spi-mt65xx.c (37736B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Leilk Liu <leilk.liu@mediatek.com> 5 */ 6 7#include <linux/clk.h> 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/interrupt.h> 11#include <linux/io.h> 12#include <linux/ioport.h> 13#include <linux/module.h> 14#include <linux/of.h> 15#include <linux/gpio/consumer.h> 16#include <linux/platform_device.h> 17#include <linux/platform_data/spi-mt65xx.h> 18#include <linux/pm_runtime.h> 19#include <linux/spi/spi.h> 20#include <linux/spi/spi-mem.h> 21#include <linux/dma-mapping.h> 22 23#define SPI_CFG0_REG 0x0000 24#define SPI_CFG1_REG 0x0004 25#define SPI_TX_SRC_REG 0x0008 26#define SPI_RX_DST_REG 0x000c 27#define SPI_TX_DATA_REG 0x0010 28#define SPI_RX_DATA_REG 0x0014 29#define SPI_CMD_REG 0x0018 30#define SPI_STATUS0_REG 0x001c 31#define SPI_PAD_SEL_REG 0x0024 32#define SPI_CFG2_REG 0x0028 33#define SPI_TX_SRC_REG_64 0x002c 34#define SPI_RX_DST_REG_64 0x0030 35#define SPI_CFG3_IPM_REG 0x0040 36 37#define SPI_CFG0_SCK_HIGH_OFFSET 0 38#define SPI_CFG0_SCK_LOW_OFFSET 8 39#define SPI_CFG0_CS_HOLD_OFFSET 16 40#define SPI_CFG0_CS_SETUP_OFFSET 24 41#define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0 42#define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16 43 44#define SPI_CFG1_CS_IDLE_OFFSET 0 45#define SPI_CFG1_PACKET_LOOP_OFFSET 8 46#define SPI_CFG1_PACKET_LENGTH_OFFSET 16 47#define SPI_CFG1_GET_TICK_DLY_OFFSET 29 48#define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30 49 50#define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000 51#define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000 52 53#define SPI_CFG1_CS_IDLE_MASK 0xff 54#define SPI_CFG1_PACKET_LOOP_MASK 0xff00 55#define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000 56#define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16) 57#define SPI_CFG2_SCK_HIGH_OFFSET 0 58#define SPI_CFG2_SCK_LOW_OFFSET 16 59 60#define SPI_CMD_ACT BIT(0) 61#define SPI_CMD_RESUME BIT(1) 62#define SPI_CMD_RST BIT(2) 63#define SPI_CMD_PAUSE_EN BIT(4) 64#define SPI_CMD_DEASSERT BIT(5) 65#define SPI_CMD_SAMPLE_SEL BIT(6) 66#define SPI_CMD_CS_POL BIT(7) 67#define SPI_CMD_CPHA BIT(8) 68#define SPI_CMD_CPOL BIT(9) 69#define SPI_CMD_RX_DMA BIT(10) 70#define SPI_CMD_TX_DMA BIT(11) 71#define SPI_CMD_TXMSBF BIT(12) 72#define SPI_CMD_RXMSBF BIT(13) 73#define SPI_CMD_RX_ENDIAN BIT(14) 74#define SPI_CMD_TX_ENDIAN BIT(15) 75#define SPI_CMD_FINISH_IE BIT(16) 76#define SPI_CMD_PAUSE_IE BIT(17) 77#define SPI_CMD_IPM_NONIDLE_MODE BIT(19) 78#define SPI_CMD_IPM_SPIM_LOOP BIT(21) 79#define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22 80 81#define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22) 82 83#define PIN_MODE_CFG(x) ((x) / 2) 84 85#define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2) 86#define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3) 87#define SPI_CFG3_IPM_XMODE_EN BIT(4) 88#define SPI_CFG3_IPM_NODATA_FLAG BIT(5) 89#define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8 90#define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12 91 92#define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0) 93#define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8) 94#define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12) 95 96#define MT8173_SPI_MAX_PAD_SEL 3 97 98#define MTK_SPI_PAUSE_INT_STATUS 0x2 99 100#define MTK_SPI_MAX_FIFO_SIZE 32U 101#define MTK_SPI_PACKET_SIZE 1024 102#define MTK_SPI_IPM_PACKET_SIZE SZ_64K 103#define MTK_SPI_IPM_PACKET_LOOP SZ_256 104 105#define MTK_SPI_IDLE 0 106#define MTK_SPI_PAUSED 1 107 108#define MTK_SPI_32BITS_MASK (0xffffffff) 109 110#define DMA_ADDR_EXT_BITS (36) 111#define DMA_ADDR_DEF_BITS (32) 112 113/** 114 * struct mtk_spi_compatible - device data structure 115 * @need_pad_sel: Enable pad (pins) selection in SPI controller 116 * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer 117 * @enhance_timing: Enable adjusting cfg register to enhance time accuracy 118 * @dma_ext: DMA address extension supported 119 * @no_need_unprepare: Don't unprepare the SPI clk during runtime 120 * @ipm_design: Adjust/extend registers to support IPM design IP features 121 */ 122struct mtk_spi_compatible { 123 bool need_pad_sel; 124 bool must_tx; 125 bool enhance_timing; 126 bool dma_ext; 127 bool no_need_unprepare; 128 bool ipm_design; 129}; 130 131/** 132 * struct mtk_spi - SPI driver instance 133 * @base: Start address of the SPI controller registers 134 * @state: SPI controller state 135 * @pad_num: Number of pad_sel entries 136 * @pad_sel: Groups of pins to select 137 * @parent_clk: Parent of sel_clk 138 * @sel_clk: SPI master mux clock 139 * @spi_clk: Peripheral clock 140 * @spi_hclk: AHB bus clock 141 * @cur_transfer: Currently processed SPI transfer 142 * @xfer_len: Number of bytes to transfer 143 * @num_xfered: Number of transferred bytes 144 * @tx_sgl: TX transfer scatterlist 145 * @rx_sgl: RX transfer scatterlist 146 * @tx_sgl_len: Size of TX DMA transfer 147 * @rx_sgl_len: Size of RX DMA transfer 148 * @dev_comp: Device data structure 149 * @spi_clk_hz: Current SPI clock in Hz 150 * @spimem_done: SPI-MEM operation completion 151 * @use_spimem: Enables SPI-MEM 152 * @dev: Device pointer 153 * @tx_dma: DMA start for SPI-MEM TX 154 * @rx_dma: DMA start for SPI-MEM RX 155 */ 156struct mtk_spi { 157 void __iomem *base; 158 u32 state; 159 int pad_num; 160 u32 *pad_sel; 161 struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk; 162 struct spi_transfer *cur_transfer; 163 u32 xfer_len; 164 u32 num_xfered; 165 struct scatterlist *tx_sgl, *rx_sgl; 166 u32 tx_sgl_len, rx_sgl_len; 167 const struct mtk_spi_compatible *dev_comp; 168 u32 spi_clk_hz; 169 struct completion spimem_done; 170 bool use_spimem; 171 struct device *dev; 172 dma_addr_t tx_dma; 173 dma_addr_t rx_dma; 174}; 175 176static const struct mtk_spi_compatible mtk_common_compat; 177 178static const struct mtk_spi_compatible mt2712_compat = { 179 .must_tx = true, 180}; 181 182static const struct mtk_spi_compatible mtk_ipm_compat = { 183 .enhance_timing = true, 184 .dma_ext = true, 185 .ipm_design = true, 186}; 187 188static const struct mtk_spi_compatible mt6765_compat = { 189 .need_pad_sel = true, 190 .must_tx = true, 191 .enhance_timing = true, 192 .dma_ext = true, 193}; 194 195static const struct mtk_spi_compatible mt7622_compat = { 196 .must_tx = true, 197 .enhance_timing = true, 198}; 199 200static const struct mtk_spi_compatible mt8173_compat = { 201 .need_pad_sel = true, 202 .must_tx = true, 203}; 204 205static const struct mtk_spi_compatible mt8183_compat = { 206 .need_pad_sel = true, 207 .must_tx = true, 208 .enhance_timing = true, 209}; 210 211static const struct mtk_spi_compatible mt6893_compat = { 212 .need_pad_sel = true, 213 .must_tx = true, 214 .enhance_timing = true, 215 .dma_ext = true, 216 .no_need_unprepare = true, 217}; 218 219/* 220 * A piece of default chip info unless the platform 221 * supplies it. 222 */ 223static const struct mtk_chip_config mtk_default_chip_info = { 224 .sample_sel = 0, 225 .tick_delay = 0, 226}; 227 228static const struct of_device_id mtk_spi_of_match[] = { 229 { .compatible = "mediatek,spi-ipm", 230 .data = (void *)&mtk_ipm_compat, 231 }, 232 { .compatible = "mediatek,mt2701-spi", 233 .data = (void *)&mtk_common_compat, 234 }, 235 { .compatible = "mediatek,mt2712-spi", 236 .data = (void *)&mt2712_compat, 237 }, 238 { .compatible = "mediatek,mt6589-spi", 239 .data = (void *)&mtk_common_compat, 240 }, 241 { .compatible = "mediatek,mt6765-spi", 242 .data = (void *)&mt6765_compat, 243 }, 244 { .compatible = "mediatek,mt7622-spi", 245 .data = (void *)&mt7622_compat, 246 }, 247 { .compatible = "mediatek,mt7629-spi", 248 .data = (void *)&mt7622_compat, 249 }, 250 { .compatible = "mediatek,mt8135-spi", 251 .data = (void *)&mtk_common_compat, 252 }, 253 { .compatible = "mediatek,mt8173-spi", 254 .data = (void *)&mt8173_compat, 255 }, 256 { .compatible = "mediatek,mt8183-spi", 257 .data = (void *)&mt8183_compat, 258 }, 259 { .compatible = "mediatek,mt8192-spi", 260 .data = (void *)&mt6765_compat, 261 }, 262 { .compatible = "mediatek,mt6893-spi", 263 .data = (void *)&mt6893_compat, 264 }, 265 {} 266}; 267MODULE_DEVICE_TABLE(of, mtk_spi_of_match); 268 269static void mtk_spi_reset(struct mtk_spi *mdata) 270{ 271 u32 reg_val; 272 273 /* set the software reset bit in SPI_CMD_REG. */ 274 reg_val = readl(mdata->base + SPI_CMD_REG); 275 reg_val |= SPI_CMD_RST; 276 writel(reg_val, mdata->base + SPI_CMD_REG); 277 278 reg_val = readl(mdata->base + SPI_CMD_REG); 279 reg_val &= ~SPI_CMD_RST; 280 writel(reg_val, mdata->base + SPI_CMD_REG); 281} 282 283static int mtk_spi_set_hw_cs_timing(struct spi_device *spi) 284{ 285 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 286 struct spi_delay *cs_setup = &spi->cs_setup; 287 struct spi_delay *cs_hold = &spi->cs_hold; 288 struct spi_delay *cs_inactive = &spi->cs_inactive; 289 u32 setup, hold, inactive; 290 u32 reg_val; 291 int delay; 292 293 delay = spi_delay_to_ns(cs_setup, NULL); 294 if (delay < 0) 295 return delay; 296 setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 297 298 delay = spi_delay_to_ns(cs_hold, NULL); 299 if (delay < 0) 300 return delay; 301 hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 302 303 delay = spi_delay_to_ns(cs_inactive, NULL); 304 if (delay < 0) 305 return delay; 306 inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 307 308 if (hold || setup) { 309 reg_val = readl(mdata->base + SPI_CFG0_REG); 310 if (mdata->dev_comp->enhance_timing) { 311 if (hold) { 312 hold = min_t(u32, hold, 0x10000); 313 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 314 reg_val |= (((hold - 1) & 0xffff) 315 << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 316 } 317 if (setup) { 318 setup = min_t(u32, setup, 0x10000); 319 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 320 reg_val |= (((setup - 1) & 0xffff) 321 << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 322 } 323 } else { 324 if (hold) { 325 hold = min_t(u32, hold, 0x100); 326 reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET); 327 reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET); 328 } 329 if (setup) { 330 setup = min_t(u32, setup, 0x100); 331 reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET); 332 reg_val |= (((setup - 1) & 0xff) 333 << SPI_CFG0_CS_SETUP_OFFSET); 334 } 335 } 336 writel(reg_val, mdata->base + SPI_CFG0_REG); 337 } 338 339 if (inactive) { 340 inactive = min_t(u32, inactive, 0x100); 341 reg_val = readl(mdata->base + SPI_CFG1_REG); 342 reg_val &= ~SPI_CFG1_CS_IDLE_MASK; 343 reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET); 344 writel(reg_val, mdata->base + SPI_CFG1_REG); 345 } 346 347 return 0; 348} 349 350static int mtk_spi_hw_init(struct spi_master *master, 351 struct spi_device *spi) 352{ 353 u16 cpha, cpol; 354 u32 reg_val; 355 struct mtk_chip_config *chip_config = spi->controller_data; 356 struct mtk_spi *mdata = spi_master_get_devdata(master); 357 358 cpha = spi->mode & SPI_CPHA ? 1 : 0; 359 cpol = spi->mode & SPI_CPOL ? 1 : 0; 360 361 reg_val = readl(mdata->base + SPI_CMD_REG); 362 if (mdata->dev_comp->ipm_design) { 363 /* SPI transfer without idle time until packet length done */ 364 reg_val |= SPI_CMD_IPM_NONIDLE_MODE; 365 if (spi->mode & SPI_LOOP) 366 reg_val |= SPI_CMD_IPM_SPIM_LOOP; 367 else 368 reg_val &= ~SPI_CMD_IPM_SPIM_LOOP; 369 } 370 371 if (cpha) 372 reg_val |= SPI_CMD_CPHA; 373 else 374 reg_val &= ~SPI_CMD_CPHA; 375 if (cpol) 376 reg_val |= SPI_CMD_CPOL; 377 else 378 reg_val &= ~SPI_CMD_CPOL; 379 380 /* set the mlsbx and mlsbtx */ 381 if (spi->mode & SPI_LSB_FIRST) { 382 reg_val &= ~SPI_CMD_TXMSBF; 383 reg_val &= ~SPI_CMD_RXMSBF; 384 } else { 385 reg_val |= SPI_CMD_TXMSBF; 386 reg_val |= SPI_CMD_RXMSBF; 387 } 388 389 /* set the tx/rx endian */ 390#ifdef __LITTLE_ENDIAN 391 reg_val &= ~SPI_CMD_TX_ENDIAN; 392 reg_val &= ~SPI_CMD_RX_ENDIAN; 393#else 394 reg_val |= SPI_CMD_TX_ENDIAN; 395 reg_val |= SPI_CMD_RX_ENDIAN; 396#endif 397 398 if (mdata->dev_comp->enhance_timing) { 399 /* set CS polarity */ 400 if (spi->mode & SPI_CS_HIGH) 401 reg_val |= SPI_CMD_CS_POL; 402 else 403 reg_val &= ~SPI_CMD_CS_POL; 404 405 if (chip_config->sample_sel) 406 reg_val |= SPI_CMD_SAMPLE_SEL; 407 else 408 reg_val &= ~SPI_CMD_SAMPLE_SEL; 409 } 410 411 /* set finish and pause interrupt always enable */ 412 reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE; 413 414 /* disable dma mode */ 415 reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA); 416 417 /* disable deassert mode */ 418 reg_val &= ~SPI_CMD_DEASSERT; 419 420 writel(reg_val, mdata->base + SPI_CMD_REG); 421 422 /* pad select */ 423 if (mdata->dev_comp->need_pad_sel) 424 writel(mdata->pad_sel[spi->chip_select], 425 mdata->base + SPI_PAD_SEL_REG); 426 427 /* tick delay */ 428 if (mdata->dev_comp->enhance_timing) { 429 if (mdata->dev_comp->ipm_design) { 430 reg_val = readl(mdata->base + SPI_CMD_REG); 431 reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK; 432 reg_val |= ((chip_config->tick_delay & 0x7) 433 << SPI_CMD_IPM_GET_TICKDLY_OFFSET); 434 writel(reg_val, mdata->base + SPI_CMD_REG); 435 } else { 436 reg_val = readl(mdata->base + SPI_CFG1_REG); 437 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK; 438 reg_val |= ((chip_config->tick_delay & 0x7) 439 << SPI_CFG1_GET_TICK_DLY_OFFSET); 440 writel(reg_val, mdata->base + SPI_CFG1_REG); 441 } 442 } else { 443 reg_val = readl(mdata->base + SPI_CFG1_REG); 444 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1; 445 reg_val |= ((chip_config->tick_delay & 0x3) 446 << SPI_CFG1_GET_TICK_DLY_OFFSET_V1); 447 writel(reg_val, mdata->base + SPI_CFG1_REG); 448 } 449 450 /* set hw cs timing */ 451 mtk_spi_set_hw_cs_timing(spi); 452 return 0; 453} 454 455static int mtk_spi_prepare_message(struct spi_master *master, 456 struct spi_message *msg) 457{ 458 return mtk_spi_hw_init(master, msg->spi); 459} 460 461static void mtk_spi_set_cs(struct spi_device *spi, bool enable) 462{ 463 u32 reg_val; 464 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 465 466 if (spi->mode & SPI_CS_HIGH) 467 enable = !enable; 468 469 reg_val = readl(mdata->base + SPI_CMD_REG); 470 if (!enable) { 471 reg_val |= SPI_CMD_PAUSE_EN; 472 writel(reg_val, mdata->base + SPI_CMD_REG); 473 } else { 474 reg_val &= ~SPI_CMD_PAUSE_EN; 475 writel(reg_val, mdata->base + SPI_CMD_REG); 476 mdata->state = MTK_SPI_IDLE; 477 mtk_spi_reset(mdata); 478 } 479} 480 481static void mtk_spi_prepare_transfer(struct spi_master *master, 482 u32 speed_hz) 483{ 484 u32 div, sck_time, reg_val; 485 struct mtk_spi *mdata = spi_master_get_devdata(master); 486 487 if (speed_hz < mdata->spi_clk_hz / 2) 488 div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz); 489 else 490 div = 1; 491 492 sck_time = (div + 1) / 2; 493 494 if (mdata->dev_comp->enhance_timing) { 495 reg_val = readl(mdata->base + SPI_CFG2_REG); 496 reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET); 497 reg_val |= (((sck_time - 1) & 0xffff) 498 << SPI_CFG2_SCK_HIGH_OFFSET); 499 reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET); 500 reg_val |= (((sck_time - 1) & 0xffff) 501 << SPI_CFG2_SCK_LOW_OFFSET); 502 writel(reg_val, mdata->base + SPI_CFG2_REG); 503 } else { 504 reg_val = readl(mdata->base + SPI_CFG0_REG); 505 reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET); 506 reg_val |= (((sck_time - 1) & 0xff) 507 << SPI_CFG0_SCK_HIGH_OFFSET); 508 reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET); 509 reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); 510 writel(reg_val, mdata->base + SPI_CFG0_REG); 511 } 512} 513 514static void mtk_spi_setup_packet(struct spi_master *master) 515{ 516 u32 packet_size, packet_loop, reg_val; 517 struct mtk_spi *mdata = spi_master_get_devdata(master); 518 519 if (mdata->dev_comp->ipm_design) 520 packet_size = min_t(u32, 521 mdata->xfer_len, 522 MTK_SPI_IPM_PACKET_SIZE); 523 else 524 packet_size = min_t(u32, 525 mdata->xfer_len, 526 MTK_SPI_PACKET_SIZE); 527 528 packet_loop = mdata->xfer_len / packet_size; 529 530 reg_val = readl(mdata->base + SPI_CFG1_REG); 531 if (mdata->dev_comp->ipm_design) 532 reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK; 533 else 534 reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK; 535 reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET; 536 reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK; 537 reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET; 538 writel(reg_val, mdata->base + SPI_CFG1_REG); 539} 540 541static void mtk_spi_enable_transfer(struct spi_master *master) 542{ 543 u32 cmd; 544 struct mtk_spi *mdata = spi_master_get_devdata(master); 545 546 cmd = readl(mdata->base + SPI_CMD_REG); 547 if (mdata->state == MTK_SPI_IDLE) 548 cmd |= SPI_CMD_ACT; 549 else 550 cmd |= SPI_CMD_RESUME; 551 writel(cmd, mdata->base + SPI_CMD_REG); 552} 553 554static int mtk_spi_get_mult_delta(u32 xfer_len) 555{ 556 u32 mult_delta; 557 558 if (xfer_len > MTK_SPI_PACKET_SIZE) 559 mult_delta = xfer_len % MTK_SPI_PACKET_SIZE; 560 else 561 mult_delta = 0; 562 563 return mult_delta; 564} 565 566static void mtk_spi_update_mdata_len(struct spi_master *master) 567{ 568 int mult_delta; 569 struct mtk_spi *mdata = spi_master_get_devdata(master); 570 571 if (mdata->tx_sgl_len && mdata->rx_sgl_len) { 572 if (mdata->tx_sgl_len > mdata->rx_sgl_len) { 573 mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len); 574 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 575 mdata->rx_sgl_len = mult_delta; 576 mdata->tx_sgl_len -= mdata->xfer_len; 577 } else { 578 mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len); 579 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 580 mdata->tx_sgl_len = mult_delta; 581 mdata->rx_sgl_len -= mdata->xfer_len; 582 } 583 } else if (mdata->tx_sgl_len) { 584 mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len); 585 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 586 mdata->tx_sgl_len = mult_delta; 587 } else if (mdata->rx_sgl_len) { 588 mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len); 589 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 590 mdata->rx_sgl_len = mult_delta; 591 } 592} 593 594static void mtk_spi_setup_dma_addr(struct spi_master *master, 595 struct spi_transfer *xfer) 596{ 597 struct mtk_spi *mdata = spi_master_get_devdata(master); 598 599 if (mdata->tx_sgl) { 600 writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK), 601 mdata->base + SPI_TX_SRC_REG); 602#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 603 if (mdata->dev_comp->dma_ext) 604 writel((u32)(xfer->tx_dma >> 32), 605 mdata->base + SPI_TX_SRC_REG_64); 606#endif 607 } 608 609 if (mdata->rx_sgl) { 610 writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK), 611 mdata->base + SPI_RX_DST_REG); 612#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 613 if (mdata->dev_comp->dma_ext) 614 writel((u32)(xfer->rx_dma >> 32), 615 mdata->base + SPI_RX_DST_REG_64); 616#endif 617 } 618} 619 620static int mtk_spi_fifo_transfer(struct spi_master *master, 621 struct spi_device *spi, 622 struct spi_transfer *xfer) 623{ 624 int cnt, remainder; 625 u32 reg_val; 626 struct mtk_spi *mdata = spi_master_get_devdata(master); 627 628 mdata->cur_transfer = xfer; 629 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len); 630 mdata->num_xfered = 0; 631 mtk_spi_prepare_transfer(master, xfer->speed_hz); 632 mtk_spi_setup_packet(master); 633 634 if (xfer->tx_buf) { 635 cnt = xfer->len / 4; 636 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt); 637 remainder = xfer->len % 4; 638 if (remainder > 0) { 639 reg_val = 0; 640 memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder); 641 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 642 } 643 } 644 645 mtk_spi_enable_transfer(master); 646 647 return 1; 648} 649 650static int mtk_spi_dma_transfer(struct spi_master *master, 651 struct spi_device *spi, 652 struct spi_transfer *xfer) 653{ 654 int cmd; 655 struct mtk_spi *mdata = spi_master_get_devdata(master); 656 657 mdata->tx_sgl = NULL; 658 mdata->rx_sgl = NULL; 659 mdata->tx_sgl_len = 0; 660 mdata->rx_sgl_len = 0; 661 mdata->cur_transfer = xfer; 662 mdata->num_xfered = 0; 663 664 mtk_spi_prepare_transfer(master, xfer->speed_hz); 665 666 cmd = readl(mdata->base + SPI_CMD_REG); 667 if (xfer->tx_buf) 668 cmd |= SPI_CMD_TX_DMA; 669 if (xfer->rx_buf) 670 cmd |= SPI_CMD_RX_DMA; 671 writel(cmd, mdata->base + SPI_CMD_REG); 672 673 if (xfer->tx_buf) 674 mdata->tx_sgl = xfer->tx_sg.sgl; 675 if (xfer->rx_buf) 676 mdata->rx_sgl = xfer->rx_sg.sgl; 677 678 if (mdata->tx_sgl) { 679 xfer->tx_dma = sg_dma_address(mdata->tx_sgl); 680 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 681 } 682 if (mdata->rx_sgl) { 683 xfer->rx_dma = sg_dma_address(mdata->rx_sgl); 684 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 685 } 686 687 mtk_spi_update_mdata_len(master); 688 mtk_spi_setup_packet(master); 689 mtk_spi_setup_dma_addr(master, xfer); 690 mtk_spi_enable_transfer(master); 691 692 return 1; 693} 694 695static int mtk_spi_transfer_one(struct spi_master *master, 696 struct spi_device *spi, 697 struct spi_transfer *xfer) 698{ 699 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 700 u32 reg_val = 0; 701 702 /* prepare xfer direction and duplex mode */ 703 if (mdata->dev_comp->ipm_design) { 704 if (!xfer->tx_buf || !xfer->rx_buf) { 705 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 706 if (xfer->rx_buf) 707 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 708 } 709 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 710 } 711 712 if (master->can_dma(master, spi, xfer)) 713 return mtk_spi_dma_transfer(master, spi, xfer); 714 else 715 return mtk_spi_fifo_transfer(master, spi, xfer); 716} 717 718static bool mtk_spi_can_dma(struct spi_master *master, 719 struct spi_device *spi, 720 struct spi_transfer *xfer) 721{ 722 /* Buffers for DMA transactions must be 4-byte aligned */ 723 return (xfer->len > MTK_SPI_MAX_FIFO_SIZE && 724 (unsigned long)xfer->tx_buf % 4 == 0 && 725 (unsigned long)xfer->rx_buf % 4 == 0); 726} 727 728static int mtk_spi_setup(struct spi_device *spi) 729{ 730 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 731 732 if (!spi->controller_data) 733 spi->controller_data = (void *)&mtk_default_chip_info; 734 735 if (mdata->dev_comp->need_pad_sel && spi->cs_gpiod) 736 /* CS de-asserted, gpiolib will handle inversion */ 737 gpiod_direction_output(spi->cs_gpiod, 0); 738 739 return 0; 740} 741 742static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) 743{ 744 u32 cmd, reg_val, cnt, remainder, len; 745 struct spi_master *master = dev_id; 746 struct mtk_spi *mdata = spi_master_get_devdata(master); 747 struct spi_transfer *trans = mdata->cur_transfer; 748 749 reg_val = readl(mdata->base + SPI_STATUS0_REG); 750 if (reg_val & MTK_SPI_PAUSE_INT_STATUS) 751 mdata->state = MTK_SPI_PAUSED; 752 else 753 mdata->state = MTK_SPI_IDLE; 754 755 /* SPI-MEM ops */ 756 if (mdata->use_spimem) { 757 complete(&mdata->spimem_done); 758 return IRQ_HANDLED; 759 } 760 761 if (!master->can_dma(master, NULL, trans)) { 762 if (trans->rx_buf) { 763 cnt = mdata->xfer_len / 4; 764 ioread32_rep(mdata->base + SPI_RX_DATA_REG, 765 trans->rx_buf + mdata->num_xfered, cnt); 766 remainder = mdata->xfer_len % 4; 767 if (remainder > 0) { 768 reg_val = readl(mdata->base + SPI_RX_DATA_REG); 769 memcpy(trans->rx_buf + 770 mdata->num_xfered + 771 (cnt * 4), 772 ®_val, 773 remainder); 774 } 775 } 776 777 mdata->num_xfered += mdata->xfer_len; 778 if (mdata->num_xfered == trans->len) { 779 spi_finalize_current_transfer(master); 780 return IRQ_HANDLED; 781 } 782 783 len = trans->len - mdata->num_xfered; 784 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len); 785 mtk_spi_setup_packet(master); 786 787 cnt = mdata->xfer_len / 4; 788 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, 789 trans->tx_buf + mdata->num_xfered, cnt); 790 791 remainder = mdata->xfer_len % 4; 792 if (remainder > 0) { 793 reg_val = 0; 794 memcpy(®_val, 795 trans->tx_buf + (cnt * 4) + mdata->num_xfered, 796 remainder); 797 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 798 } 799 800 mtk_spi_enable_transfer(master); 801 802 return IRQ_HANDLED; 803 } 804 805 if (mdata->tx_sgl) 806 trans->tx_dma += mdata->xfer_len; 807 if (mdata->rx_sgl) 808 trans->rx_dma += mdata->xfer_len; 809 810 if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) { 811 mdata->tx_sgl = sg_next(mdata->tx_sgl); 812 if (mdata->tx_sgl) { 813 trans->tx_dma = sg_dma_address(mdata->tx_sgl); 814 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 815 } 816 } 817 if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) { 818 mdata->rx_sgl = sg_next(mdata->rx_sgl); 819 if (mdata->rx_sgl) { 820 trans->rx_dma = sg_dma_address(mdata->rx_sgl); 821 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 822 } 823 } 824 825 if (!mdata->tx_sgl && !mdata->rx_sgl) { 826 /* spi disable dma */ 827 cmd = readl(mdata->base + SPI_CMD_REG); 828 cmd &= ~SPI_CMD_TX_DMA; 829 cmd &= ~SPI_CMD_RX_DMA; 830 writel(cmd, mdata->base + SPI_CMD_REG); 831 832 spi_finalize_current_transfer(master); 833 return IRQ_HANDLED; 834 } 835 836 mtk_spi_update_mdata_len(master); 837 mtk_spi_setup_packet(master); 838 mtk_spi_setup_dma_addr(master, trans); 839 mtk_spi_enable_transfer(master); 840 841 return IRQ_HANDLED; 842} 843 844static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem, 845 struct spi_mem_op *op) 846{ 847 int opcode_len; 848 849 if (op->data.dir != SPI_MEM_NO_DATA) { 850 opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes; 851 if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 852 op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len; 853 /* force data buffer dma-aligned. */ 854 op->data.nbytes -= op->data.nbytes % 4; 855 } 856 } 857 858 return 0; 859} 860 861static bool mtk_spi_mem_supports_op(struct spi_mem *mem, 862 const struct spi_mem_op *op) 863{ 864 if (!spi_mem_default_supports_op(mem, op)) 865 return false; 866 867 if (op->addr.nbytes && op->dummy.nbytes && 868 op->addr.buswidth != op->dummy.buswidth) 869 return false; 870 871 if (op->addr.nbytes + op->dummy.nbytes > 16) 872 return false; 873 874 if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 875 if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE > 876 MTK_SPI_IPM_PACKET_LOOP || 877 op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0) 878 return false; 879 } 880 881 return true; 882} 883 884static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master, 885 const struct spi_mem_op *op) 886{ 887 struct mtk_spi *mdata = spi_master_get_devdata(master); 888 889 writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK), 890 mdata->base + SPI_TX_SRC_REG); 891#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 892 if (mdata->dev_comp->dma_ext) 893 writel((u32)(mdata->tx_dma >> 32), 894 mdata->base + SPI_TX_SRC_REG_64); 895#endif 896 897 if (op->data.dir == SPI_MEM_DATA_IN) { 898 writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK), 899 mdata->base + SPI_RX_DST_REG); 900#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 901 if (mdata->dev_comp->dma_ext) 902 writel((u32)(mdata->rx_dma >> 32), 903 mdata->base + SPI_RX_DST_REG_64); 904#endif 905 } 906} 907 908static int mtk_spi_transfer_wait(struct spi_mem *mem, 909 const struct spi_mem_op *op) 910{ 911 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); 912 /* 913 * For each byte we wait for 8 cycles of the SPI clock. 914 * Since speed is defined in Hz and we want milliseconds, 915 * so it should be 8 * 1000. 916 */ 917 u64 ms = 8000LL; 918 919 if (op->data.dir == SPI_MEM_NO_DATA) 920 ms *= 32; /* prevent we may get 0 for short transfers. */ 921 else 922 ms *= op->data.nbytes; 923 ms = div_u64(ms, mem->spi->max_speed_hz); 924 ms += ms + 1000; /* 1s tolerance */ 925 926 if (ms > UINT_MAX) 927 ms = UINT_MAX; 928 929 if (!wait_for_completion_timeout(&mdata->spimem_done, 930 msecs_to_jiffies(ms))) { 931 dev_err(mdata->dev, "spi-mem transfer timeout\n"); 932 return -ETIMEDOUT; 933 } 934 935 return 0; 936} 937 938static int mtk_spi_mem_exec_op(struct spi_mem *mem, 939 const struct spi_mem_op *op) 940{ 941 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); 942 u32 reg_val, nio, tx_size; 943 char *tx_tmp_buf, *rx_tmp_buf; 944 int ret = 0; 945 946 mdata->use_spimem = true; 947 reinit_completion(&mdata->spimem_done); 948 949 mtk_spi_reset(mdata); 950 mtk_spi_hw_init(mem->spi->master, mem->spi); 951 mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz); 952 953 reg_val = readl(mdata->base + SPI_CFG3_IPM_REG); 954 /* opcode byte len */ 955 reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK; 956 reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET; 957 958 /* addr & dummy byte len */ 959 reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK; 960 if (op->addr.nbytes || op->dummy.nbytes) 961 reg_val |= (op->addr.nbytes + op->dummy.nbytes) << 962 SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET; 963 964 /* data byte len */ 965 if (op->data.dir == SPI_MEM_NO_DATA) { 966 reg_val |= SPI_CFG3_IPM_NODATA_FLAG; 967 writel(0, mdata->base + SPI_CFG1_REG); 968 } else { 969 reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG; 970 mdata->xfer_len = op->data.nbytes; 971 mtk_spi_setup_packet(mem->spi->master); 972 } 973 974 if (op->addr.nbytes || op->dummy.nbytes) { 975 if (op->addr.buswidth == 1 || op->dummy.buswidth == 1) 976 reg_val |= SPI_CFG3_IPM_XMODE_EN; 977 else 978 reg_val &= ~SPI_CFG3_IPM_XMODE_EN; 979 } 980 981 if (op->addr.buswidth == 2 || 982 op->dummy.buswidth == 2 || 983 op->data.buswidth == 2) 984 nio = 2; 985 else if (op->addr.buswidth == 4 || 986 op->dummy.buswidth == 4 || 987 op->data.buswidth == 4) 988 nio = 4; 989 else 990 nio = 1; 991 992 reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK; 993 reg_val |= PIN_MODE_CFG(nio); 994 995 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 996 if (op->data.dir == SPI_MEM_DATA_IN) 997 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 998 else 999 reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR; 1000 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 1001 1002 tx_size = 1 + op->addr.nbytes + op->dummy.nbytes; 1003 if (op->data.dir == SPI_MEM_DATA_OUT) 1004 tx_size += op->data.nbytes; 1005 1006 tx_size = max_t(u32, tx_size, 32); 1007 1008 tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA); 1009 if (!tx_tmp_buf) { 1010 mdata->use_spimem = false; 1011 return -ENOMEM; 1012 } 1013 1014 tx_tmp_buf[0] = op->cmd.opcode; 1015 1016 if (op->addr.nbytes) { 1017 int i; 1018 1019 for (i = 0; i < op->addr.nbytes; i++) 1020 tx_tmp_buf[i + 1] = op->addr.val >> 1021 (8 * (op->addr.nbytes - i - 1)); 1022 } 1023 1024 if (op->dummy.nbytes) 1025 memset(tx_tmp_buf + op->addr.nbytes + 1, 1026 0xff, 1027 op->dummy.nbytes); 1028 1029 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 1030 memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1, 1031 op->data.buf.out, 1032 op->data.nbytes); 1033 1034 mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf, 1035 tx_size, DMA_TO_DEVICE); 1036 if (dma_mapping_error(mdata->dev, mdata->tx_dma)) { 1037 ret = -ENOMEM; 1038 goto err_exit; 1039 } 1040 1041 if (op->data.dir == SPI_MEM_DATA_IN) { 1042 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) { 1043 rx_tmp_buf = kzalloc(op->data.nbytes, 1044 GFP_KERNEL | GFP_DMA); 1045 if (!rx_tmp_buf) { 1046 ret = -ENOMEM; 1047 goto unmap_tx_dma; 1048 } 1049 } else { 1050 rx_tmp_buf = op->data.buf.in; 1051 } 1052 1053 mdata->rx_dma = dma_map_single(mdata->dev, 1054 rx_tmp_buf, 1055 op->data.nbytes, 1056 DMA_FROM_DEVICE); 1057 if (dma_mapping_error(mdata->dev, mdata->rx_dma)) { 1058 ret = -ENOMEM; 1059 goto kfree_rx_tmp_buf; 1060 } 1061 } 1062 1063 reg_val = readl(mdata->base + SPI_CMD_REG); 1064 reg_val |= SPI_CMD_TX_DMA; 1065 if (op->data.dir == SPI_MEM_DATA_IN) 1066 reg_val |= SPI_CMD_RX_DMA; 1067 writel(reg_val, mdata->base + SPI_CMD_REG); 1068 1069 mtk_spi_mem_setup_dma_xfer(mem->spi->master, op); 1070 1071 mtk_spi_enable_transfer(mem->spi->master); 1072 1073 /* Wait for the interrupt. */ 1074 ret = mtk_spi_transfer_wait(mem, op); 1075 if (ret) 1076 goto unmap_rx_dma; 1077 1078 /* spi disable dma */ 1079 reg_val = readl(mdata->base + SPI_CMD_REG); 1080 reg_val &= ~SPI_CMD_TX_DMA; 1081 if (op->data.dir == SPI_MEM_DATA_IN) 1082 reg_val &= ~SPI_CMD_RX_DMA; 1083 writel(reg_val, mdata->base + SPI_CMD_REG); 1084 1085unmap_rx_dma: 1086 if (op->data.dir == SPI_MEM_DATA_IN) { 1087 dma_unmap_single(mdata->dev, mdata->rx_dma, 1088 op->data.nbytes, DMA_FROM_DEVICE); 1089 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) 1090 memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes); 1091 } 1092kfree_rx_tmp_buf: 1093 if (op->data.dir == SPI_MEM_DATA_IN && 1094 !IS_ALIGNED((size_t)op->data.buf.in, 4)) 1095 kfree(rx_tmp_buf); 1096unmap_tx_dma: 1097 dma_unmap_single(mdata->dev, mdata->tx_dma, 1098 tx_size, DMA_TO_DEVICE); 1099err_exit: 1100 kfree(tx_tmp_buf); 1101 mdata->use_spimem = false; 1102 1103 return ret; 1104} 1105 1106static const struct spi_controller_mem_ops mtk_spi_mem_ops = { 1107 .adjust_op_size = mtk_spi_mem_adjust_op_size, 1108 .supports_op = mtk_spi_mem_supports_op, 1109 .exec_op = mtk_spi_mem_exec_op, 1110}; 1111 1112static int mtk_spi_probe(struct platform_device *pdev) 1113{ 1114 struct device *dev = &pdev->dev; 1115 struct spi_master *master; 1116 struct mtk_spi *mdata; 1117 int i, irq, ret, addr_bits; 1118 1119 master = devm_spi_alloc_master(dev, sizeof(*mdata)); 1120 if (!master) 1121 return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n"); 1122 1123 master->auto_runtime_pm = true; 1124 master->dev.of_node = dev->of_node; 1125 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1126 1127 master->set_cs = mtk_spi_set_cs; 1128 master->prepare_message = mtk_spi_prepare_message; 1129 master->transfer_one = mtk_spi_transfer_one; 1130 master->can_dma = mtk_spi_can_dma; 1131 master->setup = mtk_spi_setup; 1132 master->set_cs_timing = mtk_spi_set_hw_cs_timing; 1133 master->use_gpio_descriptors = true; 1134 1135 mdata = spi_master_get_devdata(master); 1136 mdata->dev_comp = device_get_match_data(dev); 1137 1138 if (mdata->dev_comp->enhance_timing) 1139 master->mode_bits |= SPI_CS_HIGH; 1140 1141 if (mdata->dev_comp->must_tx) 1142 master->flags = SPI_MASTER_MUST_TX; 1143 if (mdata->dev_comp->ipm_design) 1144 master->mode_bits |= SPI_LOOP; 1145 1146 if (mdata->dev_comp->ipm_design) { 1147 mdata->dev = dev; 1148 master->mem_ops = &mtk_spi_mem_ops; 1149 init_completion(&mdata->spimem_done); 1150 } 1151 1152 if (mdata->dev_comp->need_pad_sel) { 1153 mdata->pad_num = of_property_count_u32_elems(dev->of_node, 1154 "mediatek,pad-select"); 1155 if (mdata->pad_num < 0) 1156 return dev_err_probe(dev, -EINVAL, 1157 "No 'mediatek,pad-select' property\n"); 1158 1159 mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num, 1160 sizeof(u32), GFP_KERNEL); 1161 if (!mdata->pad_sel) 1162 return -ENOMEM; 1163 1164 for (i = 0; i < mdata->pad_num; i++) { 1165 of_property_read_u32_index(dev->of_node, 1166 "mediatek,pad-select", 1167 i, &mdata->pad_sel[i]); 1168 if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL) 1169 return dev_err_probe(dev, -EINVAL, 1170 "wrong pad-sel[%d]: %u\n", 1171 i, mdata->pad_sel[i]); 1172 } 1173 } 1174 1175 platform_set_drvdata(pdev, master); 1176 mdata->base = devm_platform_ioremap_resource(pdev, 0); 1177 if (IS_ERR(mdata->base)) 1178 return PTR_ERR(mdata->base); 1179 1180 irq = platform_get_irq(pdev, 0); 1181 if (irq < 0) 1182 return irq; 1183 1184 if (!dev->dma_mask) 1185 dev->dma_mask = &dev->coherent_dma_mask; 1186 1187 ret = devm_request_irq(dev, irq, mtk_spi_interrupt, 1188 IRQF_TRIGGER_NONE, dev_name(dev), master); 1189 if (ret) 1190 return dev_err_probe(dev, ret, "failed to register irq\n"); 1191 1192 mdata->parent_clk = devm_clk_get(dev, "parent-clk"); 1193 if (IS_ERR(mdata->parent_clk)) 1194 return dev_err_probe(dev, PTR_ERR(mdata->parent_clk), 1195 "failed to get parent-clk\n"); 1196 1197 mdata->sel_clk = devm_clk_get(dev, "sel-clk"); 1198 if (IS_ERR(mdata->sel_clk)) 1199 return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n"); 1200 1201 mdata->spi_clk = devm_clk_get(dev, "spi-clk"); 1202 if (IS_ERR(mdata->spi_clk)) 1203 return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n"); 1204 1205 mdata->spi_hclk = devm_clk_get_optional(dev, "hclk"); 1206 if (IS_ERR(mdata->spi_hclk)) 1207 return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n"); 1208 1209 ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk); 1210 if (ret < 0) 1211 return dev_err_probe(dev, ret, "failed to clk_set_parent\n"); 1212 1213 ret = clk_prepare_enable(mdata->spi_hclk); 1214 if (ret < 0) 1215 return dev_err_probe(dev, ret, "failed to enable hclk\n"); 1216 1217 ret = clk_prepare_enable(mdata->spi_clk); 1218 if (ret < 0) { 1219 clk_disable_unprepare(mdata->spi_hclk); 1220 return dev_err_probe(dev, ret, "failed to enable spi_clk\n"); 1221 } 1222 1223 mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk); 1224 1225 if (mdata->dev_comp->no_need_unprepare) { 1226 clk_disable(mdata->spi_clk); 1227 clk_disable(mdata->spi_hclk); 1228 } else { 1229 clk_disable_unprepare(mdata->spi_clk); 1230 clk_disable_unprepare(mdata->spi_hclk); 1231 } 1232 1233 if (mdata->dev_comp->need_pad_sel) { 1234 if (mdata->pad_num != master->num_chipselect) 1235 return dev_err_probe(dev, -EINVAL, 1236 "pad_num does not match num_chipselect(%d != %d)\n", 1237 mdata->pad_num, master->num_chipselect); 1238 1239 if (!master->cs_gpiods && master->num_chipselect > 1) 1240 return dev_err_probe(dev, -EINVAL, 1241 "cs_gpios not specified and num_chipselect > 1\n"); 1242 } 1243 1244 if (mdata->dev_comp->dma_ext) 1245 addr_bits = DMA_ADDR_EXT_BITS; 1246 else 1247 addr_bits = DMA_ADDR_DEF_BITS; 1248 ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits)); 1249 if (ret) 1250 dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n", 1251 addr_bits, ret); 1252 1253 pm_runtime_enable(dev); 1254 1255 ret = devm_spi_register_master(dev, master); 1256 if (ret) { 1257 pm_runtime_disable(dev); 1258 return dev_err_probe(dev, ret, "failed to register master\n"); 1259 } 1260 1261 return 0; 1262} 1263 1264static int mtk_spi_remove(struct platform_device *pdev) 1265{ 1266 struct spi_master *master = platform_get_drvdata(pdev); 1267 struct mtk_spi *mdata = spi_master_get_devdata(master); 1268 1269 pm_runtime_disable(&pdev->dev); 1270 1271 mtk_spi_reset(mdata); 1272 1273 if (mdata->dev_comp->no_need_unprepare) { 1274 clk_unprepare(mdata->spi_clk); 1275 clk_unprepare(mdata->spi_hclk); 1276 } 1277 1278 return 0; 1279} 1280 1281#ifdef CONFIG_PM_SLEEP 1282static int mtk_spi_suspend(struct device *dev) 1283{ 1284 int ret; 1285 struct spi_master *master = dev_get_drvdata(dev); 1286 struct mtk_spi *mdata = spi_master_get_devdata(master); 1287 1288 ret = spi_master_suspend(master); 1289 if (ret) 1290 return ret; 1291 1292 if (!pm_runtime_suspended(dev)) { 1293 clk_disable_unprepare(mdata->spi_clk); 1294 clk_disable_unprepare(mdata->spi_hclk); 1295 } 1296 1297 return ret; 1298} 1299 1300static int mtk_spi_resume(struct device *dev) 1301{ 1302 int ret; 1303 struct spi_master *master = dev_get_drvdata(dev); 1304 struct mtk_spi *mdata = spi_master_get_devdata(master); 1305 1306 if (!pm_runtime_suspended(dev)) { 1307 ret = clk_prepare_enable(mdata->spi_clk); 1308 if (ret < 0) { 1309 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1310 return ret; 1311 } 1312 1313 ret = clk_prepare_enable(mdata->spi_hclk); 1314 if (ret < 0) { 1315 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1316 clk_disable_unprepare(mdata->spi_clk); 1317 return ret; 1318 } 1319 } 1320 1321 ret = spi_master_resume(master); 1322 if (ret < 0) { 1323 clk_disable_unprepare(mdata->spi_clk); 1324 clk_disable_unprepare(mdata->spi_hclk); 1325 } 1326 1327 return ret; 1328} 1329#endif /* CONFIG_PM_SLEEP */ 1330 1331#ifdef CONFIG_PM 1332static int mtk_spi_runtime_suspend(struct device *dev) 1333{ 1334 struct spi_master *master = dev_get_drvdata(dev); 1335 struct mtk_spi *mdata = spi_master_get_devdata(master); 1336 1337 if (mdata->dev_comp->no_need_unprepare) { 1338 clk_disable(mdata->spi_clk); 1339 clk_disable(mdata->spi_hclk); 1340 } else { 1341 clk_disable_unprepare(mdata->spi_clk); 1342 clk_disable_unprepare(mdata->spi_hclk); 1343 } 1344 1345 return 0; 1346} 1347 1348static int mtk_spi_runtime_resume(struct device *dev) 1349{ 1350 struct spi_master *master = dev_get_drvdata(dev); 1351 struct mtk_spi *mdata = spi_master_get_devdata(master); 1352 int ret; 1353 1354 if (mdata->dev_comp->no_need_unprepare) { 1355 ret = clk_enable(mdata->spi_clk); 1356 if (ret < 0) { 1357 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1358 return ret; 1359 } 1360 ret = clk_enable(mdata->spi_hclk); 1361 if (ret < 0) { 1362 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1363 clk_disable(mdata->spi_clk); 1364 return ret; 1365 } 1366 } else { 1367 ret = clk_prepare_enable(mdata->spi_clk); 1368 if (ret < 0) { 1369 dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret); 1370 return ret; 1371 } 1372 1373 ret = clk_prepare_enable(mdata->spi_hclk); 1374 if (ret < 0) { 1375 dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret); 1376 clk_disable_unprepare(mdata->spi_clk); 1377 return ret; 1378 } 1379 } 1380 1381 return 0; 1382} 1383#endif /* CONFIG_PM */ 1384 1385static const struct dev_pm_ops mtk_spi_pm = { 1386 SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume) 1387 SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend, 1388 mtk_spi_runtime_resume, NULL) 1389}; 1390 1391static struct platform_driver mtk_spi_driver = { 1392 .driver = { 1393 .name = "mtk-spi", 1394 .pm = &mtk_spi_pm, 1395 .of_match_table = mtk_spi_of_match, 1396 }, 1397 .probe = mtk_spi_probe, 1398 .remove = mtk_spi_remove, 1399}; 1400 1401module_platform_driver(mtk_spi_driver); 1402 1403MODULE_DESCRIPTION("MTK SPI Controller driver"); 1404MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>"); 1405MODULE_LICENSE("GPL v2"); 1406MODULE_ALIAS("platform:mtk-spi");