries /= 2;
    820
    821	/*
    822	 * Integer division intentionally trims off odd (or non-multiple of 4)
    823	 * numbers of bytes at the end of the buffer, which will be sent next
    824	 * time using a smaller oper_word_size.
    825	 */
    826	num_words = dspi->len / dspi->oper_word_size;
    827	if (num_words > num_fifo_entries)
    828		num_words = num_fifo_entries;
    829
    830	/* Update total number of bytes that were transferred */
    831	num_bytes = num_words * dspi->oper_word_size;
    832	msg->actual_length += num_bytes;
    833	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
    834
    835	/*
    836	 * Update shared variable for use in the next interrupt (both in
    837	 * dspi_fifo_read and in dspi_fifo_write).
    838	 */
    839	dspi->words_in_flight = num_words;
    840
    841	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
    842
    843	dspi_xspi_fifo_write(dspi, num_words);
    844	/*
    845	 * Everything after this point is in a potential race with the next
    846	 * interrupt, so we must never use dspi->words_in_flight again since it
    847	 * might already be modified by the next dspi_fifo_write.
    848	 */
    849
    850	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
    851				dspi->progress, !dspi->irq);
    852}
    853
    854static int dspi_rxtx(struct fsl_dspi *dspi)
    855{
    856	dspi_fifo_read(dspi);
    857
    858	if (!dspi->len)
    859		/* Success! */
    860		return 0;
    861
    862	dspi_fifo_write(dspi);
    863
    864	return -EINPROGRESS;
    865}
    866
    867static int dspi_poll(struct fsl_dspi *dspi)
    868{
    869	int tries = 1000;
    870	u32 spi_sr;
    871
    872	do {
    873		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
    874		regmap_write(dspi->regmap, SPI_SR, spi_sr);
    875
    876		if (spi_sr & SPI_SR_CMDTCF)
    877			break;
    878	} while (--tries);
    879
    880	if (!tries)
    881		return -ETIMEDOUT;
    882
    883	return dspi_rxtx(dspi);
    884}
    885
    886static irqreturn_t dspi_interrupt(int irq, void *dev_id)
    887{
    888	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
    889	u32 spi_sr;
    890
    891	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
    892	regmap_write(dspi->regmap, SPI_SR, spi_sr);
    893
    894	if (!(spi_sr & SPI_SR_CMDTCF))
    895		return IRQ_NONE;
    896
    897	if (dspi_rxtx(dspi) == 0)
    898		complete(&dspi->xfer_done);
    899
    900	return IRQ_HANDLED;
    901}
    902
    903static int dspi_transfer_one_message(struct spi_controller *ctlr,
    904				     struct spi_message *message)
    905{
    906	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
    907	struct spi_device *spi = message->spi;
    908	struct spi_transfer *transfer;
    909	int status = 0;
    910
    911	message->actual_length = 0;
    912
    913	list_for_each_entry(transfer, &message->transfers, transfer_list) {
    914		dspi->cur_transfer = transfer;
    915		dspi->cur_msg = message;
    916		dspi->cur_chip = spi_get_ctldata(spi);
    917		/* Prepare command word for CMD FIFO */
    918		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
    919			       SPI_PUSHR_CMD_PCS(spi->chip_select);
    920		if (list_is_last(&dspi->cur_transfer->transfer_list,
    921				 &dspi->cur_msg->transfers)) {
    922			/* Leave PCS activated after last transfer when
    923			 * cs_change is set.
    924			 */
    925			if (transfer->cs_change)
    926				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
    927		} else {
    928			/* Keep PCS active between transfers in same message
    929			 * when cs_change is not set, and de-activate PCS
    930			 * between transfers in the same message when
    931			 * cs_change is set.
    932			 */
    933			if (!transfer->cs_change)
    934				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
    935		}
    936
    937		dspi->tx = transfer->tx_buf;
    938		dspi->rx = transfer->rx_buf;
    939		dspi->len = transfer->len;
    940		dspi->progress = 0;
    941
    942		regmap_update_bits(dspi->regmap, SPI_MCR,
    943				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
    944				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
    945
    946		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
    947				       dspi->progress, !dspi->irq);
    948
    949		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
    950			status = dspi_dma_xfer(dspi);
    951		} else {
    952			dspi_fifo_write(dspi);
    953
    954			if (dspi->irq) {
    955				wait_for_completion(&dspi->xfer_done);
    956				reinit_completion(&dspi->xfer_done);
    957			} else {
    958				do {
    959					status = dspi_poll(dspi);
    960				} while (status == -EINPROGRESS);
    961			}
    962		}
    963		if (status)
    964			break;
    965
    966		spi_transfer_delay_exec(transfer);
    967	}
    968
    969	message->status = status;
    970	spi_finalize_current_message(ctlr);
    971
    972	return status;
    973}
    974
    975static int dspi_setup(struct spi_device *spi)
    976{
    977	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
    978	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
    979	u32 cs_sck_delay = 0, sck_cs_delay = 0;
    980	struct fsl_dspi_platform_data *pdata;
    981	unsigned char pasc = 0, asc = 0;
    982	struct chip_data *chip;
    983	unsigned long clkrate;
    984
    985	/* Only alloc on first setup */
    986	chip = spi_get_ctldata(spi);
    987	if (chip == NULL) {
    988		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
    989		if (!chip)
    990			return -ENOMEM;
    991	}
    992
    993	pdata = dev_get_platdata(&dspi->pdev->dev);
    994
    995	if (!pdata) {
    996		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
    997				     &cs_sck_delay);
    998
    999		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
   1000				     &sck_cs_delay);
   1001	} else {
   1002		cs_sck_delay = pdata->cs_sck_delay;
   1003		sck_cs_delay = pdata->sck_cs_delay;
   1004	}
   1005
   1006	clkrate = clk_get_rate(dspi->clk);
   1007	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
   1008
   1009	/* Set PCS to SCK delay scale values */
   1010	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
   1011
   1012	/* Set After SCK delay scale values */
   1013	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
   1014
   1015	chip->ctar_val = 0;
   1016	if (spi->mode & SPI_CPOL)
   1017		chip->ctar_val |= SPI_CTAR_CPOL;
   1018	if (spi->mode & SPI_CPHA)
   1019		chip->ctar_val |= SPI_CTAR_CPHA;
   1020
   1021	if (!spi_controller_is_slave(dspi->ctlr)) {
   1022		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
   1023				  SPI_CTAR_CSSCK(cssck) |
   1024				  SPI_CTAR_PASC(pasc) |
   1025				  SPI_CTAR_ASC(asc) |
   1026				  SPI_CTAR_PBR(pbr) |
   1027				  SPI_CTAR_BR(br);
   1028
   1029		if (spi->mode & SPI_LSB_FIRST)
   1030			chip->ctar_val |= SPI_CTAR_LSBFE;
   1031	}
   1032
   1033	spi_set_ctldata(spi, chip);
   1034
   1035	return 0;
   1036}
   1037
   1038static void dspi_cleanup(struct spi_device *spi)
   1039{
   1040	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
   1041
   1042	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
   1043		spi->controller->bus_num, spi->chip_select);
   1044
   1045	kfree(chip);
   1046}
   1047
   1048static const struct of_device_id fsl_dspi_dt_ids[] = {
   1049	{
   1050		.compatible = "fsl,vf610-dspi",
   1051		.data = &devtype_data[VF610],
   1052	}, {
   1053		.compatible = "fsl,ls1021a-v1.0-dspi",
   1054		.data = &devtype_data[LS1021A],
   1055	}, {
   1056		.compatible = "fsl,ls1012a-dspi",
   1057		.data = &devtype_data[LS1012A],
   1058	}, {
   1059		.compatible = "fsl,ls1028a-dspi",
   1060		.data = &devtype_data[LS1028A],
   1061	}, {
   1062		.compatible = "fsl,ls1043a-dspi",
   1063		.data = &devtype_data[LS1043A],
   1064	}, {
   1065		.compatible = "fsl,ls1046a-dspi",
   1066		.data = &devtype_data[LS1046A],
   1067	}, {
   1068		.compatible = "fsl,ls2080a-dspi",
   1069		.data = &devtype_data[LS2080A],
   1070	}, {
   1071		.compatible = "fsl,ls2085a-dspi",
   1072		.data = &devtype_data[LS2085A],
   1073	}, {
   1074		.compatible = "fsl,lx2160a-dspi",
   1075		.data = &devtype_data[LX2160A],
   1076	},
   1077	{ /* sentinel */ }
   1078};
   1079MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
   1080
   1081#ifdef CONFIG_PM_SLEEP
   1082static int dspi_suspend(struct device *dev)
   1083{
   1084	struct fsl_dspi *dspi = dev_get_drvdata(dev);
   1085
   1086	if (dspi->irq)
   1087		disable_irq(dspi->irq);
   1088	spi_controller_suspend(dspi->ctlr);
   1089	clk_disable_unprepare(dspi->clk);
   1090
   1091	pinctrl_pm_select_sleep_state(dev);
   1092
   1093	return 0;
   1094}
   1095
   1096static int dspi_resume(struct device *dev)
   1097{
   1098	struct fsl_dspi *dspi = dev_get_drvdata(dev);
   1099	int ret;
   1100
   1101	pinctrl_pm_select_default_state(dev);
   1102
   1103	ret = clk_prepare_enable(dspi->clk);
   1104	if (ret)
   1105		return ret;
   1106	spi_controller_resume(dspi->ctlr);
   1107	if (dspi->irq)
   1108		enable_irq(dspi->irq);
   1109
   1110	return 0;
   1111}
   1112#endif /* CONFIG_PM_SLEEP */
   1113
   1114static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
   1115
   1116static const struct regmap_range dspi_volatile_ranges[] = {
   1117	regmap_reg_range(SPI_MCR, SPI_TCR),
   1118	regmap_reg_range(SPI_SR, SPI_SR),
   1119	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
   1120};
   1121
   1122static const struct regmap_access_table dspi_volatile_table = {
   1123	.yes_ranges	= dspi_volatile_ranges,
   1124	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
   1125};
   1126
   1127static const struct regmap_config dspi_regmap_config = {
   1128	.reg_bits	= 32,
   1129	.val_bits	= 32,
   1130	.reg_stride	= 4,
   1131	.max_register	= 0x88,
   1132	.volatile_table	= &dspi_volatile_table,
   1133};
   1134
   1135static const struct regmap_range dspi_xspi_volatile_ranges[] = {
   1136	regmap_reg_range(SPI_MCR, SPI_TCR),
   1137	regmap_reg_range(SPI_SR, SPI_SR),
   1138	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
   1139	regmap_reg_range(SPI_SREX, SPI_SREX),
   1140};
   1141
   1142static const struct regmap_access_table dspi_xspi_volatile_table = {
   1143	.yes_ranges	= dspi_xspi_volatile_ranges,
   1144	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
   1145};
   1146
   1147static const struct regmap_config dspi_xspi_regmap_config[] = {
   1148	{
   1149		.reg_bits	= 32,
   1150		.val_bits	= 32,
   1151		.reg_stride	= 4,
   1152		.max_register	= 0x13c,
   1153		.volatile_table	= &dspi_xspi_volatile_table,
   1154	},
   1155	{
   1156		.name		= "pushr",
   1157		.reg_bits	= 16,
   1158		.val_bits	= 16,
   1159		.reg_stride	= 2,
   1160		.max_register	= 0x2,
   1161	},
   1162};
   1163
   1164static int dspi_init(struct fsl_dspi *dspi)
   1165{
   1166	unsigned int mcr;
   1167
   1168	/* Set idle states for all chip select signals to high */
   1169	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
   1170
   1171	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
   1172		mcr |= SPI_MCR_XSPI;
   1173	if (!spi_controller_is_slave(dspi->ctlr))
   1174		mcr |= SPI_MCR_MASTER;
   1175
   1176	regmap_write(dspi->regmap, SPI_MCR, mcr);
   1177	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
   1178
   1179	switch (dspi->devtype_data->trans_mode) {
   1180	case DSPI_XSPI_MODE:
   1181		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
   1182		break;
   1183	case DSPI_DMA_MODE:
   1184		regmap_write(dspi->regmap, SPI_RSER,
   1185			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
   1186			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
   1187		break;
   1188	default:
   1189		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
   1190			dspi->devtype_data->trans_mode);
   1191		return -EINVAL;
   1192	}
   1193
   1194	return 0;
   1195}
   1196
   1197static int dspi_slave_abort(struct spi_master *master)
   1198{
   1199	struct fsl_dspi *dspi = spi_master_get_devdata(master);
   1200
   1201	/*
   1202	 * Terminate all pending DMA transactions for the SPI working
   1203	 * in SLAVE mode.
   1204	 */
   1205	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
   1206		dmaengine_terminate_sync(dspi->dma->chan_rx);
   1207		dmaengine_terminate_sync(dspi->dma->chan_tx);
   1208	}
   1209
   1210	/* Clear the internal DSPI RX and TX FIFO buffers */
   1211	regmap_update_bits(dspi->regmap, SPI_MCR,
   1212			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
   1213			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
   1214
   1215	return 0;
   1216}
   1217
   1218static int dspi_probe(struct platform_device *pdev)
   1219{
   1220	struct device_node *np = pdev->dev.of_node;
   1221	const struct regmap_config *regmap_config;
   1222	struct fsl_dspi_platform_data *pdata;
   1223	struct spi_controller *ctlr;
   1224	int ret, cs_num, bus_num = -1;
   1225	struct fsl_dspi *dspi;
   1226	struct resource *res;
   1227	void __iomem *base;
   1228	bool big_endian;
   1229
   1230	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
   1231	if (!dspi)
   1232		return -ENOMEM;
   1233
   1234	ctlr = spi_alloc_master(&pdev->dev, 0);
   1235	if (!ctlr)
   1236		return -ENOMEM;
   1237
   1238	spi_controller_set_devdata(ctlr, dspi);
   1239	platform_set_drvdata(pdev, dspi);
   1240
   1241	dspi->pdev = pdev;
   1242	dspi->ctlr = ctlr;
   1243
   1244	ctlr->setup = dspi_setup;
   1245	ctlr->transfer_one_message = dspi_transfer_one_message;
   1246	ctlr->dev.of_node = pdev->dev.of_node;
   1247
   1248	ctlr->cleanup = dspi_cleanup;
   1249	ctlr->slave_abort = dspi_slave_abort;
   1250	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
   1251
   1252	pdata = dev_get_platdata(&pdev->dev);
   1253	if (pdata) {
   1254		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
   1255		ctlr->bus_num = pdata->bus_num;
   1256
   1257		/* Only Coldfire uses platform data */
   1258		dspi->devtype_data = &devtype_data[MCF5441X];
   1259		big_endian = true;
   1260	} else {
   1261
   1262		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
   1263		if (ret < 0) {
   1264			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
   1265			goto out_ctlr_put;
   1266		}
   1267		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
   1268
   1269		of_property_read_u32(np, "bus-num", &bus_num);
   1270		ctlr->bus_num = bus_num;
   1271
   1272		if (of_property_read_bool(np, "spi-slave"))
   1273			ctlr->slave = true;
   1274
   1275		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
   1276		if (!dspi->devtype_data) {
   1277			dev_err(&pdev->dev, "can't get devtype_data\n");
   1278			ret = -EFAULT;
   1279			goto out_ctlr_put;
   1280		}
   1281
   1282		big_endian = of_device_is_big_endian(np);
   1283	}
   1284	if (big_endian) {
   1285		dspi->pushr_cmd = 0;
   1286		dspi->pushr_tx = 2;
   1287	} else {
   1288		dspi->pushr_cmd = 2;
   1289		dspi->pushr_tx = 0;
   1290	}
   1291
   1292	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
   1293		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
   1294	else
   1295		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
   1296
   1297	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1298	base = devm_ioremap_resource(&pdev->dev, res);
   1299	if (IS_ERR(base)) {
   1300		ret = PTR_ERR(base);
   1301		goto out_ctlr_put;
   1302	}
   1303
   1304	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
   1305		regmap_config = &dspi_xspi_regmap_config[0];
   1306	else
   1307		regmap_config = &dspi_regmap_config;
   1308	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
   1309	if (IS_ERR(dspi->regmap)) {
   1310		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
   1311				PTR_ERR(dspi->regmap));
   1312		ret = PTR_ERR(dspi->regmap);
   1313		goto out_ctlr_put;
   1314	}
   1315
   1316	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
   1317		dspi->regmap_pushr = devm_regmap_init_mmio(
   1318			&pdev->dev, base + SPI_PUSHR,
   1319			&dspi_xspi_regmap_config[1]);
   1320		if (IS_ERR(dspi->regmap_pushr)) {
   1321			dev_err(&pdev->dev,
   1322				"failed to init pushr regmap: %ld\n",
   1323				PTR_ERR(dspi->regmap_pushr));
   1324			ret = PTR_ERR(dspi->regmap_pushr);
   1325			goto out_ctlr_put;
   1326		}
   1327	}
   1328
   1329	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
   1330	if (IS_ERR(dspi->clk)) {
   1331		ret = PTR_ERR(dspi->clk);
   1332		dev_err(&pdev->dev, "unable to get clock\n");
   1333		goto out_ctlr_put;
   1334	}
   1335	ret = clk_prepare_enable(dspi->clk);
   1336	if (ret)
   1337		goto out_ctlr_put;
   1338
   1339	ret = dspi_init(dspi);
   1340	if (ret)
   1341		goto out_clk_put;
   1342
   1343	dspi->irq = platform_get_irq(pdev, 0);
   1344	if (dspi->irq <= 0) {
   1345		dev_info(&pdev->dev,
   1346			 "can't get platform irq, using poll mode\n");
   1347		dspi->irq = 0;
   1348		goto poll_mode;
   1349	}
   1350
   1351	init_completion(&dspi->xfer_done);
   1352
   1353	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
   1354				   IRQF_SHARED, pdev->name, dspi);
   1355	if (ret < 0) {
   1356		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
   1357		goto out_clk_put;
   1358	}
   1359
   1360poll_mode:
   1361
   1362	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
   1363		ret = dspi_request_dma(dspi, res->start);
   1364		if (ret < 0) {
   1365			dev_err(&pdev->dev, "can't get dma channels\n");
   1366			goto out_free_irq;
   1367		}
   1368	}
   1369
   1370	ctlr->max_speed_hz =
   1371		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
   1372
   1373	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
   1374		ctlr->ptp_sts_supported = true;
   1375
   1376	ret = spi_register_controller(ctlr);
   1377	if (ret != 0) {
   1378		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
   1379		goto out_release_dma;
   1380	}
   1381
   1382	return ret;
   1383
   1384out_release_dma:
   1385	dspi_release_dma(dspi);
   1386out_free_irq:
   1387	if (dspi->irq)
   1388		free_irq(dspi->irq, dspi);
   1389out_clk_put:
   1390	clk_disable_unprepare(dspi->clk);
   1391out_ctlr_put:
   1392	spi_controller_put(ctlr);
   1393
   1394	return ret;
   1395}
   1396
   1397static int dspi_remove(struct platform_device *pdev)
   1398{
   1399	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
   1400
   1401	/* Disconnect from the SPI framework */
   1402	spi_unregister_controller(dspi->ctlr);
   1403
   1404	/* Disable RX and TX */
   1405	regmap_update_bits(dspi->regmap, SPI_MCR,
   1406			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
   1407			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
   1408
   1409	/* Stop Running */
   1410	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
   1411
   1412	dspi_release_dma(dspi);
   1413	if (dspi->irq)
   1414		free_irq(dspi->irq, dspi);
   1415	clk_disable_unprepare(dspi->clk);
   1416
   1417	return 0;
   1418}
   1419
   1420static void dspi_shutdown(struct platform_device *pdev)
   1421{
   1422	dspi_remove(pdev);
   1423}
   1424
   1425static struct platform_driver fsl_dspi_driver = {
   1426	.driver.name		= DRIVER_NAME,
   1427	.driver.of_match_table	= fsl_dspi_dt_ids,
   1428	.driver.owner		= THIS_MODULE,
   1429	.driver.pm		= &dspi_pm,
   1430	.probe			= dspi_probe,
   1431	.remove			= dspi_remove,
   1432	.shutdown		= dspi_shutdown,
   1433};
   1434module_platform_driver(fsl_dspi_driver);
   1435
   1436MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
   1437MODULE_LICENSE("GPL");
   1438MODULE_ALIAS("platform:" DRIVER_NAME);