cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-nxp-fspi.c (34121B)


      1// SPDX-License-Identifier: GPL-2.0+
      2
      3/*
      4 * NXP FlexSPI(FSPI) controller driver.
      5 *
      6 * Copyright 2019-2020 NXP
      7 * Copyright 2020 Puresoftware Ltd.
      8 *
      9 * FlexSPI is a flexsible SPI host controller which supports two SPI
     10 * channels and up to 4 external devices. Each channel supports
     11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
     12 * data lines).
     13 *
     14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
     15 * LUT registers are a look-up-table for sequences of instructions.
     16 * A valid sequence consists of four LUT registers.
     17 * Maximum 32 LUT sequences can be programmed simultaneously.
     18 *
     19 * LUTs are being created at run-time based on the commands passed
     20 * from the spi-mem framework, thus using single LUT index.
     21 *
     22 * Software triggered Flash read/write access by IP Bus.
     23 *
     24 * Memory mapped read access by AHB Bus.
     25 *
     26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
     27 *
     28 * Author:
     29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
     30 *     Boris Brezillon <bbrezillon@kernel.org>
     31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
     32 */
     33
     34#include <linux/acpi.h>
     35#include <linux/bitops.h>
     36#include <linux/bitfield.h>
     37#include <linux/clk.h>
     38#include <linux/completion.h>
     39#include <linux/delay.h>
     40#include <linux/err.h>
     41#include <linux/errno.h>
     42#include <linux/interrupt.h>
     43#include <linux/io.h>
     44#include <linux/iopoll.h>
     45#include <linux/jiffies.h>
     46#include <linux/kernel.h>
     47#include <linux/module.h>
     48#include <linux/mutex.h>
     49#include <linux/of.h>
     50#include <linux/of_device.h>
     51#include <linux/platform_device.h>
     52#include <linux/pm_qos.h>
     53#include <linux/regmap.h>
     54#include <linux/sizes.h>
     55#include <linux/sys_soc.h>
     56
     57#include <linux/mfd/syscon.h>
     58#include <linux/spi/spi.h>
     59#include <linux/spi/spi-mem.h>
     60
     61/*
     62 * The driver only uses one single LUT entry, that is updated on
     63 * each call of exec_op(). Index 0 is preset at boot with a basic
     64 * read operation, so let's use the last entry (31).
     65 */
     66#define	SEQID_LUT			31
     67
     68/* Registers used by the driver */
     69#define FSPI_MCR0			0x00
     70#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
     71#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
     72#define FSPI_MCR0_LEARN_EN		BIT(15)
     73#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
     74#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
     75#define FSPI_MCR0_DOZE_EN		BIT(12)
     76#define FSPI_MCR0_HSEN			BIT(11)
     77#define FSPI_MCR0_SERCLKDIV		BIT(8)
     78#define FSPI_MCR0_ATDF_EN		BIT(7)
     79#define FSPI_MCR0_ARDF_EN		BIT(6)
     80#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
     81#define FSPI_MCR0_END_CFG(x)		((x) << 2)
     82#define FSPI_MCR0_MDIS			BIT(1)
     83#define FSPI_MCR0_SWRST			BIT(0)
     84
     85#define FSPI_MCR1			0x04
     86#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
     87#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
     88
     89#define FSPI_MCR2			0x08
     90#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
     91#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
     92#define FSPI_MCR2_CLRLRPHS		BIT(14)
     93#define FSPI_MCR2_ABRDATSZ		BIT(8)
     94#define FSPI_MCR2_ABRLEARN		BIT(7)
     95#define FSPI_MCR2_ABR_READ		BIT(6)
     96#define FSPI_MCR2_ABRWRITE		BIT(5)
     97#define FSPI_MCR2_ABRDUMMY		BIT(4)
     98#define FSPI_MCR2_ABR_MODE		BIT(3)
     99#define FSPI_MCR2_ABRCADDR		BIT(2)
    100#define FSPI_MCR2_ABRRADDR		BIT(1)
    101#define FSPI_MCR2_ABR_CMD		BIT(0)
    102
    103#define FSPI_AHBCR			0x0c
    104#define FSPI_AHBCR_RDADDROPT		BIT(6)
    105#define FSPI_AHBCR_PREF_EN		BIT(5)
    106#define FSPI_AHBCR_BUFF_EN		BIT(4)
    107#define FSPI_AHBCR_CACH_EN		BIT(3)
    108#define FSPI_AHBCR_CLRTXBUF		BIT(2)
    109#define FSPI_AHBCR_CLRRXBUF		BIT(1)
    110#define FSPI_AHBCR_PAR_EN		BIT(0)
    111
    112#define FSPI_INTEN			0x10
    113#define FSPI_INTEN_SCLKSBWR		BIT(9)
    114#define FSPI_INTEN_SCLKSBRD		BIT(8)
    115#define FSPI_INTEN_DATALRNFL		BIT(7)
    116#define FSPI_INTEN_IPTXWE		BIT(6)
    117#define FSPI_INTEN_IPRXWA		BIT(5)
    118#define FSPI_INTEN_AHBCMDERR		BIT(4)
    119#define FSPI_INTEN_IPCMDERR		BIT(3)
    120#define FSPI_INTEN_AHBCMDGE		BIT(2)
    121#define FSPI_INTEN_IPCMDGE		BIT(1)
    122#define FSPI_INTEN_IPCMDDONE		BIT(0)
    123
    124#define FSPI_INTR			0x14
    125#define FSPI_INTR_SCLKSBWR		BIT(9)
    126#define FSPI_INTR_SCLKSBRD		BIT(8)
    127#define FSPI_INTR_DATALRNFL		BIT(7)
    128#define FSPI_INTR_IPTXWE		BIT(6)
    129#define FSPI_INTR_IPRXWA		BIT(5)
    130#define FSPI_INTR_AHBCMDERR		BIT(4)
    131#define FSPI_INTR_IPCMDERR		BIT(3)
    132#define FSPI_INTR_AHBCMDGE		BIT(2)
    133#define FSPI_INTR_IPCMDGE		BIT(1)
    134#define FSPI_INTR_IPCMDDONE		BIT(0)
    135
    136#define FSPI_LUTKEY			0x18
    137#define FSPI_LUTKEY_VALUE		0x5AF05AF0
    138
    139#define FSPI_LCKCR			0x1C
    140
    141#define FSPI_LCKER_LOCK			0x1
    142#define FSPI_LCKER_UNLOCK		0x2
    143
    144#define FSPI_BUFXCR_INVALID_MSTRID	0xE
    145#define FSPI_AHBRX_BUF0CR0		0x20
    146#define FSPI_AHBRX_BUF1CR0		0x24
    147#define FSPI_AHBRX_BUF2CR0		0x28
    148#define FSPI_AHBRX_BUF3CR0		0x2C
    149#define FSPI_AHBRX_BUF4CR0		0x30
    150#define FSPI_AHBRX_BUF5CR0		0x34
    151#define FSPI_AHBRX_BUF6CR0		0x38
    152#define FSPI_AHBRX_BUF7CR0		0x3C
    153#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
    154
    155#define FSPI_AHBRX_BUF0CR1		0x40
    156#define FSPI_AHBRX_BUF1CR1		0x44
    157#define FSPI_AHBRX_BUF2CR1		0x48
    158#define FSPI_AHBRX_BUF3CR1		0x4C
    159#define FSPI_AHBRX_BUF4CR1		0x50
    160#define FSPI_AHBRX_BUF5CR1		0x54
    161#define FSPI_AHBRX_BUF6CR1		0x58
    162#define FSPI_AHBRX_BUF7CR1		0x5C
    163
    164#define FSPI_FLSHA1CR0			0x60
    165#define FSPI_FLSHA2CR0			0x64
    166#define FSPI_FLSHB1CR0			0x68
    167#define FSPI_FLSHB2CR0			0x6C
    168#define FSPI_FLSHXCR0_SZ_KB		10
    169#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
    170
    171#define FSPI_FLSHA1CR1			0x70
    172#define FSPI_FLSHA2CR1			0x74
    173#define FSPI_FLSHB1CR1			0x78
    174#define FSPI_FLSHB2CR1			0x7C
    175#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
    176#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
    177#define FSPI_FLSHXCR1_WA		BIT(10)
    178#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
    179#define FSPI_FLSHXCR1_TCSS(x)		(x)
    180
    181#define FSPI_FLSHA1CR2			0x80
    182#define FSPI_FLSHA2CR2			0x84
    183#define FSPI_FLSHB1CR2			0x88
    184#define FSPI_FLSHB2CR2			0x8C
    185#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
    186#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
    187#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
    188#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
    189#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
    190#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
    191
    192#define FSPI_IPCR0			0xA0
    193
    194#define FSPI_IPCR1			0xA4
    195#define FSPI_IPCR1_IPAREN		BIT(31)
    196#define FSPI_IPCR1_SEQNUM_SHIFT		24
    197#define FSPI_IPCR1_SEQID_SHIFT		16
    198#define FSPI_IPCR1_IDATSZ(x)		(x)
    199
    200#define FSPI_IPCMD			0xB0
    201#define FSPI_IPCMD_TRG			BIT(0)
    202
    203#define FSPI_DLPR			0xB4
    204
    205#define FSPI_IPRXFCR			0xB8
    206#define FSPI_IPRXFCR_CLR		BIT(0)
    207#define FSPI_IPRXFCR_DMA_EN		BIT(1)
    208#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
    209
    210#define FSPI_IPTXFCR			0xBC
    211#define FSPI_IPTXFCR_CLR		BIT(0)
    212#define FSPI_IPTXFCR_DMA_EN		BIT(1)
    213#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
    214
    215#define FSPI_DLLACR			0xC0
    216#define FSPI_DLLACR_OVRDEN		BIT(8)
    217
    218#define FSPI_DLLBCR			0xC4
    219#define FSPI_DLLBCR_OVRDEN		BIT(8)
    220
    221#define FSPI_STS0			0xE0
    222#define FSPI_STS0_DLPHB(x)		((x) << 8)
    223#define FSPI_STS0_DLPHA(x)		((x) << 4)
    224#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
    225#define FSPI_STS0_ARB_IDLE		BIT(1)
    226#define FSPI_STS0_SEQ_IDLE		BIT(0)
    227
    228#define FSPI_STS1			0xE4
    229#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
    230#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
    231#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
    232#define FSPI_STS1_AHB_ERRID(x)		(x)
    233
    234#define FSPI_AHBSPNST			0xEC
    235#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
    236#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
    237#define FSPI_AHBSPNST_ACTIVE		BIT(0)
    238
    239#define FSPI_IPRXFSTS			0xF0
    240#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
    241#define FSPI_IPRXFSTS_FILL(x)		(x)
    242
    243#define FSPI_IPTXFSTS			0xF4
    244#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
    245#define FSPI_IPTXFSTS_FILL(x)		(x)
    246
    247#define FSPI_RFDR			0x100
    248#define FSPI_TFDR			0x180
    249
    250#define FSPI_LUT_BASE			0x200
    251#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
    252#define FSPI_LUT_REG(idx) \
    253	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
    254
    255/* register map end */
    256
    257/* Instruction set for the LUT register. */
    258#define LUT_STOP			0x00
    259#define LUT_CMD				0x01
    260#define LUT_ADDR			0x02
    261#define LUT_CADDR_SDR			0x03
    262#define LUT_MODE			0x04
    263#define LUT_MODE2			0x05
    264#define LUT_MODE4			0x06
    265#define LUT_MODE8			0x07
    266#define LUT_NXP_WRITE			0x08
    267#define LUT_NXP_READ			0x09
    268#define LUT_LEARN_SDR			0x0A
    269#define LUT_DATSZ_SDR			0x0B
    270#define LUT_DUMMY			0x0C
    271#define LUT_DUMMY_RWDS_SDR		0x0D
    272#define LUT_JMP_ON_CS			0x1F
    273#define LUT_CMD_DDR			0x21
    274#define LUT_ADDR_DDR			0x22
    275#define LUT_CADDR_DDR			0x23
    276#define LUT_MODE_DDR			0x24
    277#define LUT_MODE2_DDR			0x25
    278#define LUT_MODE4_DDR			0x26
    279#define LUT_MODE8_DDR			0x27
    280#define LUT_WRITE_DDR			0x28
    281#define LUT_READ_DDR			0x29
    282#define LUT_LEARN_DDR			0x2A
    283#define LUT_DATSZ_DDR			0x2B
    284#define LUT_DUMMY_DDR			0x2C
    285#define LUT_DUMMY_RWDS_DDR		0x2D
    286
    287/*
    288 * Calculate number of required PAD bits for LUT register.
    289 *
    290 * The pad stands for the number of IO lines [0:7].
    291 * For example, the octal read needs eight IO lines,
    292 * so you should use LUT_PAD(8). This macro
    293 * returns 3 i.e. use eight (2^3) IP lines for read.
    294 */
    295#define LUT_PAD(x) (fls(x) - 1)
    296
    297/*
    298 * Macro for constructing the LUT entries with the following
    299 * register layout:
    300 *
    301 *  ---------------------------------------------------
    302 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
    303 *  ---------------------------------------------------
    304 */
    305#define PAD_SHIFT		8
    306#define INSTR_SHIFT		10
    307#define OPRND_SHIFT		16
    308
    309/* Macros for constructing the LUT register. */
    310#define LUT_DEF(idx, ins, pad, opr)			  \
    311	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
    312	(opr)) << (((idx) % 2) * OPRND_SHIFT))
    313
    314#define POLL_TOUT		5000
    315#define NXP_FSPI_MAX_CHIPSELECT		4
    316#define NXP_FSPI_MIN_IOMAP	SZ_4M
    317
    318#define DCFG_RCWSR1		0x100
    319#define SYS_PLL_RAT		GENMASK(6, 2)
    320
    321/* Access flash memory using IP bus only */
    322#define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
    323
    324struct nxp_fspi_devtype_data {
    325	unsigned int rxfifo;
    326	unsigned int txfifo;
    327	unsigned int ahb_buf_size;
    328	unsigned int quirks;
    329	bool little_endian;
    330};
    331
    332static struct nxp_fspi_devtype_data lx2160a_data = {
    333	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
    334	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
    335	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
    336	.quirks = 0,
    337	.little_endian = true,  /* little-endian    */
    338};
    339
    340static struct nxp_fspi_devtype_data imx8mm_data = {
    341	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
    342	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
    343	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
    344	.quirks = 0,
    345	.little_endian = true,  /* little-endian    */
    346};
    347
    348static struct nxp_fspi_devtype_data imx8qxp_data = {
    349	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
    350	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
    351	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
    352	.quirks = 0,
    353	.little_endian = true,  /* little-endian    */
    354};
    355
    356static struct nxp_fspi_devtype_data imx8dxl_data = {
    357	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
    358	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
    359	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
    360	.quirks = FSPI_QUIRK_USE_IP_ONLY,
    361	.little_endian = true,  /* little-endian    */
    362};
    363
    364struct nxp_fspi {
    365	void __iomem *iobase;
    366	void __iomem *ahb_addr;
    367	u32 memmap_phy;
    368	u32 memmap_phy_size;
    369	u32 memmap_start;
    370	u32 memmap_len;
    371	struct clk *clk, *clk_en;
    372	struct device *dev;
    373	struct completion c;
    374	struct nxp_fspi_devtype_data *devtype_data;
    375	struct mutex lock;
    376	struct pm_qos_request pm_qos_req;
    377	int selected;
    378};
    379
    380static inline int needs_ip_only(struct nxp_fspi *f)
    381{
    382	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
    383}
    384
    385/*
    386 * R/W functions for big- or little-endian registers:
    387 * The FSPI controller's endianness is independent of
    388 * the CPU core's endianness. So far, although the CPU
    389 * core is little-endian the FSPI controller can use
    390 * big-endian or little-endian.
    391 */
    392static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
    393{
    394	if (f->devtype_data->little_endian)
    395		iowrite32(val, addr);
    396	else
    397		iowrite32be(val, addr);
    398}
    399
    400static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
    401{
    402	if (f->devtype_data->little_endian)
    403		return ioread32(addr);
    404	else
    405		return ioread32be(addr);
    406}
    407
    408static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
    409{
    410	struct nxp_fspi *f = dev_id;
    411	u32 reg;
    412
    413	/* clear interrupt */
    414	reg = fspi_readl(f, f->iobase + FSPI_INTR);
    415	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
    416
    417	if (reg & FSPI_INTR_IPCMDDONE)
    418		complete(&f->c);
    419
    420	return IRQ_HANDLED;
    421}
    422
    423static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
    424{
    425	switch (width) {
    426	case 1:
    427	case 2:
    428	case 4:
    429	case 8:
    430		return 0;
    431	}
    432
    433	return -ENOTSUPP;
    434}
    435
    436static bool nxp_fspi_supports_op(struct spi_mem *mem,
    437				 const struct spi_mem_op *op)
    438{
    439	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
    440	int ret;
    441
    442	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
    443
    444	if (op->addr.nbytes)
    445		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
    446
    447	if (op->dummy.nbytes)
    448		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
    449
    450	if (op->data.nbytes)
    451		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
    452
    453	if (ret)
    454		return false;
    455
    456	/*
    457	 * The number of address bytes should be equal to or less than 4 bytes.
    458	 */
    459	if (op->addr.nbytes > 4)
    460		return false;
    461
    462	/*
    463	 * If requested address value is greater than controller assigned
    464	 * memory mapped space, return error as it didn't fit in the range
    465	 * of assigned address space.
    466	 */
    467	if (op->addr.val >= f->memmap_phy_size)
    468		return false;
    469
    470	/* Max 64 dummy clock cycles supported */
    471	if (op->dummy.buswidth &&
    472	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
    473		return false;
    474
    475	/* Max data length, check controller limits and alignment */
    476	if (op->data.dir == SPI_MEM_DATA_IN &&
    477	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
    478	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
    479	      !IS_ALIGNED(op->data.nbytes, 8))))
    480		return false;
    481
    482	if (op->data.dir == SPI_MEM_DATA_OUT &&
    483	    op->data.nbytes > f->devtype_data->txfifo)
    484		return false;
    485
    486	return spi_mem_default_supports_op(mem, op);
    487}
    488
    489/* Instead of busy looping invoke readl_poll_timeout functionality. */
    490static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
    491				u32 mask, u32 delay_us,
    492				u32 timeout_us, bool c)
    493{
    494	u32 reg;
    495
    496	if (!f->devtype_data->little_endian)
    497		mask = (u32)cpu_to_be32(mask);
    498
    499	if (c)
    500		return readl_poll_timeout(base, reg, (reg & mask),
    501					  delay_us, timeout_us);
    502	else
    503		return readl_poll_timeout(base, reg, !(reg & mask),
    504					  delay_us, timeout_us);
    505}
    506
    507/*
    508 * If the slave device content being changed by Write/Erase, need to
    509 * invalidate the AHB buffer. This can be achieved by doing the reset
    510 * of controller after setting MCR0[SWRESET] bit.
    511 */
    512static inline void nxp_fspi_invalid(struct nxp_fspi *f)
    513{
    514	u32 reg;
    515	int ret;
    516
    517	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
    518	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
    519
    520	/* w1c register, wait unit clear */
    521	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
    522				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
    523	WARN_ON(ret);
    524}
    525
    526static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
    527				 const struct spi_mem_op *op)
    528{
    529	void __iomem *base = f->iobase;
    530	u32 lutval[4] = {};
    531	int lutidx = 1, i;
    532
    533	/* cmd */
    534	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
    535			     op->cmd.opcode);
    536
    537	/* addr bytes */
    538	if (op->addr.nbytes) {
    539		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
    540					      LUT_PAD(op->addr.buswidth),
    541					      op->addr.nbytes * 8);
    542		lutidx++;
    543	}
    544
    545	/* dummy bytes, if needed */
    546	if (op->dummy.nbytes) {
    547		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
    548		/*
    549		 * Due to FlexSPI controller limitation number of PAD for dummy
    550		 * buswidth needs to be programmed as equal to data buswidth.
    551		 */
    552					      LUT_PAD(op->data.buswidth),
    553					      op->dummy.nbytes * 8 /
    554					      op->dummy.buswidth);
    555		lutidx++;
    556	}
    557
    558	/* read/write data bytes */
    559	if (op->data.nbytes) {
    560		lutval[lutidx / 2] |= LUT_DEF(lutidx,
    561					      op->data.dir == SPI_MEM_DATA_IN ?
    562					      LUT_NXP_READ : LUT_NXP_WRITE,
    563					      LUT_PAD(op->data.buswidth),
    564					      0);
    565		lutidx++;
    566	}
    567
    568	/* stop condition. */
    569	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
    570
    571	/* unlock LUT */
    572	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
    573	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
    574
    575	/* fill LUT */
    576	for (i = 0; i < ARRAY_SIZE(lutval); i++)
    577		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
    578
    579	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
    580		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
    581
    582	/* lock LUT */
    583	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
    584	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
    585}
    586
    587static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
    588{
    589	int ret;
    590
    591	if (is_acpi_node(f->dev->fwnode))
    592		return 0;
    593
    594	ret = clk_prepare_enable(f->clk_en);
    595	if (ret)
    596		return ret;
    597
    598	ret = clk_prepare_enable(f->clk);
    599	if (ret) {
    600		clk_disable_unprepare(f->clk_en);
    601		return ret;
    602	}
    603
    604	return 0;
    605}
    606
    607static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
    608{
    609	if (is_acpi_node(f->dev->fwnode))
    610		return 0;
    611
    612	clk_disable_unprepare(f->clk);
    613	clk_disable_unprepare(f->clk_en);
    614
    615	return 0;
    616}
    617
    618/*
    619 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
    620 * register and start base address of the slave device.
    621 *
    622 *							    (Higher address)
    623 *				--------    <-- FLSHB2CR0
    624 *				|  B2  |
    625 *				|      |
    626 *	B2 start address -->	--------    <-- FLSHB1CR0
    627 *				|  B1  |
    628 *				|      |
    629 *	B1 start address -->	--------    <-- FLSHA2CR0
    630 *				|  A2  |
    631 *				|      |
    632 *	A2 start address -->	--------    <-- FLSHA1CR0
    633 *				|  A1  |
    634 *				|      |
    635 *	A1 start address -->	--------		    (Lower address)
    636 *
    637 *
    638 * Start base address defines the starting address range for given CS and
    639 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
    640 *
    641 * But, different targets are having different combinations of number of CS,
    642 * some targets only have single CS or two CS covering controller's full
    643 * memory mapped space area.
    644 * Thus, implementation is being done as independent of the size and number
    645 * of the connected slave device.
    646 * Assign controller memory mapped space size as the size to the connected
    647 * slave device.
    648 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
    649 * chip-select Flash configuration register.
    650 *
    651 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
    652 * memory mapped size of the controller.
    653 * Value for rest of the CS FLSHxxCR0 register would be zero.
    654 *
    655 */
    656static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
    657{
    658	unsigned long rate = spi->max_speed_hz;
    659	int ret;
    660	uint64_t size_kb;
    661
    662	/*
    663	 * Return, if previously selected slave device is same as current
    664	 * requested slave device.
    665	 */
    666	if (f->selected == spi->chip_select)
    667		return;
    668
    669	/* Reset FLSHxxCR0 registers */
    670	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
    671	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
    672	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
    673	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
    674
    675	/* Assign controller memory mapped space as size, KBytes, of flash. */
    676	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
    677
    678	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
    679		    4 * spi->chip_select);
    680
    681	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
    682
    683	nxp_fspi_clk_disable_unprep(f);
    684
    685	ret = clk_set_rate(f->clk, rate);
    686	if (ret)
    687		return;
    688
    689	ret = nxp_fspi_clk_prep_enable(f);
    690	if (ret)
    691		return;
    692
    693	f->selected = spi->chip_select;
    694}
    695
    696static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
    697{
    698	u32 start = op->addr.val;
    699	u32 len = op->data.nbytes;
    700
    701	/* if necessary, ioremap before AHB read */
    702	if ((!f->ahb_addr) || start < f->memmap_start ||
    703	     start + len > f->memmap_start + f->memmap_len) {
    704		if (f->ahb_addr)
    705			iounmap(f->ahb_addr);
    706
    707		f->memmap_start = start;
    708		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
    709				len : NXP_FSPI_MIN_IOMAP;
    710
    711		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
    712					 f->memmap_len);
    713
    714		if (!f->ahb_addr) {
    715			dev_err(f->dev, "failed to alloc memory\n");
    716			return -ENOMEM;
    717		}
    718	}
    719
    720	/* Read out the data directly from the AHB buffer. */
    721	memcpy_fromio(op->data.buf.in,
    722		      f->ahb_addr + start - f->memmap_start, len);
    723
    724	return 0;
    725}
    726
    727static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
    728				 const struct spi_mem_op *op)
    729{
    730	void __iomem *base = f->iobase;
    731	int i, ret;
    732	u8 *buf = (u8 *) op->data.buf.out;
    733
    734	/* clear the TX FIFO. */
    735	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
    736
    737	/*
    738	 * Default value of water mark level is 8 bytes, hence in single
    739	 * write request controller can write max 8 bytes of data.
    740	 */
    741
    742	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
    743		/* Wait for TXFIFO empty */
    744		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
    745					   FSPI_INTR_IPTXWE, 0,
    746					   POLL_TOUT, true);
    747		WARN_ON(ret);
    748
    749		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
    750		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
    751		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
    752	}
    753
    754	if (i < op->data.nbytes) {
    755		u32 data = 0;
    756		int j;
    757		/* Wait for TXFIFO empty */
    758		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
    759					   FSPI_INTR_IPTXWE, 0,
    760					   POLL_TOUT, true);
    761		WARN_ON(ret);
    762
    763		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
    764			memcpy(&data, buf + i + j, 4);
    765			fspi_writel(f, data, base + FSPI_TFDR + j);
    766		}
    767		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
    768	}
    769}
    770
    771static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
    772			  const struct spi_mem_op *op)
    773{
    774	void __iomem *base = f->iobase;
    775	int i, ret;
    776	int len = op->data.nbytes;
    777	u8 *buf = (u8 *) op->data.buf.in;
    778
    779	/*
    780	 * Default value of water mark level is 8 bytes, hence in single
    781	 * read request controller can read max 8 bytes of data.
    782	 */
    783	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
    784		/* Wait for RXFIFO available */
    785		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
    786					   FSPI_INTR_IPRXWA, 0,
    787					   POLL_TOUT, true);
    788		WARN_ON(ret);
    789
    790		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
    791		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
    792		/* move the FIFO pointer */
    793		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
    794	}
    795
    796	if (i < len) {
    797		u32 tmp;
    798		int size, j;
    799
    800		buf = op->data.buf.in + i;
    801		/* Wait for RXFIFO available */
    802		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
    803					   FSPI_INTR_IPRXWA, 0,
    804					   POLL_TOUT, true);
    805		WARN_ON(ret);
    806
    807		len = op->data.nbytes - i;
    808		for (j = 0; j < op->data.nbytes - i; j += 4) {
    809			tmp = fspi_readl(f, base + FSPI_RFDR + j);
    810			size = min(len, 4);
    811			memcpy(buf + j, &tmp, size);
    812			len -= size;
    813		}
    814	}
    815
    816	/* invalid the RXFIFO */
    817	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
    818	/* move the FIFO pointer */
    819	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
    820}
    821
    822static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
    823{
    824	void __iomem *base = f->iobase;
    825	int seqnum = 0;
    826	int err = 0;
    827	u32 reg;
    828
    829	reg = fspi_readl(f, base + FSPI_IPRXFCR);
    830	/* invalid RXFIFO first */
    831	reg &= ~FSPI_IPRXFCR_DMA_EN;
    832	reg = reg | FSPI_IPRXFCR_CLR;
    833	fspi_writel(f, reg, base + FSPI_IPRXFCR);
    834
    835	init_completion(&f->c);
    836
    837	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
    838	/*
    839	 * Always start the sequence at the same index since we update
    840	 * the LUT at each exec_op() call. And also specify the DATA
    841	 * length, since it's has not been specified in the LUT.
    842	 */
    843	fspi_writel(f, op->data.nbytes |
    844		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
    845		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
    846		 base + FSPI_IPCR1);
    847
    848	/* Trigger the LUT now. */
    849	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
    850
    851	/* Wait for the interrupt. */
    852	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
    853		err = -ETIMEDOUT;
    854
    855	/* Invoke IP data read, if request is of data read. */
    856	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
    857		nxp_fspi_read_rxfifo(f, op);
    858
    859	return err;
    860}
    861
    862static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
    863{
    864	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
    865	int err = 0;
    866
    867	mutex_lock(&f->lock);
    868
    869	/* Wait for controller being ready. */
    870	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
    871				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
    872	WARN_ON(err);
    873
    874	nxp_fspi_select_mem(f, mem->spi);
    875
    876	nxp_fspi_prepare_lut(f, op);
    877	/*
    878	 * If we have large chunks of data, we read them through the AHB bus by
    879	 * accessing the mapped memory. In all other cases we use IP commands
    880	 * to access the flash. Read via AHB bus may be corrupted due to
    881	 * existence of an errata and therefore discard AHB read in such cases.
    882	 */
    883	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
    884	    op->data.dir == SPI_MEM_DATA_IN &&
    885	    !needs_ip_only(f)) {
    886		err = nxp_fspi_read_ahb(f, op);
    887	} else {
    888		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
    889			nxp_fspi_fill_txfifo(f, op);
    890
    891		err = nxp_fspi_do_op(f, op);
    892	}
    893
    894	/* Invalidate the data in the AHB buffer. */
    895	nxp_fspi_invalid(f);
    896
    897	mutex_unlock(&f->lock);
    898
    899	return err;
    900}
    901
    902static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
    903{
    904	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
    905
    906	if (op->data.dir == SPI_MEM_DATA_OUT) {
    907		if (op->data.nbytes > f->devtype_data->txfifo)
    908			op->data.nbytes = f->devtype_data->txfifo;
    909	} else {
    910		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
    911			op->data.nbytes = f->devtype_data->ahb_buf_size;
    912		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
    913			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
    914	}
    915
    916	/* Limit data bytes to RX FIFO in case of IP read only */
    917	if (op->data.dir == SPI_MEM_DATA_IN &&
    918	    needs_ip_only(f) &&
    919	    op->data.nbytes > f->devtype_data->rxfifo)
    920		op->data.nbytes = f->devtype_data->rxfifo;
    921
    922	return 0;
    923}
    924
    925static void erratum_err050568(struct nxp_fspi *f)
    926{
    927	const struct soc_device_attribute ls1028a_soc_attr[] = {
    928		{ .family = "QorIQ LS1028A" },
    929		{ /* sentinel */ }
    930	};
    931	struct regmap *map;
    932	u32 val, sys_pll_ratio;
    933	int ret;
    934
    935	/* Check for LS1028A family */
    936	if (!soc_device_match(ls1028a_soc_attr)) {
    937		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
    938		return;
    939	}
    940
    941	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
    942	if (IS_ERR(map)) {
    943		dev_err(f->dev, "No syscon regmap\n");
    944		goto err;
    945	}
    946
    947	ret = regmap_read(map, DCFG_RCWSR1, &val);
    948	if (ret < 0)
    949		goto err;
    950
    951	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
    952	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
    953
    954	/* Use IP bus only if platform clock is 300MHz */
    955	if (sys_pll_ratio == 3)
    956		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
    957
    958	return;
    959
    960err:
    961	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
    962}
    963
    964static int nxp_fspi_default_setup(struct nxp_fspi *f)
    965{
    966	void __iomem *base = f->iobase;
    967	int ret, i;
    968	u32 reg;
    969
    970	/* disable and unprepare clock to avoid glitch pass to controller */
    971	nxp_fspi_clk_disable_unprep(f);
    972
    973	/* the default frequency, we will change it later if necessary. */
    974	ret = clk_set_rate(f->clk, 20000000);
    975	if (ret)
    976		return ret;
    977
    978	ret = nxp_fspi_clk_prep_enable(f);
    979	if (ret)
    980		return ret;
    981
    982	/*
    983	 * ERR050568: Flash access by FlexSPI AHB command may not work with
    984	 * platform frequency equal to 300 MHz on LS1028A.
    985	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
    986	 * Layerscape LS1028A platform.
    987	 */
    988	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
    989		erratum_err050568(f);
    990
    991	/* Reset the module */
    992	/* w1c register, wait unit clear */
    993	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
    994				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
    995	WARN_ON(ret);
    996
    997	/* Disable the module */
    998	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
    999
   1000	/* Reset the DLL register to default value */
   1001	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
   1002	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
   1003
   1004	/* enable module */
   1005	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
   1006		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
   1007		    base + FSPI_MCR0);
   1008
   1009	/*
   1010	 * Disable same device enable bit and configure all slave devices
   1011	 * independently.
   1012	 */
   1013	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
   1014	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
   1015	fspi_writel(f, reg, base + FSPI_MCR2);
   1016
   1017	/* AHB configuration for access buffer 0~7. */
   1018	for (i = 0; i < 7; i++)
   1019		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
   1020
   1021	/*
   1022	 * Set ADATSZ with the maximum AHB buffer size to improve the read
   1023	 * performance.
   1024	 */
   1025	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
   1026		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
   1027
   1028	/* prefetch and no start address alignment limitation */
   1029	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
   1030		 base + FSPI_AHBCR);
   1031
   1032	/* AHB Read - Set lut sequence ID for all CS. */
   1033	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
   1034	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
   1035	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
   1036	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
   1037
   1038	f->selected = -1;
   1039
   1040	/* enable the interrupt */
   1041	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
   1042
   1043	return 0;
   1044}
   1045
   1046static const char *nxp_fspi_get_name(struct spi_mem *mem)
   1047{
   1048	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
   1049	struct device *dev = &mem->spi->dev;
   1050	const char *name;
   1051
   1052	// Set custom name derived from the platform_device of the controller.
   1053	if (of_get_available_child_count(f->dev->of_node) == 1)
   1054		return dev_name(f->dev);
   1055
   1056	name = devm_kasprintf(dev, GFP_KERNEL,
   1057			      "%s-%d", dev_name(f->dev),
   1058			      mem->spi->chip_select);
   1059
   1060	if (!name) {
   1061		dev_err(dev, "failed to get memory for custom flash name\n");
   1062		return ERR_PTR(-ENOMEM);
   1063	}
   1064
   1065	return name;
   1066}
   1067
   1068static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
   1069	.adjust_op_size = nxp_fspi_adjust_op_size,
   1070	.supports_op = nxp_fspi_supports_op,
   1071	.exec_op = nxp_fspi_exec_op,
   1072	.get_name = nxp_fspi_get_name,
   1073};
   1074
   1075static int nxp_fspi_probe(struct platform_device *pdev)
   1076{
   1077	struct spi_controller *ctlr;
   1078	struct device *dev = &pdev->dev;
   1079	struct device_node *np = dev->of_node;
   1080	struct resource *res;
   1081	struct nxp_fspi *f;
   1082	int ret;
   1083	u32 reg;
   1084
   1085	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
   1086	if (!ctlr)
   1087		return -ENOMEM;
   1088
   1089	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
   1090			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
   1091
   1092	f = spi_controller_get_devdata(ctlr);
   1093	f->dev = dev;
   1094	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
   1095	if (!f->devtype_data) {
   1096		ret = -ENODEV;
   1097		goto err_put_ctrl;
   1098	}
   1099
   1100	platform_set_drvdata(pdev, f);
   1101
   1102	/* find the resources - configuration register address space */
   1103	if (is_acpi_node(f->dev->fwnode))
   1104		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1105	else
   1106		res = platform_get_resource_byname(pdev,
   1107				IORESOURCE_MEM, "fspi_base");
   1108
   1109	f->iobase = devm_ioremap_resource(dev, res);
   1110	if (IS_ERR(f->iobase)) {
   1111		ret = PTR_ERR(f->iobase);
   1112		goto err_put_ctrl;
   1113	}
   1114
   1115	/* find the resources - controller memory mapped space */
   1116	if (is_acpi_node(f->dev->fwnode))
   1117		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
   1118	else
   1119		res = platform_get_resource_byname(pdev,
   1120				IORESOURCE_MEM, "fspi_mmap");
   1121
   1122	if (!res) {
   1123		ret = -ENODEV;
   1124		goto err_put_ctrl;
   1125	}
   1126
   1127	/* assign memory mapped starting address and mapped size. */
   1128	f->memmap_phy = res->start;
   1129	f->memmap_phy_size = resource_size(res);
   1130
   1131	/* find the clocks */
   1132	if (dev_of_node(&pdev->dev)) {
   1133		f->clk_en = devm_clk_get(dev, "fspi_en");
   1134		if (IS_ERR(f->clk_en)) {
   1135			ret = PTR_ERR(f->clk_en);
   1136			goto err_put_ctrl;
   1137		}
   1138
   1139		f->clk = devm_clk_get(dev, "fspi");
   1140		if (IS_ERR(f->clk)) {
   1141			ret = PTR_ERR(f->clk);
   1142			goto err_put_ctrl;
   1143		}
   1144
   1145		ret = nxp_fspi_clk_prep_enable(f);
   1146		if (ret) {
   1147			dev_err(dev, "can not enable the clock\n");
   1148			goto err_put_ctrl;
   1149		}
   1150	}
   1151
   1152	/* Clear potential interrupts */
   1153	reg = fspi_readl(f, f->iobase + FSPI_INTR);
   1154	if (reg)
   1155		fspi_writel(f, reg, f->iobase + FSPI_INTR);
   1156
   1157	/* find the irq */
   1158	ret = platform_get_irq(pdev, 0);
   1159	if (ret < 0)
   1160		goto err_disable_clk;
   1161
   1162	ret = devm_request_irq(dev, ret,
   1163			nxp_fspi_irq_handler, 0, pdev->name, f);
   1164	if (ret) {
   1165		dev_err(dev, "failed to request irq: %d\n", ret);
   1166		goto err_disable_clk;
   1167	}
   1168
   1169	mutex_init(&f->lock);
   1170
   1171	ctlr->bus_num = -1;
   1172	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
   1173	ctlr->mem_ops = &nxp_fspi_mem_ops;
   1174
   1175	nxp_fspi_default_setup(f);
   1176
   1177	ctlr->dev.of_node = np;
   1178
   1179	ret = devm_spi_register_controller(&pdev->dev, ctlr);
   1180	if (ret)
   1181		goto err_destroy_mutex;
   1182
   1183	return 0;
   1184
   1185err_destroy_mutex:
   1186	mutex_destroy(&f->lock);
   1187
   1188err_disable_clk:
   1189	nxp_fspi_clk_disable_unprep(f);
   1190
   1191err_put_ctrl:
   1192	spi_controller_put(ctlr);
   1193
   1194	dev_err(dev, "NXP FSPI probe failed\n");
   1195	return ret;
   1196}
   1197
   1198static int nxp_fspi_remove(struct platform_device *pdev)
   1199{
   1200	struct nxp_fspi *f = platform_get_drvdata(pdev);
   1201
   1202	/* disable the hardware */
   1203	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
   1204
   1205	nxp_fspi_clk_disable_unprep(f);
   1206
   1207	mutex_destroy(&f->lock);
   1208
   1209	if (f->ahb_addr)
   1210		iounmap(f->ahb_addr);
   1211
   1212	return 0;
   1213}
   1214
   1215static int nxp_fspi_suspend(struct device *dev)
   1216{
   1217	return 0;
   1218}
   1219
   1220static int nxp_fspi_resume(struct device *dev)
   1221{
   1222	struct nxp_fspi *f = dev_get_drvdata(dev);
   1223
   1224	nxp_fspi_default_setup(f);
   1225
   1226	return 0;
   1227}
   1228
   1229static const struct of_device_id nxp_fspi_dt_ids[] = {
   1230	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
   1231	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
   1232	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
   1233	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
   1234	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
   1235	{ /* sentinel */ }
   1236};
   1237MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
   1238
   1239#ifdef CONFIG_ACPI
   1240static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
   1241	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
   1242	{}
   1243};
   1244MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
   1245#endif
   1246
   1247static const struct dev_pm_ops nxp_fspi_pm_ops = {
   1248	.suspend	= nxp_fspi_suspend,
   1249	.resume		= nxp_fspi_resume,
   1250};
   1251
   1252static struct platform_driver nxp_fspi_driver = {
   1253	.driver = {
   1254		.name	= "nxp-fspi",
   1255		.of_match_table = nxp_fspi_dt_ids,
   1256		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
   1257		.pm =   &nxp_fspi_pm_ops,
   1258	},
   1259	.probe          = nxp_fspi_probe,
   1260	.remove		= nxp_fspi_remove,
   1261};
   1262module_platform_driver(nxp_fspi_driver);
   1263
   1264MODULE_DESCRIPTION("NXP FSPI Controller Driver");
   1265MODULE_AUTHOR("NXP Semiconductor");
   1266MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
   1267MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
   1268MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
   1269MODULE_LICENSE("GPL v2");