cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-fsl-qspi.c (26568B)


      1// SPDX-License-Identifier: GPL-2.0+
      2
      3/*
      4 * Freescale QuadSPI driver.
      5 *
      6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
      7 * Copyright (C) 2018 Bootlin
      8 * Copyright (C) 2018 exceet electronics GmbH
      9 * Copyright (C) 2018 Kontron Electronics GmbH
     10 *
     11 * Transition to SPI MEM interface:
     12 * Authors:
     13 *     Boris Brezillon <bbrezillon@kernel.org>
     14 *     Frieder Schrempf <frieder.schrempf@kontron.de>
     15 *     Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
     16 *     Suresh Gupta <suresh.gupta@nxp.com>
     17 *
     18 * Based on the original fsl-quadspi.c SPI NOR driver:
     19 * Author: Freescale Semiconductor, Inc.
     20 *
     21 */
     22
     23#include <linux/bitops.h>
     24#include <linux/clk.h>
     25#include <linux/completion.h>
     26#include <linux/delay.h>
     27#include <linux/err.h>
     28#include <linux/errno.h>
     29#include <linux/interrupt.h>
     30#include <linux/io.h>
     31#include <linux/iopoll.h>
     32#include <linux/jiffies.h>
     33#include <linux/kernel.h>
     34#include <linux/module.h>
     35#include <linux/mutex.h>
     36#include <linux/of.h>
     37#include <linux/of_device.h>
     38#include <linux/platform_device.h>
     39#include <linux/pm_qos.h>
     40#include <linux/sizes.h>
     41
     42#include <linux/spi/spi.h>
     43#include <linux/spi/spi-mem.h>
     44
     45/*
     46 * The driver only uses one single LUT entry, that is updated on
     47 * each call of exec_op(). Index 0 is preset at boot with a basic
     48 * read operation, so let's use the last entry (15).
     49 */
     50#define	SEQID_LUT			15
     51
     52/* Registers used by the driver */
     53#define QUADSPI_MCR			0x00
     54#define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
     55#define QUADSPI_MCR_MDIS_MASK		BIT(14)
     56#define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
     57#define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
     58#define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
     59#define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
     60#define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
     61#define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)
     62
     63#define QUADSPI_IPCR			0x08
     64#define QUADSPI_IPCR_SEQID(x)		((x) << 24)
     65
     66#define QUADSPI_FLSHCR			0x0c
     67#define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
     68#define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
     69#define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)
     70
     71#define QUADSPI_BUF0CR                  0x10
     72#define QUADSPI_BUF1CR                  0x14
     73#define QUADSPI_BUF2CR                  0x18
     74#define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
     75
     76#define QUADSPI_BUF3CR			0x1c
     77#define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
     78#define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
     79#define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)
     80
     81#define QUADSPI_BFGENCR			0x20
     82#define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)
     83
     84#define QUADSPI_BUF0IND			0x30
     85#define QUADSPI_BUF1IND			0x34
     86#define QUADSPI_BUF2IND			0x38
     87#define QUADSPI_SFAR			0x100
     88
     89#define QUADSPI_SMPR			0x108
     90#define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
     91#define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
     92#define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
     93#define QUADSPI_SMPR_HSENA_MASK		BIT(0)
     94
     95#define QUADSPI_RBCT			0x110
     96#define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
     97#define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)
     98
     99#define QUADSPI_TBDR			0x154
    100
    101#define QUADSPI_SR			0x15c
    102#define QUADSPI_SR_IP_ACC_MASK		BIT(1)
    103#define QUADSPI_SR_AHB_ACC_MASK		BIT(2)
    104
    105#define QUADSPI_FR			0x160
    106#define QUADSPI_FR_TFF_MASK		BIT(0)
    107
    108#define QUADSPI_RSER			0x164
    109#define QUADSPI_RSER_TFIE		BIT(0)
    110
    111#define QUADSPI_SPTRCLR			0x16c
    112#define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
    113#define QUADSPI_SPTRCLR_BFPTRC		BIT(0)
    114
    115#define QUADSPI_SFA1AD			0x180
    116#define QUADSPI_SFA2AD			0x184
    117#define QUADSPI_SFB1AD			0x188
    118#define QUADSPI_SFB2AD			0x18c
    119#define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))
    120
    121#define QUADSPI_LUTKEY			0x300
    122#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
    123
    124#define QUADSPI_LCKCR			0x304
    125#define QUADSPI_LCKER_LOCK		BIT(0)
    126#define QUADSPI_LCKER_UNLOCK		BIT(1)
    127
    128#define QUADSPI_LUT_BASE		0x310
    129#define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
    130#define QUADSPI_LUT_REG(idx) \
    131	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
    132
    133/* Instruction set for the LUT register */
    134#define LUT_STOP		0
    135#define LUT_CMD			1
    136#define LUT_ADDR		2
    137#define LUT_DUMMY		3
    138#define LUT_MODE		4
    139#define LUT_MODE2		5
    140#define LUT_MODE4		6
    141#define LUT_FSL_READ		7
    142#define LUT_FSL_WRITE		8
    143#define LUT_JMP_ON_CS		9
    144#define LUT_ADDR_DDR		10
    145#define LUT_MODE_DDR		11
    146#define LUT_MODE2_DDR		12
    147#define LUT_MODE4_DDR		13
    148#define LUT_FSL_READ_DDR	14
    149#define LUT_FSL_WRITE_DDR	15
    150#define LUT_DATA_LEARN		16
    151
    152/*
    153 * The PAD definitions for LUT register.
    154 *
    155 * The pad stands for the number of IO lines [0:3].
    156 * For example, the quad read needs four IO lines,
    157 * so you should use LUT_PAD(4).
    158 */
    159#define LUT_PAD(x) (fls(x) - 1)
    160
    161/*
    162 * Macro for constructing the LUT entries with the following
    163 * register layout:
    164 *
    165 *  ---------------------------------------------------
    166 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
    167 *  ---------------------------------------------------
    168 */
    169#define LUT_DEF(idx, ins, pad, opr)					\
    170	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
    171
    172/* Controller needs driver to swap endianness */
    173#define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)
    174
    175/* Controller needs 4x internal clock */
    176#define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)
    177
    178/*
    179 * TKT253890, the controller needs the driver to fill the txfifo with
    180 * 16 bytes at least to trigger a data transfer, even though the extra
    181 * data won't be transferred.
    182 */
    183#define QUADSPI_QUIRK_TKT253890		BIT(2)
    184
    185/* TKT245618, the controller cannot wake up from wait mode */
    186#define QUADSPI_QUIRK_TKT245618		BIT(3)
    187
    188/*
    189 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
    190 * internally. No need to add it when setting SFXXAD and SFAR registers
    191 */
    192#define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)
    193
    194/*
    195 * Controller uses TDH bits in register QUADSPI_FLSHCR.
    196 * They need to be set in accordance with the DDR/SDR mode.
    197 */
    198#define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)
    199
    200struct fsl_qspi_devtype_data {
    201	unsigned int rxfifo;
    202	unsigned int txfifo;
    203	int invalid_mstrid;
    204	unsigned int ahb_buf_size;
    205	unsigned int quirks;
    206	bool little_endian;
    207};
    208
    209static const struct fsl_qspi_devtype_data vybrid_data = {
    210	.rxfifo = SZ_128,
    211	.txfifo = SZ_64,
    212	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
    213	.ahb_buf_size = SZ_1K,
    214	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
    215	.little_endian = true,
    216};
    217
    218static const struct fsl_qspi_devtype_data imx6sx_data = {
    219	.rxfifo = SZ_128,
    220	.txfifo = SZ_512,
    221	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
    222	.ahb_buf_size = SZ_1K,
    223	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
    224	.little_endian = true,
    225};
    226
    227static const struct fsl_qspi_devtype_data imx7d_data = {
    228	.rxfifo = SZ_128,
    229	.txfifo = SZ_512,
    230	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
    231	.ahb_buf_size = SZ_1K,
    232	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
    233		  QUADSPI_QUIRK_USE_TDH_SETTING,
    234	.little_endian = true,
    235};
    236
    237static const struct fsl_qspi_devtype_data imx6ul_data = {
    238	.rxfifo = SZ_128,
    239	.txfifo = SZ_512,
    240	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
    241	.ahb_buf_size = SZ_1K,
    242	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
    243		  QUADSPI_QUIRK_USE_TDH_SETTING,
    244	.little_endian = true,
    245};
    246
    247static const struct fsl_qspi_devtype_data ls1021a_data = {
    248	.rxfifo = SZ_128,
    249	.txfifo = SZ_64,
    250	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
    251	.ahb_buf_size = SZ_1K,
    252	.quirks = 0,
    253	.little_endian = false,
    254};
    255
    256static const struct fsl_qspi_devtype_data ls2080a_data = {
    257	.rxfifo = SZ_128,
    258	.txfifo = SZ_64,
    259	.ahb_buf_size = SZ_1K,
    260	.invalid_mstrid = 0x0,
    261	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
    262	.little_endian = true,
    263};
    264
    265struct fsl_qspi {
    266	void __iomem *iobase;
    267	void __iomem *ahb_addr;
    268	u32 memmap_phy;
    269	struct clk *clk, *clk_en;
    270	struct device *dev;
    271	struct completion c;
    272	const struct fsl_qspi_devtype_data *devtype_data;
    273	struct mutex lock;
    274	struct pm_qos_request pm_qos_req;
    275	int selected;
    276};
    277
    278static inline int needs_swap_endian(struct fsl_qspi *q)
    279{
    280	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
    281}
    282
    283static inline int needs_4x_clock(struct fsl_qspi *q)
    284{
    285	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
    286}
    287
    288static inline int needs_fill_txfifo(struct fsl_qspi *q)
    289{
    290	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
    291}
    292
    293static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
    294{
    295	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
    296}
    297
    298static inline int needs_amba_base_offset(struct fsl_qspi *q)
    299{
    300	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
    301}
    302
    303static inline int needs_tdh_setting(struct fsl_qspi *q)
    304{
    305	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
    306}
    307
    308/*
    309 * An IC bug makes it necessary to rearrange the 32-bit data.
    310 * Later chips, such as IMX6SLX, have fixed this bug.
    311 */
    312static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
    313{
    314	return needs_swap_endian(q) ? __swab32(a) : a;
    315}
    316
    317/*
    318 * R/W functions for big- or little-endian registers:
    319 * The QSPI controller's endianness is independent of
    320 * the CPU core's endianness. So far, although the CPU
    321 * core is little-endian the QSPI controller can use
    322 * big-endian or little-endian.
    323 */
    324static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
    325{
    326	if (q->devtype_data->little_endian)
    327		iowrite32(val, addr);
    328	else
    329		iowrite32be(val, addr);
    330}
    331
    332static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
    333{
    334	if (q->devtype_data->little_endian)
    335		return ioread32(addr);
    336
    337	return ioread32be(addr);
    338}
    339
    340static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
    341{
    342	struct fsl_qspi *q = dev_id;
    343	u32 reg;
    344
    345	/* clear interrupt */
    346	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
    347	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
    348
    349	if (reg & QUADSPI_FR_TFF_MASK)
    350		complete(&q->c);
    351
    352	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
    353	return IRQ_HANDLED;
    354}
    355
    356static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
    357{
    358	switch (width) {
    359	case 1:
    360	case 2:
    361	case 4:
    362		return 0;
    363	}
    364
    365	return -ENOTSUPP;
    366}
    367
    368static bool fsl_qspi_supports_op(struct spi_mem *mem,
    369				 const struct spi_mem_op *op)
    370{
    371	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
    372	int ret;
    373
    374	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
    375
    376	if (op->addr.nbytes)
    377		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
    378
    379	if (op->dummy.nbytes)
    380		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
    381
    382	if (op->data.nbytes)
    383		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
    384
    385	if (ret)
    386		return false;
    387
    388	/*
    389	 * The number of instructions needed for the op, needs
    390	 * to fit into a single LUT entry.
    391	 */
    392	if (op->addr.nbytes +
    393	   (op->dummy.nbytes ? 1:0) +
    394	   (op->data.nbytes ? 1:0) > 6)
    395		return false;
    396
    397	/* Max 64 dummy clock cycles supported */
    398	if (op->dummy.nbytes &&
    399	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
    400		return false;
    401
    402	/* Max data length, check controller limits and alignment */
    403	if (op->data.dir == SPI_MEM_DATA_IN &&
    404	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
    405	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
    406	      !IS_ALIGNED(op->data.nbytes, 8))))
    407		return false;
    408
    409	if (op->data.dir == SPI_MEM_DATA_OUT &&
    410	    op->data.nbytes > q->devtype_data->txfifo)
    411		return false;
    412
    413	return spi_mem_default_supports_op(mem, op);
    414}
    415
    416static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
    417				 const struct spi_mem_op *op)
    418{
    419	void __iomem *base = q->iobase;
    420	u32 lutval[4] = {};
    421	int lutidx = 1, i;
    422
    423	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
    424			     op->cmd.opcode);
    425
    426	/*
    427	 * For some unknown reason, using LUT_ADDR doesn't work in some
    428	 * cases (at least with only one byte long addresses), so
    429	 * let's use LUT_MODE to write the address bytes one by one
    430	 */
    431	for (i = 0; i < op->addr.nbytes; i++) {
    432		u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
    433
    434		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
    435					      LUT_PAD(op->addr.buswidth),
    436					      addrbyte);
    437		lutidx++;
    438	}
    439
    440	if (op->dummy.nbytes) {
    441		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
    442					      LUT_PAD(op->dummy.buswidth),
    443					      op->dummy.nbytes * 8 /
    444					      op->dummy.buswidth);
    445		lutidx++;
    446	}
    447
    448	if (op->data.nbytes) {
    449		lutval[lutidx / 2] |= LUT_DEF(lutidx,
    450					      op->data.dir == SPI_MEM_DATA_IN ?
    451					      LUT_FSL_READ : LUT_FSL_WRITE,
    452					      LUT_PAD(op->data.buswidth),
    453					      0);
    454		lutidx++;
    455	}
    456
    457	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
    458
    459	/* unlock LUT */
    460	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
    461	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
    462
    463	/* fill LUT */
    464	for (i = 0; i < ARRAY_SIZE(lutval); i++)
    465		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
    466
    467	/* lock LUT */
    468	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
    469	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
    470}
    471
    472static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
    473{
    474	int ret;
    475
    476	ret = clk_prepare_enable(q->clk_en);
    477	if (ret)
    478		return ret;
    479
    480	ret = clk_prepare_enable(q->clk);
    481	if (ret) {
    482		clk_disable_unprepare(q->clk_en);
    483		return ret;
    484	}
    485
    486	if (needs_wakeup_wait_mode(q))
    487		cpu_latency_qos_add_request(&q->pm_qos_req, 0);
    488
    489	return 0;
    490}
    491
    492static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
    493{
    494	if (needs_wakeup_wait_mode(q))
    495		cpu_latency_qos_remove_request(&q->pm_qos_req);
    496
    497	clk_disable_unprepare(q->clk);
    498	clk_disable_unprepare(q->clk_en);
    499}
    500
    501/*
    502 * If we have changed the content of the flash by writing or erasing, or if we
    503 * read from flash with a different offset into the page buffer, we need to
    504 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
    505 * data. The spec tells us reset the AHB domain and Serial Flash domain at
    506 * the same time.
    507 */
    508static void fsl_qspi_invalidate(struct fsl_qspi *q)
    509{
    510	u32 reg;
    511
    512	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
    513	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
    514	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
    515
    516	/*
    517	 * The minimum delay : 1 AHB + 2 SFCK clocks.
    518	 * Delay 1 us is enough.
    519	 */
    520	udelay(1);
    521
    522	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
    523	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
    524}
    525
    526static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
    527{
    528	unsigned long rate = spi->max_speed_hz;
    529	int ret;
    530
    531	if (q->selected == spi->chip_select)
    532		return;
    533
    534	if (needs_4x_clock(q))
    535		rate *= 4;
    536
    537	fsl_qspi_clk_disable_unprep(q);
    538
    539	ret = clk_set_rate(q->clk, rate);
    540	if (ret)
    541		return;
    542
    543	ret = fsl_qspi_clk_prep_enable(q);
    544	if (ret)
    545		return;
    546
    547	q->selected = spi->chip_select;
    548
    549	fsl_qspi_invalidate(q);
    550}
    551
    552static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
    553{
    554	memcpy_fromio(op->data.buf.in,
    555		      q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
    556		      op->data.nbytes);
    557}
    558
    559static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
    560				 const struct spi_mem_op *op)
    561{
    562	void __iomem *base = q->iobase;
    563	int i;
    564	u32 val;
    565
    566	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
    567		memcpy(&val, op->data.buf.out + i, 4);
    568		val = fsl_qspi_endian_xchg(q, val);
    569		qspi_writel(q, val, base + QUADSPI_TBDR);
    570	}
    571
    572	if (i < op->data.nbytes) {
    573		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
    574		val = fsl_qspi_endian_xchg(q, val);
    575		qspi_writel(q, val, base + QUADSPI_TBDR);
    576	}
    577
    578	if (needs_fill_txfifo(q)) {
    579		for (i = op->data.nbytes; i < 16; i += 4)
    580			qspi_writel(q, 0, base + QUADSPI_TBDR);
    581	}
    582}
    583
    584static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
    585			  const struct spi_mem_op *op)
    586{
    587	void __iomem *base = q->iobase;
    588	int i;
    589	u8 *buf = op->data.buf.in;
    590	u32 val;
    591
    592	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
    593		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
    594		val = fsl_qspi_endian_xchg(q, val);
    595		memcpy(buf + i, &val, 4);
    596	}
    597
    598	if (i < op->data.nbytes) {
    599		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
    600		val = fsl_qspi_endian_xchg(q, val);
    601		memcpy(buf + i, &val, op->data.nbytes - i);
    602	}
    603}
    604
    605static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
    606{
    607	void __iomem *base = q->iobase;
    608	int err = 0;
    609
    610	init_completion(&q->c);
    611
    612	/*
    613	 * Always start the sequence at the same index since we update
    614	 * the LUT at each exec_op() call. And also specify the DATA
    615	 * length, since it's has not been specified in the LUT.
    616	 */
    617	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
    618		    base + QUADSPI_IPCR);
    619
    620	/* Wait for the interrupt. */
    621	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
    622		err = -ETIMEDOUT;
    623
    624	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
    625		fsl_qspi_read_rxfifo(q, op);
    626
    627	return err;
    628}
    629
    630static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
    631				    u32 mask, u32 delay_us, u32 timeout_us)
    632{
    633	u32 reg;
    634
    635	if (!q->devtype_data->little_endian)
    636		mask = (u32)cpu_to_be32(mask);
    637
    638	return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
    639				  timeout_us);
    640}
    641
    642static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
    643{
    644	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
    645	void __iomem *base = q->iobase;
    646	u32 addr_offset = 0;
    647	int err = 0;
    648	int invalid_mstrid = q->devtype_data->invalid_mstrid;
    649
    650	mutex_lock(&q->lock);
    651
    652	/* wait for the controller being ready */
    653	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
    654				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
    655
    656	fsl_qspi_select_mem(q, mem->spi);
    657
    658	if (needs_amba_base_offset(q))
    659		addr_offset = q->memmap_phy;
    660
    661	qspi_writel(q,
    662		    q->selected * q->devtype_data->ahb_buf_size + addr_offset,
    663		    base + QUADSPI_SFAR);
    664
    665	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
    666		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
    667		    base + QUADSPI_MCR);
    668
    669	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
    670		    base + QUADSPI_SPTRCLR);
    671
    672	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
    673	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
    674	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
    675
    676	fsl_qspi_prepare_lut(q, op);
    677
    678	/*
    679	 * If we have large chunks of data, we read them through the AHB bus
    680	 * by accessing the mapped memory. In all other cases we use
    681	 * IP commands to access the flash.
    682	 */
    683	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
    684	    op->data.dir == SPI_MEM_DATA_IN) {
    685		fsl_qspi_read_ahb(q, op);
    686	} else {
    687		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
    688			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
    689
    690		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
    691			fsl_qspi_fill_txfifo(q, op);
    692
    693		err = fsl_qspi_do_op(q, op);
    694	}
    695
    696	/* Invalidate the data in the AHB buffer. */
    697	fsl_qspi_invalidate(q);
    698
    699	mutex_unlock(&q->lock);
    700
    701	return err;
    702}
    703
    704static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
    705{
    706	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
    707
    708	if (op->data.dir == SPI_MEM_DATA_OUT) {
    709		if (op->data.nbytes > q->devtype_data->txfifo)
    710			op->data.nbytes = q->devtype_data->txfifo;
    711	} else {
    712		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
    713			op->data.nbytes = q->devtype_data->ahb_buf_size;
    714		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
    715			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
    716	}
    717
    718	return 0;
    719}
    720
    721static int fsl_qspi_default_setup(struct fsl_qspi *q)
    722{
    723	void __iomem *base = q->iobase;
    724	u32 reg, addr_offset = 0;
    725	int ret;
    726
    727	/* disable and unprepare clock to avoid glitch pass to controller */
    728	fsl_qspi_clk_disable_unprep(q);
    729
    730	/* the default frequency, we will change it later if necessary. */
    731	ret = clk_set_rate(q->clk, 66000000);
    732	if (ret)
    733		return ret;
    734
    735	ret = fsl_qspi_clk_prep_enable(q);
    736	if (ret)
    737		return ret;
    738
    739	/* Reset the module */
    740	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
    741		    base + QUADSPI_MCR);
    742	udelay(1);
    743
    744	/* Disable the module */
    745	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
    746		    base + QUADSPI_MCR);
    747
    748	/*
    749	 * Previous boot stages (BootROM, bootloader) might have used DDR
    750	 * mode and did not clear the TDH bits. As we currently use SDR mode
    751	 * only, clear the TDH bits if necessary.
    752	 */
    753	if (needs_tdh_setting(q))
    754		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
    755			    ~QUADSPI_FLSHCR_TDH_MASK,
    756			    base + QUADSPI_FLSHCR);
    757
    758	reg = qspi_readl(q, base + QUADSPI_SMPR);
    759	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
    760			| QUADSPI_SMPR_FSPHS_MASK
    761			| QUADSPI_SMPR_HSENA_MASK
    762			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
    763
    764	/* We only use the buffer3 for AHB read */
    765	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
    766	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
    767	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
    768
    769	qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
    770		    q->iobase + QUADSPI_BFGENCR);
    771	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
    772	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
    773		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
    774		    base + QUADSPI_BUF3CR);
    775
    776	if (needs_amba_base_offset(q))
    777		addr_offset = q->memmap_phy;
    778
    779	/*
    780	 * In HW there can be a maximum of four chips on two buses with
    781	 * two chip selects on each bus. We use four chip selects in SW
    782	 * to differentiate between the four chips.
    783	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
    784	 * SFB2AD accordingly.
    785	 */
    786	qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
    787		    base + QUADSPI_SFA1AD);
    788	qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
    789		    base + QUADSPI_SFA2AD);
    790	qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
    791		    base + QUADSPI_SFB1AD);
    792	qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
    793		    base + QUADSPI_SFB2AD);
    794
    795	q->selected = -1;
    796
    797	/* Enable the module */
    798	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
    799		    base + QUADSPI_MCR);
    800
    801	/* clear all interrupt status */
    802	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
    803
    804	/* enable the interrupt */
    805	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
    806
    807	return 0;
    808}
    809
    810static const char *fsl_qspi_get_name(struct spi_mem *mem)
    811{
    812	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
    813	struct device *dev = &mem->spi->dev;
    814	const char *name;
    815
    816	/*
    817	 * In order to keep mtdparts compatible with the old MTD driver at
    818	 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
    819	 * platform_device of the controller.
    820	 */
    821	if (of_get_available_child_count(q->dev->of_node) == 1)
    822		return dev_name(q->dev);
    823
    824	name = devm_kasprintf(dev, GFP_KERNEL,
    825			      "%s-%d", dev_name(q->dev),
    826			      mem->spi->chip_select);
    827
    828	if (!name) {
    829		dev_err(dev, "failed to get memory for custom flash name\n");
    830		return ERR_PTR(-ENOMEM);
    831	}
    832
    833	return name;
    834}
    835
    836static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
    837	.adjust_op_size = fsl_qspi_adjust_op_size,
    838	.supports_op = fsl_qspi_supports_op,
    839	.exec_op = fsl_qspi_exec_op,
    840	.get_name = fsl_qspi_get_name,
    841};
    842
    843static int fsl_qspi_probe(struct platform_device *pdev)
    844{
    845	struct spi_controller *ctlr;
    846	struct device *dev = &pdev->dev;
    847	struct device_node *np = dev->of_node;
    848	struct resource *res;
    849	struct fsl_qspi *q;
    850	int ret;
    851
    852	ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
    853	if (!ctlr)
    854		return -ENOMEM;
    855
    856	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
    857			  SPI_TX_DUAL | SPI_TX_QUAD;
    858
    859	q = spi_controller_get_devdata(ctlr);
    860	q->dev = dev;
    861	q->devtype_data = of_device_get_match_data(dev);
    862	if (!q->devtype_data) {
    863		ret = -ENODEV;
    864		goto err_put_ctrl;
    865	}
    866
    867	platform_set_drvdata(pdev, q);
    868
    869	/* find the resources */
    870	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
    871	q->iobase = devm_ioremap_resource(dev, res);
    872	if (IS_ERR(q->iobase)) {
    873		ret = PTR_ERR(q->iobase);
    874		goto err_put_ctrl;
    875	}
    876
    877	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
    878					"QuadSPI-memory");
    879	if (!res) {
    880		ret = -EINVAL;
    881		goto err_put_ctrl;
    882	}
    883	q->memmap_phy = res->start;
    884	/* Since there are 4 cs, map size required is 4 times ahb_buf_size */
    885	q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
    886				   (q->devtype_data->ahb_buf_size * 4));
    887	if (!q->ahb_addr) {
    888		ret = -ENOMEM;
    889		goto err_put_ctrl;
    890	}
    891
    892	/* find the clocks */
    893	q->clk_en = devm_clk_get(dev, "qspi_en");
    894	if (IS_ERR(q->clk_en)) {
    895		ret = PTR_ERR(q->clk_en);
    896		goto err_put_ctrl;
    897	}
    898
    899	q->clk = devm_clk_get(dev, "qspi");
    900	if (IS_ERR(q->clk)) {
    901		ret = PTR_ERR(q->clk);
    902		goto err_put_ctrl;
    903	}
    904
    905	ret = fsl_qspi_clk_prep_enable(q);
    906	if (ret) {
    907		dev_err(dev, "can not enable the clock\n");
    908		goto err_put_ctrl;
    909	}
    910
    911	/* find the irq */
    912	ret = platform_get_irq(pdev, 0);
    913	if (ret < 0)
    914		goto err_disable_clk;
    915
    916	ret = devm_request_irq(dev, ret,
    917			fsl_qspi_irq_handler, 0, pdev->name, q);
    918	if (ret) {
    919		dev_err(dev, "failed to request irq: %d\n", ret);
    920		goto err_disable_clk;
    921	}
    922
    923	mutex_init(&q->lock);
    924
    925	ctlr->bus_num = -1;
    926	ctlr->num_chipselect = 4;
    927	ctlr->mem_ops = &fsl_qspi_mem_ops;
    928
    929	fsl_qspi_default_setup(q);
    930
    931	ctlr->dev.of_node = np;
    932
    933	ret = devm_spi_register_controller(dev, ctlr);
    934	if (ret)
    935		goto err_destroy_mutex;
    936
    937	return 0;
    938
    939err_destroy_mutex:
    940	mutex_destroy(&q->lock);
    941
    942err_disable_clk:
    943	fsl_qspi_clk_disable_unprep(q);
    944
    945err_put_ctrl:
    946	spi_controller_put(ctlr);
    947
    948	dev_err(dev, "Freescale QuadSPI probe failed\n");
    949	return ret;
    950}
    951
    952static int fsl_qspi_remove(struct platform_device *pdev)
    953{
    954	struct fsl_qspi *q = platform_get_drvdata(pdev);
    955
    956	/* disable the hardware */
    957	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
    958	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
    959
    960	fsl_qspi_clk_disable_unprep(q);
    961
    962	mutex_destroy(&q->lock);
    963
    964	return 0;
    965}
    966
    967static int fsl_qspi_suspend(struct device *dev)
    968{
    969	return 0;
    970}
    971
    972static int fsl_qspi_resume(struct device *dev)
    973{
    974	struct fsl_qspi *q = dev_get_drvdata(dev);
    975
    976	fsl_qspi_default_setup(q);
    977
    978	return 0;
    979}
    980
    981static const struct of_device_id fsl_qspi_dt_ids[] = {
    982	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
    983	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
    984	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
    985	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
    986	{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
    987	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
    988	{ /* sentinel */ }
    989};
    990MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
    991
    992static const struct dev_pm_ops fsl_qspi_pm_ops = {
    993	.suspend	= fsl_qspi_suspend,
    994	.resume		= fsl_qspi_resume,
    995};
    996
    997static struct platform_driver fsl_qspi_driver = {
    998	.driver = {
    999		.name	= "fsl-quadspi",
   1000		.of_match_table = fsl_qspi_dt_ids,
   1001		.pm =   &fsl_qspi_pm_ops,
   1002	},
   1003	.probe          = fsl_qspi_probe,
   1004	.remove		= fsl_qspi_remove,
   1005};
   1006module_platform_driver(fsl_qspi_driver);
   1007
   1008MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
   1009MODULE_AUTHOR("Freescale Semiconductor Inc.");
   1010MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
   1011MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
   1012MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
   1013MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
   1014MODULE_LICENSE("GPL v2");