cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-pl022.c (68600B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
      4 *
      5 * Copyright (C) 2008-2012 ST-Ericsson AB
      6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
      7 *
      8 * Author: Linus Walleij <linus.walleij@stericsson.com>
      9 *
     10 * Initial version inspired by:
     11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
     12 * Initial adoption to PL022 by:
     13 *      Sachin Verma <sachin.verma@st.com>
     14 */
     15
     16#include <linux/init.h>
     17#include <linux/module.h>
     18#include <linux/device.h>
     19#include <linux/ioport.h>
     20#include <linux/errno.h>
     21#include <linux/interrupt.h>
     22#include <linux/spi/spi.h>
     23#include <linux/delay.h>
     24#include <linux/clk.h>
     25#include <linux/err.h>
     26#include <linux/amba/bus.h>
     27#include <linux/amba/pl022.h>
     28#include <linux/io.h>
     29#include <linux/slab.h>
     30#include <linux/dmaengine.h>
     31#include <linux/dma-mapping.h>
     32#include <linux/scatterlist.h>
     33#include <linux/pm_runtime.h>
     34#include <linux/of.h>
     35#include <linux/pinctrl/consumer.h>
     36
     37/*
     38 * This macro is used to define some register default values.
     39 * reg is masked with mask, the OR:ed with an (again masked)
     40 * val shifted sb steps to the left.
     41 */
     42#define SSP_WRITE_BITS(reg, val, mask, sb) \
     43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
     44
     45/*
     46 * This macro is also used to define some default values.
     47 * It will just shift val by sb steps to the left and mask
     48 * the result with mask.
     49 */
     50#define GEN_MASK_BITS(val, mask, sb) \
     51 (((val)<<(sb)) & (mask))
     52
     53#define DRIVE_TX		0
     54#define DO_NOT_DRIVE_TX		1
     55
     56#define DO_NOT_QUEUE_DMA	0
     57#define QUEUE_DMA		1
     58
     59#define RX_TRANSFER		1
     60#define TX_TRANSFER		2
     61
     62/*
     63 * Macros to access SSP Registers with their offsets
     64 */
     65#define SSP_CR0(r)	(r + 0x000)
     66#define SSP_CR1(r)	(r + 0x004)
     67#define SSP_DR(r)	(r + 0x008)
     68#define SSP_SR(r)	(r + 0x00C)
     69#define SSP_CPSR(r)	(r + 0x010)
     70#define SSP_IMSC(r)	(r + 0x014)
     71#define SSP_RIS(r)	(r + 0x018)
     72#define SSP_MIS(r)	(r + 0x01C)
     73#define SSP_ICR(r)	(r + 0x020)
     74#define SSP_DMACR(r)	(r + 0x024)
     75#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
     76#define SSP_ITCR(r)	(r + 0x080)
     77#define SSP_ITIP(r)	(r + 0x084)
     78#define SSP_ITOP(r)	(r + 0x088)
     79#define SSP_TDR(r)	(r + 0x08C)
     80
     81#define SSP_PID0(r)	(r + 0xFE0)
     82#define SSP_PID1(r)	(r + 0xFE4)
     83#define SSP_PID2(r)	(r + 0xFE8)
     84#define SSP_PID3(r)	(r + 0xFEC)
     85
     86#define SSP_CID0(r)	(r + 0xFF0)
     87#define SSP_CID1(r)	(r + 0xFF4)
     88#define SSP_CID2(r)	(r + 0xFF8)
     89#define SSP_CID3(r)	(r + 0xFFC)
     90
     91/*
     92 * SSP Control Register 0  - SSP_CR0
     93 */
     94#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
     95#define SSP_CR0_MASK_FRF	(0x3UL << 4)
     96#define SSP_CR0_MASK_SPO	(0x1UL << 6)
     97#define SSP_CR0_MASK_SPH	(0x1UL << 7)
     98#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
     99
    100/*
    101 * The ST version of this block moves som bits
    102 * in SSP_CR0 and extends it to 32 bits
    103 */
    104#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
    105#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
    106#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
    107#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
    108
    109/*
    110 * SSP Control Register 0  - SSP_CR1
    111 */
    112#define SSP_CR1_MASK_LBM	(0x1UL << 0)
    113#define SSP_CR1_MASK_SSE	(0x1UL << 1)
    114#define SSP_CR1_MASK_MS		(0x1UL << 2)
    115#define SSP_CR1_MASK_SOD	(0x1UL << 3)
    116
    117/*
    118 * The ST version of this block adds some bits
    119 * in SSP_CR1
    120 */
    121#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
    122#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
    123#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
    124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
    125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
    126/* This one is only in the PL023 variant */
    127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
    128
    129/*
    130 * SSP Status Register - SSP_SR
    131 */
    132#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
    133#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
    134#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
    135#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
    136#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
    137
    138/*
    139 * SSP Clock Prescale Register  - SSP_CPSR
    140 */
    141#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
    142
    143/*
    144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
    145 */
    146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
    147#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
    148#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
    149#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
    150
    151/*
    152 * SSP Raw Interrupt Status Register - SSP_RIS
    153 */
    154/* Receive Overrun Raw Interrupt status */
    155#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
    156/* Receive Timeout Raw Interrupt status */
    157#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
    158/* Receive FIFO Raw Interrupt status */
    159#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
    160/* Transmit FIFO Raw Interrupt status */
    161#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
    162
    163/*
    164 * SSP Masked Interrupt Status Register - SSP_MIS
    165 */
    166/* Receive Overrun Masked Interrupt status */
    167#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
    168/* Receive Timeout Masked Interrupt status */
    169#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
    170/* Receive FIFO Masked Interrupt status */
    171#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
    172/* Transmit FIFO Masked Interrupt status */
    173#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
    174
    175/*
    176 * SSP Interrupt Clear Register - SSP_ICR
    177 */
    178/* Receive Overrun Raw Clear Interrupt bit */
    179#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
    180/* Receive Timeout Clear Interrupt bit */
    181#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
    182
    183/*
    184 * SSP DMA Control Register - SSP_DMACR
    185 */
    186/* Receive DMA Enable bit */
    187#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
    188/* Transmit DMA Enable bit */
    189#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
    190
    191/*
    192 * SSP Chip Select Control Register - SSP_CSR
    193 * (vendor extension)
    194 */
    195#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
    196
    197/*
    198 * SSP Integration Test control Register - SSP_ITCR
    199 */
    200#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
    201#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
    202
    203/*
    204 * SSP Integration Test Input Register - SSP_ITIP
    205 */
    206#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
    207#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
    208#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
    209#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
    210#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
    211#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
    212
    213/*
    214 * SSP Integration Test output Register - SSP_ITOP
    215 */
    216#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
    217#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
    218#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
    219#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
    220#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
    221#define ITOP_MASK_RORINTR		 (0x1UL << 5)
    222#define ITOP_MASK_RTINTR		 (0x1UL << 6)
    223#define ITOP_MASK_RXINTR		 (0x1UL << 7)
    224#define ITOP_MASK_TXINTR		 (0x1UL << 8)
    225#define ITOP_MASK_INTR			 (0x1UL << 9)
    226#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
    227#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
    228#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
    229#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
    230
    231/*
    232 * SSP Test Data Register - SSP_TDR
    233 */
    234#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
    235
    236/*
    237 * Message State
    238 * we use the spi_message.state (void *) pointer to
    239 * hold a single state value, that's why all this
    240 * (void *) casting is done here.
    241 */
    242#define STATE_START			((void *) 0)
    243#define STATE_RUNNING			((void *) 1)
    244#define STATE_DONE			((void *) 2)
    245#define STATE_ERROR			((void *) -1)
    246#define STATE_TIMEOUT			((void *) -2)
    247
    248/*
    249 * SSP State - Whether Enabled or Disabled
    250 */
    251#define SSP_DISABLED			(0)
    252#define SSP_ENABLED			(1)
    253
    254/*
    255 * SSP DMA State - Whether DMA Enabled or Disabled
    256 */
    257#define SSP_DMA_DISABLED		(0)
    258#define SSP_DMA_ENABLED			(1)
    259
    260/*
    261 * SSP Clock Defaults
    262 */
    263#define SSP_DEFAULT_CLKRATE 0x2
    264#define SSP_DEFAULT_PRESCALE 0x40
    265
    266/*
    267 * SSP Clock Parameter ranges
    268 */
    269#define CPSDVR_MIN 0x02
    270#define CPSDVR_MAX 0xFE
    271#define SCR_MIN 0x00
    272#define SCR_MAX 0xFF
    273
    274/*
    275 * SSP Interrupt related Macros
    276 */
    277#define DEFAULT_SSP_REG_IMSC  0x0UL
    278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
    279#define ENABLE_ALL_INTERRUPTS ( \
    280	SSP_IMSC_MASK_RORIM | \
    281	SSP_IMSC_MASK_RTIM | \
    282	SSP_IMSC_MASK_RXIM | \
    283	SSP_IMSC_MASK_TXIM \
    284)
    285
    286#define CLEAR_ALL_INTERRUPTS  0x3
    287
    288#define SPI_POLLING_TIMEOUT 1000
    289
    290/*
    291 * The type of reading going on this chip
    292 */
    293enum ssp_reading {
    294	READING_NULL,
    295	READING_U8,
    296	READING_U16,
    297	READING_U32
    298};
    299
    300/*
    301 * The type of writing going on this chip
    302 */
    303enum ssp_writing {
    304	WRITING_NULL,
    305	WRITING_U8,
    306	WRITING_U16,
    307	WRITING_U32
    308};
    309
    310/**
    311 * struct vendor_data - vendor-specific config parameters
    312 * for PL022 derivates
    313 * @fifodepth: depth of FIFOs (both)
    314 * @max_bpw: maximum number of bits per word
    315 * @unidir: supports unidirection transfers
    316 * @extended_cr: 32 bit wide control register 0 with extra
    317 * features and extra features in CR1 as found in the ST variants
    318 * @pl023: supports a subset of the ST extensions called "PL023"
    319 * @loopback: supports loopback mode
    320 * @internal_cs_ctrl: supports chip select control register
    321 */
    322struct vendor_data {
    323	int fifodepth;
    324	int max_bpw;
    325	bool unidir;
    326	bool extended_cr;
    327	bool pl023;
    328	bool loopback;
    329	bool internal_cs_ctrl;
    330};
    331
    332/**
    333 * struct pl022 - This is the private SSP driver data structure
    334 * @adev: AMBA device model hookup
    335 * @vendor: vendor data for the IP block
    336 * @phybase: the physical memory where the SSP device resides
    337 * @virtbase: the virtual memory where the SSP is mapped
    338 * @clk: outgoing clock "SPICLK" for the SPI bus
    339 * @master: SPI framework hookup
    340 * @master_info: controller-specific data from machine setup
    341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
    342 * @cur_msg: Pointer to current spi_message being processed
    343 * @cur_transfer: Pointer to current spi_transfer
    344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
    345 * @next_msg_cs_active: the next message in the queue has been examined
    346 *  and it was found that it uses the same chip select as the previous
    347 *  message, so we left it active after the previous transfer, and it's
    348 *  active already.
    349 * @tx: current position in TX buffer to be read
    350 * @tx_end: end position in TX buffer to be read
    351 * @rx: current position in RX buffer to be written
    352 * @rx_end: end position in RX buffer to be written
    353 * @read: the type of read currently going on
    354 * @write: the type of write currently going on
    355 * @exp_fifo_level: expected FIFO level
    356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
    357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
    358 * @dma_rx_channel: optional channel for RX DMA
    359 * @dma_tx_channel: optional channel for TX DMA
    360 * @sgt_rx: scattertable for the RX transfer
    361 * @sgt_tx: scattertable for the TX transfer
    362 * @dummypage: a dummy page used for driving data on the bus with DMA
    363 * @dma_running: indicates whether DMA is in operation
    364 * @cur_cs: current chip select index
    365 * @cur_gpiod: current chip select GPIO descriptor
    366 */
    367struct pl022 {
    368	struct amba_device		*adev;
    369	struct vendor_data		*vendor;
    370	resource_size_t			phybase;
    371	void __iomem			*virtbase;
    372	struct clk			*clk;
    373	struct spi_master		*master;
    374	struct pl022_ssp_controller	*master_info;
    375	/* Message per-transfer pump */
    376	struct tasklet_struct		pump_transfers;
    377	struct spi_message		*cur_msg;
    378	struct spi_transfer		*cur_transfer;
    379	struct chip_data		*cur_chip;
    380	bool				next_msg_cs_active;
    381	void				*tx;
    382	void				*tx_end;
    383	void				*rx;
    384	void				*rx_end;
    385	enum ssp_reading		read;
    386	enum ssp_writing		write;
    387	u32				exp_fifo_level;
    388	enum ssp_rx_level_trig		rx_lev_trig;
    389	enum ssp_tx_level_trig		tx_lev_trig;
    390	/* DMA settings */
    391#ifdef CONFIG_DMA_ENGINE
    392	struct dma_chan			*dma_rx_channel;
    393	struct dma_chan			*dma_tx_channel;
    394	struct sg_table			sgt_rx;
    395	struct sg_table			sgt_tx;
    396	char				*dummypage;
    397	bool				dma_running;
    398#endif
    399	int cur_cs;
    400	struct gpio_desc *cur_gpiod;
    401};
    402
    403/**
    404 * struct chip_data - To maintain runtime state of SSP for each client chip
    405 * @cr0: Value of control register CR0 of SSP - on later ST variants this
    406 *       register is 32 bits wide rather than just 16
    407 * @cr1: Value of control register CR1 of SSP
    408 * @dmacr: Value of DMA control Register of SSP
    409 * @cpsr: Value of Clock prescale register
    410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
    411 * @enable_dma: Whether to enable DMA or not
    412 * @read: function ptr to be used to read when doing xfer for this chip
    413 * @write: function ptr to be used to write when doing xfer for this chip
    414 * @xfer_type: polling/interrupt/DMA
    415 *
    416 * Runtime state of the SSP controller, maintained per chip,
    417 * This would be set according to the current message that would be served
    418 */
    419struct chip_data {
    420	u32 cr0;
    421	u16 cr1;
    422	u16 dmacr;
    423	u16 cpsr;
    424	u8 n_bytes;
    425	bool enable_dma;
    426	enum ssp_reading read;
    427	enum ssp_writing write;
    428	int xfer_type;
    429};
    430
    431/**
    432 * internal_cs_control - Control chip select signals via SSP_CSR.
    433 * @pl022: SSP driver private data structure
    434 * @command: select/delect the chip
    435 *
    436 * Used on controller with internal chip select control via SSP_CSR register
    437 * (vendor extension). Each of the 5 LSB in the register controls one chip
    438 * select signal.
    439 */
    440static void internal_cs_control(struct pl022 *pl022, u32 command)
    441{
    442	u32 tmp;
    443
    444	tmp = readw(SSP_CSR(pl022->virtbase));
    445	if (command == SSP_CHIP_SELECT)
    446		tmp &= ~BIT(pl022->cur_cs);
    447	else
    448		tmp |= BIT(pl022->cur_cs);
    449	writew(tmp, SSP_CSR(pl022->virtbase));
    450}
    451
    452static void pl022_cs_control(struct pl022 *pl022, u32 command)
    453{
    454	if (pl022->vendor->internal_cs_ctrl)
    455		internal_cs_control(pl022, command);
    456	else if (pl022->cur_gpiod)
    457		/*
    458		 * This needs to be inverted since with GPIOLIB in
    459		 * control, the inversion will be handled by
    460		 * GPIOLIB's active low handling. The "command"
    461		 * passed into this function will be SSP_CHIP_SELECT
    462		 * which is enum:ed to 0, so we need the inverse
    463		 * (1) to activate chip select.
    464		 */
    465		gpiod_set_value(pl022->cur_gpiod, !command);
    466}
    467
    468/**
    469 * giveback - current spi_message is over, schedule next message and call
    470 * callback of this message. Assumes that caller already
    471 * set message->status; dma and pio irqs are blocked
    472 * @pl022: SSP driver private data structure
    473 */
    474static void giveback(struct pl022 *pl022)
    475{
    476	struct spi_transfer *last_transfer;
    477	pl022->next_msg_cs_active = false;
    478
    479	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
    480					struct spi_transfer, transfer_list);
    481
    482	/* Delay if requested before any change in chip select */
    483	/*
    484	 * FIXME: This runs in interrupt context.
    485	 * Is this really smart?
    486	 */
    487	spi_transfer_delay_exec(last_transfer);
    488
    489	if (!last_transfer->cs_change) {
    490		struct spi_message *next_msg;
    491
    492		/*
    493		 * cs_change was not set. We can keep the chip select
    494		 * enabled if there is message in the queue and it is
    495		 * for the same spi device.
    496		 *
    497		 * We cannot postpone this until pump_messages, because
    498		 * after calling msg->complete (below) the driver that
    499		 * sent the current message could be unloaded, which
    500		 * could invalidate the cs_control() callback...
    501		 */
    502		/* get a pointer to the next message, if any */
    503		next_msg = spi_get_next_queued_message(pl022->master);
    504
    505		/*
    506		 * see if the next and current messages point
    507		 * to the same spi device.
    508		 */
    509		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
    510			next_msg = NULL;
    511		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
    512			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
    513		else
    514			pl022->next_msg_cs_active = true;
    515
    516	}
    517
    518	pl022->cur_msg = NULL;
    519	pl022->cur_transfer = NULL;
    520	pl022->cur_chip = NULL;
    521
    522	/* disable the SPI/SSP operation */
    523	writew((readw(SSP_CR1(pl022->virtbase)) &
    524		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
    525
    526	spi_finalize_current_message(pl022->master);
    527}
    528
    529/**
    530 * flush - flush the FIFO to reach a clean state
    531 * @pl022: SSP driver private data structure
    532 */
    533static int flush(struct pl022 *pl022)
    534{
    535	unsigned long limit = loops_per_jiffy << 1;
    536
    537	dev_dbg(&pl022->adev->dev, "flush\n");
    538	do {
    539		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
    540			readw(SSP_DR(pl022->virtbase));
    541	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
    542
    543	pl022->exp_fifo_level = 0;
    544
    545	return limit;
    546}
    547
    548/**
    549 * restore_state - Load configuration of current chip
    550 * @pl022: SSP driver private data structure
    551 */
    552static void restore_state(struct pl022 *pl022)
    553{
    554	struct chip_data *chip = pl022->cur_chip;
    555
    556	if (pl022->vendor->extended_cr)
    557		writel(chip->cr0, SSP_CR0(pl022->virtbase));
    558	else
    559		writew(chip->cr0, SSP_CR0(pl022->virtbase));
    560	writew(chip->cr1, SSP_CR1(pl022->virtbase));
    561	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
    562	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
    563	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
    564	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
    565}
    566
    567/*
    568 * Default SSP Register Values
    569 */
    570#define DEFAULT_SSP_REG_CR0 ( \
    571	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
    572	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
    573	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
    574	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
    575	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
    576)
    577
    578/* ST versions have slightly different bit layout */
    579#define DEFAULT_SSP_REG_CR0_ST ( \
    580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
    581	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
    582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
    583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
    584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
    585	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
    586	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
    587)
    588
    589/* The PL023 version is slightly different again */
    590#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
    591	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
    592	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
    593	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
    594	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
    595)
    596
    597#define DEFAULT_SSP_REG_CR1 ( \
    598	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
    599	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
    600	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
    601	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
    602)
    603
    604/* ST versions extend this register to use all 16 bits */
    605#define DEFAULT_SSP_REG_CR1_ST ( \
    606	DEFAULT_SSP_REG_CR1 | \
    607	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
    608	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
    609	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
    610	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
    611	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
    612)
    613
    614/*
    615 * The PL023 variant has further differences: no loopback mode, no microwire
    616 * support, and a new clock feedback delay setting.
    617 */
    618#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
    619	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
    620	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
    621	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
    622	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
    623	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
    624	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
    625	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
    626	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
    627)
    628
    629#define DEFAULT_SSP_REG_CPSR ( \
    630	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
    631)
    632
    633#define DEFAULT_SSP_REG_DMACR (\
    634	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
    635	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
    636)
    637
    638/**
    639 * load_ssp_default_config - Load default configuration for SSP
    640 * @pl022: SSP driver private data structure
    641 */
    642static void load_ssp_default_config(struct pl022 *pl022)
    643{
    644	if (pl022->vendor->pl023) {
    645		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
    646		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
    647	} else if (pl022->vendor->extended_cr) {
    648		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
    649		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
    650	} else {
    651		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
    652		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
    653	}
    654	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
    655	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
    656	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
    657	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
    658}
    659
    660/*
    661 * This will write to TX and read from RX according to the parameters
    662 * set in pl022.
    663 */
    664static void readwriter(struct pl022 *pl022)
    665{
    666
    667	/*
    668	 * The FIFO depth is different between primecell variants.
    669	 * I believe filling in too much in the FIFO might cause
    670	 * errons in 8bit wide transfers on ARM variants (just 8 words
    671	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
    672	 *
    673	 * To prevent this issue, the TX FIFO is only filled to the
    674	 * unused RX FIFO fill length, regardless of what the TX
    675	 * FIFO status flag indicates.
    676	 */
    677	dev_dbg(&pl022->adev->dev,
    678		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
    679		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
    680
    681	/* Read as much as you can */
    682	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
    683	       && (pl022->rx < pl022->rx_end)) {
    684		switch (pl022->read) {
    685		case READING_NULL:
    686			readw(SSP_DR(pl022->virtbase));
    687			break;
    688		case READING_U8:
    689			*(u8 *) (pl022->rx) =
    690				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
    691			break;
    692		case READING_U16:
    693			*(u16 *) (pl022->rx) =
    694				(u16) readw(SSP_DR(pl022->virtbase));
    695			break;
    696		case READING_U32:
    697			*(u32 *) (pl022->rx) =
    698				readl(SSP_DR(pl022->virtbase));
    699			break;
    700		}
    701		pl022->rx += (pl022->cur_chip->n_bytes);
    702		pl022->exp_fifo_level--;
    703	}
    704	/*
    705	 * Write as much as possible up to the RX FIFO size
    706	 */
    707	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
    708	       && (pl022->tx < pl022->tx_end)) {
    709		switch (pl022->write) {
    710		case WRITING_NULL:
    711			writew(0x0, SSP_DR(pl022->virtbase));
    712			break;
    713		case WRITING_U8:
    714			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
    715			break;
    716		case WRITING_U16:
    717			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
    718			break;
    719		case WRITING_U32:
    720			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
    721			break;
    722		}
    723		pl022->tx += (pl022->cur_chip->n_bytes);
    724		pl022->exp_fifo_level++;
    725		/*
    726		 * This inner reader takes care of things appearing in the RX
    727		 * FIFO as we're transmitting. This will happen a lot since the
    728		 * clock starts running when you put things into the TX FIFO,
    729		 * and then things are continuously clocked into the RX FIFO.
    730		 */
    731		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
    732		       && (pl022->rx < pl022->rx_end)) {
    733			switch (pl022->read) {
    734			case READING_NULL:
    735				readw(SSP_DR(pl022->virtbase));
    736				break;
    737			case READING_U8:
    738				*(u8 *) (pl022->rx) =
    739					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
    740				break;
    741			case READING_U16:
    742				*(u16 *) (pl022->rx) =
    743					(u16) readw(SSP_DR(pl022->virtbase));
    744				break;
    745			case READING_U32:
    746				*(u32 *) (pl022->rx) =
    747					readl(SSP_DR(pl022->virtbase));
    748				break;
    749			}
    750			pl022->rx += (pl022->cur_chip->n_bytes);
    751			pl022->exp_fifo_level--;
    752		}
    753	}
    754	/*
    755	 * When we exit here the TX FIFO should be full and the RX FIFO
    756	 * should be empty
    757	 */
    758}
    759
    760/**
    761 * next_transfer - Move to the Next transfer in the current spi message
    762 * @pl022: SSP driver private data structure
    763 *
    764 * This function moves though the linked list of spi transfers in the
    765 * current spi message and returns with the state of current spi
    766 * message i.e whether its last transfer is done(STATE_DONE) or
    767 * Next transfer is ready(STATE_RUNNING)
    768 */
    769static void *next_transfer(struct pl022 *pl022)
    770{
    771	struct spi_message *msg = pl022->cur_msg;
    772	struct spi_transfer *trans = pl022->cur_transfer;
    773
    774	/* Move to next transfer */
    775	if (trans->transfer_list.next != &msg->transfers) {
    776		pl022->cur_transfer =
    777		    list_entry(trans->transfer_list.next,
    778			       struct spi_transfer, transfer_list);
    779		return STATE_RUNNING;
    780	}
    781	return STATE_DONE;
    782}
    783
    784/*
    785 * This DMA functionality is only compiled in if we have
    786 * access to the generic DMA devices/DMA engine.
    787 */
    788#ifdef CONFIG_DMA_ENGINE
    789static void unmap_free_dma_scatter(struct pl022 *pl022)
    790{
    791	/* Unmap and free the SG tables */
    792	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
    793		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
    794	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
    795		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
    796	sg_free_table(&pl022->sgt_rx);
    797	sg_free_table(&pl022->sgt_tx);
    798}
    799
    800static void dma_callback(void *data)
    801{
    802	struct pl022 *pl022 = data;
    803	struct spi_message *msg = pl022->cur_msg;
    804
    805	BUG_ON(!pl022->sgt_rx.sgl);
    806
    807#ifdef VERBOSE_DEBUG
    808	/*
    809	 * Optionally dump out buffers to inspect contents, this is
    810	 * good if you want to convince yourself that the loopback
    811	 * read/write contents are the same, when adopting to a new
    812	 * DMA engine.
    813	 */
    814	{
    815		struct scatterlist *sg;
    816		unsigned int i;
    817
    818		dma_sync_sg_for_cpu(&pl022->adev->dev,
    819				    pl022->sgt_rx.sgl,
    820				    pl022->sgt_rx.nents,
    821				    DMA_FROM_DEVICE);
    822
    823		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
    824			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
    825			print_hex_dump(KERN_ERR, "SPI RX: ",
    826				       DUMP_PREFIX_OFFSET,
    827				       16,
    828				       1,
    829				       sg_virt(sg),
    830				       sg_dma_len(sg),
    831				       1);
    832		}
    833		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
    834			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
    835			print_hex_dump(KERN_ERR, "SPI TX: ",
    836				       DUMP_PREFIX_OFFSET,
    837				       16,
    838				       1,
    839				       sg_virt(sg),
    840				       sg_dma_len(sg),
    841				       1);
    842		}
    843	}
    844#endif
    845
    846	unmap_free_dma_scatter(pl022);
    847
    848	/* Update total bytes transferred */
    849	msg->actual_length += pl022->cur_transfer->len;
    850	/* Move to next transfer */
    851	msg->state = next_transfer(pl022);
    852	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
    853		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
    854	tasklet_schedule(&pl022->pump_transfers);
    855}
    856
    857static void setup_dma_scatter(struct pl022 *pl022,
    858			      void *buffer,
    859			      unsigned int length,
    860			      struct sg_table *sgtab)
    861{
    862	struct scatterlist *sg;
    863	int bytesleft = length;
    864	void *bufp = buffer;
    865	int mapbytes;
    866	int i;
    867
    868	if (buffer) {
    869		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
    870			/*
    871			 * If there are less bytes left than what fits
    872			 * in the current page (plus page alignment offset)
    873			 * we just feed in this, else we stuff in as much
    874			 * as we can.
    875			 */
    876			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
    877				mapbytes = bytesleft;
    878			else
    879				mapbytes = PAGE_SIZE - offset_in_page(bufp);
    880			sg_set_page(sg, virt_to_page(bufp),
    881				    mapbytes, offset_in_page(bufp));
    882			bufp += mapbytes;
    883			bytesleft -= mapbytes;
    884			dev_dbg(&pl022->adev->dev,
    885				"set RX/TX target page @ %p, %d bytes, %d left\n",
    886				bufp, mapbytes, bytesleft);
    887		}
    888	} else {
    889		/* Map the dummy buffer on every page */
    890		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
    891			if (bytesleft < PAGE_SIZE)
    892				mapbytes = bytesleft;
    893			else
    894				mapbytes = PAGE_SIZE;
    895			sg_set_page(sg, virt_to_page(pl022->dummypage),
    896				    mapbytes, 0);
    897			bytesleft -= mapbytes;
    898			dev_dbg(&pl022->adev->dev,
    899				"set RX/TX to dummy page %d bytes, %d left\n",
    900				mapbytes, bytesleft);
    901
    902		}
    903	}
    904	BUG_ON(bytesleft);
    905}
    906
    907/**
    908 * configure_dma - configures the channels for the next transfer
    909 * @pl022: SSP driver's private data structure
    910 */
    911static int configure_dma(struct pl022 *pl022)
    912{
    913	struct dma_slave_config rx_conf = {
    914		.src_addr = SSP_DR(pl022->phybase),
    915		.direction = DMA_DEV_TO_MEM,
    916		.device_fc = false,
    917	};
    918	struct dma_slave_config tx_conf = {
    919		.dst_addr = SSP_DR(pl022->phybase),
    920		.direction = DMA_MEM_TO_DEV,
    921		.device_fc = false,
    922	};
    923	unsigned int pages;
    924	int ret;
    925	int rx_sglen, tx_sglen;
    926	struct dma_chan *rxchan = pl022->dma_rx_channel;
    927	struct dma_chan *txchan = pl022->dma_tx_channel;
    928	struct dma_async_tx_descriptor *rxdesc;
    929	struct dma_async_tx_descriptor *txdesc;
    930
    931	/* Check that the channels are available */
    932	if (!rxchan || !txchan)
    933		return -ENODEV;
    934
    935	/*
    936	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
    937	 * Notice that the DMA engine uses one-to-one mapping. Since we can
    938	 * not trigger on 2 elements this needs explicit mapping rather than
    939	 * calculation.
    940	 */
    941	switch (pl022->rx_lev_trig) {
    942	case SSP_RX_1_OR_MORE_ELEM:
    943		rx_conf.src_maxburst = 1;
    944		break;
    945	case SSP_RX_4_OR_MORE_ELEM:
    946		rx_conf.src_maxburst = 4;
    947		break;
    948	case SSP_RX_8_OR_MORE_ELEM:
    949		rx_conf.src_maxburst = 8;
    950		break;
    951	case SSP_RX_16_OR_MORE_ELEM:
    952		rx_conf.src_maxburst = 16;
    953		break;
    954	case SSP_RX_32_OR_MORE_ELEM:
    955		rx_conf.src_maxburst = 32;
    956		break;
    957	default:
    958		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
    959		break;
    960	}
    961
    962	switch (pl022->tx_lev_trig) {
    963	case SSP_TX_1_OR_MORE_EMPTY_LOC:
    964		tx_conf.dst_maxburst = 1;
    965		break;
    966	case SSP_TX_4_OR_MORE_EMPTY_LOC:
    967		tx_conf.dst_maxburst = 4;
    968		break;
    969	case SSP_TX_8_OR_MORE_EMPTY_LOC:
    970		tx_conf.dst_maxburst = 8;
    971		break;
    972	case SSP_TX_16_OR_MORE_EMPTY_LOC:
    973		tx_conf.dst_maxburst = 16;
    974		break;
    975	case SSP_TX_32_OR_MORE_EMPTY_LOC:
    976		tx_conf.dst_maxburst = 32;
    977		break;
    978	default:
    979		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
    980		break;
    981	}
    982
    983	switch (pl022->read) {
    984	case READING_NULL:
    985		/* Use the same as for writing */
    986		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
    987		break;
    988	case READING_U8:
    989		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
    990		break;
    991	case READING_U16:
    992		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
    993		break;
    994	case READING_U32:
    995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    996		break;
    997	}
    998
    999	switch (pl022->write) {
   1000	case WRITING_NULL:
   1001		/* Use the same as for reading */
   1002		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
   1003		break;
   1004	case WRITING_U8:
   1005		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
   1006		break;
   1007	case WRITING_U16:
   1008		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
   1009		break;
   1010	case WRITING_U32:
   1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
   1012		break;
   1013	}
   1014
   1015	/* SPI pecularity: we need to read and write the same width */
   1016	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
   1017		rx_conf.src_addr_width = tx_conf.dst_addr_width;
   1018	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
   1019		tx_conf.dst_addr_width = rx_conf.src_addr_width;
   1020	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
   1021
   1022	dmaengine_slave_config(rxchan, &rx_conf);
   1023	dmaengine_slave_config(txchan, &tx_conf);
   1024
   1025	/* Create sglists for the transfers */
   1026	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
   1027	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
   1028
   1029	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
   1030	if (ret)
   1031		goto err_alloc_rx_sg;
   1032
   1033	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
   1034	if (ret)
   1035		goto err_alloc_tx_sg;
   1036
   1037	/* Fill in the scatterlists for the RX+TX buffers */
   1038	setup_dma_scatter(pl022, pl022->rx,
   1039			  pl022->cur_transfer->len, &pl022->sgt_rx);
   1040	setup_dma_scatter(pl022, pl022->tx,
   1041			  pl022->cur_transfer->len, &pl022->sgt_tx);
   1042
   1043	/* Map DMA buffers */
   1044	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
   1045			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
   1046	if (!rx_sglen)
   1047		goto err_rx_sgmap;
   1048
   1049	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
   1050			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
   1051	if (!tx_sglen)
   1052		goto err_tx_sgmap;
   1053
   1054	/* Send both scatterlists */
   1055	rxdesc = dmaengine_prep_slave_sg(rxchan,
   1056				      pl022->sgt_rx.sgl,
   1057				      rx_sglen,
   1058				      DMA_DEV_TO_MEM,
   1059				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
   1060	if (!rxdesc)
   1061		goto err_rxdesc;
   1062
   1063	txdesc = dmaengine_prep_slave_sg(txchan,
   1064				      pl022->sgt_tx.sgl,
   1065				      tx_sglen,
   1066				      DMA_MEM_TO_DEV,
   1067				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
   1068	if (!txdesc)
   1069		goto err_txdesc;
   1070
   1071	/* Put the callback on the RX transfer only, that should finish last */
   1072	rxdesc->callback = dma_callback;
   1073	rxdesc->callback_param = pl022;
   1074
   1075	/* Submit and fire RX and TX with TX last so we're ready to read! */
   1076	dmaengine_submit(rxdesc);
   1077	dmaengine_submit(txdesc);
   1078	dma_async_issue_pending(rxchan);
   1079	dma_async_issue_pending(txchan);
   1080	pl022->dma_running = true;
   1081
   1082	return 0;
   1083
   1084err_txdesc:
   1085	dmaengine_terminate_all(txchan);
   1086err_rxdesc:
   1087	dmaengine_terminate_all(rxchan);
   1088	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
   1089		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
   1090err_tx_sgmap:
   1091	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
   1092		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
   1093err_rx_sgmap:
   1094	sg_free_table(&pl022->sgt_tx);
   1095err_alloc_tx_sg:
   1096	sg_free_table(&pl022->sgt_rx);
   1097err_alloc_rx_sg:
   1098	return -ENOMEM;
   1099}
   1100
   1101static int pl022_dma_probe(struct pl022 *pl022)
   1102{
   1103	dma_cap_mask_t mask;
   1104
   1105	/* Try to acquire a generic DMA engine slave channel */
   1106	dma_cap_zero(mask);
   1107	dma_cap_set(DMA_SLAVE, mask);
   1108	/*
   1109	 * We need both RX and TX channels to do DMA, else do none
   1110	 * of them.
   1111	 */
   1112	pl022->dma_rx_channel = dma_request_channel(mask,
   1113					    pl022->master_info->dma_filter,
   1114					    pl022->master_info->dma_rx_param);
   1115	if (!pl022->dma_rx_channel) {
   1116		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
   1117		goto err_no_rxchan;
   1118	}
   1119
   1120	pl022->dma_tx_channel = dma_request_channel(mask,
   1121					    pl022->master_info->dma_filter,
   1122					    pl022->master_info->dma_tx_param);
   1123	if (!pl022->dma_tx_channel) {
   1124		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
   1125		goto err_no_txchan;
   1126	}
   1127
   1128	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
   1129	if (!pl022->dummypage)
   1130		goto err_no_dummypage;
   1131
   1132	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
   1133		 dma_chan_name(pl022->dma_rx_channel),
   1134		 dma_chan_name(pl022->dma_tx_channel));
   1135
   1136	return 0;
   1137
   1138err_no_dummypage:
   1139	dma_release_channel(pl022->dma_tx_channel);
   1140err_no_txchan:
   1141	dma_release_channel(pl022->dma_rx_channel);
   1142	pl022->dma_rx_channel = NULL;
   1143err_no_rxchan:
   1144	dev_err(&pl022->adev->dev,
   1145			"Failed to work in dma mode, work without dma!\n");
   1146	return -ENODEV;
   1147}
   1148
   1149static int pl022_dma_autoprobe(struct pl022 *pl022)
   1150{
   1151	struct device *dev = &pl022->adev->dev;
   1152	struct dma_chan *chan;
   1153	int err;
   1154
   1155	/* automatically configure DMA channels from platform, normally using DT */
   1156	chan = dma_request_chan(dev, "rx");
   1157	if (IS_ERR(chan)) {
   1158		err = PTR_ERR(chan);
   1159		goto err_no_rxchan;
   1160	}
   1161
   1162	pl022->dma_rx_channel = chan;
   1163
   1164	chan = dma_request_chan(dev, "tx");
   1165	if (IS_ERR(chan)) {
   1166		err = PTR_ERR(chan);
   1167		goto err_no_txchan;
   1168	}
   1169
   1170	pl022->dma_tx_channel = chan;
   1171
   1172	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
   1173	if (!pl022->dummypage) {
   1174		err = -ENOMEM;
   1175		goto err_no_dummypage;
   1176	}
   1177
   1178	return 0;
   1179
   1180err_no_dummypage:
   1181	dma_release_channel(pl022->dma_tx_channel);
   1182	pl022->dma_tx_channel = NULL;
   1183err_no_txchan:
   1184	dma_release_channel(pl022->dma_rx_channel);
   1185	pl022->dma_rx_channel = NULL;
   1186err_no_rxchan:
   1187	return err;
   1188}
   1189
   1190static void terminate_dma(struct pl022 *pl022)
   1191{
   1192	struct dma_chan *rxchan = pl022->dma_rx_channel;
   1193	struct dma_chan *txchan = pl022->dma_tx_channel;
   1194
   1195	dmaengine_terminate_all(rxchan);
   1196	dmaengine_terminate_all(txchan);
   1197	unmap_free_dma_scatter(pl022);
   1198	pl022->dma_running = false;
   1199}
   1200
   1201static void pl022_dma_remove(struct pl022 *pl022)
   1202{
   1203	if (pl022->dma_running)
   1204		terminate_dma(pl022);
   1205	if (pl022->dma_tx_channel)
   1206		dma_release_channel(pl022->dma_tx_channel);
   1207	if (pl022->dma_rx_channel)
   1208		dma_release_channel(pl022->dma_rx_channel);
   1209	kfree(pl022->dummypage);
   1210}
   1211
   1212#else
   1213static inline int configure_dma(struct pl022 *pl022)
   1214{
   1215	return -ENODEV;
   1216}
   1217
   1218static inline int pl022_dma_autoprobe(struct pl022 *pl022)
   1219{
   1220	return 0;
   1221}
   1222
   1223static inline int pl022_dma_probe(struct pl022 *pl022)
   1224{
   1225	return 0;
   1226}
   1227
   1228static inline void pl022_dma_remove(struct pl022 *pl022)
   1229{
   1230}
   1231#endif
   1232
   1233/**
   1234 * pl022_interrupt_handler - Interrupt handler for SSP controller
   1235 * @irq: IRQ number
   1236 * @dev_id: Local device data
   1237 *
   1238 * This function handles interrupts generated for an interrupt based transfer.
   1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
   1240 * current message's state as STATE_ERROR and schedule the tasklet
   1241 * pump_transfers which will do the postprocessing of the current message by
   1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
   1243 * more data, and writes data in TX FIFO till it is not full. If we complete
   1244 * the transfer we move to the next transfer and schedule the tasklet.
   1245 */
   1246static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
   1247{
   1248	struct pl022 *pl022 = dev_id;
   1249	struct spi_message *msg = pl022->cur_msg;
   1250	u16 irq_status = 0;
   1251
   1252	if (unlikely(!msg)) {
   1253		dev_err(&pl022->adev->dev,
   1254			"bad message state in interrupt handler");
   1255		/* Never fail */
   1256		return IRQ_HANDLED;
   1257	}
   1258
   1259	/* Read the Interrupt Status Register */
   1260	irq_status = readw(SSP_MIS(pl022->virtbase));
   1261
   1262	if (unlikely(!irq_status))
   1263		return IRQ_NONE;
   1264
   1265	/*
   1266	 * This handles the FIFO interrupts, the timeout
   1267	 * interrupts are flatly ignored, they cannot be
   1268	 * trusted.
   1269	 */
   1270	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
   1271		/*
   1272		 * Overrun interrupt - bail out since our Data has been
   1273		 * corrupted
   1274		 */
   1275		dev_err(&pl022->adev->dev, "FIFO overrun\n");
   1276		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
   1277			dev_err(&pl022->adev->dev,
   1278				"RXFIFO is full\n");
   1279
   1280		/*
   1281		 * Disable and clear interrupts, disable SSP,
   1282		 * mark message with bad status so it can be
   1283		 * retried.
   1284		 */
   1285		writew(DISABLE_ALL_INTERRUPTS,
   1286		       SSP_IMSC(pl022->virtbase));
   1287		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
   1288		writew((readw(SSP_CR1(pl022->virtbase)) &
   1289			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
   1290		msg->state = STATE_ERROR;
   1291
   1292		/* Schedule message queue handler */
   1293		tasklet_schedule(&pl022->pump_transfers);
   1294		return IRQ_HANDLED;
   1295	}
   1296
   1297	readwriter(pl022);
   1298
   1299	if (pl022->tx == pl022->tx_end) {
   1300		/* Disable Transmit interrupt, enable receive interrupt */
   1301		writew((readw(SSP_IMSC(pl022->virtbase)) &
   1302		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
   1303		       SSP_IMSC(pl022->virtbase));
   1304	}
   1305
   1306	/*
   1307	 * Since all transactions must write as much as shall be read,
   1308	 * we can conclude the entire transaction once RX is complete.
   1309	 * At this point, all TX will always be finished.
   1310	 */
   1311	if (pl022->rx >= pl022->rx_end) {
   1312		writew(DISABLE_ALL_INTERRUPTS,
   1313		       SSP_IMSC(pl022->virtbase));
   1314		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
   1315		if (unlikely(pl022->rx > pl022->rx_end)) {
   1316			dev_warn(&pl022->adev->dev, "read %u surplus "
   1317				 "bytes (did you request an odd "
   1318				 "number of bytes on a 16bit bus?)\n",
   1319				 (u32) (pl022->rx - pl022->rx_end));
   1320		}
   1321		/* Update total bytes transferred */
   1322		msg->actual_length += pl022->cur_transfer->len;
   1323		/* Move to next transfer */
   1324		msg->state = next_transfer(pl022);
   1325		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
   1326			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
   1327		tasklet_schedule(&pl022->pump_transfers);
   1328		return IRQ_HANDLED;
   1329	}
   1330
   1331	return IRQ_HANDLED;
   1332}
   1333
   1334/*
   1335 * This sets up the pointers to memory for the next message to
   1336 * send out on the SPI bus.
   1337 */
   1338static int set_up_next_transfer(struct pl022 *pl022,
   1339				struct spi_transfer *transfer)
   1340{
   1341	int residue;
   1342
   1343	/* Sanity check the message for this bus width */
   1344	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
   1345	if (unlikely(residue != 0)) {
   1346		dev_err(&pl022->adev->dev,
   1347			"message of %u bytes to transmit but the current "
   1348			"chip bus has a data width of %u bytes!\n",
   1349			pl022->cur_transfer->len,
   1350			pl022->cur_chip->n_bytes);
   1351		dev_err(&pl022->adev->dev, "skipping this message\n");
   1352		return -EIO;
   1353	}
   1354	pl022->tx = (void *)transfer->tx_buf;
   1355	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
   1356	pl022->rx = (void *)transfer->rx_buf;
   1357	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
   1358	pl022->write =
   1359	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
   1360	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
   1361	return 0;
   1362}
   1363
   1364/**
   1365 * pump_transfers - Tasklet function which schedules next transfer
   1366 * when running in interrupt or DMA transfer mode.
   1367 * @data: SSP driver private data structure
   1368 *
   1369 */
   1370static void pump_transfers(unsigned long data)
   1371{
   1372	struct pl022 *pl022 = (struct pl022 *) data;
   1373	struct spi_message *message = NULL;
   1374	struct spi_transfer *transfer = NULL;
   1375	struct spi_transfer *previous = NULL;
   1376
   1377	/* Get current state information */
   1378	message = pl022->cur_msg;
   1379	transfer = pl022->cur_transfer;
   1380
   1381	/* Handle for abort */
   1382	if (message->state == STATE_ERROR) {
   1383		message->status = -EIO;
   1384		giveback(pl022);
   1385		return;
   1386	}
   1387
   1388	/* Handle end of message */
   1389	if (message->state == STATE_DONE) {
   1390		message->status = 0;
   1391		giveback(pl022);
   1392		return;
   1393	}
   1394
   1395	/* Delay if requested at end of transfer before CS change */
   1396	if (message->state == STATE_RUNNING) {
   1397		previous = list_entry(transfer->transfer_list.prev,
   1398					struct spi_transfer,
   1399					transfer_list);
   1400		/*
   1401		 * FIXME: This runs in interrupt context.
   1402		 * Is this really smart?
   1403		 */
   1404		spi_transfer_delay_exec(previous);
   1405
   1406		/* Reselect chip select only if cs_change was requested */
   1407		if (previous->cs_change)
   1408			pl022_cs_control(pl022, SSP_CHIP_SELECT);
   1409	} else {
   1410		/* STATE_START */
   1411		message->state = STATE_RUNNING;
   1412	}
   1413
   1414	if (set_up_next_transfer(pl022, transfer)) {
   1415		message->state = STATE_ERROR;
   1416		message->status = -EIO;
   1417		giveback(pl022);
   1418		return;
   1419	}
   1420	/* Flush the FIFOs and let's go! */
   1421	flush(pl022);
   1422
   1423	if (pl022->cur_chip->enable_dma) {
   1424		if (configure_dma(pl022)) {
   1425			dev_dbg(&pl022->adev->dev,
   1426				"configuration of DMA failed, fall back to interrupt mode\n");
   1427			goto err_config_dma;
   1428		}
   1429		return;
   1430	}
   1431
   1432err_config_dma:
   1433	/* enable all interrupts except RX */
   1434	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
   1435}
   1436
   1437static void do_interrupt_dma_transfer(struct pl022 *pl022)
   1438{
   1439	/*
   1440	 * Default is to enable all interrupts except RX -
   1441	 * this will be enabled once TX is complete
   1442	 */
   1443	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
   1444
   1445	/* Enable target chip, if not already active */
   1446	if (!pl022->next_msg_cs_active)
   1447		pl022_cs_control(pl022, SSP_CHIP_SELECT);
   1448
   1449	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
   1450		/* Error path */
   1451		pl022->cur_msg->state = STATE_ERROR;
   1452		pl022->cur_msg->status = -EIO;
   1453		giveback(pl022);
   1454		return;
   1455	}
   1456	/* If we're using DMA, set up DMA here */
   1457	if (pl022->cur_chip->enable_dma) {
   1458		/* Configure DMA transfer */
   1459		if (configure_dma(pl022)) {
   1460			dev_dbg(&pl022->adev->dev,
   1461				"configuration of DMA failed, fall back to interrupt mode\n");
   1462			goto err_config_dma;
   1463		}
   1464		/* Disable interrupts in DMA mode, IRQ from DMA controller */
   1465		irqflags = DISABLE_ALL_INTERRUPTS;
   1466	}
   1467err_config_dma:
   1468	/* Enable SSP, turn on interrupts */
   1469	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
   1470	       SSP_CR1(pl022->virtbase));
   1471	writew(irqflags, SSP_IMSC(pl022->virtbase));
   1472}
   1473
   1474static void print_current_status(struct pl022 *pl022)
   1475{
   1476	u32 read_cr0;
   1477	u16 read_cr1, read_dmacr, read_sr;
   1478
   1479	if (pl022->vendor->extended_cr)
   1480		read_cr0 = readl(SSP_CR0(pl022->virtbase));
   1481	else
   1482		read_cr0 = readw(SSP_CR0(pl022->virtbase));
   1483	read_cr1 = readw(SSP_CR1(pl022->virtbase));
   1484	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
   1485	read_sr = readw(SSP_SR(pl022->virtbase));
   1486
   1487	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
   1488	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
   1489	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
   1490	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
   1491	dev_warn(&pl022->adev->dev,
   1492			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
   1493			pl022->exp_fifo_level,
   1494			pl022->vendor->fifodepth);
   1495
   1496}
   1497
   1498static void do_polling_transfer(struct pl022 *pl022)
   1499{
   1500	struct spi_message *message = NULL;
   1501	struct spi_transfer *transfer = NULL;
   1502	struct spi_transfer *previous = NULL;
   1503	unsigned long time, timeout;
   1504
   1505	message = pl022->cur_msg;
   1506
   1507	while (message->state != STATE_DONE) {
   1508		/* Handle for abort */
   1509		if (message->state == STATE_ERROR)
   1510			break;
   1511		transfer = pl022->cur_transfer;
   1512
   1513		/* Delay if requested at end of transfer */
   1514		if (message->state == STATE_RUNNING) {
   1515			previous =
   1516			    list_entry(transfer->transfer_list.prev,
   1517				       struct spi_transfer, transfer_list);
   1518			spi_transfer_delay_exec(previous);
   1519			if (previous->cs_change)
   1520				pl022_cs_control(pl022, SSP_CHIP_SELECT);
   1521		} else {
   1522			/* STATE_START */
   1523			message->state = STATE_RUNNING;
   1524			if (!pl022->next_msg_cs_active)
   1525				pl022_cs_control(pl022, SSP_CHIP_SELECT);
   1526		}
   1527
   1528		/* Configuration Changing Per Transfer */
   1529		if (set_up_next_transfer(pl022, transfer)) {
   1530			/* Error path */
   1531			message->state = STATE_ERROR;
   1532			break;
   1533		}
   1534		/* Flush FIFOs and enable SSP */
   1535		flush(pl022);
   1536		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
   1537		       SSP_CR1(pl022->virtbase));
   1538
   1539		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
   1540
   1541		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
   1542		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
   1543			time = jiffies;
   1544			readwriter(pl022);
   1545			if (time_after(time, timeout)) {
   1546				dev_warn(&pl022->adev->dev,
   1547				"%s: timeout!\n", __func__);
   1548				message->state = STATE_TIMEOUT;
   1549				print_current_status(pl022);
   1550				goto out;
   1551			}
   1552			cpu_relax();
   1553		}
   1554
   1555		/* Update total byte transferred */
   1556		message->actual_length += pl022->cur_transfer->len;
   1557		/* Move to next transfer */
   1558		message->state = next_transfer(pl022);
   1559		if (message->state != STATE_DONE
   1560		    && pl022->cur_transfer->cs_change)
   1561			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
   1562	}
   1563out:
   1564	/* Handle end of message */
   1565	if (message->state == STATE_DONE)
   1566		message->status = 0;
   1567	else if (message->state == STATE_TIMEOUT)
   1568		message->status = -EAGAIN;
   1569	else
   1570		message->status = -EIO;
   1571
   1572	giveback(pl022);
   1573	return;
   1574}
   1575
   1576static int pl022_transfer_one_message(struct spi_master *master,
   1577				      struct spi_message *msg)
   1578{
   1579	struct pl022 *pl022 = spi_master_get_devdata(master);
   1580
   1581	/* Initial message state */
   1582	pl022->cur_msg = msg;
   1583	msg->state = STATE_START;
   1584
   1585	pl022->cur_transfer = list_entry(msg->transfers.next,
   1586					 struct spi_transfer, transfer_list);
   1587
   1588	/* Setup the SPI using the per chip configuration */
   1589	pl022->cur_chip = spi_get_ctldata(msg->spi);
   1590	pl022->cur_cs = msg->spi->chip_select;
   1591	/* This is always available but may be set to -ENOENT */
   1592	pl022->cur_gpiod = msg->spi->cs_gpiod;
   1593
   1594	restore_state(pl022);
   1595	flush(pl022);
   1596
   1597	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
   1598		do_polling_transfer(pl022);
   1599	else
   1600		do_interrupt_dma_transfer(pl022);
   1601
   1602	return 0;
   1603}
   1604
   1605static int pl022_unprepare_transfer_hardware(struct spi_master *master)
   1606{
   1607	struct pl022 *pl022 = spi_master_get_devdata(master);
   1608
   1609	/* nothing more to do - disable spi/ssp and power off */
   1610	writew((readw(SSP_CR1(pl022->virtbase)) &
   1611		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
   1612
   1613	return 0;
   1614}
   1615
   1616static int verify_controller_parameters(struct pl022 *pl022,
   1617				struct pl022_config_chip const *chip_info)
   1618{
   1619	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
   1620	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
   1621		dev_err(&pl022->adev->dev,
   1622			"interface is configured incorrectly\n");
   1623		return -EINVAL;
   1624	}
   1625	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
   1626	    (!pl022->vendor->unidir)) {
   1627		dev_err(&pl022->adev->dev,
   1628			"unidirectional mode not supported in this "
   1629			"hardware version\n");
   1630		return -EINVAL;
   1631	}
   1632	if ((chip_info->hierarchy != SSP_MASTER)
   1633	    && (chip_info->hierarchy != SSP_SLAVE)) {
   1634		dev_err(&pl022->adev->dev,
   1635			"hierarchy is configured incorrectly\n");
   1636		return -EINVAL;
   1637	}
   1638	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
   1639	    && (chip_info->com_mode != DMA_TRANSFER)
   1640	    && (chip_info->com_mode != POLLING_TRANSFER)) {
   1641		dev_err(&pl022->adev->dev,
   1642			"Communication mode is configured incorrectly\n");
   1643		return -EINVAL;
   1644	}
   1645	switch (chip_info->rx_lev_trig) {
   1646	case SSP_RX_1_OR_MORE_ELEM:
   1647	case SSP_RX_4_OR_MORE_ELEM:
   1648	case SSP_RX_8_OR_MORE_ELEM:
   1649		/* These are always OK, all variants can handle this */
   1650		break;
   1651	case SSP_RX_16_OR_MORE_ELEM:
   1652		if (pl022->vendor->fifodepth < 16) {
   1653			dev_err(&pl022->adev->dev,
   1654			"RX FIFO Trigger Level is configured incorrectly\n");
   1655			return -EINVAL;
   1656		}
   1657		break;
   1658	case SSP_RX_32_OR_MORE_ELEM:
   1659		if (pl022->vendor->fifodepth < 32) {
   1660			dev_err(&pl022->adev->dev,
   1661			"RX FIFO Trigger Level is configured incorrectly\n");
   1662			return -EINVAL;
   1663		}
   1664		break;
   1665	default:
   1666		dev_err(&pl022->adev->dev,
   1667			"RX FIFO Trigger Level is configured incorrectly\n");
   1668		return -EINVAL;
   1669	}
   1670	switch (chip_info->tx_lev_trig) {
   1671	case SSP_TX_1_OR_MORE_EMPTY_LOC:
   1672	case SSP_TX_4_OR_MORE_EMPTY_LOC:
   1673	case SSP_TX_8_OR_MORE_EMPTY_LOC:
   1674		/* These are always OK, all variants can handle this */
   1675		break;
   1676	case SSP_TX_16_OR_MORE_EMPTY_LOC:
   1677		if (pl022->vendor->fifodepth < 16) {
   1678			dev_err(&pl022->adev->dev,
   1679			"TX FIFO Trigger Level is configured incorrectly\n");
   1680			return -EINVAL;
   1681		}
   1682		break;
   1683	case SSP_TX_32_OR_MORE_EMPTY_LOC:
   1684		if (pl022->vendor->fifodepth < 32) {
   1685			dev_err(&pl022->adev->dev,
   1686			"TX FIFO Trigger Level is configured incorrectly\n");
   1687			return -EINVAL;
   1688		}
   1689		break;
   1690	default:
   1691		dev_err(&pl022->adev->dev,
   1692			"TX FIFO Trigger Level is configured incorrectly\n");
   1693		return -EINVAL;
   1694	}
   1695	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
   1696		if ((chip_info->ctrl_len < SSP_BITS_4)
   1697		    || (chip_info->ctrl_len > SSP_BITS_32)) {
   1698			dev_err(&pl022->adev->dev,
   1699				"CTRL LEN is configured incorrectly\n");
   1700			return -EINVAL;
   1701		}
   1702		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
   1703		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
   1704			dev_err(&pl022->adev->dev,
   1705				"Wait State is configured incorrectly\n");
   1706			return -EINVAL;
   1707		}
   1708		/* Half duplex is only available in the ST Micro version */
   1709		if (pl022->vendor->extended_cr) {
   1710			if ((chip_info->duplex !=
   1711			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
   1712			    && (chip_info->duplex !=
   1713				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
   1714				dev_err(&pl022->adev->dev,
   1715					"Microwire duplex mode is configured incorrectly\n");
   1716				return -EINVAL;
   1717			}
   1718		} else {
   1719			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
   1720				dev_err(&pl022->adev->dev,
   1721					"Microwire half duplex mode requested,"
   1722					" but this is only available in the"
   1723					" ST version of PL022\n");
   1724				return -EINVAL;
   1725			}
   1726		}
   1727	}
   1728	return 0;
   1729}
   1730
   1731static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
   1732{
   1733	return rate / (cpsdvsr * (1 + scr));
   1734}
   1735
   1736static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
   1737				    ssp_clock_params * clk_freq)
   1738{
   1739	/* Lets calculate the frequency parameters */
   1740	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
   1741	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
   1742		best_scr = 0, tmp, found = 0;
   1743
   1744	rate = clk_get_rate(pl022->clk);
   1745	/* cpsdvscr = 2 & scr 0 */
   1746	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
   1747	/* cpsdvsr = 254 & scr = 255 */
   1748	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
   1749
   1750	if (freq > max_tclk)
   1751		dev_warn(&pl022->adev->dev,
   1752			"Max speed that can be programmed is %d Hz, you requested %d\n",
   1753			max_tclk, freq);
   1754
   1755	if (freq < min_tclk) {
   1756		dev_err(&pl022->adev->dev,
   1757			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
   1758			freq, min_tclk);
   1759		return -EINVAL;
   1760	}
   1761
   1762	/*
   1763	 * best_freq will give closest possible available rate (<= requested
   1764	 * freq) for all values of scr & cpsdvsr.
   1765	 */
   1766	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
   1767		while (scr <= SCR_MAX) {
   1768			tmp = spi_rate(rate, cpsdvsr, scr);
   1769
   1770			if (tmp > freq) {
   1771				/* we need lower freq */
   1772				scr++;
   1773				continue;
   1774			}
   1775
   1776			/*
   1777			 * If found exact value, mark found and break.
   1778			 * If found more closer value, update and break.
   1779			 */
   1780			if (tmp > best_freq) {
   1781				best_freq = tmp;
   1782				best_cpsdvsr = cpsdvsr;
   1783				best_scr = scr;
   1784
   1785				if (tmp == freq)
   1786					found = 1;
   1787			}
   1788			/*
   1789			 * increased scr will give lower rates, which are not
   1790			 * required
   1791			 */
   1792			break;
   1793		}
   1794		cpsdvsr += 2;
   1795		scr = SCR_MIN;
   1796	}
   1797
   1798	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
   1799			freq);
   1800
   1801	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
   1802	clk_freq->scr = (u8) (best_scr & 0xFF);
   1803	dev_dbg(&pl022->adev->dev,
   1804		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
   1805		freq, best_freq);
   1806	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
   1807		clk_freq->cpsdvsr, clk_freq->scr);
   1808
   1809	return 0;
   1810}
   1811
   1812/*
   1813 * A piece of default chip info unless the platform
   1814 * supplies it.
   1815 */
   1816static const struct pl022_config_chip pl022_default_chip_info = {
   1817	.com_mode = INTERRUPT_TRANSFER,
   1818	.iface = SSP_INTERFACE_MOTOROLA_SPI,
   1819	.hierarchy = SSP_MASTER,
   1820	.slave_tx_disable = DO_NOT_DRIVE_TX,
   1821	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
   1822	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
   1823	.ctrl_len = SSP_BITS_8,
   1824	.wait_state = SSP_MWIRE_WAIT_ZERO,
   1825	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
   1826};
   1827
   1828/**
   1829 * pl022_setup - setup function registered to SPI master framework
   1830 * @spi: spi device which is requesting setup
   1831 *
   1832 * This function is registered to the SPI framework for this SPI master
   1833 * controller. If it is the first time when setup is called by this device,
   1834 * this function will initialize the runtime state for this chip and save
   1835 * the same in the device structure. Else it will update the runtime info
   1836 * with the updated chip info. Nothing is really being written to the
   1837 * controller hardware here, that is not done until the actual transfer
   1838 * commence.
   1839 */
   1840static int pl022_setup(struct spi_device *spi)
   1841{
   1842	struct pl022_config_chip const *chip_info;
   1843	struct pl022_config_chip chip_info_dt;
   1844	struct chip_data *chip;
   1845	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
   1846	int status = 0;
   1847	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
   1848	unsigned int bits = spi->bits_per_word;
   1849	u32 tmp;
   1850	struct device_node *np = spi->dev.of_node;
   1851
   1852	if (!spi->max_speed_hz)
   1853		return -EINVAL;
   1854
   1855	/* Get controller_state if one is supplied */
   1856	chip = spi_get_ctldata(spi);
   1857
   1858	if (chip == NULL) {
   1859		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
   1860		if (!chip)
   1861			return -ENOMEM;
   1862		dev_dbg(&spi->dev,
   1863			"allocated memory for controller's runtime state\n");
   1864	}
   1865
   1866	/* Get controller data if one is supplied */
   1867	chip_info = spi->controller_data;
   1868
   1869	if (chip_info == NULL) {
   1870		if (np) {
   1871			chip_info_dt = pl022_default_chip_info;
   1872
   1873			chip_info_dt.hierarchy = SSP_MASTER;
   1874			of_property_read_u32(np, "pl022,interface",
   1875				&chip_info_dt.iface);
   1876			of_property_read_u32(np, "pl022,com-mode",
   1877				&chip_info_dt.com_mode);
   1878			of_property_read_u32(np, "pl022,rx-level-trig",
   1879				&chip_info_dt.rx_lev_trig);
   1880			of_property_read_u32(np, "pl022,tx-level-trig",
   1881				&chip_info_dt.tx_lev_trig);
   1882			of_property_read_u32(np, "pl022,ctrl-len",
   1883				&chip_info_dt.ctrl_len);
   1884			of_property_read_u32(np, "pl022,wait-state",
   1885				&chip_info_dt.wait_state);
   1886			of_property_read_u32(np, "pl022,duplex",
   1887				&chip_info_dt.duplex);
   1888
   1889			chip_info = &chip_info_dt;
   1890		} else {
   1891			chip_info = &pl022_default_chip_info;
   1892			/* spi_board_info.controller_data not is supplied */
   1893			dev_dbg(&spi->dev,
   1894				"using default controller_data settings\n");
   1895		}
   1896	} else
   1897		dev_dbg(&spi->dev,
   1898			"using user supplied controller_data settings\n");
   1899
   1900	/*
   1901	 * We can override with custom divisors, else we use the board
   1902	 * frequency setting
   1903	 */
   1904	if ((0 == chip_info->clk_freq.cpsdvsr)
   1905	    && (0 == chip_info->clk_freq.scr)) {
   1906		status = calculate_effective_freq(pl022,
   1907						  spi->max_speed_hz,
   1908						  &clk_freq);
   1909		if (status < 0)
   1910			goto err_config_params;
   1911	} else {
   1912		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
   1913		if ((clk_freq.cpsdvsr % 2) != 0)
   1914			clk_freq.cpsdvsr =
   1915				clk_freq.cpsdvsr - 1;
   1916	}
   1917	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
   1918	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
   1919		status = -EINVAL;
   1920		dev_err(&spi->dev,
   1921			"cpsdvsr is configured incorrectly\n");
   1922		goto err_config_params;
   1923	}
   1924
   1925	status = verify_controller_parameters(pl022, chip_info);
   1926	if (status) {
   1927		dev_err(&spi->dev, "controller data is incorrect");
   1928		goto err_config_params;
   1929	}
   1930
   1931	pl022->rx_lev_trig = chip_info->rx_lev_trig;
   1932	pl022->tx_lev_trig = chip_info->tx_lev_trig;
   1933
   1934	/* Now set controller state based on controller data */
   1935	chip->xfer_type = chip_info->com_mode;
   1936
   1937	/* Check bits per word with vendor specific range */
   1938	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
   1939		status = -ENOTSUPP;
   1940		dev_err(&spi->dev, "illegal data size for this controller!\n");
   1941		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
   1942				pl022->vendor->max_bpw);
   1943		goto err_config_params;
   1944	} else if (bits <= 8) {
   1945		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
   1946		chip->n_bytes = 1;
   1947		chip->read = READING_U8;
   1948		chip->write = WRITING_U8;
   1949	} else if (bits <= 16) {
   1950		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
   1951		chip->n_bytes = 2;
   1952		chip->read = READING_U16;
   1953		chip->write = WRITING_U16;
   1954	} else {
   1955		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
   1956		chip->n_bytes = 4;
   1957		chip->read = READING_U32;
   1958		chip->write = WRITING_U32;
   1959	}
   1960
   1961	/* Now Initialize all register settings required for this chip */
   1962	chip->cr0 = 0;
   1963	chip->cr1 = 0;
   1964	chip->dmacr = 0;
   1965	chip->cpsr = 0;
   1966	if ((chip_info->com_mode == DMA_TRANSFER)
   1967	    && ((pl022->master_info)->enable_dma)) {
   1968		chip->enable_dma = true;
   1969		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
   1970		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
   1971			       SSP_DMACR_MASK_RXDMAE, 0);
   1972		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
   1973			       SSP_DMACR_MASK_TXDMAE, 1);
   1974	} else {
   1975		chip->enable_dma = false;
   1976		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
   1977		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
   1978			       SSP_DMACR_MASK_RXDMAE, 0);
   1979		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
   1980			       SSP_DMACR_MASK_TXDMAE, 1);
   1981	}
   1982
   1983	chip->cpsr = clk_freq.cpsdvsr;
   1984
   1985	/* Special setup for the ST micro extended control registers */
   1986	if (pl022->vendor->extended_cr) {
   1987		u32 etx;
   1988
   1989		if (pl022->vendor->pl023) {
   1990			/* These bits are only in the PL023 */
   1991			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
   1992				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
   1993		} else {
   1994			/* These bits are in the PL022 but not PL023 */
   1995			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
   1996				       SSP_CR0_MASK_HALFDUP_ST, 5);
   1997			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
   1998				       SSP_CR0_MASK_CSS_ST, 16);
   1999			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
   2000				       SSP_CR0_MASK_FRF_ST, 21);
   2001			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
   2002				       SSP_CR1_MASK_MWAIT_ST, 6);
   2003		}
   2004		SSP_WRITE_BITS(chip->cr0, bits - 1,
   2005			       SSP_CR0_MASK_DSS_ST, 0);
   2006
   2007		if (spi->mode & SPI_LSB_FIRST) {
   2008			tmp = SSP_RX_LSB;
   2009			etx = SSP_TX_LSB;
   2010		} else {
   2011			tmp = SSP_RX_MSB;
   2012			etx = SSP_TX_MSB;
   2013		}
   2014		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
   2015		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
   2016		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
   2017			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
   2018		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
   2019			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
   2020	} else {
   2021		SSP_WRITE_BITS(chip->cr0, bits - 1,
   2022			       SSP_CR0_MASK_DSS, 0);
   2023		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
   2024			       SSP_CR0_MASK_FRF, 4);
   2025	}
   2026
   2027	/* Stuff that is common for all versions */
   2028	if (spi->mode & SPI_CPOL)
   2029		tmp = SSP_CLK_POL_IDLE_HIGH;
   2030	else
   2031		tmp = SSP_CLK_POL_IDLE_LOW;
   2032	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
   2033
   2034	if (spi->mode & SPI_CPHA)
   2035		tmp = SSP_CLK_SECOND_EDGE;
   2036	else
   2037		tmp = SSP_CLK_FIRST_EDGE;
   2038	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
   2039
   2040	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
   2041	/* Loopback is available on all versions except PL023 */
   2042	if (pl022->vendor->loopback) {
   2043		if (spi->mode & SPI_LOOP)
   2044			tmp = LOOPBACK_ENABLED;
   2045		else
   2046			tmp = LOOPBACK_DISABLED;
   2047		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
   2048	}
   2049	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
   2050	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
   2051	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
   2052		3);
   2053
   2054	/* Save controller_state */
   2055	spi_set_ctldata(spi, chip);
   2056	return status;
   2057 err_config_params:
   2058	spi_set_ctldata(spi, NULL);
   2059	kfree(chip);
   2060	return status;
   2061}
   2062
   2063/**
   2064 * pl022_cleanup - cleanup function registered to SPI master framework
   2065 * @spi: spi device which is requesting cleanup
   2066 *
   2067 * This function is registered to the SPI framework for this SPI master
   2068 * controller. It will free the runtime state of chip.
   2069 */
   2070static void pl022_cleanup(struct spi_device *spi)
   2071{
   2072	struct chip_data *chip = spi_get_ctldata(spi);
   2073
   2074	spi_set_ctldata(spi, NULL);
   2075	kfree(chip);
   2076}
   2077
   2078static struct pl022_ssp_controller *
   2079pl022_platform_data_dt_get(struct device *dev)
   2080{
   2081	struct device_node *np = dev->of_node;
   2082	struct pl022_ssp_controller *pd;
   2083
   2084	if (!np) {
   2085		dev_err(dev, "no dt node defined\n");
   2086		return NULL;
   2087	}
   2088
   2089	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
   2090	if (!pd)
   2091		return NULL;
   2092
   2093	pd->bus_id = -1;
   2094	pd->enable_dma = 1;
   2095	of_property_read_u32(np, "pl022,autosuspend-delay",
   2096			     &pd->autosuspend_delay);
   2097	pd->rt = of_property_read_bool(np, "pl022,rt");
   2098
   2099	return pd;
   2100}
   2101
   2102static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
   2103{
   2104	struct device *dev = &adev->dev;
   2105	struct pl022_ssp_controller *platform_info =
   2106			dev_get_platdata(&adev->dev);
   2107	struct spi_master *master;
   2108	struct pl022 *pl022 = NULL;	/*Data for this driver */
   2109	int status = 0;
   2110
   2111	dev_info(&adev->dev,
   2112		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
   2113	if (!platform_info && IS_ENABLED(CONFIG_OF))
   2114		platform_info = pl022_platform_data_dt_get(dev);
   2115
   2116	if (!platform_info) {
   2117		dev_err(dev, "probe: no platform data defined\n");
   2118		return -ENODEV;
   2119	}
   2120
   2121	/* Allocate master with space for data */
   2122	master = spi_alloc_master(dev, sizeof(struct pl022));
   2123	if (master == NULL) {
   2124		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
   2125		return -ENOMEM;
   2126	}
   2127
   2128	pl022 = spi_master_get_devdata(master);
   2129	pl022->master = master;
   2130	pl022->master_info = platform_info;
   2131	pl022->adev = adev;
   2132	pl022->vendor = id->data;
   2133
   2134	/*
   2135	 * Bus Number Which has been Assigned to this SSP controller
   2136	 * on this board
   2137	 */
   2138	master->bus_num = platform_info->bus_id;
   2139	master->cleanup = pl022_cleanup;
   2140	master->setup = pl022_setup;
   2141	master->auto_runtime_pm = true;
   2142	master->transfer_one_message = pl022_transfer_one_message;
   2143	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
   2144	master->rt = platform_info->rt;
   2145	master->dev.of_node = dev->of_node;
   2146	master->use_gpio_descriptors = true;
   2147
   2148	/*
   2149	 * Supports mode 0-3, loopback, and active low CS. Transfers are
   2150	 * always MS bit first on the original pl022.
   2151	 */
   2152	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
   2153	if (pl022->vendor->extended_cr)
   2154		master->mode_bits |= SPI_LSB_FIRST;
   2155
   2156	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
   2157
   2158	status = amba_request_regions(adev, NULL);
   2159	if (status)
   2160		goto err_no_ioregion;
   2161
   2162	pl022->phybase = adev->res.start;
   2163	pl022->virtbase = devm_ioremap(dev, adev->res.start,
   2164				       resource_size(&adev->res));
   2165	if (pl022->virtbase == NULL) {
   2166		status = -ENOMEM;
   2167		goto err_no_ioremap;
   2168	}
   2169	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
   2170		&adev->res.start, pl022->virtbase);
   2171
   2172	pl022->clk = devm_clk_get(&adev->dev, NULL);
   2173	if (IS_ERR(pl022->clk)) {
   2174		status = PTR_ERR(pl022->clk);
   2175		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
   2176		goto err_no_clk;
   2177	}
   2178
   2179	status = clk_prepare_enable(pl022->clk);
   2180	if (status) {
   2181		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
   2182		goto err_no_clk_en;
   2183	}
   2184
   2185	/* Initialize transfer pump */
   2186	tasklet_init(&pl022->pump_transfers, pump_transfers,
   2187		     (unsigned long)pl022);
   2188
   2189	/* Disable SSP */
   2190	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
   2191	       SSP_CR1(pl022->virtbase));
   2192	load_ssp_default_config(pl022);
   2193
   2194	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
   2195				  0, "pl022", pl022);
   2196	if (status < 0) {
   2197		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
   2198		goto err_no_irq;
   2199	}
   2200
   2201	/* Get DMA channels, try autoconfiguration first */
   2202	status = pl022_dma_autoprobe(pl022);
   2203	if (status == -EPROBE_DEFER) {
   2204		dev_dbg(dev, "deferring probe to get DMA channel\n");
   2205		goto err_no_irq;
   2206	}
   2207
   2208	/* If that failed, use channels from platform_info */
   2209	if (status == 0)
   2210		platform_info->enable_dma = 1;
   2211	else if (platform_info->enable_dma) {
   2212		status = pl022_dma_probe(pl022);
   2213		if (status != 0)
   2214			platform_info->enable_dma = 0;
   2215	}
   2216
   2217	/* Register with the SPI framework */
   2218	amba_set_drvdata(adev, pl022);
   2219	status = devm_spi_register_master(&adev->dev, master);
   2220	if (status != 0) {
   2221		dev_err(&adev->dev,
   2222			"probe - problem registering spi master\n");
   2223		goto err_spi_register;
   2224	}
   2225	dev_dbg(dev, "probe succeeded\n");
   2226
   2227	/* let runtime pm put suspend */
   2228	if (platform_info->autosuspend_delay > 0) {
   2229		dev_info(&adev->dev,
   2230			"will use autosuspend for runtime pm, delay %dms\n",
   2231			platform_info->autosuspend_delay);
   2232		pm_runtime_set_autosuspend_delay(dev,
   2233			platform_info->autosuspend_delay);
   2234		pm_runtime_use_autosuspend(dev);
   2235	}
   2236	pm_runtime_put(dev);
   2237
   2238	return 0;
   2239
   2240 err_spi_register:
   2241	if (platform_info->enable_dma)
   2242		pl022_dma_remove(pl022);
   2243 err_no_irq:
   2244	clk_disable_unprepare(pl022->clk);
   2245 err_no_clk_en:
   2246 err_no_clk:
   2247 err_no_ioremap:
   2248	amba_release_regions(adev);
   2249 err_no_ioregion:
   2250	spi_master_put(master);
   2251	return status;
   2252}
   2253
   2254static void
   2255pl022_remove(struct amba_device *adev)
   2256{
   2257	struct pl022 *pl022 = amba_get_drvdata(adev);
   2258
   2259	if (!pl022)
   2260		return;
   2261
   2262	/*
   2263	 * undo pm_runtime_put() in probe.  I assume that we're not
   2264	 * accessing the primecell here.
   2265	 */
   2266	pm_runtime_get_noresume(&adev->dev);
   2267
   2268	load_ssp_default_config(pl022);
   2269	if (pl022->master_info->enable_dma)
   2270		pl022_dma_remove(pl022);
   2271
   2272	clk_disable_unprepare(pl022->clk);
   2273	amba_release_regions(adev);
   2274	tasklet_disable(&pl022->pump_transfers);
   2275}
   2276
   2277#ifdef CONFIG_PM_SLEEP
   2278static int pl022_suspend(struct device *dev)
   2279{
   2280	struct pl022 *pl022 = dev_get_drvdata(dev);
   2281	int ret;
   2282
   2283	ret = spi_master_suspend(pl022->master);
   2284	if (ret)
   2285		return ret;
   2286
   2287	ret = pm_runtime_force_suspend(dev);
   2288	if (ret) {
   2289		spi_master_resume(pl022->master);
   2290		return ret;
   2291	}
   2292
   2293	pinctrl_pm_select_sleep_state(dev);
   2294
   2295	dev_dbg(dev, "suspended\n");
   2296	return 0;
   2297}
   2298
   2299static int pl022_resume(struct device *dev)
   2300{
   2301	struct pl022 *pl022 = dev_get_drvdata(dev);
   2302	int ret;
   2303
   2304	ret = pm_runtime_force_resume(dev);
   2305	if (ret)
   2306		dev_err(dev, "problem resuming\n");
   2307
   2308	/* Start the queue running */
   2309	ret = spi_master_resume(pl022->master);
   2310	if (!ret)
   2311		dev_dbg(dev, "resumed\n");
   2312
   2313	return ret;
   2314}
   2315#endif
   2316
   2317#ifdef CONFIG_PM
   2318static int pl022_runtime_suspend(struct device *dev)
   2319{
   2320	struct pl022 *pl022 = dev_get_drvdata(dev);
   2321
   2322	clk_disable_unprepare(pl022->clk);
   2323	pinctrl_pm_select_idle_state(dev);
   2324
   2325	return 0;
   2326}
   2327
   2328static int pl022_runtime_resume(struct device *dev)
   2329{
   2330	struct pl022 *pl022 = dev_get_drvdata(dev);
   2331
   2332	pinctrl_pm_select_default_state(dev);
   2333	clk_prepare_enable(pl022->clk);
   2334
   2335	return 0;
   2336}
   2337#endif
   2338
   2339static const struct dev_pm_ops pl022_dev_pm_ops = {
   2340	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
   2341	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
   2342};
   2343
   2344static struct vendor_data vendor_arm = {
   2345	.fifodepth = 8,
   2346	.max_bpw = 16,
   2347	.unidir = false,
   2348	.extended_cr = false,
   2349	.pl023 = false,
   2350	.loopback = true,
   2351	.internal_cs_ctrl = false,
   2352};
   2353
   2354static struct vendor_data vendor_st = {
   2355	.fifodepth = 32,
   2356	.max_bpw = 32,
   2357	.unidir = false,
   2358	.extended_cr = true,
   2359	.pl023 = false,
   2360	.loopback = true,
   2361	.internal_cs_ctrl = false,
   2362};
   2363
   2364static struct vendor_data vendor_st_pl023 = {
   2365	.fifodepth = 32,
   2366	.max_bpw = 32,
   2367	.unidir = false,
   2368	.extended_cr = true,
   2369	.pl023 = true,
   2370	.loopback = false,
   2371	.internal_cs_ctrl = false,
   2372};
   2373
   2374static struct vendor_data vendor_lsi = {
   2375	.fifodepth = 8,
   2376	.max_bpw = 16,
   2377	.unidir = false,
   2378	.extended_cr = false,
   2379	.pl023 = false,
   2380	.loopback = true,
   2381	.internal_cs_ctrl = true,
   2382};
   2383
   2384static const struct amba_id pl022_ids[] = {
   2385	{
   2386		/*
   2387		 * ARM PL022 variant, this has a 16bit wide
   2388		 * and 8 locations deep TX/RX FIFO
   2389		 */
   2390		.id	= 0x00041022,
   2391		.mask	= 0x000fffff,
   2392		.data	= &vendor_arm,
   2393	},
   2394	{
   2395		/*
   2396		 * ST Micro derivative, this has 32bit wide
   2397		 * and 32 locations deep TX/RX FIFO
   2398		 */
   2399		.id	= 0x01080022,
   2400		.mask	= 0xffffffff,
   2401		.data	= &vendor_st,
   2402	},
   2403	{
   2404		/*
   2405		 * ST-Ericsson derivative "PL023" (this is not
   2406		 * an official ARM number), this is a PL022 SSP block
   2407		 * stripped to SPI mode only, it has 32bit wide
   2408		 * and 32 locations deep TX/RX FIFO but no extended
   2409		 * CR0/CR1 register
   2410		 */
   2411		.id	= 0x00080023,
   2412		.mask	= 0xffffffff,
   2413		.data	= &vendor_st_pl023,
   2414	},
   2415	{
   2416		/*
   2417		 * PL022 variant that has a chip select control register whih
   2418		 * allows control of 5 output signals nCS[0:4].
   2419		 */
   2420		.id	= 0x000b6022,
   2421		.mask	= 0x000fffff,
   2422		.data	= &vendor_lsi,
   2423	},
   2424	{ 0, 0 },
   2425};
   2426
   2427MODULE_DEVICE_TABLE(amba, pl022_ids);
   2428
   2429static struct amba_driver pl022_driver = {
   2430	.drv = {
   2431		.name	= "ssp-pl022",
   2432		.pm	= &pl022_dev_pm_ops,
   2433	},
   2434	.id_table	= pl022_ids,
   2435	.probe		= pl022_probe,
   2436	.remove		= pl022_remove,
   2437};
   2438
   2439static int __init pl022_init(void)
   2440{
   2441	return amba_driver_register(&pl022_driver);
   2442}
   2443subsys_initcall(pl022_init);
   2444
   2445static void __exit pl022_exit(void)
   2446{
   2447	amba_driver_unregister(&pl022_driver);
   2448}
   2449module_exit(pl022_exit);
   2450
   2451MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
   2452MODULE_DESCRIPTION("PL022 SSP Controller Driver");
   2453MODULE_LICENSE("GPL");