cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-fsl-espi.c (21648B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Freescale eSPI controller driver.
      4 *
      5 * Copyright 2010 Freescale Semiconductor, Inc.
      6 */
      7#include <linux/delay.h>
      8#include <linux/err.h>
      9#include <linux/fsl_devices.h>
     10#include <linux/interrupt.h>
     11#include <linux/module.h>
     12#include <linux/mm.h>
     13#include <linux/of.h>
     14#include <linux/of_address.h>
     15#include <linux/of_irq.h>
     16#include <linux/of_platform.h>
     17#include <linux/platform_device.h>
     18#include <linux/spi/spi.h>
     19#include <linux/pm_runtime.h>
     20#include <sysdev/fsl_soc.h>
     21
     22/* eSPI Controller registers */
     23#define ESPI_SPMODE	0x00	/* eSPI mode register */
     24#define ESPI_SPIE	0x04	/* eSPI event register */
     25#define ESPI_SPIM	0x08	/* eSPI mask register */
     26#define ESPI_SPCOM	0x0c	/* eSPI command register */
     27#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
     28#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
     29#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
     30
     31#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
     32
     33/* eSPI Controller mode register definitions */
     34#define SPMODE_ENABLE		BIT(31)
     35#define SPMODE_LOOP		BIT(30)
     36#define SPMODE_TXTHR(x)		((x) << 8)
     37#define SPMODE_RXTHR(x)		((x) << 0)
     38
     39/* eSPI Controller CS mode register definitions */
     40#define CSMODE_CI_INACTIVEHIGH	BIT(31)
     41#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
     42#define CSMODE_REV		BIT(29)
     43#define CSMODE_DIV16		BIT(28)
     44#define CSMODE_PM(x)		((x) << 24)
     45#define CSMODE_POL_1		BIT(20)
     46#define CSMODE_LEN(x)		((x) << 16)
     47#define CSMODE_BEF(x)		((x) << 12)
     48#define CSMODE_AFT(x)		((x) << 8)
     49#define CSMODE_CG(x)		((x) << 3)
     50
     51#define FSL_ESPI_FIFO_SIZE	32
     52#define FSL_ESPI_RXTHR		15
     53
     54/* Default mode/csmode for eSPI controller */
     55#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
     56#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
     57		| CSMODE_AFT(0) | CSMODE_CG(1))
     58
     59/* SPIE register values */
     60#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
     61#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
     62#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
     63#define	SPIE_DON		BIT(14)	/* TX done */
     64#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
     65#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
     66#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
     67#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
     68#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
     69
     70/* SPIM register values */
     71#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
     72#define	SPIM_DON		BIT(14)	/* TX done */
     73#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
     74#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
     75#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
     76#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
     77#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
     78
     79/* SPCOM register values */
     80#define SPCOM_CS(x)		((x) << 30)
     81#define SPCOM_DO		BIT(28) /* Dual output */
     82#define SPCOM_TO		BIT(27) /* TX only */
     83#define SPCOM_RXSKIP(x)		((x) << 16)
     84#define SPCOM_TRANLEN(x)	((x) << 0)
     85
     86#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
     87
     88#define AUTOSUSPEND_TIMEOUT 2000
     89
     90struct fsl_espi {
     91	struct device *dev;
     92	void __iomem *reg_base;
     93
     94	struct list_head *m_transfers;
     95	struct spi_transfer *tx_t;
     96	unsigned int tx_pos;
     97	bool tx_done;
     98	struct spi_transfer *rx_t;
     99	unsigned int rx_pos;
    100	bool rx_done;
    101
    102	bool swab;
    103	unsigned int rxskip;
    104
    105	spinlock_t lock;
    106
    107	u32 spibrg;             /* SPIBRG input clock */
    108
    109	struct completion done;
    110};
    111
    112struct fsl_espi_cs {
    113	u32 hw_mode;
    114};
    115
    116static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
    117{
    118	return ioread32be(espi->reg_base + offset);
    119}
    120
    121static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
    122{
    123	return ioread16be(espi->reg_base + offset);
    124}
    125
    126static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
    127{
    128	return ioread8(espi->reg_base + offset);
    129}
    130
    131static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
    132				      u32 val)
    133{
    134	iowrite32be(val, espi->reg_base + offset);
    135}
    136
    137static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
    138					u16 val)
    139{
    140	iowrite16be(val, espi->reg_base + offset);
    141}
    142
    143static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
    144				       u8 val)
    145{
    146	iowrite8(val, espi->reg_base + offset);
    147}
    148
    149static int fsl_espi_check_message(struct spi_message *m)
    150{
    151	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
    152	struct spi_transfer *t, *first;
    153
    154	if (m->frame_length > SPCOM_TRANLEN_MAX) {
    155		dev_err(espi->dev, "message too long, size is %u bytes\n",
    156			m->frame_length);
    157		return -EMSGSIZE;
    158	}
    159
    160	first = list_first_entry(&m->transfers, struct spi_transfer,
    161				 transfer_list);
    162
    163	list_for_each_entry(t, &m->transfers, transfer_list) {
    164		if (first->bits_per_word != t->bits_per_word ||
    165		    first->speed_hz != t->speed_hz) {
    166			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
    167			return -EINVAL;
    168		}
    169	}
    170
    171	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
    172	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
    173	    first->bits_per_word != 16) {
    174		dev_err(espi->dev,
    175			"MSB-first transfer not supported for wordsize %u\n",
    176			first->bits_per_word);
    177		return -EINVAL;
    178	}
    179
    180	return 0;
    181}
    182
    183static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
    184{
    185	struct spi_transfer *t;
    186	unsigned int i = 0, rxskip = 0;
    187
    188	/*
    189	 * prerequisites for ESPI rxskip mode:
    190	 * - message has two transfers
    191	 * - first transfer is a write and second is a read
    192	 *
    193	 * In addition the current low-level transfer mechanism requires
    194	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
    195	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
    196	 * the TX FIFO isn't re-filled.
    197	 */
    198	list_for_each_entry(t, &m->transfers, transfer_list) {
    199		if (i == 0) {
    200			if (!t->tx_buf || t->rx_buf ||
    201			    t->len > FSL_ESPI_FIFO_SIZE)
    202				return 0;
    203			rxskip = t->len;
    204		} else if (i == 1) {
    205			if (t->tx_buf || !t->rx_buf)
    206				return 0;
    207		}
    208		i++;
    209	}
    210
    211	return i == 2 ? rxskip : 0;
    212}
    213
    214static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
    215{
    216	u32 tx_fifo_avail;
    217	unsigned int tx_left;
    218	const void *tx_buf;
    219
    220	/* if events is zero transfer has not started and tx fifo is empty */
    221	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
    222start:
    223	tx_left = espi->tx_t->len - espi->tx_pos;
    224	tx_buf = espi->tx_t->tx_buf;
    225	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
    226		if (tx_left >= 4) {
    227			if (!tx_buf)
    228				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
    229			else if (espi->swab)
    230				fsl_espi_write_reg(espi, ESPI_SPITF,
    231					swahb32p(tx_buf + espi->tx_pos));
    232			else
    233				fsl_espi_write_reg(espi, ESPI_SPITF,
    234					*(u32 *)(tx_buf + espi->tx_pos));
    235			espi->tx_pos += 4;
    236			tx_left -= 4;
    237			tx_fifo_avail -= 4;
    238		} else if (tx_left >= 2 && tx_buf && espi->swab) {
    239			fsl_espi_write_reg16(espi, ESPI_SPITF,
    240					swab16p(tx_buf + espi->tx_pos));
    241			espi->tx_pos += 2;
    242			tx_left -= 2;
    243			tx_fifo_avail -= 2;
    244		} else {
    245			if (!tx_buf)
    246				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
    247			else
    248				fsl_espi_write_reg8(espi, ESPI_SPITF,
    249					*(u8 *)(tx_buf + espi->tx_pos));
    250			espi->tx_pos += 1;
    251			tx_left -= 1;
    252			tx_fifo_avail -= 1;
    253		}
    254	}
    255
    256	if (!tx_left) {
    257		/* Last transfer finished, in rxskip mode only one is needed */
    258		if (list_is_last(&espi->tx_t->transfer_list,
    259		    espi->m_transfers) || espi->rxskip) {
    260			espi->tx_done = true;
    261			return;
    262		}
    263		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
    264		espi->tx_pos = 0;
    265		/* continue with next transfer if tx fifo is not full */
    266		if (tx_fifo_avail)
    267			goto start;
    268	}
    269}
    270
    271static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
    272{
    273	u32 rx_fifo_avail = SPIE_RXCNT(events);
    274	unsigned int rx_left;
    275	void *rx_buf;
    276
    277start:
    278	rx_left = espi->rx_t->len - espi->rx_pos;
    279	rx_buf = espi->rx_t->rx_buf;
    280	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
    281		if (rx_left >= 4) {
    282			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
    283
    284			if (rx_buf && espi->swab)
    285				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
    286			else if (rx_buf)
    287				*(u32 *)(rx_buf + espi->rx_pos) = val;
    288			espi->rx_pos += 4;
    289			rx_left -= 4;
    290			rx_fifo_avail -= 4;
    291		} else if (rx_left >= 2 && rx_buf && espi->swab) {
    292			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
    293
    294			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
    295			espi->rx_pos += 2;
    296			rx_left -= 2;
    297			rx_fifo_avail -= 2;
    298		} else {
    299			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
    300
    301			if (rx_buf)
    302				*(u8 *)(rx_buf + espi->rx_pos) = val;
    303			espi->rx_pos += 1;
    304			rx_left -= 1;
    305			rx_fifo_avail -= 1;
    306		}
    307	}
    308
    309	if (!rx_left) {
    310		if (list_is_last(&espi->rx_t->transfer_list,
    311		    espi->m_transfers)) {
    312			espi->rx_done = true;
    313			return;
    314		}
    315		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
    316		espi->rx_pos = 0;
    317		/* continue with next transfer if rx fifo is not empty */
    318		if (rx_fifo_avail)
    319			goto start;
    320	}
    321}
    322
    323static void fsl_espi_setup_transfer(struct spi_device *spi,
    324					struct spi_transfer *t)
    325{
    326	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
    327	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
    328	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
    329	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
    330	u32 hw_mode_old = cs->hw_mode;
    331
    332	/* mask out bits we are going to set */
    333	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
    334
    335	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
    336
    337	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
    338
    339	if (pm > 15) {
    340		cs->hw_mode |= CSMODE_DIV16;
    341		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
    342	}
    343
    344	cs->hw_mode |= CSMODE_PM(pm);
    345
    346	/* don't write the mode register if the mode doesn't change */
    347	if (cs->hw_mode != hw_mode_old)
    348		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
    349				   cs->hw_mode);
    350}
    351
    352static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
    353{
    354	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
    355	unsigned int rx_len = t->len;
    356	u32 mask, spcom;
    357	int ret;
    358
    359	reinit_completion(&espi->done);
    360
    361	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
    362	spcom = SPCOM_CS(spi->chip_select);
    363	spcom |= SPCOM_TRANLEN(t->len - 1);
    364
    365	/* configure RXSKIP mode */
    366	if (espi->rxskip) {
    367		spcom |= SPCOM_RXSKIP(espi->rxskip);
    368		rx_len = t->len - espi->rxskip;
    369		if (t->rx_nbits == SPI_NBITS_DUAL)
    370			spcom |= SPCOM_DO;
    371	}
    372
    373	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
    374
    375	/* enable interrupts */
    376	mask = SPIM_DON;
    377	if (rx_len > FSL_ESPI_FIFO_SIZE)
    378		mask |= SPIM_RXT;
    379	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
    380
    381	/* Prevent filling the fifo from getting interrupted */
    382	spin_lock_irq(&espi->lock);
    383	fsl_espi_fill_tx_fifo(espi, 0);
    384	spin_unlock_irq(&espi->lock);
    385
    386	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
    387	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
    388	if (ret == 0)
    389		dev_err(espi->dev, "Transfer timed out!\n");
    390
    391	/* disable rx ints */
    392	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
    393
    394	return ret == 0 ? -ETIMEDOUT : 0;
    395}
    396
    397static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
    398{
    399	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
    400	struct spi_device *spi = m->spi;
    401	int ret;
    402
    403	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
    404	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
    405
    406	espi->m_transfers = &m->transfers;
    407	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
    408				      transfer_list);
    409	espi->tx_pos = 0;
    410	espi->tx_done = false;
    411	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
    412				      transfer_list);
    413	espi->rx_pos = 0;
    414	espi->rx_done = false;
    415
    416	espi->rxskip = fsl_espi_check_rxskip_mode(m);
    417	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
    418		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
    419		return -EINVAL;
    420	}
    421
    422	/* In RXSKIP mode skip first transfer for reads */
    423	if (espi->rxskip)
    424		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
    425
    426	fsl_espi_setup_transfer(spi, trans);
    427
    428	ret = fsl_espi_bufs(spi, trans);
    429
    430	spi_transfer_delay_exec(trans);
    431
    432	return ret;
    433}
    434
    435static int fsl_espi_do_one_msg(struct spi_master *master,
    436			       struct spi_message *m)
    437{
    438	unsigned int rx_nbits = 0, delay_nsecs = 0;
    439	struct spi_transfer *t, trans = {};
    440	int ret;
    441
    442	ret = fsl_espi_check_message(m);
    443	if (ret)
    444		goto out;
    445
    446	list_for_each_entry(t, &m->transfers, transfer_list) {
    447		unsigned int delay = spi_delay_to_ns(&t->delay, t);
    448
    449		if (delay > delay_nsecs)
    450			delay_nsecs = delay;
    451		if (t->rx_nbits > rx_nbits)
    452			rx_nbits = t->rx_nbits;
    453	}
    454
    455	t = list_first_entry(&m->transfers, struct spi_transfer,
    456			     transfer_list);
    457
    458	trans.len = m->frame_length;
    459	trans.speed_hz = t->speed_hz;
    460	trans.bits_per_word = t->bits_per_word;
    461	trans.delay.value = delay_nsecs;
    462	trans.delay.unit = SPI_DELAY_UNIT_NSECS;
    463	trans.rx_nbits = rx_nbits;
    464
    465	if (trans.len)
    466		ret = fsl_espi_trans(m, &trans);
    467
    468	m->actual_length = ret ? 0 : trans.len;
    469out:
    470	if (m->status == -EINPROGRESS)
    471		m->status = ret;
    472
    473	spi_finalize_current_message(master);
    474
    475	return ret;
    476}
    477
    478static int fsl_espi_setup(struct spi_device *spi)
    479{
    480	struct fsl_espi *espi;
    481	u32 loop_mode;
    482	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
    483
    484	if (!cs) {
    485		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
    486		if (!cs)
    487			return -ENOMEM;
    488		spi_set_ctldata(spi, cs);
    489	}
    490
    491	espi = spi_master_get_devdata(spi->master);
    492
    493	pm_runtime_get_sync(espi->dev);
    494
    495	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
    496	/* mask out bits we are going to set */
    497	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
    498			 | CSMODE_REV);
    499
    500	if (spi->mode & SPI_CPHA)
    501		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
    502	if (spi->mode & SPI_CPOL)
    503		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
    504	if (!(spi->mode & SPI_LSB_FIRST))
    505		cs->hw_mode |= CSMODE_REV;
    506
    507	/* Handle the loop mode */
    508	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
    509	loop_mode &= ~SPMODE_LOOP;
    510	if (spi->mode & SPI_LOOP)
    511		loop_mode |= SPMODE_LOOP;
    512	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
    513
    514	fsl_espi_setup_transfer(spi, NULL);
    515
    516	pm_runtime_mark_last_busy(espi->dev);
    517	pm_runtime_put_autosuspend(espi->dev);
    518
    519	return 0;
    520}
    521
    522static void fsl_espi_cleanup(struct spi_device *spi)
    523{
    524	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
    525
    526	kfree(cs);
    527	spi_set_ctldata(spi, NULL);
    528}
    529
    530static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
    531{
    532	if (!espi->rx_done)
    533		fsl_espi_read_rx_fifo(espi, events);
    534
    535	if (!espi->tx_done)
    536		fsl_espi_fill_tx_fifo(espi, events);
    537
    538	if (!espi->tx_done || !espi->rx_done)
    539		return;
    540
    541	/* we're done, but check for errors before returning */
    542	events = fsl_espi_read_reg(espi, ESPI_SPIE);
    543
    544	if (!(events & SPIE_DON))
    545		dev_err(espi->dev,
    546			"Transfer done but SPIE_DON isn't set!\n");
    547
    548	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
    549		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
    550		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
    551			SPIE_RXCNT(events), SPIE_TXCNT(events));
    552	}
    553
    554	complete(&espi->done);
    555}
    556
    557static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
    558{
    559	struct fsl_espi *espi = context_data;
    560	u32 events, mask;
    561
    562	spin_lock(&espi->lock);
    563
    564	/* Get interrupt events(tx/rx) */
    565	events = fsl_espi_read_reg(espi, ESPI_SPIE);
    566	mask = fsl_espi_read_reg(espi, ESPI_SPIM);
    567	if (!(events & mask)) {
    568		spin_unlock(&espi->lock);
    569		return IRQ_NONE;
    570	}
    571
    572	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
    573
    574	fsl_espi_cpu_irq(espi, events);
    575
    576	/* Clear the events */
    577	fsl_espi_write_reg(espi, ESPI_SPIE, events);
    578
    579	spin_unlock(&espi->lock);
    580
    581	return IRQ_HANDLED;
    582}
    583
    584#ifdef CONFIG_PM
    585static int fsl_espi_runtime_suspend(struct device *dev)
    586{
    587	struct spi_master *master = dev_get_drvdata(dev);
    588	struct fsl_espi *espi = spi_master_get_devdata(master);
    589	u32 regval;
    590
    591	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
    592	regval &= ~SPMODE_ENABLE;
    593	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
    594
    595	return 0;
    596}
    597
    598static int fsl_espi_runtime_resume(struct device *dev)
    599{
    600	struct spi_master *master = dev_get_drvdata(dev);
    601	struct fsl_espi *espi = spi_master_get_devdata(master);
    602	u32 regval;
    603
    604	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
    605	regval |= SPMODE_ENABLE;
    606	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
    607
    608	return 0;
    609}
    610#endif
    611
    612static size_t fsl_espi_max_message_size(struct spi_device *spi)
    613{
    614	return SPCOM_TRANLEN_MAX;
    615}
    616
    617static void fsl_espi_init_regs(struct device *dev, bool initial)
    618{
    619	struct spi_master *master = dev_get_drvdata(dev);
    620	struct fsl_espi *espi = spi_master_get_devdata(master);
    621	struct device_node *nc;
    622	u32 csmode, cs, prop;
    623	int ret;
    624
    625	/* SPI controller initializations */
    626	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
    627	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
    628	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
    629	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
    630
    631	/* Init eSPI CS mode register */
    632	for_each_available_child_of_node(master->dev.of_node, nc) {
    633		/* get chip select */
    634		ret = of_property_read_u32(nc, "reg", &cs);
    635		if (ret || cs >= master->num_chipselect)
    636			continue;
    637
    638		csmode = CSMODE_INIT_VAL;
    639
    640		/* check if CSBEF is set in device tree */
    641		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
    642		if (!ret) {
    643			csmode &= ~(CSMODE_BEF(0xf));
    644			csmode |= CSMODE_BEF(prop);
    645		}
    646
    647		/* check if CSAFT is set in device tree */
    648		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
    649		if (!ret) {
    650			csmode &= ~(CSMODE_AFT(0xf));
    651			csmode |= CSMODE_AFT(prop);
    652		}
    653
    654		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
    655
    656		if (initial)
    657			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
    658	}
    659
    660	/* Enable SPI interface */
    661	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
    662}
    663
    664static int fsl_espi_probe(struct device *dev, struct resource *mem,
    665			  unsigned int irq, unsigned int num_cs)
    666{
    667	struct spi_master *master;
    668	struct fsl_espi *espi;
    669	int ret;
    670
    671	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
    672	if (!master)
    673		return -ENOMEM;
    674
    675	dev_set_drvdata(dev, master);
    676
    677	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
    678			    SPI_LSB_FIRST | SPI_LOOP;
    679	master->dev.of_node = dev->of_node;
    680	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
    681	master->setup = fsl_espi_setup;
    682	master->cleanup = fsl_espi_cleanup;
    683	master->transfer_one_message = fsl_espi_do_one_msg;
    684	master->auto_runtime_pm = true;
    685	master->max_message_size = fsl_espi_max_message_size;
    686	master->num_chipselect = num_cs;
    687
    688	espi = spi_master_get_devdata(master);
    689	spin_lock_init(&espi->lock);
    690
    691	espi->dev = dev;
    692	espi->spibrg = fsl_get_sys_freq();
    693	if (espi->spibrg == -1) {
    694		dev_err(dev, "Can't get sys frequency!\n");
    695		ret = -EINVAL;
    696		goto err_probe;
    697	}
    698	/* determined by clock divider fields DIV16/PM in register SPMODEx */
    699	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
    700	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
    701
    702	init_completion(&espi->done);
    703
    704	espi->reg_base = devm_ioremap_resource(dev, mem);
    705	if (IS_ERR(espi->reg_base)) {
    706		ret = PTR_ERR(espi->reg_base);
    707		goto err_probe;
    708	}
    709
    710	/* Register for SPI Interrupt */
    711	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
    712	if (ret)
    713		goto err_probe;
    714
    715	fsl_espi_init_regs(dev, true);
    716
    717	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
    718	pm_runtime_use_autosuspend(dev);
    719	pm_runtime_set_active(dev);
    720	pm_runtime_enable(dev);
    721	pm_runtime_get_sync(dev);
    722
    723	ret = devm_spi_register_master(dev, master);
    724	if (ret < 0)
    725		goto err_pm;
    726
    727	dev_info(dev, "irq = %u\n", irq);
    728
    729	pm_runtime_mark_last_busy(dev);
    730	pm_runtime_put_autosuspend(dev);
    731
    732	return 0;
    733
    734err_pm:
    735	pm_runtime_put_noidle(dev);
    736	pm_runtime_disable(dev);
    737	pm_runtime_set_suspended(dev);
    738err_probe:
    739	spi_master_put(master);
    740	return ret;
    741}
    742
    743static int of_fsl_espi_get_chipselects(struct device *dev)
    744{
    745	struct device_node *np = dev->of_node;
    746	u32 num_cs;
    747	int ret;
    748
    749	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
    750	if (ret) {
    751		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
    752		return 0;
    753	}
    754
    755	return num_cs;
    756}
    757
    758static int of_fsl_espi_probe(struct platform_device *ofdev)
    759{
    760	struct device *dev = &ofdev->dev;
    761	struct device_node *np = ofdev->dev.of_node;
    762	struct resource mem;
    763	unsigned int irq, num_cs;
    764	int ret;
    765
    766	if (of_property_read_bool(np, "mode")) {
    767		dev_err(dev, "mode property is not supported on ESPI!\n");
    768		return -EINVAL;
    769	}
    770
    771	num_cs = of_fsl_espi_get_chipselects(dev);
    772	if (!num_cs)
    773		return -EINVAL;
    774
    775	ret = of_address_to_resource(np, 0, &mem);
    776	if (ret)
    777		return ret;
    778
    779	irq = irq_of_parse_and_map(np, 0);
    780	if (!irq)
    781		return -EINVAL;
    782
    783	return fsl_espi_probe(dev, &mem, irq, num_cs);
    784}
    785
    786static int of_fsl_espi_remove(struct platform_device *dev)
    787{
    788	pm_runtime_disable(&dev->dev);
    789
    790	return 0;
    791}
    792
    793#ifdef CONFIG_PM_SLEEP
    794static int of_fsl_espi_suspend(struct device *dev)
    795{
    796	struct spi_master *master = dev_get_drvdata(dev);
    797	int ret;
    798
    799	ret = spi_master_suspend(master);
    800	if (ret)
    801		return ret;
    802
    803	return pm_runtime_force_suspend(dev);
    804}
    805
    806static int of_fsl_espi_resume(struct device *dev)
    807{
    808	struct spi_master *master = dev_get_drvdata(dev);
    809	int ret;
    810
    811	fsl_espi_init_regs(dev, false);
    812
    813	ret = pm_runtime_force_resume(dev);
    814	if (ret < 0)
    815		return ret;
    816
    817	return spi_master_resume(master);
    818}
    819#endif /* CONFIG_PM_SLEEP */
    820
    821static const struct dev_pm_ops espi_pm = {
    822	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
    823			   fsl_espi_runtime_resume, NULL)
    824	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
    825};
    826
    827static const struct of_device_id of_fsl_espi_match[] = {
    828	{ .compatible = "fsl,mpc8536-espi" },
    829	{}
    830};
    831MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
    832
    833static struct platform_driver fsl_espi_driver = {
    834	.driver = {
    835		.name = "fsl_espi",
    836		.of_match_table = of_fsl_espi_match,
    837		.pm = &espi_pm,
    838	},
    839	.probe		= of_fsl_espi_probe,
    840	.remove		= of_fsl_espi_remove,
    841};
    842module_platform_driver(fsl_espi_driver);
    843
    844MODULE_AUTHOR("Mingkai Hu");
    845MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
    846MODULE_LICENSE("GPL");